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Safety Optimization of a Layered Airspace
Structure with Supervised Learning

Leonardo Caranti, Marta Ribeiro, Joost Ellerbroek and Jacco Hoekstra
Control and Simulation, Faculty of Aerospace Engineering

Delft University of Technology, The Netherlands

Abstract—The capacity of the current system of air traffic
is rapidly reaching a limit with the increasing demand for
air transportation. Expected future traffic densities not only
make automated conflict detection and resolution a necessity, but
also force a re-evaluation of coordination elements to decrease
conflict rate and severity. It has been acknowledged that airspace
structure plays a positive role by acting as a first layer of conflict
protection, reducing the likelihood of aircraft meeting and,
consequently, the likelihood of conflicts and losses of minimum
separation. In the recent past, different airspace structures
have been explored. Research shows that the layered airspace
concept, where groups of aircraft with similar headings remain
separated by cruising at different altitudes, increases airspace
capacity. However, implementation of this concept often employs
an evenly distributed heading range per vertical layer, which is
not optimal for all traffic scenarios, since it may lead to unevenly
distributed numbers of aircraft per layer. In this work, we use
supervised learning to determine a heading range distribution
per layer adapted to the current traffic. This method resulted in
a reduction of both conflicts and losses of minimum separation
when compared to an evenly distributed layers concept. Results
show that conflicts prevention, with a structure which efficiently
segments aircraft through the airspace, may have a greater
impact on safety than applying conflict resolution methods.

Keywords—Airspace Design, Conflict Detection & Resolution
(CD&R), Supervised Leaning, Modified Voltage Potential (MVP),
BlueSky ATC Simulator

I. INTRODUCTION

The current air traffic control system must evolve in order to
sustain the increasing traffic demands of future operations [1].
Existing research, such as the Free Flight project [2], advo-
cates that higher traffic densities can be achieved through a
reduction of current traffic flow constraints [3]. Researchers
have proposed that transferring traffic separation responsibility
to each aircraft (“self-separation”), may enable an increase
of the traffic allowed into airspace [4], [5]. This redirects
attention towards elements which reduce conflict probability.
In particular, the airspace structure which is known to decrease
this probability by directly affecting the likelihood of aircraft
meeting during their flights.

The Metropolis project explored different types of dis-
tributed structures for a (hypothetical) high-density urban
airspace [6]. Its most effective airspace structuring concept (the
so-called “layers” concept) increases airspace capacity, and
reduces conflicts and losses of minimum separation (LoSs),
by dividing aircraft over several layers of airspace. This
creates different groups of aircraft that remain separated from
each other (segmentation effect). Moreover, within each layer,

heading limitations are introduced that enforce a degree of
alignment between aircraft, thereby reducing the relative speed
between aircraft cruising at the same altitude, which in turn
reduces the likelihood of conflicts within a layer of airspace
(alignment effect) [7]. However, only evenly distributed head-
ing ranges per layer have been investigated. This is not
optimal when headings of the current traffic are not uniformly
distributed. In reality, this is often not the case. Take, for
instance, a common example from manned aviation: over the
Atlantic, eastbound flights mostly occur during night-time,
whereas westbound flights mostly operate during daytime. In
both instances, there is no uniform heading distribution.

When the airspace structure does not align with the current
traffic scenario, aircraft will not be equally divided through the
available airspace as expected. In situations where aircraft pre-
dominantly adopt a certain heading range, one layer will have
higher traffic density than the others. In a worst-case scenario,
uneven aircraft distribution per layer will significantly reduce
segmentation over the airspace, eliminating the benefit of a
layered structure. Herein, we defend that the heading range
per layer must be set according to the real expected traffic
distribution, guaranteeing that traffic is fully segmented over
the available airspace. Safety-wise, this is expected to prevent
congestion, collisions, and to reduce travel time. Moreover,
an automated control is preferable in order to guarantee fast
response times and higher structure variability.

In this work, a machine-learning approach is used to ob-
tain an optimal heading distribution per layer given a non-
uniform distribution of aircraft headings. This will be done
by resorting to two neural networks, in parallel with the open
source, multi-agent ATC simulation tool BlueSky [8]. In this
context, the optimal heading distribution per layer is the one
resulting in the lowest number of conflicts. The improvement
on conflict prevention, obtained by having structures catered
to the traffic scenario, will be directly compared to a fixed,
evenly distributed heading range structure. In both cases,
remaining conflicts will be solved using a tactical conflict
resolution method. This work employs the Modified Voltage
Potential (MVP) method [2], which has proven to be efficient
in reducing the effect of resolution manoeuvres on flight
efficiency while improving safety [9].

II. METHOD - SUPERVISED LEARNING

Supervised learning is used to identify the best heading
range distribution in a layered airspace structure in function



of the traffic distribution. A system of two neural networks
is used to approach this problem. The first neural network,
the Conflict Estimator Network (CEN), is trained to be able
to estimate the resulting total number of conflicts given two
inputs: (1) traffic scenario, (2) heading range distribution per
layer of the airspace structure. Validation of the estimated
number of conflicts is done by direct comparison with the
final conflict count in simulations with the ATC simulation tool
Bluesky [8]. The objective of the second neural network, the
Layer Heading Network (LHN), is to output a heading range
distribution which results in a minimal number of conflicts for
the given traffic scenario. The number of conflicts output by
CEN is used by the LHN to train towards the optimal heading
range distribution. The training process for every episode for
the two neural networks is represented in Fig. 1.

Training CEN

Training LHN

Bluesky

Heading
Distribution
Per Layer
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Scenario

“Real”
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Figure 1. Training process for every episode for the Conflict Estimator (CEN)
and Layer Heading (LHN) networks.

One of the inputs for both networks, is the expected traffic
demand scenario. The heading of all aircraft must be known
to the network. For simplification, an array of fixed dimension
is used to represent the headings of all aircraft. This way, the
dimension of the state array is uniform and not dependent on
the number of aircraft. The dimension of the array was set to
12. The total aircraft heading range, 0 ◦ to 360 ◦, is divided
into 12 bins matching the size of the state array. Each position
on the array represents the number of aircraft whose heading
is included in the heading range for each bin. For example,
the fist bin will have the number of aircraft travelling between
0 ◦ to 30 ◦. Naturally, a bigger array may be used, allowing
for better representation of the heading differences between
aircraft. However, increasing the dimension of the state array
also increases the number of possible states and state-action
combinations. As the size of the problem’s solution space
grows, so does training time.

The CEN receives the traffic scenario and the heading
range distribution per vertical layer as input. During training
and validation, the latter is a pre-defined distribution. The

output indicates the expected total number of conflicts for the
given traffic scenario when operating in an airspace divided
according to the given heading range distribution. This traffic
scenario is then run on Bluesky, and the total observed number
of conflicts is used to train the CEN. The Mean Squared
Error between the two conflict values is used as a loss metric.
Once the CEN has been validated, its output is used to train
the LHN. This network trains towards finding heading range
distributions that result in a minimum amount of conflicts for
every traffic scenario.

It is clear that the CEN imitates the behaviour of having a
Bluesky simulation during the training of LHN and it may
be seen as a duplicate. This was found the best solution
as the output of the CEN can be set as the necessary data
type to train the LHN. Additionally, this allows for a faster
training of the LHN, as it does not require a complete run of
the simulation scenario in order to obtain the total number
of conflicts. However, naturally this may result in limited
accuracy for the LHN if the CEN is not capable of correctly
assessing the number of conflicts.

Details on both the CEN and LHN are presented in Table I..
The LHN has a final activation function (a Softmax function)
which ensures that the sum of the LHN ouput is equal to one.
When multiplied by 360, each element of the output of the
LHN resembles the heading range for that specific layer. For
example, if the output vector starts with [0.128, 0.223], the
first two layers would have a heading range of 0 ◦ to 46.08 ◦

and 46.08 ◦ to 126.36 ◦. A fixed number of 8 vertical layers
is used in this study. Naturally, in a real-world scenario, a
different or even a non-fixed number of layers may apply.

TABLE I. NEURAL NETWORK ARCHITECTURE PARAMETERS.

Parameter CEN LHN

Input layer size 16 12
Hidden layer 1 size 82 128
Activation function 1 ReLU ReLU
Hidden layer 2 size 82 128
Activation function 2 Sigmoid ReLU
Output layer size 1 8
Activation function 3 - Softmax

III. EXPERIMENT: OPTIMIZED AIRSPACE STRUCTURE
WITH SUPERVISED LEARNING

A. Simulation Scenarios

To train and test the two networks, an airspace is de-
fined with two different areas: (1) a measurement area
(10 404NM2), and (2) an experiment area (14 400NM2). The
first is a square area where aircraft spawn locations (origins)
are placed. Ideally, aircraft would only operate within the
measurement bound, thereby ensuring a constant density of
aircraft within that area. However, aircraft may temporarily
leave the area during the resolution of a conflict and should not
be deleted in this case. Therefore, a second, larger square area
encompassing the measurement area is considered: the exper-
iment area. As a result, aircraft in a conflict situation close to
their origin or destination are not deleted incorrectly from the
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simulation. Ultimately, an aircraft is deleted once it leaves the
experiment area. Note that we assume a no-boundary setting,
with sufficient flight space around the measurement area, in
order to avoid edge effects from influencing the results.

Aircraft fly a straight line towards their destination. The
heading of each aircraft is computed in a random, non-uniform
way. At every episode, a random number of normal heading
distributions (between 1 and 4) is picked. The mean and
standard deviation of each heading distribution are randomly
picked between 0 ◦ to 360 ◦ and 18 ◦ to 72 ◦, respectively.
For every aircraft, its heading is sampled randomly from
one of the heading distributions. Even though aircraft fly
straight trajectories through the measurement area, still several
waypoints are created along each trajectory, to prevent aircraft
from leaving the measurement area entirely in an attempt to
avoid conflicts. The cruise altitude, or cruising layer, for each
aircraft is set once the heading range distribution per each
layer is determined, which happens before the start of the
simulation. All aircraft within the same layer fly at exactly the
same altitude, in the middle of the layer. 8 layers are defined,
between altitudes 1500 ft to 6500 ft.

Logging of conflicts is restricted to the cruise phase of the
flight. Conflicts resulting from aircraft climbing and descend-
ing to their cruising altitude are not taken into consideration.
Considering only conflicts during cruise leads to optimal
convergence of the machine learning model for this phase.
It is likely that reducing conflicts during climb and descent
phases requires a different approach, and thus might result in
non-convergence of the machine learning model if they were
to be modelled together.

B. Apparatus and Aircraft Model

The open Air Traffic Simulator BlueSky [8] is used for
simulation of an airspace environment. All vehicles in the
simulation used a Boeing- 737 performance model. Bluesky
uses a kinematic aircraft performance model based entirely on
open data [10]. An average speed of 140 kts was considered,
resulting in an average flight time of roughly 850 seconds.

C. Conflict Detection and Minimum Separation

We consider a horizontal separation of 5NM. Vertical
separation is set in function of the dimension of a vertical
layer, thus aircraft cruising at adjacent vertical layers are
not in conflict. The experiment employs state-based conflict
detection. A look-ahead time of five minutes is used. The
conflict evaluation interval is set to one second; each second,
the current conflicts and LoSs are detected, and the necessary
conflict avoidance manoeuvres are calculated.

D. Conflict Resolution

The geometric derivation of a resolution with the MVP
model is displayed in Fig. 2, as previously defined [2]. When
a conflict is detected, MVP uses the predicted future positions
of both ownship and intruder at the closest point of approach
(CPA). These calculated positions “repel” each other, and
this “repelling force” is converted to a displacement of the

predicted position at CPA. The avoidance vector is calculated
as the vector starting at the future position of the ownship
and ending at the edge of the intruder’s protected zone, in the
direction of the minimum distance vector. This displacement
is thus the shortest way out of the intruder’s protected zone.
Dividing the avoidance vector by the time left to CPA yields a
new speed, which can be added to the ownship’s current speed
vector resulting in a new advised speed vector. From the latter,
a new advised heading and speed can be retrieved. In a multi-
conflict situation, the final avoidance vector is determined
by summing the repulsive forces with all intruders. As it is
assumed that both aircraft in a conflict will take (opposite)
measures to evade the other: MVP is implicitly coordinated.

PZIntruder

Repelling
Force

Ownship

Heading
Deviation

•

CPA

Intruder

Speed
Change

Figure 2. MVP geometric resolution. CPA represents the closest point of
approach between the two aircraft. PZintruder represents the protected zone
of the intruder. Adapted from Hoekstra [2].

E. Independent Variables

The heading range distribution per layer, and traffic density
are set as independent variables.

The heading range distribution per layer is set to pre-
defined values during training and validation of the CEN.
Once the CEN has been validated, its output (expected number
of conflicts for the given traffic scenario and heading range
distribution per layer) is then used to train the LHN. The latter
network outputs a heading range distribution per layer which
is directly compared with evenly distributed heading ranges
per layer, by running the same traffic scenarios with both.

During training, a medium traffic density is used. During
testing, lower and higher traffic densities, as per Table II, are
introduced in order to analyse how the supervised learning
model performs at traffic densities it was not trained in.

TABLE II. TRAFFIC VOLUME USED IN THE EXPERIMENTAL SIMULATIONS.

Low Medium High

Traffic density [ac/10 000NM2] 0.005 0.01 0.015
Number of spawned aircraft [-] 50 100 150

F. Dependent Measures

Two different categories of measures are used to evaluate
the effect of different airspace structures: safety, and efficiency.

Safety is defined in terms of the total number conflicts and
LoSs. Naturally, fewer conflicts and LoSs are safer.

Efficiency is evaluated in terms of distance and time trav-
elled; significantly increasing the path or time travelled is
considered inefficient.
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IV. EXPERIMENT: HYPOTHESES

It was hypothesized that a supervised learning model would
be able to identify an airspace structure which minimizes the
number of conflicts for the given traffic scenario. Through seg-
mentation of the traffic per the available airspace according to
their real heading distribution, more conflicts can be prevented
versus a structure that assumes an even traffic distribution.
Moreover, although the total of number of conflicts is not
directly proportional to the total number of LoSs, fewer
conflicts tend to lead to fewer LoSs [11]. Reducing the number
of conflicts also leads to fewer conflict resolution manoeuvres.
This leads to higher efficiency as aircraft can follow their
planned trajectory, instead of adopting a conflict resolution
path to avoid intruders.

During testing, the supervised learning model is run in
the traffic density it was trained in, as well as with lower
and higher traffic densities. The objective is to verify if the
performance of the supervised learning model declines when
used with different traffic densities. It was hypothesized that
the model would deteriorate in performance with higher traffic
densities. A higher number of aircraft increases complexity of
the environment, and in turn, the difficulty of determining an
optimal airspace structure.

V. EXPERIMENT: RESULTS

The performed experiment involves a training and a testing
phase. First, the supervised learning model is trained con-
tinuously with a set of traffic scenarios for medium traffic
density. Second, it is tested with unknown traffic scenarios for
low, medium, and high traffic density. Performance with these
new scenarios is directly compared to a baseline employing
an evenly distributed heading range per vertical layer.

A. Training the Model

The first step is to train the CEN. This network is repeatedly
trained on a set of 16 scenarios. Then it is validated with
only one scenario. All scenarios run for 500 seconds. A
termination rule was imposed as follows: when the 60-episode
training moving average (MA) does not decrease for more
than 30 episodes, the network finishes the training. Fig. 3
displays the evolution of the loss during training. Results show
that it converges towards a minimal average loss (roughly
0.18) within 300 episodes. There are, however, occasional
large spikes (i.e., episodes where the CEN estimated number
of conflicts diverged significantly from the value observed
with the Bluesky simulation). This is considered a result of
the formulation of the traffic scenario not identifying the
exact direction of the traffic (i.e., all traffic is discretised
into heading bins). As a result, the CEN is not capable of
identifying “hotspots” of conflicts from intercepting routes
within a heading bin. The larger the heading range in a layer
is, the more likely it is that flight routes within this layer will
intersect. The CEN does not account for these.

Fig. 4 shows the evolution of the “real” and “estimated”
number of conflicts during training and validation of the CEN.
The “real” number of conflicts is obtained through simulation

Figure 3. Evolution of the loss during training of the CEN. The Mean Squared
Error between the “real” and the “estimated” number of conflicts is used as
a loss metric.

Figure 4. Evolution of the estimated number of conflicts during testing and
validation of the CEN.

with Bluesky; “estimated” is the value output by the CEN.
Throughout the training of the CEN, the precision of the
prediction of conflicts evolves up to an average error of only
5.3 conflicts.

The training of the LHN then follows. This network is
repeatedly trained on a set of 48 scenarios. Training stops
once it is detected that the network reaches a stable value,
and is no longer learning. There are no validation steps, due
to the fact that the outcome of this training will be validated
only later, by means of a comparison with evenly distributed
heading ranges per layer. Fig. 5 shows the evolution of the
total number of conflicts through training of the LHN. After
6000 episodes, the LHN is capable of finding heading range
distributions which minimize the total number of conflicts.

An example of the structure output by the supervised
learning model is presented in Fig. 6. Here, a traffic scenario
is outlined in blue (top graph), and the supervised learning
model assigns heading ranges per vertical layer according to
the gray graph (bottom). When comparing the two graphs it
can be seen that the supervised learning model attempts to
distribute aircraft evenly over the vertical layers by selecting
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Figure 5. Evolution of the loss during training of the LHN.

smaller heading ranges per layer within directions with higher
incidence of traffic. This results in an optimized segmentation
of the traffic per the available vertical space. Although a
similar number of aircraft in all layers may be expected, this
may not be optimal safety-wise. A wide heading range in
a layer results in considerable heading differences between
aircraft travelling in the same layer, leading to intercepting
routes and large conflict angles. Adding more aircraft to a
layer with a wide heading range comes at a higher cost than
adding aircraft in a layer with a smaller range. Thus, an equal
number of aircraft in all layers may not be desirable.

Figure 6. Example of a heading range distribution (bottom) output by the
supervised learning model for a given traffic scenario (top).

B. Testing the Model

The effect on safety and efficiency of the structures output
by the supervised model is directly compared to employing
evenly distributed heading ranges. The former is denominated
as “Adaptive” and the latter as ‘’Even”, in the following
graphs. 800 traffic scenarios are run for both situations, for
each traffic density. Each scenario runs for 1500 seconds.

1) Safety Analysis

Fig. 7 displays the total number of conflicts for all traffic
densities. The supervised learning model was able to decrease

Figure 7. Total number of conflicts with a heading range distribution per layer
output by the supervised learning model (Adaptive) and an even heading range
distribution (Even), for all traffic densities with conflict resolution.

the number of conflicts for all traffic densities, compared to
the baseline model. Such was expected for the medium traffic
density, since this resembles the environment the model trained
in. The fact that the latter was also able to reduce conflicts at
lower and higher traffic densities, shows that its behaviour is
expandable to different numbers of aircraft.

Figs. 8, 9, and 10 further explore how the supervised
learning model structures traffic based on demand. For sim-
plification, we focus on the output structures for a medium
traffic density.

Fig. 8 displays the relationship between the heading range
and the number of aircraft per layer, both for the supervised
learning model and for an evenly distributed structure. The
latter assigns the same heading range to all the layers; it does
not defend against a high incidence of aircraft in one layer.
Consequently, it has a higher maximum for the number of
aircraft per layer. Naturally, as the number of aircraft per layer
increases, so does the number of conflicts. The results with the
supervised learning model show a more optimal segmentation
of aircraft. By reducing the heading range in each layer, the
model limits the number of aircraft per layer, and consequently
the number of conflicts. Additionally, it is interesting to note
some linearity between the number of aircraft and the heading
range. This is probably due to the linearity of the hidden layers
in the neural network, and the partial linearity of the Rectified
Linear Unit (ReLU) activation function.

Fig. 9 plots the probability density of the number of aircraft
per heading range in each layer for the supervised learning
model. It shows that the model tries to exploit two properties:
(1) a small heading range, or (2) a low number of aircraft.
However, the frequency with which the model assigns many
aircraft to a layer with a small heading range is higher than
the frequency with which it assigns few aircraft to a layer with
a larger heading range.

Figs. 10a and 10b display the probability density function
between the number of aircraft and the total number of
conflicts in a layer for the supervised learning model and for an
even distribution, respectively. The evenly distributed heading
range concept has a higher average and a higher maximum
number of conflicts. Additionally, the contours of Fig. 10b are
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Figure 8. Relationship between the heading range and the number of aircraft
per layer. A point is plotted for each layer for each tested traffic scenario.

Figure 9. Probability density between heading range and the number of aircraft
in each layer for the output of the supervised learning model.

approximately symmetrical with respect to the mean number
of conflicts. This can be seen as a benefit, since the probability
of having an episode with a great number of conflicts is nearly
none; the system is more dependable.

Fig. 11 displays the total number of LoSs for all traffic
densities. Although the objective of the supervised learning
model was to reduce the total number of conflicts and not of
LoSs, as hypothesized, a reduction in the number of conflicts
leads to fewer LoSs.

Fig. 12 compares distributions of the occurrence of losses
of separation, for the four experiment conditions. The data for
these graphs is based on the medium traffic density scenarios.
Comparison of these distributions enables a comparison of the
relative influence of (1) adaptive airspace structuring, and (2)
conflict resolution, on the total number of losses of separation.
The top two graphs represent the simulations run without
conflict resolution, and the bottom two run using the MVP
model for resolving conflicts. As previously seen in Figs. 7
and 11, the scenarios with the supervised learning model have
fewer conflicts and fewer LoSs. As expected, within the same
airspace structure, applying conflict resolution further reduces
the number of LoSs. However, it also increases the disparity

(a) With an evenly distributed heading range.

(b) With the supervised learning model output.

Figure 10. Probability density function of the number of conflicts against the
number of aircraft in each layer, both for output of the supervised learning
model and for an evenly distributed heading range per layer.

Figure 11. Total number of LoSs resulting from employing the heading ranges
per layer output by the supervised learning model (Adaptive) and an even
heading range distribution per layer (Even), for all traffic densities with
conflict resolution.

between the mean and the median values, albeit with a smaller
impact when the supervised learning model is used. Finally,
it is interesting to note that the layer distribution output by
the supervised learning model without MVP (blue) appears
to perform even better than the evenly distributed layers with
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Figure 12. Total number of LoSs resulting from employing the heading ranges
per layer output by the supervised learning model and an even heading range
distribution per layer. The top two results were run without conflict resolution,
and the bottom two were run using the MVP model for resolving conflicts.

MVP (brown). Conflict prevention resorting to airspace design
may be more efficient at improving safety than just applying
conflict resolution.

2) Efficiency Analysis

To analyse efficiency, we focus on the effect of airspace
structuring and conflict resolution on the flight routes. With the
Bluesky simulator, this information is gathered once aircraft
finish their flights. We denominate aircraft which have finished
their flight as “landed” aircraft. In order to have a direct
comparison between the structures output by the supervised
learning model and an evenly distributed structure, all episodes
run for the same amount of time. As a result, a different
number of aircraft might have landed for different structures
according to its effect on flight path/time.

Fig. 13 displays the total number of landings throughout
each scenario for all traffic densities. On average, with the
structures output by the supervised learning model, more
aircraft landed. This signifies that, with an even heading
distribution per layer, aircraft take longer to finish their routes.
As hypothesized, a higher number of conflicts leads to aircraft
having to adopt more conflict resolution manoeuvres which
alter their otherwise linear trajectory. The more aircraft have
to diverge from their linear path to avoid intruders, the longer
their path will be.

Fig. 14 displays the total distance travelled by each aircraft
for all traffic densities. Note that these values are only from
the aircraft that landed (i.e., that finished their path within
the running time of each scenario). Even though only the
flights which finished their trajectory were included, there was
already a strong effect visible. These values confirm that, with
an even heading range distribution per layer, aircraft tend to
travel slightly longer.

Fig. 15 displays the total time travelled throughout each
scenario for all traffic densities for “landed” aircraft. Here,
no significant differences are visible. Comparing with Fig. 14,

Figure 13. Total number of landings resulting from employing the heading
ranges per layer output by the supervised learning model (Adaptive) and an
even heading range distribution per layer (Even), for all traffic densities with
conflict resolution.

Figure 14. Total distance travelled resulting from employing the heading
ranges per layer output by the supervised learning model (Adaptive) and an
even heading range distribution per layer (Even), for all traffic densities with
conflict resolution.

Figure 15. Total time travelled resulting from employing the heading ranges
per layer output by the supervised learning model (Adaptive) and an even
heading range distribution per layer (Even), for all traffic densities with
conflict resolution.

it is likely that, with an even heading range distribution per
layer, aircraft adopt higher speeds for conflict resolution, thus
compensating for the extra travelled distance.

VI. DISCUSSION

Results show that having a dynamic airspace structure
capable of adapting to the current traffic scenario leads to an
increase in the airspace capacity, by reducing conflicts and
LoSs. The supervised learning model optimized segmentation
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of aircraft; the heading range allowed in each vertical layer was
reduced when it is detected that a high number of aircraft will
travel within that range. Limiting the traffic density at each
vertical layer had a positive effect of limiting conflicts and
LoSs, thus increasing safety. Moreover, the scenarios ran with
the supervised learning model, without conflict resolution, had
fewer LoSs than the scenarios run with an evenly distributed
heading range per layer with conflict resolution activated. This
shows that conflict prevention may be the best form of conflict
“resolution”; in a situation with several multi-actor conflicts,
conflict resolution algorithms can encounter deadlocks, which
prevent them from resolving all conflicts.

However, the supervised learning model can still be further
improved. First, the number of aircraft assigned to a layer is
occasionally zero. This is a misallocation of useful vertical
space, causing more stress on the other layers. It is likely that
a more complex discretization of the current traffic scenario, or
even focusing on the number of conflicts on each layer instead
of the total number of conflicts in the airspace, may mitigate
this issue. Second, performance of the LHN is dependent on
the performance of CEN, as the number of conflicts estimated
by the latter is used to train the former. Optimizing conflict
information, will also optimize the output of the LHN. Third,
training focused solely on the number of conflicts. Considering
also LoSs, or even efficiency factors such as increased flight
path or flight time, may further optimize the structures found
by the supervised learning model. Lastly, since the objective
is to minimize the number of conflicts, this can be seen as
improving a cost function as typically used with reinforcement
learning. This represents a different approach from the work
herein performed; it is of interest to compare both.

This work assumed a fixed number of vertical layers. This
is a simplification that favoured optimal convergence of the
supervised learning model. Although it is fair to assume that
a certain range of flight levels is allocated for air transportation
and that aircraft must adhere to these limits, it may also be
that controlling the number of vertical layers may further
optimize capacity of the airspace. Naturally, adopting fewer
or more layers has an impact on the segmentation of traffic.
For the cruising phase, more layers are expected to improve
segmentation and thus potentially decrease the number of
conflicts. However, in future work, the effects of climbing
and descending towards the correct layer must be considered.
Climb and descent phases account for a large portion of
conflicts and LoSs in environments with non-linear routes [11],
[12]. Considering vertical deviations will likely help improve
safety in the airspace. However, it will also add complexity
to the training of a machine learning model. It is likely that
reducing conflicts during cruise, climb, and descent phases
requires different approaches, and consequently, models with
different learning policies.

Future work should explore fuel consumption, and resulting
environmental impact, of climbing, descending, and allocating
aircraft to sub-optimal altitudes. Moreover, before a real-
world implementation, the method must be further tested
with different traffic densities and trajectories, improving its

capability to generalise. There is also potential for this method
to be applied to unmanned aviation, where it may have a bigger
impact given the higher variability of trajectories and traffic
types. Finally, no machine learning application can be blindly
implemented into a real-life scenario. Further examination is
necessary to explain the choices made by the model, as well as
safeguards for potential bad decisions when applied to aircraft
densities/trajectories not previously seen.

VII. CONCLUSION

This work focused on using neural networks to create a
safer, dynamic version of the layered airspace concept adapted
to the current traffic scenario. Results showed that a supervised
learning model is capable of optimally dividing aircraft per
the available airspace in function of their heading distribution,
thus increasing safety. Proper segmentation of traffic even had
a greater effect on safety than employing a conflict resolu-
tion model. Multi-conflict situations are extremely difficult to
resolve; preventive action towards limiting the occurrence of
these situations may be the only to way to resolve them.

Future research should consider non-linear trajectories,
which will likely create density “hotspots”, heavily increasing
the number of conflicts as well. This will likely a require a
more complex representation of the environment, as to identify
heading changes. Finally, the research presented herein can be
extended towards more competitive operational environments
with a different number of layers, differences in the perfor-
mance limits, as well as preference for efficiency over safety.
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