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A B S T R A C T

A three-dimensional separable cohesive element (SCE) is proposed to enable the modelling of interaction be-
tween matrix cracking and interfacial delamination in laminated fibre-reinforced composite materials. It is
demonstrated that traditional cohesive elements are incapable of modelling the coupled failure mechanisms
accurately if partitioning is not allowed. The SCE may be partitioned according to the configuration and geo-
metry of matrix cracks in adjacent plies, thus maintaining appropriate connection between plies. Physically, the
original interface is split and new interfaces are formed to bond the homologous cracked solids during fracturing
process. The stress concentration induced by matrix cracks and the load transfer from cracked solid elements to
interface cohesive element are effectively modelled. A comprehensive set of cases of multiple matrix crack
configurations from plies of different fiber angles is considered. The proposed SCE is applied to model pro-
gressive failure in composite laminates and the results are found to agree with experiments.

1. Introduction

Composite laminates are widely used in aerospace and automotive
industries due to their outstanding material properties such as high
strength and light weight. However, multiple failure mechanisms are
often coupled when progressive damage analysis is considered. The
failure process is often a combination of matrix cracking, delamination
and fibre breaking, dependent on the stacking sequence and other
factors. The interaction between matrix cracks and interface delami-
nation is a major failure mechanism in composite laminates [1,2] and
has been a subject of active research in recent years. Hallett et al. [3–7]
conducted a series of tensile tests on notched and unnotched laminate
plates, and by introducing matrix cracks into the numerical models a
priori, better correlation with experimental results was obtained. Zu-
billaga et al. [8] experimentally observed that matrix cracks often
trigger the onset of interlaminar delamination due to the stress con-
centration at the crack tips. A similar observation was found by Noh
et al. [9] who predicted the shape and size of the delamination through
finite element (FE) analysis. Although coupled failure behavior of
composite laminates between matrix cracks and delamination has been
observed in experiments, accurate modelling of this phenomenon for
application in composite structures remains challenging.

In numerical progressive failure analysis, the cohesive element (CE)
is commonly employed to model interface failure between different

plies (i.e. delamination) of laminated composite structures [10–15]. On
the other hand, intralaminar damage (i.e. matrix cracking), is often
modelled with continuum damage mechanics (CDM) through smeared
crack models (SCM), where degradation of stiffness is used to represent
the effect of multiple micro-cracks in the plies [16–20]. The damage is
assumed to be smeared out and accumulated over the FE, and an in-
ternal damage parameter is used to characterize the progressive failure
process. Because the matrix cracks are not explicitly modelled, the local
stress concentration and coupling between different failure modes may
not be accurately described [21]. Therefore, application of these models
is restricted to cases where local coupled failure mechanisms are
usually not dominant. To address the limitations of SCM, alternative
explicit techniques, such as extended finite element (XFEM) [22],
augmented finite element (AFEM) [23], phantom node [24,25] and
floating node methods (FNM) [26] have been developed. The original
element is split so that matrix cracks can be explicitly introduced into
the element to describe displacement discontinuity. In this way, the
interaction between matrix damage and interface delamination is di-
rectly modelled [26–32]. Fang et al. [33] reported that when crack
bifurcation or coalescence occurs in matrix materials, the traditional CE
is unable to model the load transfer between the cohesive interface and
solid elements. Therefore, a two-dimensional augmented cohesive zone
(ACZ) element was proposed based on the AFEM (Fig. 1). Partitioned
into two sub-elements, the ACZ element could faithfully capture the
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stress distribution at the interface and thus provide accurate numerical
predictions. Similarly, Hu et al. enriched the CE with Heaviside func-
tion so that the CE could be split accordingly when matrix crack in-
itiates [31]. Partitioning of CE was also achieved with additional
floating nodes although these have been for interaction between single
matrix crack and interface delamination only [27,28].

When multiple matrix cracks in adjacent plies with different fibre
orientations are considered, the situation becomes more complicated.
Cracks developed in different plies may cross each other at the shared
interface, resulting in strong coupling between the interface and mul-
tiple matrix cracks. Although the phenomenon is commonly en-
countered in composite laminates, it has been generally neglected in
most simplified analyses. In Fig. 2a, consider a case where two matrix
cracks initiate in the neighboring solid elements (SE). If traditional CE
is directly applied (Fig. 2b), the coupling effects caused by the cracks in
plies are not correctly captured. Furthermore, although additional DoFs
are introduced into the model due to the presence of the cracks, they
are not properly constrained at the edges of the interface CE. Chen et al.
[27] proposed an approximate solution to this problem in which
overlapping two CEs with single partition is used to model the fractured
interface. Although the simplified formulation can overcome some
numerical difficulties, a three-dimensional SCE is required in order to
physically capture the coupling behavior. As shown in Fig. 2c, the SCE
should be partitioned into sub-elements in accordance with the crack
configurations in the abutting SEs. Subsequent damage of the parti-
tioned cohesive interface may thus be modelled, exhibiting the coupling
between matrix cracking and interfacial delamination.

In this paper, an SCE based on FNM is developed. The proposed SCE
offers several capabilities over the traditional CE:

1. It is partitionable into sub-elements according to the matrix crack
configurations in neighboring SEs so that coupled failure mechan-
isms can be accurately modelled.

2. It is able to connect the cracked ply solids at the correct places.
3. It is able to model the delamination boundaries clearly bounded by

neighboring matrix cracks.

The paper is structured as follows. The necessity for SCE is illu-
strated in Section 2. The detailed construction of the SCE is provided in
Section 3. Several numerical examples are presented in Section 4. Fi-
nally, the conclusion is given in Section 5.

2. Necessity for three-dimensional separable cohesive element

The necessity for SCE, is demonstrated by the test problem shown in
Fig. 3, where two SEs are bonded by one CE at the interface and uni-
directional tensile loads are applied to the elements. (For clarity, the CE
is schematically shown with a finite thickness although the actual
thickness is zero.) The dimensions of the two SEs are × ×l d h, the fibre
directions in the top and bottom plies are α and β, respectively, and the
material properties of T300/976 in Table 1 are used. Comparison be-
tween traditional CE and SCE models is shown in Fig. 4.

In the traditional CE model (Fig. 4a), after matrix cracking has oc-
curred, the interface remains intact and connected to the cracked SEs.
However, the CE is under in-plane stretch deformation and no force is
generated within the element. It does not directly experience the effect
of the matrix cracks above and below, and thus does not participate in
any load transfer. Throughout the entire process, the traditional CE
makes no contributions towards bearing the external loads and only
matrix damage is predicted (Fig. 4a).

In the SCE model, the interface the CE is partitioned according to
the crack configurations in its neighboring SEs, as shown in Fig. 4b. The
stresses released by the cracked SEs are concentrated and transferred
into the triangular sub-CEs through shear deformation. Failure of these
two triangular sub-CEs (delamination) and matrix cracking constitute
final fracture. Significant differences are observed from the predicted
load-displacement curves of the two models (Fig. 4c). Higher strength is
predicted by the SCE model compared to the traditional CE model
where only matrix cracking is captured.

Detailed elemental analyses with various fibre angles are provided

Slave node 

(b)(a)
Fig. 1. ACZ element for modelling interaction between matrix crack and delamination [33]: (a) erroneous shear stress distribution by traditional CE model; (b) physically correct shear
stress distribution by ACZ element model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) (b) (c)

Cracked solid element Interface cohesive element

Fig. 2. Three-dimensional coupling between matrix cracks and delamination: (a) two matrix cracks initiate in adjacent plies; (b) traditional CE fails to capture coupling between matrix
cracks and interface failure; (c) SCE models the interaction between matrix cracking and delamination. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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in Fig. 5. Without capturing the delamination failure properly, the
traditional CE models under-predict the material capabilities in element
level. However, it is shown that the SCE formulation results in higher
maximum load due to the proper accounting of the load transfer.

3. 3D separable cohesive element

In this section, the FNM proposed in [27,28,34] which explicitly
models the matrix cracks and delamination is briefly reviewed, and
based on the same framework, the 3D SCE is formulated. All possible
coupling scenarios between matrix cracking and interfacial delamina-
tion are considered when developing the SCE. The proposed SCE can be
employed in an unstructured mesh with arbitrary propagation of a large
number of matrix cracks.

3.1. Overview of the Floating Node Method (FNM)

In this paper, the FNM is adopted to formulate the SCE (Fig. 6). In
order to model crack propagation and crack-induced discontinuities
within existing elements, additional floating nodes are allocated in the
element formulation. Before matrix cracking, the floating nodes (and
the associated floating DoFs) are not used in the analysis, and hence the
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Fig. 3. Numerical model of two ply SEs bonded
by one interface CE subjected to uniaxial tensile
load. (For interpretation of the references to
colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 4. Comparison of numerical results between traditional CE and SCE: (a) final failure pattern of traditional CE model; (b) final failure pattern of SCE model; (c) load-displacement
curves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Predicted maximum load in elemental analysis with different fibre angles. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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ply elements are simply standard solid elements. When matrix cracking
is predicted through satisfying the failure criterion, these floating nodes
are activated and assigned to the positions where the cracks occur. The
ply element is then partitioned into several sub-elements and CE may be
inserted in between to model cracks. Further details of the FNM can be
found in [26–28].

3.2. Separable cohesive element

In this section, formulation of the SCE is presented. As shown in
Fig. 6a, two ply elements sandwich the SCE in between. By sharing the
nodes from solid elements, the bottom surface of ply element I forms
the top surface of the CE, while the top surface of ply element II forms
the bottom surface of the CE. Fig. 6b shows the local nodal connectivity
of the SCE: nodes 1–24 are the common nodes from neighboring SEs
while nodes 25–32 are edge slave nodes and nodes 33–34 are surface
slave nodes. The real and floating nodes are used to construct or par-
tition the CE, while the slave nodes are used to ensure compatibility is
preserved.

3.2.1. Before matrix cracking
Prior to matrix cracking, both ply elements are intact and the

floating nodes are not included in the calculations. Only the real nodes
(1–8) are used to form the interface CE and the derivation of stiffness
matrix of the CE is given as follows [35].

The separations between top and bottom surfaces of the CE are re-
lated to the homologous displacements (Fig. 6):

= −∼ ∼ ∼δ u utop bot (1)

where = ′∼ ∼ ∼∼δ δ δ δ[ , , ]n t l and = ′∼ ∼ ∼∼u u u u[ , , ]n t l are displacement components in
the local coordinate system. The subscripts n t, and l represent normal,
transverse and longitudinal directions to the surface of CE, while the
superscripts top and bot represent top and bottom surfaces of the CE,
respectively.

The displacement field u can be interpolated by the nodal dis-
placements in global coordinate system:

=u Nun (2)

where N is the shape function matrix and un is the corresponding nodal
displacement vector.

Through the transformation matrix R between global and local
coordinate systems, the vector of separations can be rewritten as:

= −
= − ′
=

∼δ R N u N u
R N N u u
Bu

( )
[ ][ ]

top
n
top bot

n
bot

bot top
n
bot

n
top

n (3)

The tractions in the CE can be calculated from the separations [36]:

̃ = ∼∼τ D δ (4)

where ∼D is the constitutive matrix derived from the cohesive law.
Through the weak formulation of the virtual work principle, the

stiffness matrix of the CE is given by:

∫ ∫ ⎜ ⎟= ′ ⎛
⎝

⎞
⎠

∼
− −

K B D B J dξdηdet
1

1

1

1

(5)

where J is the Jacobian matrix; ξ and η are coordinates in natural (iso-
parameter) coordinates.

3.2.2. Single matrix crack
Consider a case in which two ply SEs are bonded by an interface CE

(Fig. 7a). When a matrix crack initiates or propagates within one of the
plies, e.g. the top ply SE, floating nodes on the cracked edges are ac-
tivated to partition the ply element (Fig. 7b). The top surface of the CE
is partitioned accordingly by the same activated floating nodes, while
the bottom surface of the CE remains intact. To complete the CE for-
mulation, the intact bottom surface of the CE must be seeded with slave
nodes (dashed line in Fig. 7c). Therefore, the original CE is separated
into two sub-CEs, elements ① and ② in Fig. 7c:

CE
CE

: {1,25,27,4,5,17,22,8}
: {25,2,3,27,18,6,7,21}

1

2 (6)

Eq. (6) describes the local nodal connectivity of the sub-CEs, where
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to the web version of this article.)
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nodes 1–8 are the real nodes; nodes 17, 18, 21 and 22 are the floating
nodes activated to partition the cracked top surface; nodes 25 and 27
are the slave nodes used to divide the intact bottom surface and define

the proper integration domains for the sub-CEs. The numbering order of
the nodes follows the configuration in Fig. 6b.

Note that since the bottom surface of CE is not really fractured, its
configuration is determined by the corner nodes of the bottom ply
element (nodes 1–4 in Fig. 7c). Therefore, the slave nodes 25 and 27
and their associated DoFs do not enter into the element formulation. To
preserve compatibility, the slave nodes are constrained at the edges and
their DoFs u25 and u27 are related to the DoFs of the real nodes through
interpolation:

= +
= +

u x u x u
u x u x u

N N
N N

( ) ( )
( ) ( )

25 1 25 1 2 25 2

27 3 27 3 4 27 4 (7)

where Ni is the shape function for node i.
After partitioning, the stiffness matrices of the two sub-elements can

be calculated by Eq. (5):
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Fig. 7. Single matrix crack in two-ply laminate element: (a) Two-ply laminate element with two ply SEs bonded by an interface CE; (b) single matrix crack developed in the top ply
element; (c) SCE and nodal connectivity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Multiple matrix cracks in two-ply laminate
element: (a) two matrix cracks developed in both
top and bottom ply elements; (b) SCE and nodal
connectivity. (For interpretation of the references
to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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Fig. 9. 2D views of all possible cases with two matrix cracks in one CE: (a) case I, in-
tersection out of the element; (b) case II, intersection on element edge; (c) case III, in-
tersection inside the element. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 10. Factors to differentiate sub-cases: (a)
shape of the sub-CE; (b) number of the cracked
edges. (For interpretation of the references to
colour in this figure legend, the reader is referred
to the web version of this article.)
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∫ ∫
∫ ∫

= ′

= ′

∼

∼
− −

− −

K B D B J

K B D B J

dξ dη

dξ dη

(det )

(det )

1 1
1

1
1

1 1 1 1 1

2 1
1

1
1

2 2 2 2 2 (8)

where the variables with subscript i are defined for sub-element i. The
stiffness matrices given by Eq. (8) are finally assembled into the overall
stiffness matrix of the SCE:

�=K K K( , )CE 1 2 (9)

where � is the assembly operator. The slave nodes and the associated
DoFs can be removed from the stiffness matrix KCE using master-slave
constraints according to Eq. (7).

3.2.3. Multiple matrix cracks
When both top and bottom ply SEs are fractured, interaction be-

tween two cracks should be considered when constructing the SCE.

Fig. 8a shows a situation where two matrix cracks from adjacent plies
intersect at the cohesive interface. The SCE should be partitioned ac-
cording to matrix cracks in the abutting SEs. In Fig. 8a, the interface is
divided into four parts to ensure that the cracked solid domains remain
bonded to the sub-interfaces. The element formation is shown in
Fig. 8b. For FE implementation, the pentagonal interface is further
partitioned into triangular and quadrilateral sub-CEs. The SCE is thus
divided into six sub-elements (Fig. 8b) as follows:

CE
CE
CE
CE
CE
CE

: {1,14,4,5,31,8}
: {1,25,33,14,5,17,35,31}
: {34,27,13,35,22,31}
: {25,9,33,18,29,36}
: {10,2,27,34,29,6,21,36}
: {2,3,27,6,7,21}

1

2

3
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5

6 (10)
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Fig. 11. All the possible cases of SCE modelling
interaction between matrix cracks and interface
delamination. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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The displacements of slave nodes on element edges are obtained by
interpolation of values at the corner nodes:

= + = +

= + = +

u u u u u u

u u u u u u

,

,

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

25 1 9 27 3 13

29 6 18 31 8 22

9,25

1,9

1,25

1,9

13,27

3,13

3,27

3,13

18,29

6,18

6,29

6,18

22,31

8,22

8,31

8,22 (11)

where di j, is the distance between nodes i and j. Slave nodes 33–36 are
used for the intersection of two matrix cracks and the associated DoFs
can be calculated through the displacements of corner nodes on crack
surfaces:

= + = +

= + = +

u u u u u u

u u u u u u

,

,

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

33 9 14 34 10 13

35 17 22 36 18 21

14,33

9,14

9,33

9,14

13,34

10,13

10,34

10,13

22,35

17,22

17,35

17,22

21,36

18,21

18,36

18,21 (12)

The stiffness matrix Ki for sub-CE i can be calculated by Eq. (5) in
the corresponding sub-domain (with = ∼i 1 6). The overall stiffness
matrix is given by:

�=K K K K K K K( , , , , , )CE 1 2 3 4 5 6 (13)

Using Eqs. (11) and (12), the slave nodal DoFs are removed from the
stiffness matrix KCE.

3.3. All the possible scenarios

In failure analysis of composite laminates, a large number of matrix
cracks may develop. Therefore, all possible cases of intersecting cracks
should be considered in formulating the SCE. The scenarios where
single crack exists in the CE have been addressed in [27]. In this section,
only those with two cracks are considered. Fig. 9a–c are two-dimen-
sional views of the interface CE, where the red lines represent projec-
tions of the matrix cracks from neighboring ply elements. As shown in
Fig. 9, there are three possibilities:

1. Case I, the intersection of two matrix crack is outside the element
(Fig. 9a).

2. Case II, two matrix cracks meet each other at one of the element
edges (Fig. 9b).

3. Case III, two cracks intersect within the element (Fig. 9c).

Although the above three cases are in general sufficient to include
all possibilities, for FE implementation, several sub-cases are examined
considering various crack configurations. Two factors are considered to
distinguish these sub-cases: the shape of sub-CE and the number of
cracked edges. As shown in Fig. 10a, if the crack cuts two neighboring
edges, the original CE is divided into one triangular and one pentagonal
sub-element, while if the crack cuts two opposite edges, two quad-
rilateral sub-elements will be obtained. The number of cracked edges,
nc, can be illustrated through Fig. 10b. For the first figure of Fig. 10b,
three edges are cracked while for the second one, four edges are
cracked. Hence, nc will be 3 and 4, respectively.

Fig. 11 shows all the possible cases of the SCE. Case 0 stands for the
situation where only one crack exists in one of two abutting ply SEs;
Cases I - III correspond to cases involving two cracks (Fig. 9). Taking
into account the shape of sub-CEs and number of cracked edges, each
case can be further classified into several sub-types.

3.4. Failure models

In this section, the failure criteria adopted in the numerical analysis
examples for fibre failure, matrix cracks and delamination are briefly
introduced. The details can be found in [27]. The maximum stress
criterion is adopted to predict the onset of fibre tensile failure:

=σ
X

1
t

1

(14)

where Xt is the tensile strength in fibre direction. The cohesive zone
model is used to model the damage evolution of fibre failure:

∫ = =σ du X u G1
2

u
t

f
fc0 1 1 1

f
1

(15)

where u f
1 is the final failure displacement in fibre direction and Gfc is

the fracture toughness.
The initiation of matrix-dominated tensile failure is predicted by the

quadratic criterion based on the normal and shear tractions:
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where τi represents traction in i direction and τi
c is the corresponding

strength. The damage evolution of the CE follows a mixed-mode bi-
linear cohesive law:

∫ = =τ dδ τ δ G1
2

δ
e e e

max
e
f

mc0

e
f

(17)

where:
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and Gmc is the mixed-mode fracture toughness:
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and α is the power law exponent and Gic is the fracture toughness in i
direction. λi is calculated by:
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i
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(20)

with =G τ δi i i at the failure onset.
The same criterion and cohesive law (Eq. (16)–(20)) are adopted to

model the onset and evolution of interface delamination.

4. Numerical verifications

The SCE is developed in Abaqus FE software (Implicit, version 6.14)
as a user-defined element. The performance of the SCE is verified
through numerical simulations of tensile failure of unnotched

−[30/90/ 30]s T300/976 laminates [1,2] and notched −[45 /90 / 45 /0 ]s4 4 4 4

Table 1
Material properties of T300/976 [2,27,41] and IM7/8552 [5].

Properties T300/976 IM7/8552

Longitudinal Young’s modulus: E1 (GPa) 139.2 161
Transverse Young’s modulus: E2, E3 (GPa) 9.7 11.4
Shear modulus: G12, G13 (GPa) 5.5 5.17
Shear modulus: G23 (GPa) 3.4 3.98
Poisson’s ratio: v12, v13 0.29 0.32
Poisson’s ratio: v23 0.4 0.43
Longitudinal tensile strength: Xt (MPa) 1515 2806
Transverse tensile strength: τnc (MPa) 45 60
Shear strength: τtc, τlc (MPa) 100 90
Interfacial normal strength*: τnc,dlm (MPa) 22.5 30
Interfacial shear strength*: τtc,dlm, τlc,dlm (MPa) 50 45
Mode I matrix fracture toughness: Gnc (kJ/m2) 0.158 0.293
Mode II matrix fracture toughness: Gtc, Glc (kJ/m2) 0.35 0.631
Mode I interfacial fracture toughness: Gnc,dlm (kJ/m2) 0.158 0.293
Mode II interfacial fracture toughness: Gtc,dlm, Glc,dlm

(kJ/m2)
0.315 0.631

Power-law exponent for mixed-mode fracture: α 1 1
Penalty stiffness (N/mm3) 106 106

* Reduced interfacial strengths adopted for feasible mesh sizes [15,38–40].
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IM7/8552 laminates [5]. The material properties adopted for FE ana-
lysis are given in Table 1. Generally, if fine meshes are adopted, the
values for the interfacial and transverse strengths are assumed to be the
same [3,21,37]. However, over-prediction of the structural strengths is
expected if the element size is insufficiently small, and to get satisfac-
tory results with relatively coarse CE meshes, reduced interfacial
strengths are sometimes recommended [15,38–40]. In the present
paper, the strengths are reduced with a factor 2 (i.e., the interfacial
strengths are half of the transverse strengths), which is suggested by
van der Meer et al. [40].

4.1. Tensile failure of unnotched −[30/90/ 30]s laminate

To study the coupled failure of composite laminates, the unnotched
−[30/90/ 30]s laminate loaded in tension in [1] is modelled. The ex-

perimental results showed that before abrupt catastrophic failure, the
damage in the laminate consisted of small edge delamination bounded
by short matrix cracks [1]. This observation indicated the strong cou-
pling between intralaminar damage and interlaminar delamination
during the progressive failure of the composite laminate.

The FE model and the boundary conditions (BCs) are shown in
Fig. 12. Due to the symmetric layup, only half of the laminated plate is
modelled; symmetric BCs are applied to the laminate mid-plane. Em-
ploying structured mesh with uniform element size, a mesh-refinement
test is performed (Fig. 13) for four different mesh sizes, i.e., 1.2 mm,
1mm, 0.8mm and 0.6mm. Apart from the proposed SCE, the tradi-
tional CE and simplified formulation (overlapping two partitioned CEs
[27]) are also studied. Simply applying the traditional CE leads to
significant over-predictions of the failure load (51% compared to ex-
periment with 1mm mesh), while satisfactory results are obtained with
the approximate method (21% with 1mm mesh). However, the accu-
racy is further improved (16% with 1mm mesh) if the proposed SCE is
adopted.

Overall, the predicted failure process and damage patterns are in-
sensitive to the mesh size. In the following numerical failure profiles,
delamination is represented by red area while matrix cracks are re-
presented by straight lines (Figs. 14 and 15). The numerical results
show that matrix cracks initiate firstly on the free edge of the middle
90° ply, and through the separated CEs, the loads released from the
cracked solids are transferred to the neighboring ± 30° plies, trig-
gering onset of new intralaminar damage in those plies. At the same
time, 30°/90° and 90°/-30° interfacial delamination initiates near the
intersection of matrix cracks due to the stress concentrations. As the
loading continues, triangular delamination is predicted at the free
edges, bounded by the 30° and -30° matrix cracks in the adjacent plies
(Figs. 14 and 15a). This failure pattern reveals the coupled damage
mechanisms in composite laminates, as observed in experimental stu-
dies [1,3,8]. Adopting the SCEs in the simulation, the delamination
boundaries are clearly observed and compared to the experimental X-
radiograph [1], close agreement is achieved (Fig. 14).

For comparison, the same analysis but with traditional CE (i.e. no
partitioning) and approximate approach in [27] is conducted (Fig. 15b
and c). In this case, extensive matrix cracks develop throughout the
whole laminate at initial stage; however, without correctly modelling
the load transfer, the induced delamination is not observed and only a
small area of free-edge delamination is predicted when the peak load is
reached (Fig. 15b). The longer matrix cracks predicted and the delayed
onset of delamination account for the over-estimation of the failure
load (Fig. 13). Although the approximate formulation [27] avoids
spurious prediction of matrix cracks, there is fewer delamination pre-
dicted at the initial stage when compared to the current SCE formula-
tion (Fig. 15c). Also, the delamination in the approximate formulation
are not accurately bounded by the matrix cracks, which is the situation
with the SCE formulation and observed experimentally.

The results show that traditional CE fails to capture the interaction
between matrix cracking and delamination and the approximate for-
mulation of [27] only approximately captures this interaction, while
such coupling is accurately described by the proposed SCE.

4.2. Tensile failure of notched −[45 /90 / 45 /0 ]s4 4 4 4 laminate

The open-hole tension (OHT) of −[45 /90 / 45 /0 ]s4 4 4 4 laminate plate
[5] is analyzed in this section. The FE model and the boundary condi-
tions (BCs) are shown in Fig. 16. A random unstructured mesh is
adopted, where the elements are about ×0.5 mm 0.5 mm in the region
near the hole and ×1 mm 1 mm in the remaining regions (Fig. 16a).
Only half of the laminate plate is modelled and tensile load is applied
(Fig. 16b). Analysis using traditional CE and SCE are performed for
comparison (detailed discussions on the approximate formulation can
be found in [27]).

The predicted strengths of the laminate are 285MPa for SCE model
and 289MPa for traditional CE model, which agree well with the ex-
perimental average of 275MPa. In terms of the failure loads, no

152.4 mm

44.45 m
m

(a)

(b)

Fig. 12. Unnotched laminated plate: (a) sample dimensions and FE mesh; (b) boundary
conditions for unidirectional tension. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Mesh-refinement: predicted failure load with various element sizes. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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significant improvement is achieved by employing the SCE.
From the experimental X-radiographs in [17], boundaries of the

delamination, which align with matrix cracks, are clearly observed
(Fig. 17a), indicating a coupled failure process. Employing the SCEs, the

boundaries of the delamination are clearly defined and good agreement
with experiment is achieved (Fig. 17b). However, if traditional CEs are
adopted, the predicted delamination boundaries appear to be influ-
enced by the FE mesh (Fig. 17c).

)b()a(

Matrix crack

Delamination

Matrix crack

Delamination

Fig. 14. Comparison between experimental observa-
tions and numerical predictions: (a) X-radiograph of
damaged sample [1]; (b) FE results using SCEs (1mm
mesh). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web
version of this article.)

Initial damage Peak load

Matrix crack

Delamination

Matrix crack

Delamination

Matrix crack

Delamination

Matrix crack

Delamination

Matrix cracks

No delamination

Matrix cracks

Delamination

(a)

(b)

(c)
Fig. 15. Numerical results of unnotched −[30/90/ 30]s laminate plate for initial damage (left column) and peak load damage (right column): (a) model with SCE; (b) model with traditional
CE; (c) model with simplified formulation [27]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The overall failure patterns including matrix cracking and inter-
facial delamination predicted by both models are shown in Fig. 18.
Matrix cracking triggers the onset of interface delamination, and vice
versa [5,6]. In the case where SCEs are used, the matrix cracks and
delamination are better defined and the prediction patterns are in
better agreement with experiments (Fig. 18a). On the other hand, in the
case of conventional CEs, a large number of isolated matrix cracks,
particularly at the edges, is predicted in the region away from the hole
(Fig. 18b).

Although both the SCE and traditional CE approaches seem to

provide similar results for the OHT test on final failure loads and pro-
files (Figs. 17 and 18), the initial damage progression reveals significant
differences between the two models (Fig. 19). Due to the presence of
the open hole, the stress concentration triggers the onset of matrix
damage. If SCE is employed, the newly developed matrix cracks rapidly
induce local delamination in the abutting interfaces. The matrix cracks
and delamination then propagate simultaneously as the loading con-
tinues (Fig. 19a). In contrast, with traditional CE, no delamination is
observed until the surface 45° matrix cracks propagate across the width
of the plate (Fig. 19b). In this case, the delamination is mainly caused
by overall structural behavior rather than local coupling effects.

5. Conclusion

In this paper, the 3D separable cohesive element (SCE) is proposed
for modelling the coupled failure of composite laminates. When matrix
cracks initiate or propagate in the ply solid elements (SEs), the asso-
ciated SCE is partitioned into several individual sub-CEs to maintain the
correct bonding between the cracked solids. Depending on various
crack geometries in the abutting plies, different elemental configura-
tions are categorized and formulated for implementation in FE.

The interactions between matrix cracking and interfacial delami-
nation can be properly modelled with SCEs. This has been demon-
strated through several numerical examples, where delamination
boundaries are better defined and fewer spurious matrix cracks are
predicted compared to models employing only traditional CEs.

For unnotched laminates, the SCE model successfully captures the
predicted failure load and the local delamination induced by matrix

63.5 mm

15.875 m
m

(a)

(b)

3.175 mm

Fig. 16. Open-hole laminate plate: (a) sample dimensions and FE mesh; (b) boundary
conditions for unidirectional tension. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

(a)

(b)

45 /90 90 /-45 -45 /0

45 /90 90 /-45 -45 /0

(c)

45 /90 90 /-45 -45 /0

Fig. 17. Comparisons of delamination
patterns of −[45 /90 / 45 /0 ]s4 4 4 4 open-hole
plate: (a) X-radiographs of delamination
patterns on three interfaces [17]; (b) si-
mulated delamination patterns with SCE
model; (c) simulated delamination pat-
terns with traditional CE model. (For in-
terpretation of the references to colour in
this figure legend, the reader is referred to
the web version of this article.)
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cracks, in close agreement with experimental observations. However,
the differences in employing the SCE and traditional CE are not that
obvious when considering the OHT test. This may be due to the fact that
damage initiation is dominated by the stress concentration at the open
hole edge, and less affected by local interactions between matrix and
interface delamination. Nonetheless, it is worth noting that more
faithful modelling of the interaction between matrix cracking and in-
terface damage, especially during the initial stages of damage propa-
gation, is achieved if the SCE adopted.

From the results presented, the merit of the proposed SCE over the
traditional CE and approximate CE [27] formulations is that it provides
a physically-based solution for correctly modelling interaction between
matrix cracks and delamination. The kinematic compatibility is con-
sistently enforced, leading to a more rigorous numerical formulation
which is able to describe the local coupled failure mechanisms during
the progressive damage process. Therefore, the SCE is a useful tool for
high-fidelity modeling of failure patterns with delamination boundaries
clearly bounded by matrix cracks.

(a)

Matrix cracks Delamination

90 /-45 -45 /045 /90

90 /-45 -45 /045 /90

(b)

Fig. 18. Comparisons of the overall damage patterns of −[45 /90 / 45 /0 ]s4 4 4 4 open-hole plate: (a) matrix cracks and delamination with SCE model; (b) matrix cracks and delamination with
traditional CE model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 19. Initiation of damage (left column) and subsequent propagation of damage
shortly thereafter (right column): (a) SCE model with coupled matrix damage and dela-
mination; (b) traditional CE model with only matrix cracking. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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