
 
 

Delft University of Technology

How should we model and evaluate breathing interplay effects in IMPT?

Pastor-Serrano, Oscar; Habraken, Steven; Lathouwers, Danny; Hoogeman, Mischa; Schaart, Dennis;
Perkó, Zoltán
DOI
10.1088/1361-6560/ac383f
Publication date
2021
Document Version
Final published version
Published in
Physics in Medicine and Biology

Citation (APA)
Pastor-Serrano, O., Habraken, S., Lathouwers, D., Hoogeman, M., Schaart, D., & Perkó, Z. (2021). How
should we model and evaluate breathing interplay effects in IMPT? Physics in Medicine and Biology, 66(23),
Article 235003. https://doi.org/10.1088/1361-6560/ac383f

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1361-6560/ac383f
https://doi.org/10.1088/1361-6560/ac383f


Physics in Medicine & Biology
     

PAPER • OPEN ACCESS

How should we model and evaluate breathing
interplay effects in IMPT?
To cite this article: Oscar Pastor-Serrano et al 2021 Phys. Med. Biol. 66 235003

 

View the article online for updates and enhancements.

You may also like
Breathing interplay effects during proton
beam scanning: simulation and statistical
analysis
Joao Seco, Daniel Robertson, Alexei
Trofimov et al.

-

Comparing the effectiveness and
efficiency of various gating approaches for
PBS proton therapy of pancreatic cancer
using 4D-MRI datasets
Kai Dolde, Patrick Naumann, Christian
Dávid et al.

-

Interplay effects in proton scanning for
lung: a 4D Monte Carlo study assessing
the impact of tumor and beam delivery
parameters
S Dowdell, C Grassberger, G C Sharp et
al.

-

This content was downloaded from IP address 154.59.124.113 on 21/12/2021 at 11:11

https://doi.org/10.1088/1361-6560/ac383f
https://iopscience.iop.org/article/10.1088/0031-9155/54/14/N01
https://iopscience.iop.org/article/10.1088/0031-9155/54/14/N01
https://iopscience.iop.org/article/10.1088/0031-9155/54/14/N01
https://iopscience.iop.org/article/10.1088/1361-6560/ab1175
https://iopscience.iop.org/article/10.1088/1361-6560/ab1175
https://iopscience.iop.org/article/10.1088/1361-6560/ab1175
https://iopscience.iop.org/article/10.1088/1361-6560/ab1175
https://iopscience.iop.org/article/10.1088/0031-9155/58/12/4137
https://iopscience.iop.org/article/10.1088/0031-9155/58/12/4137
https://iopscience.iop.org/article/10.1088/0031-9155/58/12/4137
https://iopscience.iop.org/article/10.1088/0031-9155/58/12/4137
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvoFfnlm5D3FyoBIxbkQNryo_Om0Xbv0pQgvxEOSkzncLzMdh6godPQywwOvskcjb5kBVNK84qLfiontQYTFaDuH6TppVLQRfvocIpEW0MyqCt70LgkWYeBFfZ0mcriNuPBPzL4pCCclJi_eay9AtG4Mid3cc8CgsdEYxONA2z7KzSfxB-1HPQ7dDOIHr3-lkTdIvrh77rHe1BBLlbbRAmnmCV3EZEcmcaoP1FUgxxHBgOVJ_qdAQRpETlYdZej_OV97tDxROzLnh4Z6E1gK9CTnkniU5mQYMY&sig=Cg0ArKJSzM0ACj0XlUUC&fbs_aeid=[gw_fbsaeid]&adurl=https://iopscience.iop.org/bookListInfo/physics-engineering-medicine-biology-series%23series


Phys.Med. Biol. 66 (2021) 235003 https://doi.org/10.1088/1361-6560/ac383f

PAPER

How should wemodel and evaluate breathing interplay effects
in IMPT?

Oscar Pastor-Serrano1,∗ , StevenHabraken2,3, Danny Lathouwers1,MischaHoogeman2,3,
Dennis Schaart1,3 andZoltán Perkó1

1 Delft University of Technology, Department of Radiation Science andTechnology, Delft, TheNetherlands
2 ErasmusMCCancer Institute, UniversityMedical Center, Department of Radiotherapy, Rotterdam, TheNetherlands
3 HollandPTC,Department of RadiationOncology, Delft, TheNetherlands
∗ Author towhomany correspondence should be addressed.

E-mail: o.pastorserrano@tudeft.nl

Keywords: IntensityModulated Proton Therapy (IMPT), breathingmotion, statistical evaluation, 4DCT robust optimization, ITV robust
optimization, breathing interplay effects

Abstract
Breathing interplay effects in IntensityModulated ProtonTherapy (IMPT) arise from the interaction
between targetmotion and the scanning beam. Assessing the detrimental effect of interplay and the
clinical robustness of severalmitigation techniques requires statistical evaluation procedures that take
into account the variability of breathing during dose delivery. In this study, we present such a statistical
method tomodel intra-fraction respiratorymotion based on breathing signals and assess clinical
relevant aspects related to the practical evaluation of interplay in IMPT such as how tomodel irregular
breathing, how small breathing changes affect the final dose distribution, andwhat is the statistical
power (number of different scenarios) required for trustworthy quantification of interplay effects.
First, two data-drivenmethodologies to generate artificial patient-specific breathing signals are
compared: a simple sinusoidalmodel, and a precise probabilistic deep learningmodel generating very
realistic samples of patient breathing. Second, we investigate the highlyfluctuating relationship
between interplay doses and breathing parameters, showing that small changes in breathing period
result in large local variations in the dose.Our results indicate that using a limited number of samples
to calculate interplay statistics introduces a bigger error than using simple sinusoidalmodels based on
patient parameters or disregarding breathing hysteresis during the evaluation.We illustrate the power
of the presented statisticalmethod by analyzing interplay robustness of 4DCT and Internal Target
Volume (ITV) treatment plans for a 8 lung cancer patients, showing that, unlike 4DCTplans, even 33
fraction ITVplans systematically fail to fulfill robustness requirements.

1. Introduction

In IntensityModulated ProtonTherapy (IMPT), breathing interplay effects arise from the interaction between
the scanning beam andmoving organs during treatment delivery. This is detrimental, as during the fewminutes
inwhich each fraction is delivered, the continuousmovement of the target due to breathing degrades the final
dose distribution (Lambert et al 2005, Bert et al 2008, Bert andDurante 2011). Given the adoption of IMPT in
treatingmoving tumors, there is a growing need for computationalmethods that allow sound statistical
evaluation of interplay effects, where the error introduced bymodeling approximations (e.g. using few breathing
realizations of sinusoidal breathing) is known and justified.

Several techniques aimed atminimizing the detrimental effect of breathing during delivery include beam
gating, rescanning, beam tracking, breath-hold and compression. During beamgating the patient breathes freely
and the dose delivery is constrained to a specific part of the breathing cycle (e.g. end of exhale) (Ohara et al 1989,
Bert et al 2009). Beam tracking consists of adjusting the treatment delivery system to real-time predicted target
movement (Bert et al 2007, Zhang et al 2014). In rescanning or repainting the target is irradiated several times
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during the same fraction, which helps smooth the final dose distribution (Phillips et al 1992, Seco et al 2009).
Finally, breath-hold and compressionmethods aim at immobilizing the target during delivery (Boda-
Heggemann et al 2016, Pguret et al 2016).

From a treatment planning perspective, different approaches are used to account for targetmotion by
including information about different breathing phases (e.g. exhale, inhale,mid-ventilation) into the
optimization. Internal Target Volume (ITV) planning aims at irradiating an ITV volume in the reference phase,
which is defined as the union of all Clinical Target Volume (CTV) contours of the different breathing phases
(Shih et al 2004).With the help of surrogatemodels that generate artificialmotion, ITVs can be extended to form
probabilistic ITVs that capture breathing variability (Krieger et al 2020). 4DCTplanning is based on optimizing
the dose distribution usingminimax robust optimization (Pflugfelder et al 2008), includingmultiple
Computerized Tomography (CTs) fromdifferent breathing phases so that the dose prescriptions aremet in all
the included breathing phases (Engelsman et al 2006,Heath et al 2009, Bernatowicz et al 2017). Some 4DCT
approaches also account for beam tracking (Eley et al 2014) and temporal structure (Engwall et al 2018b) during
optimization.

Interplay effects in IMRTversus IMPT
Previouswork shows that fractionation effectively limits interplay dose degradation in IntensityModulated
Radiation Therapy (IMRT) delivery techniqueswithmoving parts such asmulti-leaf collimators (MLCs)
(Bortfeld et al 2002, Jiang et al 2003), butmay be insufficient to tackle negative biological effects in treatments
withmany segments of fewmonitor units (MUs) (Seco et al 2007). Several studies further investigate the effects
of regular breathingmotion and collimator speed on the outcome ofMLC treatments (Court et al 2008, 2010),
showing that non-negligible interplay effects increase with targetmagnitude, plan complexity and breathing
period.

While the problemof interplay is common for all dynamically delivered treatments, its nature differs
between IMPT and IMRT: proton pencil beams are narrower than photon fields, deliver the dosemore locally,
and their irradiation times are usually an order ofmagnitude smaller. Several studies quantify the negative effect
of interplay in IMPT and evaluate the effectiveness of differentmitigation techniques such as repainting in lung
and liver patients (Seco et al 2009, Li et al 2014, Zhang et al 2016, Engwall et al 2018a), breath-hold (Yu et al 2017,
Emert et al 2021) or a comparison between differentmitigation techniques used in liver treatments (Zhang et al
2018), showing that neither rescanning nor gating alone canmitigate interplay effects. Regarding the effect of
motion parameters, large breathing amplitudes are known to produce significant local under- and overdosing
(Kraus et al 2011, Kardar et al 2014, Jakobi et al 2018).

Challenges in the evaluation of interplay
Evaluating interplay is usually time consuming and requiresmany dose distributions corresponding to different
realizations of breathing during treatment delivery.While alternative,more realistic and computationally
demanding approaches use simulated 4DCT scanswith dynamic dose delivery (Boye et al 2013) ormotion
surrogates (denBoer et al 2021), most of the interplay evaluation studies are based on a single 4DCT scan and
many breathing signals to simulate different breathing scenarios. Obtaining enough of such signals involves
either taking fragments from the recorded respiratory signal—which is often short and does not offermuch
variability—or using a sinusoidal approximation, oversimplifying breathing and failing to capture typical
irregularities such as baseline shifts and amplitude changes. Furthermore it is not known how realistic and
irregular these signals need to be, how small breathing variations affect the final dose, and howmany different
breathing samples are needed to accurately capture the statistical variation of interplay. Except for one published
paper hinting the possible systematic error in IMRT interplay evaluation caused by the use of a limited number
ofmotion samples in both planning and evaluation (Evans et al 2005), no previous study has investigated the
statistical significance of evaluating interplay effects using few samples and simplified breathingmodels
disregarding any breathing cycle hysteresis.

Contributions
Building on previous IMRT studies (Kissick et al 2005, Seco et al 2007), we investigate the interplay dependence
on breathing uncertainties for proton treatments withmany pencil beams—where the order ofmagnitude of
beamdelivery times is a factor 100 lower that the period of breathingmotion—and specifically the relationship
between dose and breathing parameters such as period and amplitude changes.We also extend on previous
work (Court et al 2008, 2010) and evaluate interplay using both constant and variable breathing periods. Our
analysis is based on a 4DCT scan representing the different anatomies of the patient in a breathing cycle, and
breathing signals that capture how these alternate during the course of a treatment fraction. The contributions of
this paper are the following:
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• Wepresent amethod to statistically assess interplay effects in lung IMPTbased on breathing signals and apply
it to evaluate robustness, comparing the 4DCT and ITVplanning approaches and the impact of fractionation
for 8 stage III lung cancer patients.

• Weevaluate the error in the interplay evaluation caused by (i) using simplistic sinusoidal breathing
approximations, (ii) using a limited set of scenarios, or (iii) disregarding breathing hysteresis.

(i) Twomethods to generate patient-specific breathing signals which differ in accuracy and computational
complexity—referred to as breathingmodels—are compared. Specifically, given the popularity of
sinusoidalmodels, we investigate the dosimetric impact of evaluatingmotion using simple sinusoidal
breathing patterns, which is themost commonly used approachwhen lacking a sufficiently long
recorded breathing signal with enough variation.

(ii) We investigate the inaccuracies that arise in the statistical evaluation of interplay effects when the
analyses lack statistical power (i.e. only a consider a limited number of breathing scenarios), and
whether evaluating interplay with a small number of such breathing scenarios—as observed inmost of
the previous studies—leads to significant errors.

(iii) We assess the dosimetric impact of disregarding hysteresis in the breathing cycle, which translates into
considering symmetrical inhale and exhale during evaluation.

• We investigate the dependence of IMPT interplay dose distributions on the breathing parameters such as
amplitude, period or starting phase.More specifically, we investigate how the dose andDoseVolume
Histogram (DVH) values varywith small changes in the breathing signal, and studywhich parameters (e.g.
breathing amplitude, period)have the biggest effect on dose.

The rest of the paper is structured as follows: in section 2, we describe the patient data, the proposed
methodology to simulate breathing interplay effects, and explain the design choices in treatment planning and
delivery simulation, together with a description of our statistical evaluation. In section 3we present the results of
the numerical experiments, followed by an analysis and discussion in section 4. Finally, we providefinal remarks
and conclusions in section 5.

2.Methods andmaterials

Patient data and treatment plans
Different breathing signals are obtainedwith the stereotactic body radiation surgery (SBRT) systemCyberknife®
(Accuray Inc., Sunnyvale CA,US), which tracks targets thatmovewith respiration using a correlationmodel that
relates the internal target positionwith externalmarkers taped to the chest of the patient (Coste-Manire et al
2005,Hoogeman et al 2009). The long respiratory traces represent tumormovement during treatment for 8
different lung cancer patients. Each signal ismatched to a 4DCT scan from a stage III lung cancer patient (having
been treatedwith IMRT and recordedwith a Siemens SensationOpen®CT scanner using phase binning) and
subsequently rescaled to themaximum4DCT amplitude. The 4DCT scans are discretized into 8 phases in the
breathing cycle: 0%, 25%, 50%, 75%, 100% inhale, and 75%, 50%and 25%exhale. The structures of interest are
clinically delineated in all scans, with the exception of the ITV,which is obtained by combining in themid-
ventilation 50%exhale reference phase theCTVvolumes from all the breathing phases. Table 1 describes the
motion and tumor sizes of the patients in the dataset.We use ITVplans targeting the ITV in the reference phase,
and 4DCT robust plans targeting CTV contours from three phases: the reference 50%exhale phase, and the two
extreme 0%and 100%phases. Both ITV and 4DCT robust IMPTplans use a 5mmsetup robustness setting, a
5% range robustness setting, and a 2 mmextramargin around the target(s), based on current clinical practice at
Holland PTC (Delft, Netherlands). The treatment is divided into 33 fractions of 2Gray (Gy), with plansmade
using Erasmus-iCycle, an in-house Treatment Planning System (TPS)which uses automatedmulti-criteri
a prioritized optimization and a pencil beamdose algorithm to calculate the dose delivered per spot (Breedveld
et al 2012, van deWater et al 2013), including range shifters and filtering of low-weight beams.No breathing
uncertaintymitigation technique is applied during planning or delivery, except for one experiment wherewe
apply volumetric repainting per field.

Interplay dose calculation
The proposedmodel calculates an interplay dose distribution based on the treatment plan, themachine
parameters, a 4DCT scan and a breathing signal that can be either a fragment of the real recorded signal or an
artificial signal fromone of the breathingmodels discussed below. The number of spots—regions irradiated by a
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singlemono-energetic pencil beam—and the order inwhich they are delivered can be obtained from the
treatment plan. Spots are ordered in descending order according to pencil beam energies, on a per field basis.
Themachine parameters determine a spot-timeline, which is a list ordering the spots in time using information
such as the elapsed time between two consecutive spots or the time needed to change layers and beams. The
irradiation time for each spot is directly obtained from the optimized planswith beamdata corresponding to
standardVarian ProBeam® settings, resulting in afixed current and variable local dose rates between 10 and
54 Gy s−1. Beamdatameasurements are based on integral dose depth curves, lateral spot profiles and absolute
dosimetry (MUcalibration) under reference conditions in awater phantom. For themachine parameters, 10ms
off-beam time are added after delivery of each spot, as well as an average of 0.7 s to change energy layer. Range
shifterfixed insertion times equal 16 s, while the variable time needed to change the gantry angle depends on a
linearly increasing, bounded angular acceleration. Figure 1 illustrates the process of simulating an interplay dose
distribution. After a breathing signal is generated and a treatment starting phase is sampled, the signal is binned
between full inhale and exhale, according to themaximum4DCT amplitude (5 bins delimited by 4 red
horizontal boundary lines infigure 1). The breathing signal indicates the phase inwhich each spot is delivered,
with all the points of the signal that fall between consequent binning boundaries being considered to be the part
of the same being phase. For fractionswhere the patient presents shallow breathingwith low amplitude, the dose
will be deposited in only a subset of phases. For baseline shifts, the dose deliverywill gradually shift from inhale
(75%In, 100%, 75%Ex) to exhale phases (25%Ex, 0%, 25%In) as the treatment proceeds. The number of phases
used during interplay evaluationmay differ from the number of phases used to optimize the 4DCTplan. In this
study, 4DCTplans aremade using 3 phases, whereas all the 8 available phases are used for the evaluation. After
binning, each point of the signal corresponds to a phase of the 4DCT, resulting in theCT-timeline containing the
different phases ordered in time. Pairing theCT- and spot-timelines results in each spot being assigned to a
certain phase. Dose distributions per phase are obtained by adding the doses from individual spots in the same
phase, which are later transformed (via a non-rigid thin-plate spline registration deformation field) to the
reference phase before being added to form thefinal dose distribution.

Breathingmodels
Breathing signals are used to represent respiratorymotion during a treatment fraction, and each of them
ultimately results in a different dose distribution. The statistical evaluation of interplay effects requires statistics
of the dosimetric quantities of interest usingmany different dose distributions, requiring a large set of
respiratory traces. Except for this studywherewe use breathing signals deliberately recorded during a long time,
the available signals from regular patients are usually short and do not contain enough variability, thus requiring
commonly used artificial sinusoidal approximations that potentially introduce errors.We compare two
different types of data-driven breathingmodels that capture uncertainty and variability in respiratorymotion.
Thefirstmodel is based on simple sinusoidal waves (denoted as ʼsin’ in the remainder of the paper), while the
secondmodel is based on the Adversarial Autoencoder (AAE) algorithmdescribed in Pastor-Serrano et al
(2021).

1. Sinusoidal model. In the sinusoidal model the respiratory time series is generated by using a sinusoidal
function sin n2 as p y= + +x t A A t Tsin n

0
2( ) · ( ), where x(t) is the time dependent position of the

tumor,A0 is the position at the beginning of inhale (in centimeters),T is the breathing period (time between
two consecutive inhales, in seconds), andA is the amplitude (distance from inhale to exhale, in centimeters).

Table 1.Dataset description and treatment delivery times. The reported values include the breathing amplitude along the lateral,
anterior–posterior (A–P) and cranial–caudal (C–C) axes, and the combined volume of theCTV including lymph nodes.We include the
treatment delivery time perfield for both the 4DCT and ITVplans.

Patient
Breathing amplitude (mm)

Target size (cm3)
Delivery time (s)

Field 1 Field 2 Field 3

Lateral A–P C–C CTV andnodes 4DCT ITV 4DCT ITV 4DCT ITV

1 3.2 1.8 4.1 39.1 46.8 46.1 58.2 57.9 28.3 29.1

2 2.1 2.4 5.9 130.9 38.4 33.0 67.9 60.2 39.4 34.8

3 1.5 3.6 9.4 211.5 33.6 29.7 66.2 61.3 35.6 28.5

4 1 0.7 8.7 489.7 68.0 62.2 101.0 96.0 76.5 56.8

5 0.8 0.4 2.4 400.6 34.0 31.9 98.3 76.5 50.4 42.3

6 0.8 2.4 1.7 286.7 53.3 52.6 87.9 65.5 49.7 42.8

7 1.2 1.9 5.4 404.5 61.5 61.7 76.0 76.5 40.2 39.6

8 1.2 0.3 2.3 162.1 40.6 38.5 90.5 69.9 65.5 44.2
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The parameterψ represents offset in phase, and effectively symbolizes themomentwhen the treatment
starts within the first cycle. In our study, we consider the simplest sinusoidals sin n2 with n= 1 (Lujan et al
2003), constant amplitude and period. Each signal has a different period and amplitude sampled from
Gaussian distributionsfitted to both the periods m s ,T T( ) and amplitudes m s ,A A( ) present in the
recorded breathing signal. The parameterA0 is often fixed and calculated by the average across breathing
cycles in previous studies (Lujan et al 2003, George et al 2005). In this studyA0 is considered an independent
parameter in order to provide themodel with extra variability, and its distribution is also considered to be
normal fitted to the breathing data m s ,A A0 0

( ).

2. AAEmodel. The AAE breathing models are based on artificial neural networks. First, an encoder computes
a few latent parameters (a low dimensional embedding) that uniquely characterize each high-dimensional
breathing signal. The number of low-dimensional latent variables is optimally configured. A decoder
reconstructs the original breathing signal using the latent variables from the encoder. A training process
using a large set of samples ensures that the decoder accurately reconstructs breathing signals and that each
of the latent parameters is approximately distributed according to theGaussian distribution  0, 1( ). Using
as few as 5 parameters, the AAEbreathingmodels can generate patient-specific realistic breathing signals
with high accuracy and variability in period and amplitude (Pastor-Serrano et al 2021), as opposed to the
sinusoidalmodel always yielding perfect regular sinusoidal samples.

Once themodels are obtained, artificial breathing signals are generated by samplingmodel parameters from
their distributions, with each parameter combination resulting in a unique signal. A sinusoidal signal is thereby

Figure 1. Interplay calculationworkflow. The input breathing signal, treatment plan andmachine parameters are used to distribute
the spots over the breathing phases included in the 4DCT scan and determine inwhich phase each spot is delivered. Breathing phase
dose distributions arefirst obtained by accumulating the dose delivered by all the spots in the same phase, and are subsequently
transformed to the reference phase. Thefinal interplay dose distribution is the result of adding the transformed doses.
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obtained by sampling a period, amplitude and inhale position from m s ,T T( ), m s ,A A( ) and m s ,A A0 0
( ).

For the AAE breathingmodels, different signals are obtained by sampling the 5 latent parameters from a
Gaussian distribution  0, 1( ). For bothmodels, the starting phaseψ—the starting point of delivery within the
first breathing cycle—is sampled from a uniformdistribution p 0, 2( ).

Statistical evaluation of interplay
Testing robustness against interplay effects involves a statistical evaluation using a set ofN different dose
distributions andDVHs corresponding toN different breathing samples. A Î  Î D D VDVH :( ) is a
function obtained for a given structure of interest that indicates the fraction of volumeV that receives a dose
greater than or equal toD. The quantityVf=DVH( fDp) indicates the fraction of the target volume that receives
at least a certain percentage f of the prescribed doseDp. Alternatively, the valueDf=DVH−1( fV ) represents the
lowest dose received by at least a fraction f of the volume.We use typical values for these quantities in order to
assess the adequacy of treatment plans, e.g. theD98 or dose that 98%of the volume receives. Additionally, we
calculate the homogeneity index (HI), defined asHI= (D2−D98)/Dp, whereD98 andD2 are the dose received by
the 98%and 2%of the volume.HIs quantify howuniformly themajority of the target volume is irradiated, with
lower values indicating smaller differences between the dose delivered to different parts of the target. TheV107/95

indicates the fraction of the target volume that receives a dose outside the usually clinically accepted interval
(0.95Dp, 1.07Dp), and it is calculated asV107/95= V107+ (1− V95).

Our interplay evaluation is based on comparing the distributions ofD2,D98,HI andV107/95, referred to as
quantities of interest (Θ) in the remainder of this paper.We approximate these distributions using a collection of
ni percentilesΘi obtained from theN available computedΘ values, which are compiled into a percentile vector
d = QQ =i i

n
1

i{ } . Subsequently, we assess the similarity between the results of different statistical analyses by
comparing distributions of each quantity of interestΘ via the percentile vectors δΘ. If different statistical
evaluations yield similar distributions, the analysis of interplay and conclusions drawn regarding the quality of
the planwill approximately be the same.

Overview
After obtaining a treatment plan that satisfies the planning constraints and objectives, the interplay simulation
proceeds as follows:

1.N different breathing signals are obtained either by randomly sampling the parameters of the breathing
models, or by cropping 1000 random fragments from the original recorded signal, where thewidth of the
slicingwindow is equal to the treatment length.

2. Using the N signals, treatment plan information and machine parameters, we calculate N interplay dose
distributions. Each dose distribution results in aDVH fromwhich theHI,V107/95,D2 andD98 are
calculated. For each patient, thefinal robustness evaluation is based onfirst calculatingN=1000 interplay
dose distributions using fragments of the recorded signal, and subsequently analyzing the difference in δΘ
between 4DCT and ITVplans.

3.We numerically compare distributions using the relative distribution error (RDE). For a quantity of interest
and its corresponding vector δΘ, we quantify the RDEbetween two different distributions as

åd d =
Q - Q

Q
´Q Q

=n
RDE ,

1
100, 1N N

i i

n
i i

ref
,1 ,2

1

,1 ,2
i

( ) ∣ ∣ ( )

where ni= 3 (median, 2 and 98 percentiles), and the reference value for the quantity of interestΘref is used
to compute the relative error and is obtained from a single interplay dose distribution corresponding to a
sinusoidal with average period, amplitude and initial inhale position.

4.We perform a series of experiments to evaluate how using a limited number of samples, using artificial
signals or ignoring breathing hysteresis compromises evaluation accuracy:

(i) For a different number of breathing samples N= {20, 50, 100, 500, 1000} of the recorded signal, we
compute the distribution over the quantities of interest.We perform two independent statistical
analyses for each number of breathing samplesN using a different subset ofN interplay dose
distributions, resulting in two different vectors dQ

N
,1 and dQ

N
,2 that are compared via the RDE.
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(ii) Todetermine the effect of using artificial breathing signals from the sin or AAEmodels, we compute the
RDEbetween their corresponding dQ sin,

1000 or dQ AAE,
1000 and the reference dQ real,

1000 from the real recorded
signals, where all the statistics are calculated using 1000 samples.

(iii) Finally, we assess the dosimetric impact of disregarding motion hysteresis by computing the RDE
between the results of two different interplay evaluationswith 1000 samples: one including 8 breathing
phases, and the other only 5 phases identical during inhale and exhale.

3. Results

Interplay robustness of 4DCT and ITVplans
Reliable statistical analyses allow direct assessment of the robustness of treatment plans, as well as comparison
between different planning approaches. To illustrate this,figure 2 shows the distribution ofD98,HI andV107/95

corresponding to each plan and patient combination, for both single fractions and a fully fractionated treatment.
As seen in the top row, the 4DCTplans result in higherD98 values regardless of fractionation, tumor size and
breathing amplitude, while ITVplans systematically fail tomeet the clinical constraints. Likewise, theHI and
V107/95 (middle and bottom rows) are consistently lower in 4DCT treatments, indicating that the delivered dose
distribution ismore homogeneous and the target receives a dosewithin the clinically acceptable limits inmost of
the scenarios.

Influence of sample size, breathingmodels and hysteresis.
A relevant question is howmany different interplay dose distributions are necessary in order to perform a
statistical analysis that yields reliable results. For this reason, independent statistical analyses are performed
using different sub-sample sizes selected according to published results (Seco et al 2009, Engwall et al
2018a, 2018b, Jakobi et al 2018). Figure 3(a) shows a reduction in RDE asmore breathing samples are used to
calculate the statistics, confirming that the distributions gradually converge. The RDE illustrates howmuch the
results from two statistical analysis could vary for a given sample size simply due to chance, being higher for
single fraction analyses using<100 samples. Figure 3(b) shows a comparison of the error introduced by using
artificial signals from the sin andAAEmodels instead of the recorded signals from the patient, showing that for
single fractions AAEmodel slightly outperforms the sinmodel, but the differences betweenmodelsmostly fade
in fully fractionated treatments. Figure 3(c) shows the effect of disregarding breathing hysteresis.While the

Figure 2. Interplay evaluation results.We display the distribution of 1000 differentD98,HI andV107/95 CTVvalues for every patient
and plan, and for (left) individual fractions and (right) fully fractionated treatments, using the real recorded signal. The pink line in the
top rowdenotes the clinical near-minimumCTVdose constraint. For each box, the centered line represents themedian, while the
boundaries correspond to the upper and lower quartiles (25th and 75th percentiles), and the individual points outside thewhiskers are
outliers. HigherHI andV107/95 correspond tomore heterogeneous dose distributions with hot and cold spots.
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model signals and symmetrical respiratorymotion have a lower dosimetric impact than using few samples in the
evaluation, the errors are high for single fractions and overall non-negligible, especially for theHI.

Interplay dose dependence on breathing parameters.
In order to investigate the relationship between small changes in the breathing parameters and interplay doses,
figure 4 shows the dose andD98 for different amplitudes, periods and starting phases of a sinusoidal breathing
signal. Each of the parameters is varied independently, one at a time, leaving the rest fixed. Amplitude changes
have a lower and less fluctuating effect on the dose compared to changes in period or starting phase. The latter
affect the time structure of treatment delivery, and as a result, small variations can effectively shift the breathing
phases in which subsequent spots are delivered, with a great local impact on voxel doses. On the other hand,
changes in amplitude are responsible for shifting only few spots to neighboring phases, hence inducing smaller
changes in the delivered dose. Repainting contributes to better target coverage and reducing themagnitude of
interplay effects, as indicated by the lower spread of voxel doses around the target 2 Gy fraction dose, and the
higherD98 values. For fractions deliveredwithout repainting, period changes can result in up to 50%variations
over the target dose and 4 Gy differences inD98, as seen in the top rowoffigure 4.

Figure 3.Effect of the evaluation parameters on the interplay statistics. The reported RDE represents the difference between two
different distributions of a quantity of interest, in this case theD98,D2 andHI, and can be used to determinewhether two independent
interplay evaluations yield the same results. For each box showing RDE values across patients and planning approaches, we evaluate
the dosimetric impact of varying one of the following evaluation parameters, while keeping the rest fixed: (a) the number of samples
used to compute the statistics, (b) the breathing signalmodel, and (c) the absence of respiratorymotion hysteresis, with identical
inhale and exhale. Each variation results in an independent distribution, which is compared to either (a) a duplicate distribution
obtained using the same settings, or (b), (c) a reference distribution obtained from a statistical analysis using 1000 samples from the
recorded signal and considering breathing hysteresis. Each box contains themedian in the center and the upper and lower quartiles
(25th and 75th percentiles) as box boundaries, with outliers represented as individual points outside thewhiskers.
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4.Discussion

Robustness evaluation of 4DCTand ITVplans
Our results indicate that 4DCTplans outperform ITVplans in terms of dose coverage and homogeneity,
regardless tumor size and breathing amplitude. Using a fully fractionated robust 4DCT treatment planning
approachwith the exhale, inhale andmid-ventilation phasesmay be sufficient to compensate the detrimental
effect of breathingmotion, as indicated by the highD98 values and lowerHI andV107/95 shown infigure 2.
Contrariwise, robust ITVplans seem to fail tomeet the required dose constraints in IMPT lung cancer
treatments, andmay require the use of additionalmargins ormotionmitigation techniques, or increased
robustness settings. Finally, as seen in the left plots offigure 2 by the lowerD98 and higherHI andV107/95 in
single fraction doses, interplay effects seem to be aggravated by larger amplitudes and tumor sizes (P3 and P4).

Accuracy of the interplay evaluation
Among all possible simplifications (i.e. using few breathing samples or ignoring hysteresis), the error of using
artificial signals seems to be the lowest, where the AAEbreathingmodel clearly outperforms the sinmodel at a
considerably higher computational cost andmore patient-specific data. In the light of our results, a simple
sinusoidalmodelmay be sufficiently accurate in fully fractionated treatments as long as the parameter
distribution is patient specific. Disregarding hysteresis, however, introduces errors that can be as high as 2.5%of
theD98 of the delivered dose in some cases, evenwhen considering the smoothing effect of fractionation
(figure 3(c)).

Using a few realizations (<100) of interplay dose distributions in order to evaluate interplay effects lacks
statistical power. Our results from lung cancer patients show that at least 500 different interplay dose
distributions are needed to achieve the same level of error as the one introduced by other simplifications such as
using sinusoidal breathing or no hysteresis, also for fractionated delivery. Only for>500 samples are used the
differences are generally below 1%of the reference dose and 5%of theHI values, which can be limitingwith
computationally expensive interplay dose calculationmodels.Most of the previous studies are short on samples:
ranging from300 different simulated treatments (Seco et al 2009) to as few as 10 samples (Engwall et al 2018a), 20
samples (Engwall et al 2018b) or 64 samples (Jakobi et al 2018). Other publishedworks do not explicitly
reference this number but use few realizations with different starting phases (Kardar et al 2014, Li et al 2014), or
are based on 30 dose distributions weighted by their probability of occurrence (Kraus et al 2011).

Figure 4.Effect of breathing parameters on thefinal dose distribution. (Left) Fraction dose in a randomCTVvoxel and dependence on
the parameters of a sinusoidal breathing signal, for a different number of repaintings and 3 patients (from top to bottom, patient 4,
patient 5 and patient 6). Blue lines correspond to dose distributions without repainting, whereas red and black lines indicate 3 and 5
repaints. Repainting smooths out interplay effects in the local fraction doses and reduces thefluctuations around the 2 Gy target dose.
As a result Similar results are obtained for other randomly selected voxels. (Right)D98 dependence on small breathing variations.
Repainted dose distributions fluctuate less and result in better target coverage, as indicated by the higherD98 values.
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The combined smoothing benefits of repainting and fractionation in lung cancer treatments has been
previously investigated (Seco et al 2009, Li et al 2014, Engwall et al 2018a) and is further exemplified infigure 4.
We therefore assume that theworst-case scenario in the interplay dose degradation occurs for single fraction
dose distributionswith nomotionmitigation, which explains the fact that the errors in the statistical evaluation
diminish as fractionation increases. As a result, the relative errors between distributionsmay beminimal if
repainting or othermitigation technique are applied, requiring fewer samples to obtain reliable results and thus
compensating for the longer calculation times needed to simulate repainting.

We focus this research on IMPT lung cancer patients, that represent aworst-case scenario for breathing
motion.Other treatmentmodalities such as SBRTor hypo-fractionated IMPT treatments deliver the dosemore
intensely using less fractions. The considerably higher dose per fraction could exacerbate interplay effects (and in
particularmay cause bigger inhomogeneities in the dose), especially in terms of biological dose. For such cases,
evaluating the dose degradation due tomotion using only few samples could lead to even larger inaccuracies.

Dose dependence on breathing parameters
The results infigure 4 demonstrate the beneficial effect of repainting in both smoothing out great local dose
variations and improving target coverage, as seen in the reduced fluctuations around the 2 Gy target dose that
translate into higherD98 values. However, rescanning alone does not fullymitigate interplay effects, in
concordancewith previous results (Zhang et al 2018), resulting in local doses thatmay vary up to 10%of the
target dose andD98 values that are always below the constraint. Delivery without repainting results in dose
fluctuations amounting up to 50%of the target fraction dose.We deduce that this effect is caused by the fact that
small period and starting phase changes can simultaneously shift a significant number of subsequent spots, the
effect beingmore dramatic for the parts of the tumor that receive dose only from few individual pencil beams, or
spots delivered later within a fraction.Our results are consistent with previous findings for IMRTdynamic
delivery (Kissick et al 2005) that demonstrate the detrimental effect of intra-fraction random changes of the
breathing parameters.We further hypothesize that these results are independent of the 4DCT resolution: adding
more 4DCTphases during evaluation results in some spots shifting to consequent phases with similar anatomy,
and thus the effectmay not as dramatic aswith period or phase changes, where small variationsmay cause the
delivery of a later spot to shift from full inhale to exhale.

The degrading effects of time changes can also impact currently applied clinical protocols.Most of the
treatment centers establish their criteria for interplaymitigation in terms of breathing amplitude (e.g. no
mitigation is considered if the breathing amplitude for a given patient is lower than 5mm).We show that not
only does period influence thefluctuating behavior but it also highly affects the degree of degradation of the
dose. Thus,more research is needed to determinewhethermaking planning or clinical decisions purely based on
amplitude criteria suffices, andwhether strategies that weigh both period and amplitude changes offer
additional benefits.

Limitations
Themost limiting design choice is the use of a single 4DCT, under the assumption that it captures the variations
in patient anatomy from full inhale (maximumamplitude) to full exhale and breathing hysteresis, as well as the
mismatch between 4DCT and the signalmotion surrogate.While wemake this assumption to speed-up and
simplify the interplay dose distribution calculation, some irregularitiesmay not be captured in the 4DCT, for
which a bio-mechanicalmodel could be used to simulate hiccups or coughs as in Boye et al (2013). Similarly, the
temporal resolution of the 4DCT is significantly lower than that of the spot delivery. Althoughwe do not expect
the effects of a coarser resolution to be as significant as disregarding hysteresis, themost detailed interplay
simulations should be based on variable time dependent 4DCTdatawithfiner temporal resolution. Finally, the
accuracy and calculation times of the presented interplay dose calculationmethod ultimately depend on that of
the dose engine and the registration algorithm. Traditional (usually slow) image registrationmethods have been
been recently outperformed by data-driven approaches (Balakrishnan et al 2018, 2019,Dalca et al 2018, 2019).
Similarly, recent deep learning based dose engines (Wu et al 2021, Pastor-Serrano and Perk 2021)have been
shown to overcome the speed limitations ofMonte Carlomethods, while offering better performance than the
pencil beam algorithms commonly used in the clinics.

5. Conclusions

Wepresent a practicalmethod to simulate dose delivery undermotion interplay effects and assess treatment
robustness based on hundreds of (sampled) breathing signals. Our statistical evaluation shows that ITVplans
systematically fall behind their computationallymore expensive 4DCT robust counterpart, regardless of tumor
size and breathing amplitude. After analyzing the error introduced by simplifications such as neglectingmotion
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hysteresis or using few interplay scenarios and sinusoidal breathing signals, we conclude that the statistical
analysis of fully fractionated treatments requires at least 500 different dose distributions corresponding to 500
different samples of regular sinusoidal breathing (based on patient-specific parameter distributions)with
hysteresis to yield acceptable precision.We complete this study by demonstrating that small breathing period
variations have a highly non-linear effect on local dose deposition and can cause local doses tofluctuate up to
50%of the target fraction dose.
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