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Stereo Visual Inertial Odometry for Robots with Limited
Computational Resources*

Stavrow Bahnam1, Sven Pfeiffer†,1, Guido C.H.E. de Croon1

Abstract— Current existing stereo visual odometry algo-
rithms are computationally too expensive for robots with
restricted resources. Executing these algorithms on such robots
leads to a low frame rate and unacceptable decay in accu-
racy. We modify S-MSCKF, one of the most computationally
efficient stereo Visual Inertial Odometry (VIO) algorithm, to
improve its speed and accuracy when tracking low numbers of
features. Specifically, we implement the Inverse Lucas-Kanade
(ILK) algorithm for feature tracking and stereo matching. An
outlier detector based on the average sum square difference of
the template and matching warp in the ILK ensures higher
robustness, e.g., in the presence of brightness changes. We
restrict stereo matching to slide the window only in the x-
direction to further decrease the computational costs. Moreover,
we limit detection of new features to the regions of interest
that have too few features. The modified S-MSCKF uses half
of the processing time while obtaining competitive accuracy.
This allows the algorithm to run in real-time on the extremely
limited Raspberry Pi Zero single-board computer.

Index Terms— Aerial Systems: Perception and Autonomy,
Vision-Based Navigation, Computational Efficiency

I. INTRODUCTION

Autonomous robot navigation in GPS-denied environ-
ments is predominantly tackled with Simultaneous Local-
ization And Mapping (SLAM) [1]. Small robots with Size,
Weight and Power (SWaP) restrictions, such as lightweight
Micro Air Vehicles (MAVs) typically cannot carry the sen-
sors or processing required for SLAM. Hence, they often
forego loop closure and rely on Visual Odometry (VO) to
keep track of their position [2].

Monocular VO is obviously of high interest for SWaP-
restricted robots, since it requires only a single camera. This
saves weight, power, and also processing as only a single
stream of visual inputs needs to be processed. However,
it is currently still challenging to scale monocular visual
odometry, where options are to add inertial measurements,
i.e., to use Visual Inertial Odometry (VIO) [3], or to perform
active maneuvers for stability-based scaling [4].

Stereo vision is more mature as a technology, since
the known baseline distance between the cameras instanta-
neously adds scale. In some cases, MAVs even use two pairs
of stereo cameras [5], [6] or different types of camera, such
as RGB-D or infrared [7]. Unfortunately, current stereo VO
algorithms require powerful [8], [9] or hardware optimized
processors [10], which substantially increases the drone’s
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Fig. 1. We modify a state-of-the-art, efficient, stereo-based visual inertial
odometry method, S-MSCKF-VIO, so that it becomes two times as efficient.
The plot shows the resulting odometry and absolute point error when the
modified algorithm runs real-time on a Rapberry Pi Zero (pictured on the
bottom left) on the MH05 sequence from the EuRoC dataset.

cost, weight and power consumption. The computationally
most restrictive platform of the above mentioned MAVs is
in [9] with a dual core 1.8 GHz processor. Suleiman et al.
[10] achieve accurate VIO while using limited average power
consumption of 24 mW , however, they use an application-
specific integrated circuit microprocessor to run the VIO.

The challenge addressed in this article is that of execut-
ing stereo visual odometry algorithms as computationally
efficiently as possible. This will enhance the capabilities
of smaller, cheaper robots, and will free up computation
time on larger robots for additional tasks. As a target for
very limited, lightweight, and cheap processing hardware,
we employ the Raspberry Pi Zero. The RPI Zero has a size
of 65×30×5mm and weights 9 g. It has an ARM1176JZF-S
1.0 GHz single core processor with 512 MB RAM.

Most stereo VO methods track large numbers of features
in the images, both for determining motion and depth.
Intuitively one might think that simply reducing the number
of features is the solution to run a VO on a computa-
tionally limited device. However, the computational cost of
VO algorithms does not scale well with very low number
of features. This is caused by computationally expensive
operations, which are constant for each frame, such as feature

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 27 - October 1, 2021. Prague, Czech Republic

978-1-6654-1714-3/21/$31.00 ©2021 IEEE 9154

20
21

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 | 

97
8-

1-
66

54
-1

71
4-

3/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IR

O
S5

11
68

.2
02

1.
96

36
80

7

Authorized licensed use limited to: TU Delft Library. Downloaded on December 17,2021 at 08:32:51 UTC from IEEE Xplore.  Restrictions apply. 



detection and image gradient calculations on the full image.
Moreover, accuracy suffers disproportionally. Therefore, very
computationally limited devices are currently not able to
obtain good state estimates from stereo VO.

In this article, we present modifications to the stereo multi-
state constraint Kalman filter visual inertial odometry (S-
MSCKF-VIO) [11], but our contribution can be used with
many other VO algorithms which track a low number of
features. We have chosen S-MSCKF-VIO, because it is one
of the fastest VIO and it is open source. The default version
of this state-of-the-art, computationally efficient method re-
quires a 550−600ms processing time per frame on the target
platform RPI Zero. However, trying to run this algorithm
real-time on the RPI0 leads to filter divergence, since too
many frames are skipped. With ‘real-time’ we mean online
processing where frame processing times longer than the
frame rate results in skipping frames.

Our main contribution is that we made S-MSCKF-VIO
scalable for low computational devices, making it twice as
fast. To the best of our knowledge we present the first open
source VIO algorithm that is able to run real-time on such
a limited platform as the RPI Zero. The main modifications
to S-MSCKF-VIO are:

1) Detecting features per grid cell, instead of filtering
features based on their image location.

2) Using the Inverse Lucas-Kanade (ILK) [12] for feature
tracking between frames.

3) Using a 1D ILK for stereo matching.
The remainder of the article is organized as follows.

Firstly, in section II we discuss other work considering
V(I)Os for lower computational devices. In section III the
modifications of S-MSCKF-VIO are discussed. Next, the
results on the EuRoC dataset are shown in section IV. This
is followed by the conclusion in section V.

II. RELATED WORK

Zhao and Vela [13] compare various mono VO algorithms
on different low-power devices. The device with the lowest
computational power which is included in that work is the
Euclid: a 64-bit embedded single-board computer system,
with an Intel Atom x7-Z8700 1.6 GHz quad-core processor
and 4 GB of RAM [13]. The Intel Euclid developer kit has
a size of 10.7 × 19.1 × 6.4 cm, but the developer kit also
contains sensors such as a camera and IMU.

Delmerico and Scaramuzza [3] compare different mono
VIO algorithms on computationally limited devices. The
most computationally limited device they consider is the
ODROID XU4, an embedded PC containing a hybrid pro-
cessing unit: The Samsung Exynos5422 consists of an ARM
A7 1.5 GHz quad-core and an ARM A15 2.0 GHz quad-
core processor. In addition, the ODROID has 2 GB of RAM,
and has a size of 8.3× 5.8 cm, weighing 59 g. [3]

Most feature-based VO methods track features from frame
to frame with the LK method. The regular LK minimizes
the pixel error of the template warp from the previous
frame with the warp on the new frame. However, there is
a computationally more efficient algorithm, which achieves

a similar tracking accuracy: the inverse compositional LK
[12]. The ILK gains computational efficiency as it needs to
only calculate the image gradient on a small region near the
features, instead of the full image. Furthermore, it does not
need to recompute the Hessian at every iteration.

The inverse compositional LK has been already used in
many direct and semi-direct methods [14], [15]. However,
these methods use the inverse compositional LK for pose
estimation and not for feature tracking. For feature tracking,
they use a computationally more expensive affine warp
as opposed to using Optical Flow (OF), which is simply
calculated from a sliding window. Even though the ILK can
save computation time in the feature tracker, most feature-
based methods use the original LK. Only the stereo VIO of
Bi et al. [16] uses the ILK to track features. However, this
stereo VIO is built on top of the computationally expensive
ORB-SLAM2 [17] algorithm, which is too heavy for the RPI
Zero. Finally, in the work of Bi et al. [16] they use the ILK
to not re-compute the hessian in every iteration of the LK.
In our work we will show that especially when using a low
number of features, using the ILK becomes more efficient,
as it will save computation time in the gradient calculation
as well.

III. METHOD

When reducing the number of features in S-MSCKF-
VIO, the feature detector (∼ 35 ms) and the OF pyramid
computation for LK (∼ 80 ms) require the most computation
of the VIO front-end. The reason for this is that both of
these processes are independent of the number of features
and mainly depend on the size of the image.

We therefore suggest improvements to these most time
consuming tasks by employing a grid-based feature detector
and the ILK. First we briefly describe the original S-MSCKF-
VIO from [11] in subsection III-A. Next, we describe the
grid-based feature detector in subsection III-B and lastly, in
subsection III-C, we describe the implementation of the ILK
for feature tracking and stereo matching.

A. S-MSCKF-VIO

S-MSCKF-VIO uses FAST9-16 [18] to detect features on
the full image. After dividing the image with a grid, the
features with the highest FAST-score in each grid cell are
selected for stereo matching. These features are undistorted
and projected to the right camera to get an initial estimation
for stereo matching. A pyramidal implementation of LK from
the OpenCV library is used to stereo match the features. The
stereo match outliers are removed based on the distance to
the epipolar line. Features are tracked between subsequent
frames using the same pyramidal implementation of LK on
the left image with an initial guess obtained by integrating
the rotational velocities from the IMU. A 2-point RANSAC
removes outliers based on the Euclidean reprojection error
in the left and right image as is done in [19]. The tracked
inliers are again stereo matched in the new frame.

The back-end of S-MSCKF-VIO tightly couples the IMU
and VO to estimate the pose. Differently from most VIO
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algorithms, the Jacobian is calculated per tracked feature
and not per frame. A measurement update is performed each
time a feature is lost or when the camera buffer exceeds a
maximum of 20 frames. For more details one can refer to
the work of Sun et al. [11]. The only change we made to
the back-end was changing the maximum number of frames
from 20 to 3. The reason for reducing the camera states is
to reduce the size of the feature states. The second reason
is to prevent adding feature observations from lost features,
because this makes the computation time vary, which is not
desirable.

B. Grid-based feature detection

The main idea of grid-based feature detection is to only
detect new features in grid cells which have fewer features
than a certain threshold. This method can reduce the average
computational time of the feature detection and stereo match-
ing of S-MSCKF-VIO, without decreasing its accuracy.

In the original S-MSCKF-VIO new features are added in
the following 4 steps:

1) The features from the previous frame are tracked and
a mask is created to not re-detect them.

2) FAST9-16 is used on the full image to detect features.
3) Per grid cell a certain maximum number of features

(X) with the highest FAST-score are stereo matched.
4) The stereo matched features with the highest FAST-

score are added if the number of tracked features in a
cell is below a certain threshold (Y ).

Step 2 and 3 detect and stereo match features on the full
image, while in step 4 only features are added for grid cells
which have fewer than Y tracked features. Since the location
of the tracked features is already known before executing
step 2, we can perform feature detection only in a Region
Of Interest (ROI), which could be one or multiple cells with
fewer than Y tracked features. This results in a smaller image
region to detect features and therefore the algorithm has a
lower average detection time. Also the number of features
which need to be stereo matched is reduced, so the average
stereo matching time will reduce as well. The accuracy is
preserved, because the exact same features will be inserted
in the unfilled cells.

The detection time using a ROI varies more between
frames than without ROI, because the ROI can vary from
0 cells to the full image. However, the detection time is
always equal to or smaller than without ROI. The detection
time depends on the performance of the feature tracker; the
higher the tracking rate, the smaller the detection time.

In an ideal case, this method essentially only detects
features in new image regions due to the movement. For
example, if the drone rotates to the left, the tracked features
move to the right of the image, as seen in Figure 2.
This results in the right-side cells being filled with tracked
features, while the cells on the left-side of the image are
empty and thus selected as ROI for the feature detector.

Fig. 2. Grid-based feature detection using a 2× 3 grid with 1 feature per
cell. If no features are lost, the ROI of the feature detector corresponds to
the new image regions, shown in red (cell 1 and 4).

C. Inverse Lucas-Kanade (ILK)

The Lucas-Kanade algorithm for feature tracking tries to
match a warp (window) on the new image with a template
(window on previous image). It uses the gradient of the
warped image and the Jacobian (derivative of the warp w.r.t.
the warping parameters: 2 × 2 identity for a translating
window) to calculate the steepest descent. For OF estimation
a warp that translates a window is sufficient [12]. The
algorithm is iterative, i.e., after translating the window,
the gradients are recalculated for a new translation of the
window, until a termination criteria is reached.

The inverse Lucas-Kanade algorithm saves computation
time by using the image gradient of the template instead of
the warped image to update the warp parameters. This means
that for ILK, only the gradients of the templates are required.
The computational cost of calculating the OF pyramid is
thus O(nwl), where n is the number of features, w is the
window size and l is the number of levels of the pyramid.
For regular LK on the other hand, the gradient of the full
image is required, which costs O (I), I being the original
image size. It also means, that the expensive computation of
the Hessian does not need to be repeated at every iteration.

We use a C++ implementation of the inverse compositional
Lucas-Kanade proposed by Baker and Matthews [12] and
slightly modify it. Specifically, we consider a warp that only
translates a window since this is sufficient for OF estimation
[12]. This allows us to further simplify the algorithm and
make it computationally cheaper. The compositional part of
the inverse compositional LK does not apply for translation-
only warps, because the Jacobian of the warp is the 2 × 2
identity matrix. This also implies that the steepest descent
of the image is equal to the image gradient. Furthermore,
for better robustness, we use a 3 × 1 kernel (Ix(x, y) =
I(x+1, y)−I(x−1, y)) instead of a 2×1 kernel (Ix(x, y) =
I(x+ 1, y)− I(x, y)) to determine the image gradient.

If we assume image distortion and rotation between the
cameras to be small, the warp parameters can be reduced to
a single parameter for stereo matching. This corresponds to
allowing the window to only translate in the x-direction after
projecting the feature from the left camera to the right cam-
era. As a result, only the x-gradient of the template needs to
be computed causing the Hessian to be a scalar. Furthermore,
reducing the gradient to 1D simplifies the computations to
estimate the update of the warping parameter. Therefore, the
ILK for stereo matching is computationally cheaper than for
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TABLE I
9 DIFFERENT PARAMETER SETTINGS USED TO EVALUATE MODIFIED AND

ORIGINAL S-MSCKF-VIO IN SEQUENCES V201, MH05 AND V103

Setting 1 2 3 4 5 6 7 8 9
Grid

geom. 2x3 2x3 2x3 3x4 3x4 3x4 4x5 4x5 4x5

Min
features 1 2 3 1 2 3 1 2 3

Max
features 2 3 4 2 3 4 2 3 4

feature tracking.
While the ILK has the advantage of lower computational

complexity, it can have a slightly decreased performance.
For instance, if the warped window arrives in a textureless
area, the ILK algorithm will continue to shift in the same
direction. We also noticed more brittle performance in the
presence of brightness changes. For this reason, we use the
average Sum Squared Difference (SSD) of the matching warp
and the template warp in order to detect outliers, both for
tracking and for stereo matching.

IV. RESULTS

The performance of the algorithm is evaluated on the
EuRoC dataset [20], using the original WVGA images.
Sequences MH01 and MH02 are excluded, because they
do not start from a stationary state, as is required by S-
MSCKF-VIO in order to initialize successfully. The accuracy
is measured with the Root Mean Square (RMS) of the
Absolute Position Error (APE), which we calculate using
the tool from Grupp [21].

First we analyze the offline performance (processing all
frames without taking into account the processing time)
of the modified algorithm and the original S-MSCKF-VIO
algorithm in subsection IV-A for different number of fea-
tures. Afterwards, in subsection IV-B we show the real-
time accuracy on a RPI Zero and compare it with mono
VIOs running on an ODROID-XU4. Finally, we compare the
offline computation time of original and modified algorithm
in subsection IV-C

A. Offline VIO performance

In this section, we analyze the offline performance of
the original algorithm and modified algorithm when using
different numbers of features. Please note that ‘offline’ here
means that the algorithms get sufficient time for processing a
frame before a new one arrives, so that no frames are skipped.
We do run the algorithms on the RPI to get representative
processing times. Three EuRoC sequences are evaluated:
V201 (easy, low speed), MH03 (medium, high translation
speed), and V103 (difficult, high translation and rotation
speed). We run the algorithms with 9 different settings,
in which we vary the grid geometry, minimum number of
features and maximum number of features per cell. The 9
settings can be found in Table I. All other parameters are
used as in the original S-MSCKF [11], with the maximum
camera states reduced from 20 to 3 for all settings. Setting 9

corresponds to the default settings with only 3 camera states.
If the number of tracked features drops below the minimum
in a cell, the algorithms adds new features in that cell. We
also change the pyramid level from 3 to 4 for the modified
algorithm, because tracking features with a big frame-to-
frame displacement is harder for the ILK.

To determine the computational cost we run the algorithm
on the RPI. We use a ROSbag play rate of 0.15 for settings 1-
3, 0.1 for settings 4-6 and 0.05 for settings 7-9. This implies
that we simulate the incoming data (images and IMU) 6.67,
10 and 20 times slower than reality respectively. We do this
to ensure that we process all the frames of the sequence.
Note that the computational cost of running the ROSbag is
not taken into account, which accounts for about 15−20% of
the CPU usage on the 1 GHz single core ARM processor of
the RPI Zero. In order to show the trend between the RMS
APE and the computation time, we plot a nonlinear fit of the
form y = a · 1

x2 + b · 1x + c, where y is the RMS APE and x
the computation time, using all 9 data points for the original
and modified S-MSCKF-VIO.

In Figure 3 the computation time vs RMS APE can be
seen for sequence V201, MH03 and V103. It can be seen
that the the modified S-MSCKF is faster than to the original
S-MSCKF while having a similar accuracy on the three se-
quences. Especially for the lower settings, which correspond
to lower number of features (see Table I), the computation
time reduces. This is because no constant computationally
expensive operations, like full image feature detection and
image gradient calculations, are required for the modified
algorithm. Therefore, the computation time is more sensitive
on the number of features for the modified algorithm.

B. Online VIO performance

In order to run the VIO real-time on the RPI Zero, some
additional adjustments have been made, because the feature
tracking decayed too much resulting in a diverging filter.
Specifically, new features are only detected when the grid
cell has zero tracked features. This makes setting 6 the most
efficient setting, since this modification especially reduces
computation time for settings with higher minimum features.
Because this adjustment results in some frames having a low
number of features to be tracked, the performance of 2P
RANSAC decreases. Therefore, we disable the 2P RANSAC
and instead use a SSD threshold in the ILK function. Finally,
we reduce the window size of the ILK to further decrease
the computational cost.

The initialization of the VIO takes about 10−20 seconds.
Therefore, the first 3 seconds of the ROSbags are slowed
down to 10% of the original rate, while the rest of the
sequences is played back at full speed. The RPI Zero
processes about a third of the frames (i.e. ∼ 7 frames per
second), despite the average frame processing time being less
than 100 ms when running it offline. The difference is due to
the increase of IMU data per frame, lower trackability of the
features and additional required computing power playing
the ROSbags.
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Fig. 3. Offline RMS APE vs computation time on a RPI0 for the original and modified S-MSCKF-VIO on sequence V201, MH03 and V103.

TABLE II
RMS APE OF VIOS RUNNING ONLINE ON COMPUTATIONALLY LIMITED DEVICES ON THE EUROC DATASET. AN ‘X’ INDICATES THAT FOR THAT

SEQUENCE THE FILTER HAS DIVERGED, RESULTING IN A LARGE ERROR.

Platform Camera Alignment MH03 MH04 MH05 V101 V102 V103 V201 V202 V203
Modified S-MSCKF RPI Zero Stereo SE(3) 0.61 1.31 0.71 0.252 0.30 0.33 0.22 0.55 X
SVOMSF [3] ODROID-XU4 Mono sim(3) 0.52 2.28 1.12 0.43 0.81 X 0.15 0.46 X
MSCKF [22] ODROID-XU4 Mono sim(3) 0.47 0.64 0.48 0.21 0.21 1.52 0.25 0.19 1.09
OKVIS [23] ODROID-XU4 Mono sim(3) X 0.42 0.62 0.09 X X 0.11 0.26 X
ROVIO [24] ODROID-XU4 Mono sim(3) 0.58 0.81 0.78 0.15 0.24 0.20 0.15 0.17 0.23
VINSmono [25] ODROID-XU4 Mono sim(3) 0.58 0.12 0.21 0.11 0.11 0.11 0.08 0.06 0.16
SVOGTSAM [3] ODROID-XU4 Mono sim(3) 0.12 X 0.07 0.14 X 0.15 X X X

Currently, there are no stereo V(I)Os running on very
computationally limited devices, however in [3] monocular
VIOs are tested on an ODROID XU-4. Monocular VOs are
generally computationally cheaper since they only process
one image per frame. However, this comes at the cost that
mono VOs cannot estimate the scale as accurately as stereo
VOs. We compare our algorithm, using the the modified Pi
settings, with the mono VIOs from [3] in Table II. For a
fair comparison, the mono VIOs are aligned with ground
truth using a sim(3) alignment, which recovers translation,
rotation and scale in this post-run fit. For the modified S-
MSCKF we align the trajectory with a SE(3) alignment,
which only optimizes for translation and rotation. One can
see that the modified S-MSCKF only has a slightly higher
RMSE than the mono VIOs run on the ODROID-XU4, while
it is processed on a computationally much more restricted
platform and estimates the scale of the trajectory on-board.

C. Offline computation time per frame

In Figure 4 the average computation time per frame on
sequence V103 can be seen. Note, that S-MSCKF runs on
two threads while the RPI0 has a single core processor.
Therefore, the total computation time is the sum of the two
threads’ computation time. We show the computation time
of the original S-MSCKF with its default setting and with
setting 6 from Table I. For the modified algorithm we show
setting 6 and the Pi settings. Setting 6 is shown because it
is most similar to the Pi settings.

The computation time of the pose optimization is reduced
by reducing the maximum camera states from 20 to 3. Next,
we see that the modified algorithm has a smaller feature

detection time, because of the grid-based feature detector.
This is even further decreased for the modified Pi settings
where we only re-detect features when a grid cell is empty.
Lastly, we see that the modified algorithm has a similar
tracking and stereo matching time for setting 6. However, for
the Pi settings the stereo matching time and feature tracking
is significantly smaller. The reason for this is that the Pi
settings use a window size of 9 × 9 instead of 15 × 15
in the ILK. Furthermore, the Pi settings track and stereo
match fewer features as we only re-detect features when
a grid cell is empty. Note that half of the (OF) image
pyramid computation is added to the feature tracking time
and the other half is added to the stereo matching time. The
average OF pyramid calculation of the original algorithm is
75 − 80 ms (all settings). For the modified algorithm only
the scaled image pyramid is pre-computed (independent of
the number of features) and takes 14.0 ms per frame.

In Table III the average and standard deviation of the
computation time per frame can be found. As expected we
see that grid-based feature detection has a bigger standard
deviation than the original feature detector. This is because
the ROI can vary from 0 cells to the full image.

V. CONCLUSION

In this work, we made S-MSCKF-VIO a factor two more
efficient by using a grid-based feature detector, implementing
the ILK and restricting the ILK in x-direction for stereo
matching. The increase of computational efficiency is es-
pecially present when a low number of features is used,
because the ILK only needs to determine the gradient of

21 out of 5 runs failed and is excluded in the average RMSE.
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Fig. 4. Average offline processing time per image frame in ms on V103.

TABLE III
OFFLINE PROCESSING TIME PER FRAME ON SEQUENCE V103

Feature
detection

(ms)

Stereo
matching

(ms)

Feature
tracking

(ms)

Pose
optimization

(ms)
Avg SD Avg SD Avg SD Avg SD

Original
S-MSCKF 30.5 12.1 92.9 23.6 61.8 11.1 366 343

Original
setting 6 36.9 17.7 78.4 23.6 53.1 11.5 25.1 38.9

Modified
setting 6 20.6 43.1 72.6 25.6 52.0 17.4 25.8 26.7

Modified
Pi settings 9.9 37.4 21.8 8.4 24.3 9.4 28.1 40.6

template warps. The modified S-MSCKF runs in real-time
on a Raspberry Pi Zero. The accuracy is similar to scale-
recovered monocular VIOs running on a computationally
much more powerful ODROID-XU4. More efficient feature
management and the ILK can be applied to other algorithms,
making our findings relevant not only to S-MSCKF-VIO
also to other VIO algorithms that use Lucas-Kanade feature
tracking and detect new features by evaluating the entire
image. We believe that future work could further improve
on efficiency without substantially hurting accuracy. For
example, the ILK outlier detection could be performed at
each step instead of only at the final iteration. Furthermore,
active sampling as in [26] could be used for even more
efficient feature detection.
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