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A B S T R A C T   

Accurate and swift tuning of joint impedance is crucial to perform movement and interaction with our envi-
ronment. Time-varying system identification enables quantification of joint impedance during movement. Many 
methods have been developed over the years, each with their own mathematical approach and underlying as-
sumptions. Yet, for the identification of joint impedance, a systematic comparison revealing each method’s 
unique strengths and weaknesses, is lacking. Here, we propose a quantitative framework to compare these 
methods. 

The framework is used to review five time-varying system identification methods using both simulated data 
and experimental data. These methods included three time-domain methods: ensemble, short data segment, and 
basis impulse response function; and two frequency-domain methods: ensemble spectral, and kernel-based 
regression. In the simulation study, joint stiffness – the static component of impedance – was simulated as a 
square wave to mimic the most extreme case of time-varying behavior. The identification results were compared 
based on the (1) variance accounted for (VAF), (2) bias, (3) random, and (4) total estimation error with respect to 
the simulated joint stiffness; and (5) rise time between two stiffness levels. In the experimental study, human 
ankle joint impedance was identified. Identification performance was compared using the variability in esti-
mating joint stiffness – representative of the random error – and VAF. 

The performance metrics revealed distinct identification properties for each method. Therefore, researchers 
must make a well-justified decision which method is most appropriate for their application. The combination of 
simulation and experimental work with extensive performance quantification creates a framework for quanti-
tative assessment of newly developed time-varying system identification methods.   

1. Introduction 

Our neuromuscular system is challenged to provide effective and 
energy-efficient control of every movement we make, while interacting 
with a highly dynamic environment. One way we accomplish this is by 
appropriately setting our joint’s mechanical properties. Altering our 
joint’s mechanical properties can be achieved by modulation of the 
mechanical properties of the muscle and tendon via muscle contraction 
or by modulating properties of the reflexive pathways (Kearney & 

Hunter, 1990). The joint’s mechanical properties are often quantified as 
the joint’s impedance, a metric describing the dynamic relationship 
between an imposed joint displacement and the restoring joint torque. A 
joint’s impedance undergoes continuous and rapid adaptations during 
movement. Examples include the modulation of ankle impedance during 
the gait cycle (Lee & Hogan, 2015) and elbow impedance during 
reaching movements (Popescu et al., 2003). These adaptations in joint 
impedance are crucial to maintain stable interaction with the environ-
ment with minimal energy consumption (Liu & Todorov, 2007). The 
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importance of proper modulation of impedance becomes even more 
evident in individuals that have central or peripheral nervous system 
damage. Spasticity following stroke (Meskers et al., 2009; Mirbagheri 
et al., 2008), or freezing episodes when suffering Parkinson’s Disease 
(Johnson et al., 1993; Prochazka et al., 1997) reveal how improper 
control of joint impedance during movement can arise due to malfunc-
tioning of the human control system. 

Accurately quantifying joint impedance requires the use of external 
perturbations. Early work without external perturbations used the 
concept of quasi-stiffness during movement by exploiting the derivative 
of the torque-angle relationship with respect to angle (Latash & Zat-
siorsky, 1993). Rouse and colleagues showed that quasi-stiffness cannot 
provide an accurate estimate of joint stiffness – the static component of 
the impedance – during movement, as joint torques and angles are 
rapidly varying (Rouse et al., 2013). Hence, joint impedance cannot be 
determined directly from measured joint angle and torque during 
normal movement. 

System identification techniques can provide accurate descriptions 
of joint impedance by use of external perturbations (Kearney & Hunter, 
1990; Kearney et al., 1997; van der Helm et al., 2002). System identi-
fication has been widely used to investigate joint impedance during 
different postural tasks and under varying experimental conditions. In 
these studies, the joint’s operating point is systematically varied (qua-
si-stationary) and joint impedance is considered time-invariant during 
every recording condition, enabling the use of time-invariant system 
identification. This approach has been used to demonstrate that joint 
stiffness varies with joint torque, joint angle, and muscle activation 
(Hunter & Kearney, 1982; Kearney & Hunter, 1982; Mirbagheri et al., 
2000). However, time-invariant techniques cannot be employed when 
assessing joint impedance during movement. During movement, joint 
torque, joint angle, and muscle activation vary throughout the move-
ment and the joint does not stay in one operating point. Extrapolating 
joint impedance from postural conditions to impedance during move-
ment is inappropriate as, for example, joint impedance is lower during 
movement than posture (Bennett et al., 1992). Hence, joint impedance 
during movement can only be quantified appropriately when consid-
ering the system as time-varying, where the time-varying variable is e.g., 
joint angle. The challenge has been to find a time-varying system 
identification method that provides an accurate description of joint 
impedance during movement. 

An abundance of time-varying system identification methods exist, 
in both time- and frequency domain, for the identification of joint 
impedance. However, it is unclear which method is best suited for 
different applications. Each method provides distinct opportunities, 
using a unique mathematical approach, to tackle the specific challenges 
faced while dealing with human data. Challenges include: the poor 
signal-to-noise (SNR) ratio of human kinematic and kinetic data, limited 
recording time available, e.g., due to participant fatigue, and lack of a 
priori knowledge regarding to joint impedance during movement. One of 
the first methods applied to human data was a non-parametric 
ensemble-based method, which required very little a priori informa-
tion about the expected joint dynamics. However, the method requires 
hundreds of realizations of input and output data with the same un-
derlying time-varying behavior and a strict timing between the time- 
varying behavior and the input signal (Lacquaniti et al., 1982; Soecht-
ing et al., 1981). The latter is difficult to achieve in human experiments 
and therefore mathematical solutions were sought to provide a robust 
estimate of joint impedance without the need for time-locking the input 
signal and time-varying behavior across trials (Lortie & Kearney, 2001; 
MacNeil et al., 1992). Reliable estimates of joint impedance without the 
need for a large amount of data can be obtained using various as-
sumptions. These include the assumption that joint impedance varies 
little inside a short time window (Ludvig & Perreault, 2012); or 
assuming that the time-varying joint impedance is proportional to e.g., 
muscle activity or joint position, and this dependence can therefore be 
included a priori by basis or scheduling functions (Golkar et al., 2017; 

Sobhani Tehrani et al., 2013, 2014). Moreover, when using parametric 
time-varying methods the joint impedance is assumed to match a pre-
defined model structure, e.g., that of a mechanical system with inertia, 
viscosity, and stiffness (Bennett et al., 1992; Kirsch & Kearney, 1997; 
Lacquaniti et al., 1993). However, such a second-order model may not 
always be sufficient to describe the joint impedance accurately (Sobhani 
Tehrani et al., 2017). Hence, the various assumptions underlying 
time-varying system identification methods directly affect their ability 
to reliably identify time-varying joint impedance. As a result, the deci-
sion on which method to adopt when is not straightforward. 

In this study, we perform a systematic comparison of five time- 
varying methods that are used to quantify joint impedance. First, a 
summary is provided of the mathematical principles behind each 
method. Then the identification performance of each method is assessed 
using simulation data obtained by simulating time-varying impedance 
of the ankle joint. Finally, the methods are used to quantify joint 
impedance from experimental data recorded from the ankle joint. 
Together, the collected information is used to present a framework 
based on which researchers can decide which method to use, and how to 
benchmark any newly developed methods. 

2. Algorithms 

The included methods were selected such as to obtain a wide-range 
of time-varying methods with unique properties. A detailed description 
of each method can be found in the cited work. In this work, we focus on 
the identification of the joint impedance and do not attempt to separate 
the dynamics into their intrinsic and reflexive contributions as others 
have done under time-invariant conditions (Kearney et al., 1997; van 
der Helm et al., 2002). For all methods we use an angular input u(t) and 
torque output y(t), while the time-varying dynamics are captured by 
either time-varying impulse response functions (IRF) h(t, τ) or 
time-varying frequency response functions H(s, t). 

2.1. Ensemble Impulse response function (eIRF) 

The ensemble impulse response function method was one of the 
earliest methods applied for identification of time-varying human joint 
properties (Soechting et al., 1981). The method was later improved for 
the identification of human joint impedance by MacNeil et al. (1992) 
and Lortie and Kearney (2001). 

Ensemble-based methods use input and output data across an 
ensemble of realizations to estimate impedance at each time point. This 
approach requires the collection of data containing many realizations of 
input and output data while the studied system undergoes the same 
time-varying behavior. The output yr(t) of a system for each realization r 
is represented by the convolution of a time-varying IRF h(t, τ) and input 
ur(t): 

yr(t) =
∫∞

− ∞
h(t, τ)ur(t − τ)dτ. (1) 

Assuming the IRF is of finite length and therefore h(t,τ) = 0 for |τ| >
τ0 while the data are recorded digitally with a sample time Δt the output 
yr(t) can be approximated by a discrete convolution: 

yr(i) = Δt
∑n

j=− n
h(i, j)ur(i − j), (2)  

where i is the time index and n = τ0/Δt. Altogether, this will result in a 
system consisting of R linear equations, R being the number of input- 
output realizations available. 

In matrix form this set of equations can be described as: 

Yi = ΔtHiUi, (3)  

where the length of vector Yi is determined by the number of realizations 
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recorded (R), the length of vector Hi is equal to p = 2n + 1 assuming a 
two-sided IRF (implying a non-causality), and Ui is a matrix of size p ×

R. Hi contains the IRF for each time point i, and can be found by solving 
(2) when input and output are known. Different cost functions result in 
different results, but in this work a solution is found by minimizing the 
squared error between the recorded and predicted output (MacNeil 
et al., 1992). This vector can be found by performing a singular value 
decomposition of Ui to find a least-squares approximation of the sys-
tem’s IRF for each time point i. However, in the current study we use an 
alternative to solve (2), using a correlation approach in combination 
with a pseudoinverse (Lortie & Kearney, 2001). This solution was found 
to provide a more robust estimate of the system’s dynamics under low 
SNR values. Hence, (2) can be rewritten as: 

φyu(i, k) = Δt
∑n

j=− n
φuu(i − j, k − j)h(i, j), (4) 

where φuu and φyu are time dependent auto- and cross-correlation 
functions. In matrix form: 

φuy(i) = ΔtHiφuu(i). (5) 

Hi can be solved by using a singular value decomposition, removing 
those terms that present a small singular value by a Minimum Descrip-
tion Length cost function, and calculating the pseudoinverse (Lortie & 
Kearney, 2001). 

2.2. Short Data segments (SDS) 

Ludvig and Perreault (2012) combined both time-invariant and 
time-varying correlations to estimate the system’s dynamics during 
short data segments. They noticed that the need for many realizations of 
input-output data with the same underlying system dynamics makes the 
eIRF method practically difficult to use for physiological systems, e.g., 
humans, where recording time is limited. Moreover, when the 
time-variation is slow with respect to the system’s dynamics, or contains 
periods of time-invariant dynamics, the eIRF approach is underutilizing 
the available data. 

Ludvig and Perreault (2012) used the same correlation based method 
(4) as Lortie and Kearney (2001). For time-varying conditions the 
cross-correlations can be calculated at each time point i and lag k using: 

φyu(i, k) =
1
R
∑R

r=1
u(i − k, r)y(i, r), (6)  

where the same time-varying system dynamics is assumed across each 
realization r of the total set (R). To effectively average both across time 
within a short data segment as well as across realizations, the time- 
invariant and time-varying estimators of cross-correlations can be 
combined. The multisegment correlations were defined as: 

φyu(i, k) =
1

NR
∑R

r=1

∑t+N/2

i=t− N/2

u(i − k, r)y(i, r), (7)  

where N is the number of points in each segment and t is the time at the 
middle of each realization. Combining (4) and (7), h(i, j) is solved by 
using a pseudoinverse which was found to provide a robust estimate of 
the system’s dynamics under low SNR values (Lortie & Kearney, 2001). 

2.3. Basis Impulse response function (bIRF) 

The basis IRF methods proposed by Guarin and Kearney (2017), and 
improved in Guarin and Kearney (2018b), combines ensemble and 
deterministic methods to estimate the time-varying joint impedance. A 
linear combination of basis functions is used to estimate the 

time-varying IRF h(t, τ) according to: 

h(t, τ) =
∑b

j=0
λτ,jΛj(t), (8)  

where {Λj(t)} j=b
j=0 are a set of time-varying basis functions and λτ,j their 

coefficients. Subsequently, the output y(t) is the convolution of the input 
with the time-varying IRF as determined by the time-varying basis 
functions: 

y(t) =
∑n

τ=− n

∑b

i=0
λτ,jΛj(t)u(i − τ). (9) 

For the estimation of the coefficients of the basis functions the al-
gorithm uses a sparse linear identification algorithm. A Bayesian iden-
tification algorithm (relevance vector machine (Bishop, 2006)) was 
chosen to eliminate the basis functions that do not reduce the prediction 
error. 

2.4. Ensemble spectral method (ESM) 

The ensemble spectral method by Schouten et al. (in preparation), in 
line with the SDS method, uses short data segments in which dynamics 
are considered time-invariant. However, rather than using the cross- and 
auto-correlations their frequency-domain equivalents are used: cross- 
and auto spectral density. Before transferring to the frequency domain, 
data are segmented around time point t, and each segment is multiplied 
by a Hanning window. Subsequently, data are transformed to the fre-
quency domain using the fast Fourier Transform. The cross- (Syu(f , t))
and auto spectral densities (Suu(f , t)) are then calculated using: 

Suu( f , t) =
1
N

⋅U( f , t)⋅U*( f , t), (10)  

Syu( f , t) =
1
N

⋅Y( f )⋅U*( f , t), (11)  

where N is the number of samples in each segment, U(f , t) and Y(f , t) the 
Fourier transformed input- and output data of the segment around time 
t, and U*(f , t) the complex conjugate of U(f , t). Taking the mean cross- 
(Syu(f , t)) and auto spectral densities (Suu(f ,t)) across all realizations, the 
time-varying frequency response function Hyu(f , t) is determined by: 

Hyu(f , t) =
Syu( f , t)
Suu( f , t)

. (12) 

Hyu(f , t) represents the time-varying joint impedance. 

2.5. Kernel-based regression (KBR) 

Another frequency-domain method is the kernel-based regression 
method, originally described by Lataire et al. (2017). The method has 
been successfully applied to the identification of joint impedance with a 
limited amount of data but was found to struggle capturing fast dy-
namics. Therefore, in our comparison we use the modified KBR method 
as proposed by Cavallo et al. (2020) which enables identification of 
faster changes in joint impedance. 

For the KBR method we assume that the joint’s input and output 
signals, u(t) and y(t), satisfy a linear differential equation of the form: 

y(t) = −
∑Na

m=1
am(t)

dmy(t)
dtm +

∑Nb

m=0
bm(t)

dmu(t)
dtm − fext(t), (13)  

where am(t) and bm(t) are the time-varying coefficients which are 
smooth periodic functions of t, and fext(t) is an additional smooth error 
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term. The time-varying coefficients are estimated via kernel-based 
regression. In essence, the estimator is defined as the following mini-
mizer: 

âm, b̂m =
argmin
am, bm

∑

k∈Kint

|E(k, am, bm)|
2

σ̂2
E(k, am, bm)

+ R(am, bm), (14)  

where E is the discrete Fourier transform of the equation error (i.e., the 
difference between the left and right hand side of (13)), evaluated in 
Kint, and am and bm are vectorised versions of am(t) and bm(t) in t = 0,Ts,

…, (N − 1)Ts. Kint represents the bins of the frequency band of interest 
and σ̂2

E is (an estimate of) the noise variance of E. R(am, bm) is a quadratic 
regularization term, to impose the smoothness and the approximate 
time-periodicity of the estimates: 

R(am, bm),=
∑

ăT
mK − 1ăm +

∑Nb

m=0
b̆

T
mK − 1b̆m (15)  

an = a n + ăn, bn = b n + b̆n (16) 

The parameters an and bn are decomposed into a n and b n (which are 
constant vectors to which no regularization is applied) and ăn and b̆n 

(which are time-varying and regularized to impose their smoothness). 
For the kernel matrix K the local periodic kernel is used: 

K(n, n′

) = γe
− 1

l21
sin2

(
π|t− t

′
|

p

)

e
− |t− t

′
|2

l22 ,

t = nTs, t′ = n′ Ts,

n, n’ = 0, 1,⋯,N − 1, (17)  

in which l1 determines the smoothness of the estimated time-varying 
coefficients, γ represents the inverse of the amount of regularization 
applied, defining a bias versus variance trade-off of the estimated co-
efficients, p the length of the period and l2 the length scale of the peri-
odicity. 

3. Simulation study 

3.1. Methods 

This section describes the simulation study that was used to quantify 
the performance of the time-varying methods when identifying simu-
lated joint impedance. A preliminary comparison of the eIRF, SDS and 
bIRF algorithms based on a subset of the same simulation data and 

performance metrics was presented previously in a conference abstract 
(van de Ruit et al., 2021). 

3.1.1. Modeling human joint impedance 
An anti-causal time-varying open-loop model of human joint 

impedance was used with an angular input u(t), torque output y(t), and 
measurement noise n(t) (Fig. 1). This model represents a protocol 
commonly employed in human experiments where participants perform 
a force task, exerting a (time-varying) joint torque, while receiving 
angular perturbations (Kirsch & Kearney, 1997). Theoretically, this 
model is described by: 

y(t) = Hjoint(s, t)u(t) + n(t) (18) 

Hjoint(s, t) is the time-varying human joint impedance and is modelled 
using a 2nd-order inertia-spring-damper system k: 

Hjoint (s, t) = Is2 + bs + k(t), (19)  

in which I is the joint inertia, b the joint viscosity and k(t) the time- 
varying joint stiffness. The Laplace variable s equals j2πf (f represents 
the frequency). Hence, only the intrinsic joint mechanical properties 
were modeled with time-varying joint stiffness. 

3.1.2. Simulation parameters & perturbation signal 
The model was implemented in MATLAB 2019b – Simulink 9.7 (The 

MathWorks, Inc., Natick, Massachusetts, United States). The parameters 
of Hjoint(s, t) were chosen to represent the human ankle joint impedance 
while being seated. Joint inertia and viscosity remained time-invariant 
(I = 0.02 kg⋅m2; b = 2.2 Nm⋅s/rad), while the joint stiffness k(t)
was represented by a square with a period of 2 s, offset of 0.5 s and 
stiffness levels of 50 and 150 Nm/rad (based on: Ludvig et al., 2011; 
Mirbagheri et al., 2000). The square wave represents the fastest possible 
transition in joint properties, thereby enabling to reveal the true iden-
tification limits of the time-varying methods. 

Two commonly applied perturbation input signals were used: (1) a 
filtered noise signal (filtered with a low-pass 2nd-order Butterworth 
with a 5 Hz cutoff) with a mean absolute velocity of 0.20 rad/s; and (2) a 
pseudo random binary sequence (PRBS) signal with a switching rate of 
147 ms and a mean absolute velocity of 0.08 rad/s. Both signals were 
scaled such that they had a root mean square (RMS) value of 0.5 ◦

(0.0087 rad). In addition to the position input, velocity and acceleration 
input data are required to determine the model’s torque output. 
Therefore, a 40-Hz low-pass analog Bessel filter (2nd-order) was applied 
to limit the bandwidth of the position input, and subsequently the 
integrator states were used to extract velocity and acceleration data 

Fig. 1. The implemented time-varying model of human joint impedance Hjoint(s, t) with angular input u(t), torque output y(t), and additive torque output noise n(t). 
Hjoint(s, t) was simulated as a 2nd order model with time-varying stiffness k(t), modelled as a 0.5 Hz square wave. The input signal was either a 5 Hz low-pass filtered 
noise u1(t) or pseudorandom binary sequence u2(t). 
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from the filtered position. This avoided having to compute the de-
rivatives numerically, which is known to be problematic. Output noise 
n(t) was added as a 40-Hz low-pass filtered (2nd-order Butterworth) 
normally distributed noise. The amplitude of the output noise was scaled 
such as to result in a desired SNR of 10 dB, in line with previous research 
(Golkar et al., 2017; Guarin & Kearney, 2018b). To evaluate the effect of 
the amount of data collected on the performance of the time-varying 
methods, simulations were run for a total of 40, 80, 150, 300 and 600 
s (sample frequency: fs = 1000 Hz). Each simulation condition was 
repeated 100 times with different realizations of the input and noise 
signals. 

3.1.3. Preprocessing of simulation data 
Before applying any time-varying methods, angle and torque data 

were 50-Hz low-pass filtered (30th-order finite impulse response filter) 
and decimated from a sample frequency of 1000 Hz to 100 Hz. No 
further preprocessing was performed on the simulation data. 

3.2. Application of time-varying system identification algorithms 

3.2.1. Ensemble impulse response function (eIRF) 
For the eIRF method the only a priori defined parameter is the 

memory, or maximum lag (n), for up to which the IRF is estimated. The 
maximum lag was chosen as 120 ms (12 samples). In the procedure of 
establishing the time-varying IRF a singular value decomposition is 
performed of which the optimal model order is based on the Minimum 
Description Length cost function. The joint stiffness was extracted by 
taking the integral of the non-parametric impedance time-varying IRF at 
each time point, effectively calculating the area-under-the-curve. In 
discrete-time this is formulated as: 

keIRF(t) =
∑2n+1

i=1
Hi(i, t)⋅Δt, (20)  

where n is the number of lags over which the IRF is calculated, Hi(i, t) the 
matrix containing the IRF calculated for each time-point within a real-
ization and Δt the sample time. 

3.2.2. Short Data segments (SDS) 
For the SDS method the a priori defined parameters are the maximum 

lag (n) and the number of samples over which the behavior is considered 
time-invariant (N). The maximum lag was chosen as 120 ms (12 sam-
ples). The length of a segment over which behavior was considered time- 
invariant was chosen as 100 ms (10 samples). The joint stiffness was 
extracted by taking the integral of the non-parametric impedance time- 
varying IRF at each time point, effectively calculating the area-under- 
the-curve (20). 

3.2.3. Basis Impulse response function (bIRF) 
The maximum lag was chosen as 120 ms (12 samples) In addition, 

the time-varying coefficient of the time-varying IRF Λj(t) were repre-
sented using ten cubic B-splines as basis functions. Joint stiffness was 
estimated using a Bayesian identification algorithm known as relevance 
vector machine (Bishop, 2006), multiplying the estimated basis function 
coefficients with their corresponding basis functions. This algorithm 
assumes a non-restrictive Gaussian prior centered around zero for each 
of the ten coefficients associated with one of the cubic B-spline basis 
functions that together describe the joint stiffness. Simultaneously, ten 
additional coefficients are estimated to model joint viscosity, and a 
single constant to represent joint inertia (not reported). To update the 
mean and variance of the distribution associated with each coefficient in 
the model a direct optimization approach was used together with the 

position, torque, and calculated velocity and acceleration. 

3.2.4. Ensemble spectral method (ESM) 
For the ESM method the only a priori defined parameter is the 

number of samples over which the behavior is considered time-invariant 
(N). The segment length was chosen to be 30 samples, 300 ms. This 
number was chosen as a trade-off between the time window considered 
time-invariant and achieving a sufficient frequency resolution. Joint 
stiffness is extracted by taking the real value at 0 Hz in the frequency 
response function. 

3.2.5. Kernel based regression (KBR) 
For KBR, the parameters Na and Nb – determining the system’s order 

– were chosen as 0 as 2, respectively. Therefore, we define the transfer 
function of the time-varying system as: 

Hjoint(s, t*) = b2(t*)s2 + b1(t*)s + b0(t*). (21) 

When evaluated in t*, the function Hjoint(s, t*) is the transfer function 
of the LTI system, obtained by fixing the time-varying parameters to 
their values at time instant t*, i.e., an(t*) and bn(t*). Joint stiffness was 
extracted from the frozen transfer function by calculating b0(t*)

a0(t*)
. 

The hyperparameter p was set to 2 s based on the 0.5-Hz simulated 
stiffness modulation. The other hyperparameters were l1 = 1/e2s, l2 =

120,000 s and γ = 4.5. The parameters were selected as a trade-off 
between variability of the output signal due to noise, due to the 
complexity of the model parameters and due to the period-to-period 
variability of the model parameters. The term fext(t) was regularized 
with squared exponential kernel with high smoothness to capture low- 
frequency errors. Simulations of 300 and 600 s were excluded from 
analysis with the KBR method due to the method’s high computational 
demands and limited benefit for the stiffness estimations to include more 
data. The identification was performed over a bandwidth of 0–20 Hz. 

3.3. Performance quantification 

Five metrics were defined that enabled us to compare the identified 
joint stiffness to the true simulated joint stiffness (based on Ludvig & 
Perreault, 2012). First, the bias error described the mean estimation 
error with respect to the simulated joint stiffness: 

Errbias =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δt
T
∑T/Δt

i=1

(
K̂(iΔt) − K(iΔt)

)2
,

√
√
√
√ (22)  

where K(iΔt) is the simulated stiffness and K̂(iΔt) is the mean estimated 
stiffness across all simulated trials at timepoint iΔt. Second, the random 
error quantified the variance of the estimate across simulation trials 
(noise sensitivity): 

Errrandom =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δt

R⋅T
∑T/Δt

i=1

∑R

r=1

(
K̂(iΔt, r) − K̂(iΔt)

)2
,

√

(23)  

where K̂(iΔt, r) is the stiffness estimated at timepoint iΔt for realization 
r. Third, the total error described the overall error in the identification of 
joint stiffness: 

Errtot =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δt

R⋅T
∑T/Δt

i=1

∑R

r=1

(
K̂(iΔt, r) − K(iΔt)

)2
,

√

(24) 

The fourth performance metric was the rise time. The rise time 
provided a measure of how quickly a time-varying system identification 
method can adapt to an instantaneous change in simulated stiffness. The 
rise time was quantified by the difference between the time points at 

M. van de Ruit et al.                                                                                                                                                                                                                           



Annual Reviews in Control 52 (2021) 91–107

96

which the mean estimated stiffness first exceeded 60 and 140 Nm/rad 
respectively. 

The fifth performance metric used was the variance-accounted-for 
(VAF) to quantify how well the time-varying model of joint impedance 
explains the output torque data. The VAF was calculated for each 2-s 
realization (r) according to: 

VAF(r) =

(

1 −
∑N

i=1|y(iΔt, r) − ŷ(iΔt, r)|2
∑N

i=1|y(iΔt, r)|2

)

⋅100%, (25)  

where y(iΔt, r) is the simulated (noiseless) or recorded output torque for 
realization r at timepoint iΔt minus the grand mean across all re-
alizations (the voluntary contribution) and ŷ(iΔt, r) is the estimated 
output torque at timepoint iΔt based on the identified model(s) of joint 
impedance. VAF was calculated using the aligned and re-sampled torque 
data, and additionally when torque data were first band-pass filtered by 
a 3rd order Butterworth filter with a passband of 1–10 Hz. A passband of 
1–10 Hz was used to minimize the contribution of inertia, which 
generally dominates the VAF using full bandwidth data, and provide a 
better estimate of how well the data are fitted by the joint stiffness and 
viscosity. A time-varying VAF was also determined by calculating the 
VAF across each time sample during a 2-s period of time-varying 
behavior, and only for the aligned and re-sampled torque data. 

TV − VAF(iΔt) =

(

1 −
∑R

r=1|y(iΔt, r) − ŷ(iΔt, r)|2
∑R

r=1|y(iΔt, r)|2

)

⋅100%. (26) 

If the calculated (time-varying) VAF was less than 0% due to a high 
error variance, VAF was set to 0%. The mean ± 2 standard deviations 
(TV-)VAF across all realizations was used to evaluate algorithm 
performance. 

3.4. Results 

An example of simulated and estimated IRFs for the IRF based 
methods (eIRF, SDS and bIRF) is provided in Fig. 2. Figs. 3 and 4 present 
the estimation results for all time-varying system identification methods 
using filtered noise and PRBS input signals, respectively. Under most 
conditions, the performance of the algorithms did not depend on the 
input signal and results only varied slightly. Therefore, further results 

will be discussed irrespective of the type of input signal. 
The eIRF method provided an accurate mean estimated joint stiffness 

(low bias error), however with substantial variance across simulation 
trials (high random error). Nevertheless, because the time-varying 
behavior is determined on a sample-by-sample basis, the instanta-
neous transition between stiffness levels was well captured (low rise 
time). In contrast, to the eIRF method, the bIRF method struggled to 
capture the rapidly varying joint impedance. As a result, the bIRF bias 
error is largest among all methods. Yet, the bIRF method provides a 
small random error meaning the method is the least sensitive to the 
variance across the simulation trials and can handle less data better than 
the eIRF method. The other methods (SDS, EMS, and KBR) all provide 
estimates with average bias error, random error and rise time. 

The sensitivity for the amount of data used for identification of joint 
impedance was primarily identified from the random error of the esti-
mated joint stiffness. The eIRF method demonstrated the largest sensi-
tivity for the amount of data, with the random error decreasing 
substantially when more than 40-s of data were used. Despite the 
distinct properties of each method, all provided an estimate of joint 
impedance which resulted in VAFs > 85% for all simulations. Whilst on 
average the VAF was high, the time-varying VAF across the period of 
time-varying dynamics demonstrates that the estimates of joint imped-
ance are worse for all but the eIRF method, when the stiffness transitions 
occur. 

4. Experimental study 

4.1. Methods 

4.1.1. Participants 
Six healthy participants (range: 23–25 years, 4 women) with no self- 

reported history of neurological or orthopedic ankle problems, partici-
pated in the experiment. All participants provided written informed 
consent to participate in the study, which was approved by the human 
research ethics committee (HREC) of Delft University of Technology. 
The experiment and all experiments was performed in accordance with 
the Declaration of Helsinki. 

4.1.2. Experimental setup 
An ankle manipulator (the ’Achilles’ – MOOG FCS Inc., Nieuw- 

Vennep, the Netherlands) enables one degree-of-freedom angular per-
turbations to the ankle in the sagittal plane (see Fig. 5). Participants 
were comfortably seated in front of a monitor, with their left foot 
attached to a rigid footplate using Velcro straps to ensure a firm link 
between the manipulator and the foot (manipulator stiffness 
∼ 3 kNm/rad). The lower leg and foot were positioned such as to achieve 
120◦ knee and 90◦ ankle angles. The monitor in front of the participant 
was used to present a target torque level, and the ankle torque exerted by 
the participant. 

4.1.3. Measurement protocol 
Before starting the experiment, the maximum voluntary torque 

(MVT) for ankle flexion was determined. Consequently, each participant 
completed 20 trials during which they were asked to voluntarily 
modulate their ankle flexion torque by following an onscreen target line 
(0.5-Hz sinusoid scaled between 5 and 50% MVT). During each trial 
participants received continuous angular perturbations, the same 
filtered noise (10 trials) or PRBS perturbation (10 trials) as used in the 
simulation study, which they were asked to ignore. To aid this instruc-
tion, the exerted torque was 0.6-Hz low-pass filtered before being fed 
back to the participant onscreen. Each trial lasted 70 s, including 5 s at 
the start and end of each trial without any perturbations. The torque on 
the manipulator’s footplate and angle of the footplate were sampled and 

Fig. 2. Simulated IRF (gray line) and estimated IRF for the IRF based methods 
(eIRF: blue dashed line; SDS: red dashed line and bIRF: green dashed line) using 
150-s of data and a PRBS input signal for one time point at which the joint 
stiffness (k) is low (50 Nm/rad) and one at which stiffness is high (150 Nm/ 
rad) (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.). 
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Fig. 3. Performance metrics obtained using a filtered noise angular input signal in simulation. Each column shows the results for one time-varying system iden-
tification method. The top panels show estimated joint stiffness (mean ± 2 standard deviations) for a single 2-s realization of time-varying behavior and corre-
sponding time-varying VAF (mean ± 2 standard deviations) when 150-s of data were used for the system identification. The bar graphs display the performance 
metrics for the estimated joint stiffness compared to the simulated joint stiffness for all simulation durations. The presented VAF was calculated based on the 
unfiltered torque data. The KBR method was not analyzed for 300-s and 600-s of data. 
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stored at 1024 Hz. 

4.1.4. Preprocessing of experimental data 
Before applying time-varying system identification methods, angle 

and torque data were 64 Hz low-pass filtered using (30th-order finite 
impulse response filter) and decimated from 1024 to 128 Hz. The first 
and last 5-s of data were removed from each trial. The data were rear-
ranged to separate the remaining 600-s of data for each perturbation 
signal into 300 realizations of 2 s. Subsequently, a data alignment, 
detrending and exclusion procedure was performed (described below) to 
minimize the variance among the recorded torque realizations at each 
point in time caused by varying tracking performance within and over 

trials. After exclusion, all realizations identified as outliers were 
removed and remaining torque realizations were used for the identifi-
cation of impedance. Before estimating the impedance, the torque data 
of each period were detrended by subtracting the mean of remaining 
realizations (effectively the mean voluntary torque contribution). 
Bootstrapping with replacement was used to select 75 or 150 re-
alizations of input and output data 100 times. 

4.1.5. Alignment of exclusion of realizations 
The same alignment and exclusion procedure was followed for both 

perturbation signal types. First, all recorded realizations of human tor-
que data were aligned to the 0.5 Hz reference torque sine wave that the 

Fig. 4. Performance metrics obtained using a PRBS angular input signal in simulation. Each column shows the results for one time-varying system identification 
method. The top panels show estimated joint stiffness (mean ± 2 standard deviations) for a single 2-s realization of time-varying behavior and corresponding time- 
varying VAF (mean ± 2 standard deviations) when 150-s of data were used for the system identification. The bar graphs display the performance metrics for the 
estimated joint stiffness compared to the simulated joint stiffness for all simulation durations. The presented VAF was calculated based on the unfiltered torque data. 
The KBR method was not analyzed for 300-s and 600-s of data. 
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participant had to track. Next, a time shift was sought that minimized 
the squared error between the recorded torque and torque target: 

tshift(r) = arg min
τϵ[− 0.5, 0.5] s

∑t=2 s

t=0

(
y(t + τ, r) − ytarget(t)

)2 (27) 

This minimum was sought over a range of time shift from − 0.5–0.5 s 
and was computed for each 2 s period. Any torque realizations that 
required a shift magnitude of more than 0.25 s were excluded (number 
of exclusions based on this criterion for filtered noise: 0–3 realizations; 
PRBS: 5–40 realizations). Third, the 0.5-Hz frequency component (the 
frequency of the voluntary applied torque) of the torque was extracted. 
This was accomplished by removing all frequencies except 0.5 Hz digi-
tally. Any torque realizations that exceeded the mean ± 3 standard 
deviations of the ensemble of realizations were excluded (number of 
exclusions based on this criterion for filtered noise: 4–12 realizations; 
PRBS: 3–10 realizations). Next, the mean voluntary torque contribution 

was removed by subtracting off the ensemble mean from each realiza-
tion. The residuals, which consisted primarily of the perturbation- 
evoked torques, were again assessed for outliers. These data were 
filtered using a 3rd-order 5-Hz low-pass Butterworth filter and re-
alizations were excluded that exceeded the mean ± 3 standard de-
viations. of all detrended realizations (number of exclusions based on 
this criterion for filtered noise: 17–29 realizations; PRBS: 15–20 
realizations). 

4.2. Application of time-varying system identification algorithms 

For all algorithms, the same settings were used as in the simulation 
study, unless stated otherwise below. Any differences are driven by the 
different sample frequencies at which data during simulation and the 
experiment were acquired, and the different expected behavior – square 
wave versus sinusoidal modulation of joint stiffness.  

• For the eIRF, SDS and bIRF methods the maximum lag was chosen 
117 ms (15 samples).  

• For the SDS method the length of a segment over which behavior was 
considered time-invariant set to 94 ms (12 samples).  

• The segment length in the ESM method was chosen to be 234 ms (30 
samples).  

• For the KBR method. the hyperparameters p was set to 2 s based on 
the 0.5-Hz voluntary torque modulation. In addition, l1 = 1/e1 s,
l2 = 30 s and γ = 13.8. Instead of 150-s and 300-s of data, 40-s and 
80-s of data (20 and 40 realizations) were used to perform the system 
identification. 

4.3. Performance quantification 

Joint stiffness estimation performance was described by determining 
the mean ± 2 standard deviations. of estimated joint stiffness across the 
100 bootstrap realizations along with the VAFs. The random error was 
represented by the standard deviation of the stiffness estimate. Bias and 
total estimation error could not be determined as for the simulation 
study, as here the true joint stiffness is unknown. In addition, rise time is 
not an appropriate measure given no instantaneous changes in stiffness 
are to be expected. 

4.4. Results 

Data for a representative subject is shown in Fig. 6. After alignment, 
exclusion and detrending, illustrated in Fig. 7, on average 260 ± 12 
realizations (mean ± standard deviations) were included for the filtered 

Fig. 5. Schematic of the lower leg and foot positioned such to achieve a 90-deg 
ankle angle with the robotic manipulator ‘Achilles’. Recorded signals are the 
angular input (ϴ) and torque output (T). The inset presents the onscreen 
feedback participants received to perform the instructed task: apply a time- 
varying ankle torque. 

Fig. 6. Representative 10-s of input and output y(t) data from a single participant for both the filtered noise (u1(t) and y1(t) – top row) and pseudorandom binary 
sequence (u2(t) and y2(t) – bottom row) perturbation signals. 
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noise perturbation, whereas 255 ± 14 realizations were included for the 
PRBS perturbation trials. 

Fig. 8 provides a comparison of the mean estimated joint stiffness 
using 150-s of data for all participants and both perturbation signals. 
The estimates of stiffness differed amongst the different methods and 
perturbation signals but demonstrate similar time-varying characteris-
tics. Greater ankle torque is associated with a higher joint stiffness and 
vice versa. 

Further details of the joint stiffness estimate for a single participant 
are provided in Fig. 9a. The joint stiffness (mean ± 2 standard de-
viations) is shown for all time-varying system identification methods 
using both perturbation signals and 150-s of data. The random error (or 
standard deviation) was found to be in the same order of magnitude for 
all methods but the KBR. Using the KBR method, the random error is 
greater when using a PRBS perturbation compared to the filtered noise 
perturbation. When 300-s of data are used, the random error decreases 
(Fig. 10b) while the mean estimated joint stiffness remains similar. 
Overall, the random error is greatest for the eIRF method, and smallest 
for the bIRF method. 

The VAF (Fig. 10a) and time-varying VAF (Fig. 9b) show that using a 
PRBS input signal results in a 20–30% higher VAF compared to using a 
filtered noise input signal for all but the KBR method. Using 150-s of 
data, the mean VAF for the eIRF, SDS, bIRF and ESM method ranged 
from 74.8 to 87.2% when using a PRBS perturbation and 49.4 to 62.7% 
when using filtered noise perturbation. Increasing the amount of data to 
300 s reduces, or only marginally improves, the VAFs to ranging from 
74.7 to 83.0% when using a PRBS perturbation to 49.3 to 57.2% when 
using filtered noise perturbation. VAFs for the KBR method was 49.6% 
when using a PRBS perturbation and 67.4% when using a filtered noise 
perturbation (regardless of the amount of data). However, when filtering 
the estimated and recorded torque data by a 1–10 Hz band-pass filter, 
VAF when using the PRBS perturbation is smaller (~10%) than when 

using the filtered noise. In addition, the time-varying VAF reveals a 
reduced VAF at the beginning, halfway and end of the realization. 

5. Discussion 

In this study we performed a systematic comparison of five time- 
varying system identification methods that are used to quantify joint 
impedance while joint position, torque and/or muscle activity are 
changing. A simulation study was performed to systematically evaluate 
the performance of each method in estimating joint impedance and 
reveal each method’s strengths and weaknesses. An additional experi-
mental study was used to directly compare estimates of joint stiffness of 
the methods using human data. Together, the simulation and experi-
mental study revealed distinct properties of each method which can be 
quantified using a comprehensive set of performance metrics. This result 
emphasizes the importance of careful selection of the best method for 
each application and calls for elaborate benchmarking of every newly 
developed method in the future. 

Comparison of time-varying system identification methods to assess time- 
varying ankle impedance 

The results demonstrate the unique properties of the five time- 
varying system identification methods. An overview of these proper-
ties is provided Table I. The ensemble based eIRF method provides the 
highest VAFs and smallest total joint stiffness estimation error, by 
providing time-invariant estimation of joint impedance on a sample-by- 
sample basis (Lortie & Kearney, 2001). However, this can only be ach-
ieved given that a few hundreds of realizations under realistic noise 
conditions are available. Recording hundreds of realizations with 
consistent behavior may be an issue in experiments with healthy par-
ticipants, where variability is at the heart of our motor behavior, and 

Fig. 7. Illustration of the data alignment, detrending 
and exclusion procedure using a representative data set 
(input signal: filtered noise). The top row shows all 300 
realizations of the recorded ankle torque (left) and all 
aligned and detrended torque realizations used for 
time-varying system identification (right). The bottom 
row visualizes the intermediate processing step. Step 1: 
All torque realizations are aligned to the participants 
target torque (black line) – and realizations excluded 
which require a time shift of more than 0.25 s. Step 2: 
The 0.5 Hz torque contribution was extracted and re-
alizations exceeding mean ± 3 standard deviations 
(indicated by the solid and dashed black lines) of all 
realizations excluded. Step 3: All realizations were 
mean subtracted and realizations exceeding mean ± 3 
standard deviations (indicated by the solid and dashed 
black lines) of all realizations excluded.   
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processes like attention and muscle fatigue play a major role (Zhang & 
Rymer, 2001), let alone in participants with a compromised motor 
system. The estimation performance of the eIRF method quickly drops 
with reduced amounts of data or with increased variance in 
time-varying behavior across realizations, making all other methods 
more appropriate when a large dataset cannot be obtained. 

The ensemble based SDS, bIRF and ESM methods reduce sensitivity 
for the amount of data by adding direct or implicit assumptions about 
the time-varying dynamics. The SDS and ESM method consider behavior 
to be time-invariant during a short time-window, whereas the bIRF uses 
(time-varying) basis functions to model the time-varying joint imped-
ance (Guarin & Kearney, 2017, 2018a; Ludvig & Perreault, 2012). The 
reduced need for data compared to the eIRF method comes at the cost of 
losing the ability to capture fast changes in joint impedance. Inappro-
priate definition of window size (SDS, ESM) or choice of basis function 
(bIRF) directly affects the maximum rate of change in joint impedance 
that can be identified. Hence, the identified time-varying joint imped-
ance is primarily driven by the dynamics that can be captured across the 
windows or by the (sum of) the basis functions. For example, the cubic 
B-splines used in the bIRF method are suboptimal to capture the rapid 
change in joint stiffness in the simulation study but fit the expected 
periodic behavior in the experimental study well (see Appendix A for 
simulation results of sinusoidal time-varying behavior). Identifying 
rapid changes in joint impedance would require the use of Haar wavelets 
which are square-shaped functions that would capture the simulated 
steps in joint impedance better (Guarin & Kearney, 2018b). 

In the context of data requirements, the KBR method is truly unique. 
The time-varying joint impedance could be captured across single re-
alizations of data. However, as the method imposes an approximate 
periodicity of the time-varying behavior, additional realizations will 
improve the estimate as information can transfer from one period to the 
other. The number of realizations still improving estimator accuracy is 
determined by the width of the kernel (parameter l2). The resulting 
estimated model is an analytical model which can easily be used for 
further simulation. Unfortunately, the identification procedure is 
computationally heavy and requires optimization and assumptions of 
many underlying parameters. The model orders (Na and Nb) and 
hyperparameters need to be determined a priori, which is a non-convex 
mixed-integer optimization problem. Hence, simply assuming a second- 
order system to represent joint impedance as often done, may not suffice 
(Sobhani Tehrani et al., 2017). 

The methods compared in this study were chosen based on their 
availability and primary purpose: to identify joint impedance. Methods 
not used include the (short segment) structural decomposition subspace 
method (SDSS) (Jalaleddini et al., 2017a, 2017b), the subspace, linear 
parameter varying, parallel cascade (LPV-PC) method (Golkar et al., 
2017), skirt decomposition method (Lataire et al., 2012; van de Ruit 
et al., 2020) and a time-frequency method together with modal analysis 
(Piovesan etal., 2009, 2012). The SDSS and LPV-PC method are specif-
ically designed to separate intrinsic and reflexive contributions to joint 
impedance which is outside the scope of this work. The SDSS method 
allows to directly obtain a parametric description of the joint parameters 
without making a priori assumptions about the system order, as the order 
is estimated as part of the method. The method is currently only capable 
of capturing slow changes in joint impedance, which contrasts the 
LPV-PC method, that can capture rapid changes in joint impedance. The 
LPV-PC method requires a scheduling function a priori – representing the 
assumed time-varying behavior – to achieve this. The correct scheduling 
function may be difficult to obtain and may change throughout an 
experiment. The skirt decomposition method was not included as it is 
only applicable when using sum-of-sine perturbations signals whilst the 

Fig. 8. Mean estimated joint stiffness of all participants (P1-P6) and all time- 
varying system identification methods when 150 s of data were analyzed. 
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Fig. 9. Estimated joint stiffness and time-varying VAF for all time-varying system identification methods using 150–s of data from a single participant. Each column 
represents the results for one time-varying system identification method. The gray line highlights the requested 0.5-Hz sinusoidal time-varying torque behavior the 
participant was requested to perform. (a) Estimated joint stiffness (mean ± 2 standard deviations) (filtered noise – top panel; PRBS – bottom panel). (b) time-varying 
VAF (mean ± 2 standard deviations). 

Fig. 10. VAF and random error using 150-s or 
300-s of data and a filtered noise (top panel) or 
PRBS (bottom panel) perturbation signal (a) 
VAF (mean ± 2 standard deviations). for all 
participants) of all time-varying system identi-
fication methods. VAF was calculated based on 
the full bandwidth recorded and estimated 
torque output (left), and band-pass filtered 
torque data between 1 and 10 Hz (right). (b) 
Estimated random error of the estimated ankle 
stiffness (mean ± 2 standard deviations for all 
participants).   
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time-frequency method with modal analysis does work with transient 
(impulse) perturbations rather than continuous perturbations. 

Factors not considered in this study 

Both the simulation and experimental study used an open-loop 
design. The simulations and experiments used an angular perturbation 
as an input signal where the resulting torque does not affect the joint 
angle. This does not accurately reflect time-varying joint impedance 
during our daily life activities, where most of our movements are made 
while our joints interact with a compliant environment. This effectively 
means that any torque generated in response to an angular perturbation 
will result in a change in joint angle. The presence of this interaction 
means that joint angle and torque are measured in a closed loop system 
(de Vlugt et al., 2001; van der Helm et al., 2002). Application of the open 
loop methods used in this study to data recorded in closed-loop condi-
tions would result in biased parameter estimates (Kearney & Hunter, 
1990; Ludvig & Kearney, 2009). All methods used in this study can be 
rewritten to be applicable to closed-loop data (e.g., for the SDS method: 
Ludvig & Kearney, 2009; Ludvig et al., 2017). While the modifications 
necessary to the methods to enable use of closed-loop data are not ex-
pected to have a substantial effect on the unique properties of the 
methods as presented for open-loop data in this paper, we are unable to 
conclude how each of these methods would perform when modified to 
work in closed-loop situations. 

In this study we focused on the identification of joint stiffness, 
without separating intrinsic and reflexive contributions. Reflexes may 
contribute up to ~50% to the total joint stiffness, depending on the 
muscle contraction level, perturbation characteristics and the joint 
studied (Mrachacz-Kersting & Sinkjaer, 2003; Sinkjaer et al., 1988; Stein 
& Kearney, 1995; Thomson & Chapman, 1988). Hence, during the 
experimental study, the time-varying ankle torque will have resulted in 
a time-varying reflex contribution within the trials. Moreover, the dif-
ference in mean absolute velocity between the perturbation signals may 
have resulted in a different reflex contribution across trials. Reflexes 
have been shown to reduce with mean absolute velocity and therefore, 

trials with the PRBS perturbation may have a smaller contribution of 
reflexes due to the lower mean absolute velocity of the perturbation 
signal (Stein & Kearney, 1995). The identification of time-varying re-
flexes requires more advanced and complex techniques, that may or may 
not require the recording of electromyography (EMG) from the muscles 
around the joint and additional assumptions on unknown parameters 
that describe the nonlinear reflex dynamics. Whilst an elegant and 
successful parallel cascade model has been described to distinguish 
(time-varying) intrinsic and reflex contributions to joint stiffness using 
ensemble time-domain based methods (eIRF, SDS and bIRF) (Golkar 
et al., 2017; Guarin & Kearney, 2017; Jalaleddini et al., 2017; Kearney 
et al., 1997; Ludvig et al., 2011), this remains an unsolved problem for 
the frequency-domain methods used in this study. Although, reflex and 
intrinsic contributions were left unseparated to enable comparison 
across all methods, one should be aware that any reflex activity present 
in the current data may have biased the stiffness estimates (Guarin & 
Kearney, 2018b). 

Several additional study design decisions were made to keep the 
work manageable. Joint inertia and joint viscosity were considered 
time-invariant (simulation study) or unidentified (experimental study). 
We chose to only vary and estimate joint stiffness as stiffness modulation 
is most pronounced and does not require additional parameter estima-
tion procedures having their own pitfalls. Joint inertia is generally found 
to vary little across movement phases, whereas joint viscosity co-varies 
with joint stiffness during movement and between joint operating points 
(Bennett et al., 1992; Lee & Hogan, 2015; Mirbagheri et al., 2000). 
Nonetheless, the identification of inertia and viscosity could be done by 
fitting a parametric model to the time-varying impedance IRF (eIRF, 
SDS) or frequency response function (ESM, KBR) and by Bayesian 
identification (bIRF). In simulation, we confirmed that covarying joint 
viscosity with joint stiffness at an order of magnitude of 1–3 Nms/rad 
neither does affect the identified properties of the methods nor presents 
different results for the estimation of joint stiffness. In addition to 
focusing on joint stiffness, we only compared the performance of the 
methods using one SNR level (10 dB) motivated by findings from 
experimental data (Mirbagheri et al., 2000). Whereas different SNR 
levels were not compared, the sensitivity of the methods to different 
levels of SNR can be inferred from the different amounts of data used in 
the simulation study performed. The use of more data for identification, 
reduces noise due to averaging – implicit to the ensemble-based 
methods. 

Use the VAF with care 

During this study, some important practical lessons were learned. In 
the experimental study, the VAF of the recorded torque and the standard 
deviation of the estimated joint stiffness were used to validate the 
identification results. The VAFs of the experimental study (Figs. 9b and 
10a) would suggest a better estimation performance of the method using 
a PRBS rather than a filtered noise perturbation. This can be explained 
by the larger high frequency content of the PRBS signal, which gets 
amplified in the measured joint torque due to the 2nd order nature of 
joint impedance and the inability of the human to effectively suppress 
these higher frequencies. The VAF is therefore largely determined by the 
ability of the model to correctly estimate the highest frequencies and as 
the torque response to a PRBS perturbations contains greater power at 
these higher frequencies, the VAF will always be higher. A solution may 
be found by removing frequencies > 10 Hz (the ankle’s natural fre-
quency), thereby reducing the contribution of inertia on the VAF. This 
VAF better reflects how well the method estimates the signal content 
determined by the joint viscosity and stiffness. 

There is the seemingly contradictory finding in the experimental 

Table 1 
Overview of assets and assumptions of the five time-varying system identifica-
tion methods compared in this study.  

Methods Assets & Assumptions 

eIRF  • Time-invariant estimate of joint dynamics is obtained at each sample 
time.  

• Time-varying behavior is assumed stationary across realizations.  
• No a priori assumptions on system dynamics or expected time-varying 

behavior are required  
• Many realizations are required with the same underlying time-varying 

behavior. 
SDS  • Time-varying behavior is assumed stationary across realizations.  

• Time-varying behavior is considered time-invariant across small time 
window - which influences the fastest dynamics that can be captured.  

• No a priori assumptions on system dynamics or expected time-varying 
behavior are required. 

bIRF  • Time-varying behavior is assumed stationary across realizations.  
• Time-varying behavior is assumed to be represented by a set of a priori 

chosen basis functions which dictates the dynamics of the captured 
behavior. 

ESM  • Time-varying behavior is assumed stationary across realizations.  
• Time-varying behavior is considered time-invariant across small time 

window - which influences the fastest dynamics that can be captured. 
KBR  • Time-varying behavior is assumed to be represented by a set of a priori 

chosen basis functions which dictated the dynamics of the captured 
behavior.  

• Order of system dynamics should be chosen a priori.  
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compared to the simulation data that use of more data does not improve 
VAF. In the simulation data the VAF is calculated between the estimated 
torque output and simulated, noiseless, torque output. Therefore, the 
VAF will go towards 100% when more data are used. In case of the 
experimental data, we only have the measured (noisy) torque recordings 
because of which the VAF is limited by the SNR of the recorded data. 
More data may thereby not change the VAF much whereas the random 
error (equivalent to the standard deviation) of the estimated joint stiff-
ness is markedly reduced. Hence, the VAF is a poor measure to draw 
conclusions on the amount of data required to get a reliable estimate of 
the joint’s properties estimated, and additional measures are required to 
reflect how well a system identification method estimates joint 
properties. 

The time-varying VAF demonstrates worse VAF where a rapid 
change in dynamics occurs (simulation data) or at the start, halfway and 
end of a realization (experimental data) when ensemble-based methods 
are used. What all these time points have in common is the strong rate of 
change in joint dynamics that takes place. Hence, a stronger rate of 
change of joint dynamics is associated with a larger variance across 
realizations and thereby results in worse identification results. This also 
stresses the importance of appropriate alignment procedures to ensure 
maximal overlap in underlying joint impedance between realizations, 
while minimizing the variance at every time point. 

An assessment framework for time-varying system identification methods 

A uniform evaluation of time-varying system identification method 
properties facilitates comparison, especially for those that wish to apply 
time-varying system identification as a tool without being experts in the 
field. Therefore, we suggest that authors that develop a new time- 
varying system identification method follow our framework in which 
a simulation and experimental study are employed to demonstrate the 
strengths and weaknesses of their methods. The simulation study reveals 
sensitivity to the amount of data used for identification and provides a 

quantitative description of properties and estimation errors. Moreover, 
by including extreme conditions e.g., a square wave time-varying stiff-
ness, the true strength and weaknesses of the method can be revealed. 
Next, the experimental study should be employed as a use case, with 
actual recorded human data. Ideally, in between the simulation and 
experimental study, the method is also validated using a mechanical 
setup with dynamical properties that mimic human joint properties. In 
addition, we encourage authors to publish datasets which can serve as a 
benchmark dataset for their newly developed method(s). 

Conclusion 

The use of (time-varying) system identification provides valuable 
insights into human movement control (Vlaar & Schouten, 2015) and 
helps the design of biomimetic prosthetics and orthotics (Hansen et al., 
2004) which is of crucial importance to their users (Shepherd et al., 
2018). The continuous development and improvement of system iden-
tification methods has helped tremendously to aid reliable description of 
human joint dynamics despite the noisy data recorded during human 
experiments. Nonetheless, the system identification community needs to 
recognize that to enable widespread use of their methods, code needs to 
be made easily accessible, and the method’s strength and weaknesses 
clearly defined. This work serves to provide a clear overview of the 
unique properties of different time-varying system identification 
methods available, and the importance of an elaborate description of 
their properties using bias and random error, and maximum rate of 
change in joint dynamics. This allows researchers to make a 
well-justified decision on which method would be most appropriate for 
their application based on which a priori assumptions can be confidently 
made and what performance is desired. 
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Appendix A 

To facilitate interpretation of the experimental results, where sinusoidal time-varying joint stiffness is expected, additional simulation trials where 
performed. 

Methods 

The same anti-causal time-varying open-loop model of human joint impedance and angular PRBS or filtered noise input were used as in the main 
simulation study. Joint inertia and viscosity remained time-invariant (I = 0.02 kg⋅m2; b = 2.2 Nm⋅s/rad), while the joint stiffness k(t) was rep-
resented by a sinusoid with a period of 2 s mean stiffness of 100 Nm/rad and amplitude of 50 Nm/rad. These parameters reflect the time-varying 
behavior expected from the experimental study. The amplitude of the output noise was scaled such as to result in a desired SNR of 10 dB. Simula-
tions were run for a total of 150 s (sample frequency: fs = 1000 Hz), equivalent to the amount of data used in the experimental study. Each simulation 
condition was repeated 100 times with different realizations of the input and noise signals. All data processing and time-varying system identification 
algorithms were applied as described in the simulation study. 

Results 

Fig. A.1 presents the estimation results for all time-varying system identification methods using filtered noise and PRBS input signals, respectively. 
All methods provide a good estimate of the time-varying joint stiffness, with the greatest bias found for the bIRF method and greatest variance across 
simulation trials for the eIRF method. The lowest bias error is found for the SDS and KBR method, whereas the lowest random error is observed for the 
bIRF and KBR method. VAFs are > 90% regardless of the method used, with the time-varying VAF showing greater variance for the PRBS input signal 
and lower joint stiffness values. 
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Fig. A.1. Performance metrics obtained when simulating sinusoidal time-varying joint stiffness using a filtered-noise and PRBS angular input signal. Each column 
shows the results for one time-varying system identification method. The top two panels show estimated joint stiffness (mean ± 2 standard deviations) for a single 2 s 
realization of time-varying behavior using each input signal when 150-s of data were used for the system identification. The middle two panels show the corre-
sponding time-varying VAF (mean ± 2 standard deviations). The bar graphs display the performance metrics for the estimated joint stiffness compared to the 
simulated joint stiffness for both input signals. The presented VAF was calculated based on the unfiltered torque data. 
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Discussion 

The obtained estimation results when simulation a sinusoidal time-varying joint stiffness comply with those obtained when using a square-wave 
time-varying joint stiffness. The results highlight that with sufficient data (or good signal-to-noise ratio) excellent estimates of a slowly time-varying 
joint stiffness can be made. 
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