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SUMMARY

The seismic method has many applications. It is important in the critical sector of en-
ergy. Besides being used in imaging oil and gas reservoirs, it is also utilized in other
sectors of energy such as geothermal energy exploration and development. It also plays
a role in extracting other resources such as minerals or in the process of monitoring CO2
sequestration to reduce the carbon footprint of humankind. While seismic waves can
occur naturally, their study gives insight in analysing the occurrence of and mitigating
risks related to earthquakes. As far as active-source seismic is concerned: seismic im-
ages make it possible to see what is in the subsurface with minimal expensive and inva-
sive operations such as drilling unnecessary holes in the subsurface — similar to what
medical professionals use ultrasound or X-ray images for.

Several methods have been proposed to analyze seismic data. A popular method
nowadays is full waveform inversion (FWI), for instance, which attempts to fit all the
recorded waveform with a model. This process solves, in fact, a very complicated highly
non-linear inverse problem. Another process that uses such inversion process, but
which tries to separate classes of parameters to reduce non-linearity, is joint migration
inversion (JMI), in which scattering properties of the subsurface are separated from the
propagation properties of seismic waves. Currently those two methods, FWI and JMI, are
generally model-dependent — that is they have been formulated to fit specific physics
model such as isotropic acoustic media, transversally isotropic media with or without
absorption. Hence, they would tend to have biases towards those particular models.

Another paradigm is the so-called data-driven paradigm, or data-adaptive paradigm,
and since it is formulated in terms of operators, one could also refer to it as operator-
based. Since it contains less biases towards a particular physics model or require no
detailed knowledge of model parameters, beforehand, some also refer to it as model-
independent, as it does not need to force the data to fit a specific model, rather the pro-
cess adapts to the model contained within the data. A process such as surface-related
multiple elimination follows this paradigm. Another process, which is also shown in this
dissertation, separates the surface multiples scattering-order-by-scattering-order with-
out the need to assume a specific physics model. The process is referred to as scattering
order decomposition. So, this dissertation looks into the problem of extending the in-
version process to the model-independent or the operator-based paradigm.

This dissertation looks first into the theoretical underpinning of this problem, where
integral representations are used to study it. These representations are divided into four
categories: first model-based representations are derived and presented as directional
and non-directional. So, it places in context those theories. Next, the operator-based
representations are also divided into directional and non-directional. Finally, four rep-
resentations are derived, in this dissertation, which have the potential for applications
in modeling, inversion and various seismic data analysis processes.

xiii



xiv SUMMARY

Modeling is needed before any inversion since the inverse problem is ill-posed or ill-
conditioned and hence no unique solutions exist but rather preconditioned or regular-
ized solutions to these problems are normally used. Moreover, the inverse problem uses
modeling iteratively and also back-projects the data residuals with the forward modeling
mechanism. Therefore, the next chapters study operator generation and the subsequent
modeling of wavefields with these derived operators.

The forward modeling method is implemented into two primary steps: operator gen-
eration and subsequent wavefield modeling. The involved operators are the generalized-
wavenumber, reflection and transmission operators. The operators are implemented us-
ing a staggered-grid central finite difference discretization scheme in order to accommo-
date the situation of laterally heterogeneous media. For certain inhomogeneous mod-
els, the wavenumber operators are analyzed by converting them to the slowness domain
and deriving slowness curves from them. While the slowness curves are generally known
for homogeneous anisotropic media, the modeled curves in this dissertation show how
slowness curves vary in laterally heterogeneous media. Those curves are numerically
computed and shown to vary by frequency and, hence, are dispersive for such media
unlike under the laterally homogeneous assumption that is usually adopted. As a con-
sequence, such changes also impact the reflection and transmission operators.

Once the operators are created, one can then use them to generate the full directional
wavefields. The wavefields are modeled numerically and iteratively using the so-called
Neumann’s method. Then, the entire modeling engine, with both of its components, is
run on a few modeling examples. The first example shows a benchmarking result with an
analytical solution and the two solutions are found to be consistent and in agreement.
Next, diving waves are modeled using the x-direction as a direction of preference, and, as
it turns out, a single iteration is sufficient using such configuration in order to model the
diving wave for a model that changes linearly with depth. Finally, a more complex model
is used to recursively model several scattering orders. The evolution of the wavefield in
terms of the scattering order in both frequency- and time-domains are shown. Such
an example shows that this method is useful for such cases where one is interested in
understating the wavefields in terms of their scattering order in media as general as those
of vertical and laterally heterogeneity.

While Neumann’s method seems to be straight forward to implement the modeling
scheme with, it is perhaps not the optimal one. Thus, three different methods that repre-
sent a generalization of the Neumann’s solution are used: one is a preconditioned over-
relaxation, and the other two are a preconditioned conjugate gradient and a truncated
Krylov method, the so-called GMRes. The convergence of all those methods is com-
pared, as well as, stationary and successive over-relaxation methods without precondi-
tioning. As it turns out, such truncated Krylov method, i.e., GMRes, is overall faster to
converge and requires no preconditioning to ensure convergence. Two examples are
shown: one using a velocity model linearly increasing with depth and one using a com-
plex salt model adapted from the SEG SEAM model. In the first model, full wavefield
modeling provides the upgoing and the downgoing diving waves including the horizon-
tally propagating constituents, while in the second model, it provides the evolution of
the scattering process with different iterations, providing insight into the actual scatter-
ing process.
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Next, the modeling scheme is extended to the anisotropic situation. By consider-
ing a quasi-elastodynamic formulation where the elastodynamic generalized vertical
wavenumber operator for P-waves is embedded in the acoustic formulation, anisotropy
is introduced in the full wavefield modeling method. The method has been imple-
mented and two examples are shown. One example shows the typical behavior of
anisotropy in the homogeneous situation, whereas the other one shows both the in-
cident and the scattered wavefields in an anisotropic heterogeneous medium. The
anisotropy examples show clear kinematic and curvature differences compared to the
isotropic situation. This development paves the road to not only understanding different
phenomena, such as multiples, in anisotropic media but also (and more importantly)
to understanding model-independent joint migration inversion (which is treated last in
this dissertation) whose goal is to obtain wavefield operators rather than model param-
eters from the measured data.

Then, the full wavefield modeling method is extended to the elastodynamic situa-
tion. While the acoustic situation encompasses directional decomposition — where up-
going and downgoing wavefields are modeled for heterogeneous media through modal
decomposition — the elastodynamic situation encompasses three types of decomposi-
tion: directional, polarizational and modal. The polarizational decomposition separates
the wavefields into its constituent polarizations: quasi-P, quasi-SV, and quasi-SH waves.
Two formulations are presented: one is simpler to implement as it contains no polar-
izational decomposition, while the other one handles all three types of decomposition.
Although we begin with the most general equations for anisotropic inhomogeneous me-
dia, we reduce those equations to the isotropic situation, and we consider only P-SV
waves for simplicity. We implement only the square-root wavenumber operator, whose
implementation closely resembles that of the acoustic situation.

Finally, the proposed operator-based inversion process, which is referred to as
model-independent joint migration inversion (MI-JMI), is investigated. The opera-
tors ultimately sought by the proposed MI-JMI method are reflection and augmented
transmission operators (the sum of slowness and transmission operators), yet the refer-
ence/background operators are only the simpler Green’s primary-only operators. The
proposed method is an operator-based model-independent approach to the inverse
problem, in contrast to the model-dependent conventional approach of full waveform
inversion, which not only uses the physical model parameters, velocity and density in
the acoustic situation, but also forces the data to obey a certain model, e.g. isotropic
or anisotropic. Two frameworks are proposed in this dissertation: one where those op-
erators are inverted directly and another where those operators are inverted via what is
referred to as phantom sources — a combination of operator contrasts and wavefields. A
first implementation of the direct framework shows that the method is capable of distin-
guishing between the relatively easily-obtained vertical heterogeneity, embedded in the
reflection operator, and the more difficulty-obtained lateral heterogeneity, embedded in
the augmented transmission operator. This feature, among others, is expected to have a
major influence on the inversion process, including its convergence properties.

To summarize, this dissertation has investigated theoretical and practical aspects. It
investigated the wavefield operators, and developed the forward full directional wave-
field modeling method for acoustic, quasi-elastic anisotropic and elastic media and it
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laid the ground for the inverse problem using such operator-based description.



SAMENVATTING

De seismische methode kent vele toepassingen. Het is belangrijk in de kritieke energie-
sector. Behalve dat het wordt gebruikt voor het in beeld brengen van olie- en gasreser-
voirs, wordt het ook gebruikt in andere energiesectoren, zoals de exploratie en ontwik-
keling van geothermische energie. Het speelt ook een rol bij de winning van andere na-
tuurlijke bronnen zoals mineralen of bij het monitoren van de ondergrondse CO2-opslag
om de ecologische voetafdruk van de mensheid te verkleinen. Hoewel seismische gol-
ven van nature kunnen voorkomen, geeft hun onderzoek inzicht in het beschrijven van
aardbevingen en het verminderen van de daarbij behorende risico’s. Wat betreft actieve
seismiek: de daarmee verkregen seismische beelden maken het mogelijk om te zien wat
zich in de ondergrond bevindt met minimale kosten en invasieve operaties zoals het
boren van onnodige gaten in de ondergrond — vergelijkbaar met wat medische profes-
sionals gebruiken voor ultrasone echografie of röntgen-gebaseerde afbeeldingen.

Er zijn verschillende methoden voorgesteld om seismische gegevens te analyseren.
Een populaire methode tegenwoordig is bijvoorbeeld volledige golfveldinversie (FWI),
die probeert alle geregistreerde golfvormen met een model van de ondergrond te verkla-
ren. Dit proces lost in feite een zeer gecompliceerd, zeer niet-lineair invers probleem op.
Een ander proces dat een dergelijk inversieproces gebruikt, maar dat probeert klassen
van parameters te scheiden om niet-lineariteit te verminderen, is gezamenlijke migratie-
inversie (JMI), waarbij verstrooiingseigenschappen van de ondergrond worden geschei-
den van de voortplantingseigenschappen van seismische golven. Momenteel zijn deze
twee methoden, FWI en JMI, over het algemeen modelafhankelijk — dat wil zeggen dat
ze zijn geformuleerd om te passen in een specifiek natuurkundig model zoals isotrope
akoestische media, transversaal isotrope media met of zonder absorptie. Daarom heb-
ben ze de neiging om een bias te hebben richting die specifieke modellen.

Een ander paradigma is het zogenaamde datagedreven paradigma, of data-adaptieve
paradigma, en aangezien het is geformuleerd in termen van operatoren, zou men het
ook operator-gebaseerd kunnen noemen. Omdat het minder aannames bevat ten op-
zichte van een bepaald natuurkundig model of vooraf geen gedetailleerde kennis van
modelparameters vereist, noemen sommigen het ook modelonafhankelijk, omdat het
de gegevens niet hoeft te forceren om in een specifiek model te passen, maar het proces
zelf past zich aan aan het model verborgen in de gegevens. Een proces zoals verwijde-
ring van oppervlakte-gerelateerde meervoudige reflecties volgt dit paradigma. Een an-
der proces, dat ook in dit proefschrift wordt gedemonstreerd, scheidt de meervoudige
oppervlak reflecties verstrooiing-orde-voor-verstrooiing-orde zonder de noodzaak om
een specifiek natuurkundig model aan te nemen. Het proces wordt verstrooiingsorde-
ontleding genoemd. Dit proefschrift onderzoekt dus het probleem van het uitbreiden
van het inversieproces naar het modelonafhankelijke of het op de operator gebaseerde
paradigma.

Dit proefschrift gaat eerst in op de theoretische onderbouwing van dit probleem,

xvii
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waarbij integraalrepresentaties worden gebruikt om het te bestuderen. Deze represen-
taties zijn onderverdeeld in vier categorieën: Eerst worden modelgebaseerde represen-
taties afgeleid en gepresenteerd als directioneel en niet-directioneel. Het plaatst die the-
orieën dus in een context. Vervolgens worden de operatorgebaseerde representaties ook
onderverdeeld in directioneel en niet-directioneel. Tenslotte worden in dit proefschrift
vier representaties afgeleid die potentie hebben voor toepassingen in modellering, in-
versie en verschillende seismische data-analyseprocessen.

Modellering is nodig vóór elke inversie, omdat het inverse probleem slecht gesteld of
slecht geconditioneerd is en er daarom geen unieke oplossingen bestaan. Het zijn juist
geconditioneerde of geregulariseerde oplossingen voor deze problemen die normaal ge-
sproken worden gebruikt. Bovendien gebruikt het inverse probleem iteratief modelleren
en worden de gegevensresiduen ook teruggeprojecteerd met het voorwaartse modelle-
ringsmechanisme. Daarom bestuderen de volgende hoofdstukken het genereren van
operatoren en de daaropvolgende modellering van golfvelden met deze operatoren.

De voorwaartse modelleringsmethode wordt geïmplementeerd in twee primaire
stappen: operatorgeneratie en daaropvolgende golfveldmodellering. De betrokken ope-
rators zijn de gegeneraliseerde golfgetal-, reflectie- en transmissie-operatoren. De ope-
ratoren worden geïmplementeerd met behulp van een centraal discretisatieschema met
gespreide rasters, om rekening te houden met de situatie van lateraal heterogene me-
dia. Voor bepaalde inhomogene modellen worden de golfgetaloperatoren geanalyseerd
door ze te converteren naar het traagheidsdomein en er traagheidscurven uit af te leiden.
Hoewel de traagheidscurven algemeen bekend zijn voor homogene anisotrope media,
laten de gemodelleerde curven in dit proefschrift zien hoe traagheidscurven variëren in
lateraal heterogene media. Die curven worden numeriek berekend en laten zien dat ze
variëren in frequentie en zijn daarom dispersief voor dergelijke media, in tegenstelling
tot de lateraal homogene aanname die gewoonlijk wordt aangenomen. Bijgevolg hebben
dergelijke veranderingen ook gevolgen voor de reflectie- en transmissie-operatoren.

Zodra de operators zijn gemaakt, kan men ze gebruiken om de volledige directio-
nele golfvelden te genereren. De golfvelden worden numeriek en iteratief gemodelleerd
met behulp van de zogenaamde Neumann-methode. Vervolgens wordt het hele mo-
delleringsproces, met zijn beide componenten, uitgevoerd op een paar modellerings-
voorbeelden. Het eerste voorbeeld toont een benchmarkresultaat met een analytische
oplossing en de twee oplossingen blijken consistent en in overeenstemming te zijn. Ver-
volgens worden duikgolven gemodelleerd met de x-richting als voorkeursrichting, en het
blijkt dat een enkele iteratie voldoende is om een dergelijke configuratie te gebruiken om
de duikgolf te modelleren voor een snelheidsmodel dat lineair verandert met de diepte.
Hierna wordt een complexer model gebruikt om recursief meerdere verstrooiingsorden
te modelleren. De evolutie van het golfveld in termen van de verstrooiingsorde in zo-
wel frequentie- als tijddomeinen wordt getoond. Een dergelijk voorbeeld laat zien dat
deze methode nuttig is voor gevallen waarin men geïnteresseerd is in het schatten van
de golfvelden in termen van hun verstrooiingsorde in media die algemeen zijn in termen
van verticale en laterale heterogeniteit.

Hoewel de methode van Neumann geschikt lijkt om het modelleringsschema mee te
implementeren, is het misschien niet het meest optimale. Daarom worden er drie ver-
schillende methoden gebruikt die een generalisatie van de Neumann-oplossing verte-
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genwoordigen: de ene is een voorgeconditioneerde over-relaxatie en de andere twee zijn
een voorgeconditioneerde geconjugeerde gradiënt en een afgeknotte Krylov-methode,
de zogenaamde GMRes. De convergentie van al die methoden wordt vergeleken, even-
als stationaire en opeenvolgende over-relaxatie methoden zonder preconditionering.
Het blijkt dat een dergelijke verkorte Krylov-methode, (d.w.z. GMRes), over het alge-
meen sneller convergeert en geen preconditionering vereist om convergentie te garan-
deren. Er worden twee voorbeelden getoond: een met een snelheidsmodel dat lineair
toeneemt met de diepte en een met een complex zoutmodel dat is aangepast van het
SEG SEAM-model. In het eerste model geeft volledige golfveldmodellering de opgaande
en neergaande duikgolven inclusief de zich horizontaal voortplantende delen, terwijl
in het tweede model de evolutie van het verstrooiingsproces met verschillende iteraties
wordt gegeven, waardoor inzicht wordt verkregen in het werkelijke verstrooiingsproces.

Vervolgens wordt het modelleringsschema uitgebreid tot de anisotrope situatie.
Door een quasi-elastodynamische formulering aan te nemen, waarbij de elastodynami-
sche gegeneraliseerde verticale golfgetaloperator voor P-golven is ingebed in de akoes-
tische formulering, wordt anisotropie geïntroduceerd in de volledige golfveldmodelle-
ringsmethode. De methode is geïmplementeerd en twee voorbeelden worden getoond.
Het ene voorbeeld toont het typische gedrag van anisotropie in de homogene situatie,
terwijl het andere zowel de invallende als de verstrooide golfvelden in een anisotroop
heterogeen medium toont. De anisotropievoorbeelden laten duidelijke kinematische en
krommingsverschillen zien in vergelijking met de isotrope situatie. Deze ontwikkeling
maakt de weg vrij om niet alleen verschillende fenomenen, zoals meervoudige reflec-
ties, in anisotrope media te begrijpen, maar ook (en belangrijker) om modelonafhan-
kelijke gezamenlijke migratie-inversie te begrijpen (welke als laatste in dit proefschrift
wordt behandeld), waarvan het doel is om uit de gemeten gegevens golfveldoperators te
verkrijgen in plaats van modelparameters.

Vervolgens wordt de volledige golfveldmodelleringsmethode uitgebreid naar de elas-
todynamische situatie. Terwijl de akoestische situatie directionele decompositie omvat
— waarbij opgaande en neergaande golfvelden worden gemodelleerd voor heterogene
media door middel van modale decompositie — omvat de elastodynamische situatie
drie soorten decompositie: directioneel, polarisatie en modaal. De polarisatiedecompo-
sitie scheidt de golfvelden in de samenstellende polarisaties: quasi-P, quasi-SV en quasi-
SH golven. Er worden twee formuleringen gepresenteerd: de ene is eenvoudiger te im-
plementeren omdat deze geen polarisatie-ontleding bevat, terwijl de andere alle drie de
soorten ontleding behandelt. Hoewel we beginnen met de meest algemene vergelijkin-
gen voor anisotrope inhomogene media, reduceren we die vergelijkingen tot de isotrope
situatie en beschouwen we voor de eenvoud alleen P-SV-golven. We implementeren al-
leen de kwadratische golfgetaloperator, waarvan de uitvoering sterk lijkt op die van de
akoestische situatie.

Tenslotte wordt het voorgestelde op de operator gebaseerde inversieproces, welke
modelonafhankelijke gezamenlijke migratie-inversie (MI-JMI) wordt genoemd, on-
derzocht. De operatoren die uiteindelijk worden gezocht door de voorgestelde MI-
JMI-methode zijn reflectie- en geaugmenteeerde-transmissie-operators (de som van
traagheids- en transmissie-operators), terwijl de referentie-/achtergrondoperators al-
leen de eenvoudigere (alleen-enkelvoudige) Greense operatoren zijn. De voorgestelde
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methode is een operator-gebaseerde modelonafhankelijke benadering van het inverse
probleem, in tegenstelling tot de modelafhankelijke conventionele benadering van vol-
ledige golfvorminversie, die niet alleen de fysieke modelparameters, snelheid en dicht-
heid in de akoestische situatie, gebruikt, maar ook de data dwingt om een bepaald model
te gehoorzamen, bijvoorbeeld isotroop of anisotroop. In dit proefschrift worden twee
raamwerken voorgesteld: een waarbij die operatoren direct worden geïnverteerd en een
andere waarbij die operatoren worden geïnverteerd via zogenaamde fantoombronnen
— een combinatie van operatorcontrasten en golfvelden. Een eerste implementatie van
het directe raamwerk toont aan dat de methode in staat is om onderscheid te maken tus-
sen de relatief gemakkelijk te verkrijgen verticale heterogeniteit, ingebed in de reflectie-
operatoren, en de moeilijker te verkrijgen laterale heterogeniteit, ingebed in de uitge-
breide transmissie-operatoren. Onder andere deze eigenschap zal naar verwachting een
grote invloed hebben op het inversieproces, inclusief de convergentie-eigenschappen.

Samenvattend heeft dit proefschrift theoretische en praktische aspecten onder-
zocht. Het onderzocht de golfveldoperatoren en ontwikkelde de voorwaartse volledig-
directionele golfveldmodelleringsmethode voor akoestische, quasi-elastische aniso-
trope en elastische media en legde de basis voor het inverse probleem met behulp van
een dergelijke operatorgebaseerde beschrijving.



1
INTRODUCTION

"Technology is a gift of God. After the gift of life, it is perhaps the greatest of
God’s gifts. It is the mother of civilizations, of arts and of sciences."

Freeman Dyson, [1, p. 270]

We introduce the motivation of the thesis in this chapter and we give an overview of
its chapters. This dissertation presents a solution to the seismic modeling problem with
the aim of model-independent inversion in mind. Although a process such as surface-
related multiple elimination (SRME) is less biased towards a model, and hence can be
referred to as model-independent, imaging and inversion are still not so; they are model-
dependent. Since the model-independent formulation involves operators, one could also
refer them as operator-based methods. We propose a representation that could realize
such model-independent or operator-based inversion. However, we first need to investi-
gate the forward problem, especially in heterogeneous media. Although, one might need to
reparametrize the actual model parameters in order to gain more robustness in the inver-
sion, model-independent or operator-based inversion seems to be more of a radical depar-
ture of reparameterization. It indeed belongs to a different paradigm than the established
conventional paradigm of seismic data analysis and that of full waveform inversion.

1
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1.1. MOTIVATION: MODEL-INDEPENDENT INVERSION
Classical seismic inversion methods focus on retrieving model parameters, such as ve-
locity and/or density. Travel time inversion such as the so-called tomography, or am-
plitude inversion such as AVO (amplitude variation with offset) inversion or wavefield
inversion such as the so-called full waveform inversion (FWI) focus on this goal. While
those methods are well developed to some extent, what I would like to investigate is an-
other less developed paradigm; the one that focuses on data and operators.

In other words, I am looking for a data-driven (data-adaptive) approach rather than
a model-driven one.

An example of a data-driven method is surface related multiple elimination (SRME)
[e.g 2–4]. Instead of requiring a velocity model that would be used to model the multi-
ples and then remove them from the data, what SRME does is use the data themselves
to predict those multiples for later subtraction; hence it is a data-driven approach as it
builds operators from the data to predict those multiples. See Figure 1.1 for an example
of not only SRME but also scattering order decomposition (SOD), which does not only
separate all the multiples from the data but it also separates each individual order of
surface multiples [5].

While SRME works for surface-multiples, Weglein et al. [6] introduced an extension
to internal multiples in a data-driven manner. With this method, based on the inverse
scattering theory, he could describe the removal of internal multiples without using any
information of the subsurface. They use a homogeneous background model to facilitate
the prediction of the internal multiples but the output is data without internal multiples
located at the surface.

If one is interested to move into the medium instead, then the Marchenko method-
ology provides a way to do so, with compensation of all scattering in the overburden,
using only knowledge of direct arrivals from the surface to the chosen subsurface loca-
tions. More importantly, the Marcheko method does not require any knowledge of the
scatterers in the overburden [e.g. 7].

However, the majority of imaging and inversion methodologies follow the classic
model-driven paradigm. Full wavefield migration (FWM) and joint migration inversion
(JMI) methodologies, as proposed by Berkhout [8, 9] are in-between solutions. They are
operator-based inversion methods, where as much as possible, exact knowledge of the
subsurface is hidden in the operators. Along this line of thinking, I would like to inves-
tigate methodologies that are more data-driven and thereby do not need prior knowl-
edge/assumptions on anisotropy or attenuation, for instance.

While model-independent thinking seems to be more of a radical departure of the
model-dependent paradigm, we point out that even when using model-dependent
methods, it is often justifiable to seek a different set of parameters than the original ones.
For instance, using different set of anisotropy parameters, one could get different data
sensitivities and hence one set of parameters is probably more useful than another [10].
Another common example is instead of using P-and S-wave velocity and density, one
could use Lamé parameters, ∏ and µ [11].

Therefore, we could see that even if we opt for a model-dependent approach, we
might need to reparametrize a set of parameters into a different one. Or we could take
a more radical approach and abandon those parameters altogether and seek more of a
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1 Scattering order decomposition (SOD) of the Nelson field data in the North Sea. (a)
Input common offset section, (b) all multiples, (c) primaries and (d)-(f) separated mul-
tiples of first to third orders respectively, obtained using SOD, a model-independent pro-
cess.
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model-independent formulation, similar to SRME.
Whether model-dependent or model-independent (data-driven), one could argue

that those two different paradigms are based on fundamentally different types of rea-
soning. One starts from observations and derives a hypothesis, a model, while the other
starts from a hypothesis, a model and validates it with observations [e.g. 12].

This thesis investigates different approaches of posing the model-independent prob-
lem and we pick a certain representation, which generalizes the one arrived at by
Berkhout [8]. But we realize that one of the reasons the model-independent approach
has not been fully developed yet for imaging and inversion, is that some obstacles are
present. One of them is understanding the forward problem, especially in the context of
heterogeneous media.

So, this thesis dives into the forward problem as a means of understanding and
addressing the impact of heterogeneity and as an enabler for implementing a model-
independent inversion approach.

But let us take a step back and see what exactly we are proposing in comparison to
different existing paradigms.

1.2. DIFFERENT TECHNOLOGY PARADIGMS
Let us first take a look at the established paradigm of analyzing seismic data after a pre-
processing step is applied to them. Figure 1.2 shows this conventional workflow. The
workflow consists of imaging and model building that are done iteratively and result in a
macro model, as well, as an image or reflectivity. The reflectivity, in turn, is analyzed for
amplitudes, often using Zoeppritz equations, or a linearized form, and a micro reservoir
model is produced. But the amplitude analysis step assumes that the model is not too
complex, otherwise it may not work. The books of Yilmaz [13] and the newer version
[14], are about this established technology and the book of Simm and Bacon [15], among
others, details the steps of AVO analysis and their mapping to rock physics models.

Figure 1.3 shows the workflow that involves a state-of-the-art technology, namely
full waveform inversion, whose ultimate objective is to output model parameters di-
rectly from the seismic data [e.g. 16, 17]. However, since those parameters are not as
well resolved as reflectivity, a broad-band reflectivity image is still produced by imaging
the data. In addition, AVO inversion is applied to those reflectivity amplitudes in order
to produce a micro model if AVO analysis works; that is to say if the medium is not too
complex.

Figure 1.4 shows what we propose in this thesis. We propose that seismic data are
mapped into operators that are model-independent. If those operators need to be inter-
preted as belonging to a specific model, then they can be inverted in a model-dependent
step.

However, modeling is needed before any inversion is applied since the inversion pro-
cess is not unique; that is multiple estimated operators could fit the data equally well [e.g.
18–20]. The other reason is that those operators are only well understood for essentially
homogeneous media, or media that are at least piece-wise homogeneous (e.g. consisting
of laterally homogeneous layers). Since we are dealing with the Earth, which is known to
be heterogeneous, one would need to know those operators for general heterogeneous
media so that we could verify any inversion process. In other words, it is easier to design
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Figure 1.2 Workflow of established or conventional technology.

methods that steer the solution to the true one once the family of true solutions is gener-
ally known by modeling. In contrast, if one does not know the true solution, it is difficult
to steer the solutions, produced by inversion, in the right direction.

Although we present the modeling as a means of seeking model-independent inver-
sion, it is important to point out that, regardless of the success of such a pursuit, the
modeling method is indeed useful on its own for different situations of modeling and in-
version. It is especially useful in situations where Zoeppritz’ equations are used to model
reflection coefficients, as this method can replace Zoeppritz’ equations for heteroge-
neous media [21, 22] including situations related to acoustic or SH-waves. Compared
to different methods such as that of Kennett [23], two-way wave equation [e.g. 24, 25], or
Lippmann-Schwinger equation [e.g. 26], it computes wavefield operators explicitly for
heterogeneous media. In contrast, such methods either compute those operators only
for homogeneous media or include them implicitly and hence those operators cannot
be obtained.

While different modeling methods such as that of Kennett [23], two-way wave equa-
tion [e.g. 24, 25], or Lippmann-Schwinger equation [e.g. 26], either use operators for lat-
erally homogeneous media or use them implicitly and hence cannot be obtained.

But let’s now take an overview of the different chapters of this thesis.
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Figure 1.3 Workflow of FWI, a state-of-the-art technology.

1.3. THESIS OBJECTIVE AND OVERVIEW
While the model-dependent methods such as FWI are fairly developed, the objective of
this thesis is to investigate the other paradigm, the model-independent one. But before
any inversion work, one would need first to tackle the forward problem; that is using
operators to model the full wavefield. Therefore, we investigate thoroughly the forward
problem, especially for heterogeneous media since the Earth is in general a highly het-
erogeneous medium.

While we state our objectives and motivation in Chapter 1, we investigate, in Chapter
2, model-independent representations that can be used for both modeling and inver-
sion and we compare them to model-dependent ones. What we will find is that model-
independent formulations can be done using both directional and non-directional
wavefields; both of which could involve different types of operators and we compare
those representations to their model-based counterparts.

After we pick a certain form of representation, we model in Chapter 3 the wave-
field operators only, which involve reflection, transmission and wavenumber operators.
We model them using current knowledge of boundary conditions using the so-called
stretch-coordinate PML (perfectly matched layer) and we also look for curves that show
the variation of slowness and reflection coefficients in heterogeneous media. We also
compare the conventional locally homogeneous formulation to its counterpart for gen-
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Figure 1.4 Methodologies as proposed in this thesis.

eral heterogeneous media.
In Chapter 4, using the operators from Chapter 3, we model the wavefields iteratively

using the so-called Neumann’s iterative method. We verify the modeling methods by
modeling Green’s functions in homogeneous media. We model diving waves and show
that horizontally propagating waves are not missing in this modeling scheme. We model
the wavefields fully for an inhomogeneous medium where both frequency-domain and
time-domain domain data are obtained and we show different scattering orders that can
be modeled using this method.

While we used Neumann’s method, in Chapter 4, which is known to diverge, we ex-
amine in Chapter 5 different iterative methods for solving the forward problem. As a
result, we find that unlike the application of Neumann’s method to problems such as the
Lippmann-Schwinger equation, Neumann’s method is generally acceptable as applied
to our modeling problem and provides stable results for a complex salt model.

In order to demonstrate any model-independent behavior for the inverse problem
we need to model the operators beyond only the isotropic situations. So, we extend in
Chapter 6 the modeling method to transversely isotropic media and we will show that
we can use non-zero vertical shear-wave velocity, unlike what is typically assumed in
conventional methods.

We extend in Chapter 7, the modeling method to the elastodynamic situation al-
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though using flux-normalized wavefields. While the acoustic method is relatively simple,
the complexity increases for the elastodyanmic situations. That’s why we limit our dis-
cussion only to two-dimensional situations, where P-SV and SH waves are decoupled
and treated separately. We derive those operators for this situation and we model the
wavefields for P- and S-waves separately.

Given that we have modeled the operators and wavefields, can we retrieve those op-
erators from measured data? We examine this question in Chapter 8, where we propose
a method to retrieve those operators and we examine it closely for the laterally homoge-
neous situation. We show that this method is, in principle, capable of solving the prob-
lem through different data-fitting frameworks.

Finally, we dedicate Chapter 9 to different conclusions and further discussion.
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2
THEORETICAL ASPECTS: INTEGRAL

REPRESENTATION THEOREMS

"All that is said by any of us can only be imitation and representation."

Plato [1, p. 528]

We present integral representations for acoustic wavefields, which can be used for differ-
ent applications such as modeling, imaging, and inversion of seismic wavefields. We first
organise and classify the various forms of representation into two broad categories related
to directional and non-directional wavefields. Those, in turn, are classified into two fur-
ther categories: those involving model parameters and those involving mainly wavefield
operators. We derive five forms related to an operator-based directional representation
and one form related to a directional model-based representation. We also derive an-
other form involving operators and based on non-directional wave-fields. Although the
derived representations are essentially related to the acoustic situation, all representations
are extend-able to the elastodynamic and electromagnetic situations.

11
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2.1. INTRODUCTION
The classical Lippmann-Schwinger equation and its linearised form, the so-called Born
Equation, form the basis for scattering and inverse scattering theory [e.g 2]. Methods
such as full waveform inversion [3] and inverse scattering theory methods [e.g 2, 4], in
general, are based on this equation; albeit the forward problem can be solved using
those equations [e.g. 4] or a differential equation such as the wave equation [3]. Seek-
ing alternative representations would pave the road to different methods of modeling
and inversion. This chapter investigates such alternatives, where only domain (volume
integral) representations are considered rather than boundary (surface) representations
or a combination of both.

For acoustic media with constant density (Ω0), the Lippmann-Schwinger equation is
given by

p(xd ) =
Z

IR3

d 3x GH (xd ,x)s(x)+
Z

IR3

d 3x !2GH (xd ,x)±m(x)p(x), (2.1)

where the model contrast ±m(x) = 1
Ω0

( 1
c2(x) °

1
c2

0 (x)
), c being the velocity of the actual

medium and c0 that of the background medium, GH is the Green function in the back-
ground medium, p is the pressure wave-field, xd is the detector location, s is the source
signature and ! is the angular frequency for which the wavefields are considered. Note
also that x is a vector representing all spatial coordinates such that x = (x1, x2, x3) and
similarly for the detector vector xd = (xd ,1, xd ,2, xd ,3).

For media with variable density and velocity, the Lippmann-Schwinger equation can
be written as [see e.g. 5, p. 172]

p(xd ) =
Z

IR3

d 3x GH (xd ,x)s(x)

+
Z

IR3

d 3x
£
!2GH (xd ,x)±∑(x)p(x)°@kGH (xd ,x)±l (x)@k p(x)

§
,

(2.2)

where the incompressibility perturbation ±∑ = ∑°∑0, the lightness (inverse of density,
Ω) perturbation is ±l = l ° l0, the velocity is such that c°2 = Ω∑ and the summation con-
vention is assumed over repeated indices, where k can take on the values 1,2 and 3,
representing the spatial coordinates.

The objective of this chapter is to find alternatives to this classical representation for
applications in modeling and inversion. All types of representations presented in this
chapter are categorized in Figure 2.1, where those that involve operators are referred
to as operator-based representations and those that involve solely model parameters
are referred to as model-based representations. Each is further categorized as either
directional or non-directional based on the wavefields they model. We start with a di-
rectional version of the Lippmann-Schwinger equation where directional, e.g. up-going
and down-going wavefields, are represented instead of full, non-directional ones. We
then present various forms of operator-based methods, where operators are used to en-
compass the perturbation instead of model parameters.
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Domain Representations

Directional Non-directional

Model-based Operator-based Model-based Operator-based

Figure 2.1 A flow chart illustrating the order of which domain representations are presented, cate-
gorized and derived in this chapter.

As shown in Figure 3.1, we first state the different differential forms of the govern-
ing equations, which are the ones related to the acoustic situation. From those various
forms, different integral representation theorems can be derived. We then derive the
domain-boundary representations, which invoke the Green functions, and we finally
state the domain-representations that are more of interest to us. The domain represen-
tations are finally classified into either directional or non-directional and model-based
or operator-based. The derived equations are summarized in Table 2.1.

Wave Equations

Reciprocity Theorems

Domain-Boundary Representations

Domain Representations

Figure 2.2 The steps that lead to the domain representations that are used for further investigation
into operator-based and model-based methods.

2.2. WAVE EQUATIONS
We present in this section the actual differential equations that are used next for deriv-
ing the corresponding reciprocity theorems. All equations are expressed in the space-
frequency domain.

2.2.1. COUPLED WAVE EQUATIONS

The governing wave equations that couple all components of particle velocity and pres-
sure [e.g 5, 6] are given by
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Table 2.1 A table categorizing the representation theorems presented and derived in this chapter.

Model-based Operator-based

Directional Derived in this chapter: Equation
2.39.

Seven equations presented. Five
are proposed in this chapter. The
Equations are 2.46, 2.48, 2.50, 2.52
2.55,2.57 and 2.58.

Non-directional Follows from Rayleigh Reciprocity
theorem: Equations 2.38 2.37 and
2.36 .

Derived in this chapter: Equation
2.2

(
j!Ωvi +@i p = fi

j!∑p +@i vi = q,
(2.3)

where p is the pressure wavefield. In addition, vi is the particle velocity, fi is the force
source in the xi direction q is the volume injection source. The summation convention
over repeated indexes is assumed. Equation 2.3 can also be written in another operator
form shown in Appendix A.6.

2.2.2. HELMHOLTZ SCALAR WAVE EQUATION
The so-called Helmholtz equation, which only contains pressure, can be obtained from
the general Equation 2.3 by eliminating particle velocity. It states that [e.g 5]

@i ( l @i p)+!2∑p = s, (2.4)

where again l = 1/Ω is the lightness and s = @i ( l fi )+!2q . It can also be written as

∑
!2

c2 +Ω@i (
1
Ω
@i ·)

∏
p = Ω@i (

1
Ω

fi )+!2Ωq. (2.5)

where the Helmholtz operator is

H2, f =
!2

c2 +Ω@i (
1
Ω
@i ·), (2.6)

which contains the velocity, c and spatial partial derivatives in all spatial dimensions.
We will later distinguish between this full Helmholtz operator, H2, f , and the one that
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contains only lateral derivatives. Substituting the Helmholtz operator in Equation 2.5
yields a more compact equation such that

H2, f p = Ω@i (
1
Ω

fi )+!2Ωq. (2.7)

In media with homogeneous density, the Helmholtz equation then turns into the the
more familiar form

@i@i p + !2

c2 p = Ω@i fi +!2Ωq. (2.8)

2.2.3. EQUATIONS ENCOMPASSING VERTICAL PARTICLE VELOCITY AND

PRESSURE
We can also express the wave equation in only vertical particle velocity and pressure [e.g
5] leading to the coupled equations

(
@3p + j!Ωv3 = f3

@3v3 ° 1
j!Ω H2p = q ° 1

j!@Æ( 1
Ω fÆ),

(2.9)

where

H2 =
!2

c2 +Ω@Æ(
1
Ω
@Æ ·), (2.10)

where Æ takes on the values 1 and 2, i.e. the lateral spatial coordinates. Note here the
distinction between the full Helmholtz operator, H2, f that embeds all spatial coordinates
and the lateral Helmholtz operator, H2, that embeds only the lateral ones.

Expressed in another form, equation 2.9 can also be written as [5]

@3q = Aq+d, (2.11)

where

q =
µ

p
v3

∂
, (2.12)

which encompasses the vertical particle velocity, v3, and pressure p. Then,

A =
µ

0 ° j!Ω
1

j!Ω H2 0

∂
, (2.13)

and the source term is expressed as

d =
µ

f3

q ° 1
j!@Æ( 1

Ω fÆ)

∂
. (2.14)

2.2.4. COUPLED DIRECTIONAL WAVE EQUATIONS
One can decompose the operator, A, mentioned above as A =° j!L§§§L, which results in
the following coupled system of equations [e.g. 7, 8]

(
@3p++ (+ j!§++T +) p++R°p° = s+

@3p°+ (° j!§°+T °) p++R+p+ = s°,
(2.15)
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where, p+ and p° are downgoing and upgoing energy flux-normalized wavefields [7, 8],
respectively, § is the vertical slowness operator, R is the reflection operator and T is the
transmission operator. Equation 2.15 can also be written as [5]

@3p = Bp+s, (2.16)

where the operator
B =° j!§§§+£££, (2.17)

such that the scattering operator
£££=°L°1@3L, (2.18)

which is expressed as

£££=
µ
T + R°

R+ T °

∂
, (2.19)

while the vertical slowness operator,§§§, is expressed as

§§§=
µ
§+ 0
0 §°

∂
, (2.20)

with both of its upgoing,§+, and downgoing,§°, constituents. The wavefields are then

p =
µ

p+

p°

∂
, (2.21)

and the sources

s =
µ

s+

s°

∂
. (2.22)

2.3. RECIPROCITY THEOREMS
Gauss’ divergence theorem can be applied to each differential equation so that an inte-
gral form can be obtained. In this section we state the reciprocity theorem while paying
attention to the classification we propose.

2.3.1. MODEL-BASED RECIPROCITY THEOREMS
The reciprocity theorem invokes two different states, state "a" and state "b", which are
indicated as a subscript to each variable. The reciprocity for the full coupled wave equa-
tion, Equation 2.3, [e.g. 6, p. 97] state that

I

@D

d 2x (pa vi ,b +pb vi ,a)ni =
Z

D

d 3x (vi ,b fi ,a +pa qb + vi ,a fi ,b +pb qa)

+
Z

D

d 3x j![pa ±∑pb + vi ,a ±Ω vi ,b],
(2.23)
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Figure 2.3 Configuration of reciprocity theorem for non-directional wavefields, the famous "de
Hoop’s egg". After de Hoop [9, p.151], see also Fokkema and van den Berg [6, p. 16].

where ±Ω = Ωb °Ωa , ±∑= ∑b °∑a and ni is the normal to the surface @D that encloses the
domain D, shown in Figure 2.3, known as the "de Hoop egg".

The reciprocity theorem based on the Helmholtz equation [e.g. 5] is given as

I

@D

d 2x
£
pa

©
lb@i pb

™
°pb

©
la@i pa

™§
ni =

Z

D

d 3x [pa sb +pb sa]

+
Z

D

d 3x
£
!2pa±∑pb °@i pa±l@i pb

§
.

(2.24)

We note that both reciprocity theorems, Equation 2.24 and Equation 2.23, invoke model
perturbations to incompressibility and to density. In the next section the representation
invoke mostly operator perturbations.

2.3.2. OPERATOR-BASED RECIPROCITY THEOREMS
We can also derive a reciprocity theorem based on the operator-based non-directional
equations given by Equation 2.9. The details of the derivation are given in the Appendix
A and briefly discussed by Dillen et al. [11]. The equation states that

Z

@D0

d 2xh {qT
a Nqb}n3 =

Z

D0

d 3x qT
a N±Aqb +

Z

D0

d 3x
£
qT

a Nqb +dT
a Nqb

§
, (2.25)

where N =
µ

0 1
°1 0

∂
and ±A = Ab °Aa . A more explicit form of Equation 2.25 is

Z

@D0

d 2xh [pa v3,b ° v3,a pb] =
Z

D0

d 3x [vb f3,a +pa sb + v3,a f3,b +pb sa]

+
Z

D0

d 3x [ j!v3,b ±Ω v3,a +
1

j!
pa ±H̃2 pb],

(2.26)
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Figure 2.4 Configuration of the reciprocity theorems involving directional wavefields or vertical
particle velocity and pressure. After Wapenaar [10]. Note that while the reciprocity
theorem of non-directional wave fields requires a bounded integral, this theorem allows
the medium to be laterally unbounded while only vertically bounded.

where ±H̃2 = 1
Ωb

H2,b ° 1
Ωa

H2,a . The domain of integration is shown in Figure 2.4, which
does not require the domain to be bounded laterally, unlike the representation for non-
directional wavefield, Equation 2.23, which requires the domain to be fully bounded and
thus a closed-surface integral is used.

Similarly, one could also apply Gauss’ theorem to Equation 2.25, in order to obtain an
operator-based directional reciprocity theorem — previously derived by Wapenaar and
Grimbergen [7] — which states that

Z

@D0

d 2xh {pT
a Npb}n3 =

Z

D0

d 3x pT
a N±Bpb +

Z

D0

d 3x
£
pT

a Nsb +sT
a Npb

§
, (2.27)

where ±B = Bb °Ba . Based on these reciprocity theorems full domain-boundary repre-
sentations can be obtained in the next section.

2.4. DOMAIN-BOUNDARY REPRESENTATIONS

2.4.1. MODEL-BASED REPRESENTATIONS

We can obtain a domain boundary representation involving pressure such that [e.g 6]
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¬(xd ) p(xd ) =
Z

D

d 3x [Gq (xd ,x)q(x)°Qq
i (xd ,x) fi (x)]

° j!
Z

D

d 3x [Gq (xd ,x)±∑(x)p(x)°Qq
i (xd ,x)±Ω(x)vi (x)]

°
I

@D

d 2x [Gq (xd ,x)vi (x)°Qq
i (xd ,x)p(x)]ni

, (2.28)

where the characteristic function ¬(xd ) [see 5, 6] is defined as

¬(xd )

8
><

>:

1 for xd 2D
1/2 for xd 2 @D
0 for xd ›D[@D

, (2.29)

In addition, the reciprocity theorem involving particle velocity states that

¬(xd ) v j (xd ) =°
Z

D

d 3x [G f
j (xd ,x)q(x)°Q f

i , j (xd ,x) fi (x)]

+ j!
Z

D

d 3x [G f
j (xd ,x)±∑(x)p(x)°Q f

i , j (xd ,x)±Ω(x)vi (x)]

°
I

@D

d 2x [G f
j (xd ,x)vi (x)°Q f

i , j (xd ,x)p(x)]ni ,

(2.30)

and the Green functions Gq and Qq
i is due to a point volume injection source and G f

j and

Q f
i , j are due to a point force source in x j direction — see [6, p. 92] and [9] for details.

Appendix A defines those Green’s functions.
The reciprocity theorem involving the Helmholtz equation [5] is then

¬(xd ) p(xd ) =
Z

D

d 3x GH (xd ,x)s(x)

+
Z

D

d 3x
£
!2GH (xd ,x)±∑(x)p(x)°@kGH (xd ,x)±l (x)@k p(x)

§

+
I

@D

d 2x
£
GH (xd ,x)

©
l (x)@k p(x)

™
°p(x) {l (x)@kGH (xd ,x)}

§
ni .

(2.31)

Note that Equations 2.31. and 2.28 are essentially equivalent, but the only difference
is how the Green functions are defined. While one equation uses the Helmholtz Green
function, GH , the other uses explicit Green functions that correspond to a point volume
injection source or a point force source in a single direction see [9, p. 158], [6, p. 124] and
Appendix A for details).
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2.4.2. OPERATOR-BASED REPRESENTATIONS: NON-DIRECTIONAL

The reciprocity theorem involving non-directional wavefields and is based on operators
(derived in the Appendix A) states that

¬(xd )q(xd ) =
Z

D0
d 3x GA(xd ,x)d(x)+

Z

D0
d 3x GA(xd ,x)±A(x)q(x)

°
Z

@D0
d 2xh GA(xd ,x)q(x)n3(x),

(2.32)

where GA is a Green function defined in Appendix A.

We can also write Equation 2.31, the one that leads to the Lippmann-Schwinger
equation, in an operator form such that

¬(xd ) p(xd ) =
Z

D

d 3x GH (xd ,x)s(x)

+
Z

D

d 3x GH (xd ,x)
£
!2±∑(x)+@k (±l@k ·)

§
| {z }

±L

p(x)

+
I

@D

d 2x
£
GH (xd ,x)

©
l0(x)@k p(x)

™
°p(x) {l (x)@kGH (xd ,x)}

§
ni .

(2.33)

Note that Equation 2.33 involves a contrast in Helmholtz operator, ±L, which in turn
involves contrasts to model parameters. Going from an equation that involves model
perturbation, Equation 2.1 or 2.2, to an operator-based one, Equation 2.33, is not trivial,
especially in the context of the reciprocity theorem. So, we derive one from the other in
Appendix A, using — surprisingly enough — Gauss’ divergence theorem, and show how
they are linked.

2.4.3. OPERATOR-BASED REPRESENTATIONS: DIRECTIONAL

Similarly, we can also obtain an operator-based directional representation such that [7]

¬(xd )p(xd ) =
Z

D0
d 3x GB (xd ,x)s(x)+

Z

D0
d 3x GB (xd ,x)±B(x)p(x)

°
Z

@D0
d 2xh GB (xd ,x)p(x)n3(x),

(2.34)

where GB is a Green function defined in Appendix A.

However, Equation 2.34 is not the only form with which we can cast an operator-
based directional representation. We can also cast Equation 2.33 — the one that leads to
the operator-based Lippmann-Schwinger equation — in a directional form, resulting in
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¬(xd ) p±(xd ) =
Z

D

d 3x G±
H (xd ,x)s±(x)

+
Z

D

d 3x G±
H (xd ,x)

£
!2±∑(x)+@k (±l@k ·)

§
| {z }

±L

p(x)

+
I

@D

d 2x
£
G±

H (xd ,x)
©
l0(x)@k p(x)

™
°p(x)

©
l (x)@kG±

H (xd ,x)
™§

ni ,

(2.35)

where p = p+ + p° and GH = G+
H +G°

H ; so they are pressure normalized. Note that the
directional decomposition is at the detector location, xd .

2.5. DOMAIN REPRESENTATIONS
The following section contains domain representations, which disregard the boundary
integral by assuming that the domain is unbounded, but only consider an integral in-
volving a contrast or a perturbation over some domain Dp , and one involving integra-
tion over sources over some domainDs — see Figure 2.5 for the full configuration. Those
representations are useful for modeling, imaging and inversion, but we start first with
the model-based ones before we cover the ones based on operators.

Figure 2.5 Configuration of the scattering problem, which involves a perturbation domain, Dp ,
and a source domain, Ds . The pressure wavefield, p(xdi

,xsi ), is indicated at an arbi-
trary point. Modified from de Hoop [9, p.194]

2.5.1. MODEL-BASED REPRESENTATIONS: NON-DIRECTIONAL
One can represent the pressure wave-field using the Green functions defined using the
Helmholtz equations as
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p(xd ) =
Z

Ds

d 3x GH (xd ,x)s(x)

+
Z

Dp

d 3x
£
!2GH (xd ,x)±∑(x)p(x)°@kGH (xd ,x)±l (x)@k p(x)

§
.

(2.36)

We can also represent the pressure wavefield as

p(xd ) =
Z

Ds

d 3x [Gq (xd ,x)q(x)°Qq
i (xd ,x) fi (x)]

° j!
Z

Dp

d 3x [Gq (xd ,x)±∑(x)p(x)°Qq
i (xd ,x)±Ω(x)vi (x)].

(2.37)

Note that while those two equations represent pressure — 2.37 and 2.36 — they are dif-
ferent because one invokes only pressure, Equation 2.37, and the other invokes addition-
ally particle velocity and hence the Green functions are different.

We can also represent particle velocity as

v j (xd ) =°
Z

Ds

d 3x [G f
j (xd ,x)q(x)°Q f

i , j (xd ,x) fi (x)]

+ j!
Z

Dp

d 3x [G f
j (xd ,x)±∑(x)p(x)°Q f

i , j (xd ,x)±Ω(x)vi (x)].
(2.38)

2.5.2. MODEL-BASED REPRESENTATIONS: DIRECTIONAL
Splitting the wavefield into p = p+ +p° and the Green function into GH =G+

H +G°
H and

substituting those results in Equation 2.36 yields

p±(xd ) =
Z

Ds

d 3x G±
H (xd ,x)s±(x)+

Z

Dp

d 3x !2G±
H (xd ,x)±∑(x){p+(x)+p°(x)}

+
Z

Dp

d 3x @kG±
H (xd ,x)±l (x)@k {p+(x)+p°(x)}.

(2.39)

We can also derive the correlation-type form leading to

p±(xd ) =
Z

Ds

d 3x {G±
H }§(xd ,x)s±(x)+

Z

Dp

d 3x !2{G±
H }§(xd ,x)±∑(x){p+(x)+p°(x)}

+
Z

Dp

d 3x @k {G±
H }§(xd ,x)±l (x)@k {p+(x)+p°(x)}.

(2.40)
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In media with constant density, Equation 2.39 becomes

p±(xd ) =
Z

Ds

d 3x G±
H (xd ,x)s±(x)+

Z

Dp

d 3x !2G±
H (xd ,x)±m(x){p+(x)+p°(x)}. (2.41)

Equation 2.39 is the directional form of the non-directional model-based represen-
tation.

2.5.3. OPERATOR-BASED REPRESENTATIONS: NON-DIRECTIONAL
In this section, we list operator-based representations, which are derived from the
boundary-domain representations by assuming an unbounded volume. As discussed
previously, those representations are of two forms: one is for non-directional wave-fields
and other for directional wave-fields. By assuming an unbounded domain, Equation
2.32 then becomes

q(xd ) =
Z

Ds

d 3x GA(xd ,x)d(x)+
Z

Dp

d 3x GA(xd ,x)±A(x)q(x). (2.42)

Even though Equation 2.2 contains a density perturbation, the main perturbation
is that of the Helmholtz operator; which contains all the isotropic or for that matter the
anisotropic behavior, as well. Therefore, we refer to it as operator-based, since it contains
mainly an operator perturbation.

Similarly, we can obtain an operator-based Lippmann-Schwinger equation from
Equation 2.35, resulting in

p(xd ) =
Z

Ds

d 3x GH (xd ,x)s(x)+
Z

Dp

d 3x GH (xd ,x)
£
!2±∑(x)+@k (±l@k ·)

§
| {z }

±L

p(x). (2.43)

2.5.4. OPERATOR-BASED REPRESENTATIONS: DIRECTIONAL
An operator-based domain representation that invokes directional wavefields can also
be obtained from Equation 2.34, resulting in

p(xd ) =
Z

Ds

d 3x G0
f (xd ,x)s(x)+

Z

Dp

d 3x G0
f (xd ,x)±B(x)p(x), (2.44)

where the superscript, 0, in the Green function, G0
f , refers to the fact that the Greens

function is modeled in the background/reference model.
Another form of this kind of representation can be obtained from Equation 2.35 re-

sulting in

p±(xd ) =
Z

Ds

d 3x G±
H (xd ,x)s±(x)+

Z

Dp

d 3x G±
H (xd ,x)±L(x){p+(x)+p°(x)}, (2.45)

which we refer to as Lippmann-Schwinger equation for directional wavefields.
We summarize some of the results we obtained so far in Table 2.2.
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2.6. VARIOUS FORMS OF OPERATOR-BASED DIRECTIONAL

REPRESENTATION
In this section we consider different forms of the directional operator-based representa-
tions. All Green’s functions of the next presentations are thoroughly discussed and com-
pared in Appendix A, while the states (state A and state B) in each situation are defined
in Tables 2.3-2.5. As we will see, we have more flexibility in choosing the background or
reference state for this kind of representation. This results in several representations that
physically represent different ordering or distribution of the wavefields between the two
states.

2.6.1. REPRESENTATION OF TYPE I
For clarity, we start by recasting Equation 2.44 with ±B(x) written explicitly such that

p(xd ) =
Z

Ds

d 3x G0
f (xd ,x)s(x)+

Z

Dp

d 3x G0
f (xd ,x){° j!±§§§(x)+±T(x)+±R(x)}p(x), (2.46)

where ±R =
µ

0 ±R°

±R+ 0

∂
, ±T =

µ
±T + 0

0 ±T °

∂
and ±§§§ =

µ
±§+ 0

0 ±§°

∂
. Note here

that the reference or background state, A, is entirely different from the actual state, B. So,
not only reflection but also the transmission and the vertical wavenumber operators are
different. Note also that the Green function G0

f is the full Green function that encom-
passes both reflection and transmission of the background medium. It has the following
form [10]

G0
f (xd ,x) =

√
G0

f
+,+(xd ,x) G0

f
+,°(xd ,x)

G0
f
°,+(xd ,x) G0

f
°,°(xd ,x)

!

, (2.47)

where the superscripts (±,±) refer to the propagation direction at the detector, at lo-
cation xd , and at the source, at location x, respectively. We refer to Equation 2.46 as
directional operator-based representation of Type-I. This representation can be used for
inversion since the two states are entirely different. However, we derive a simpler version
with simpler Green’s functions in the next representation.

Table 2.3 States A and B for deriving the directional representation theorem of type-I.

State A State B
Wavefield G0

f (x,x0) p(x)

Source I±(x°x0) s(x)
Operators Type-I ° j!§§§A +£££A ° j!§§§B +£££B

2.6.2. REPRESENTATION OF TYPE II
Another choice that one could make is by assuming that the reflection operator of the
background state (state A) vanishes (i.e. RA = 0) in order to derive another version (Type-
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II), which states that

p(xd ) =
Z

Ds

d 3x G0
t (xd ,x)s(x)+

Z

Dp

d 3x G0
t (xd ,x){° j!±§§§(x)+±T(x)+R(x)}p(x). (2.48)

The Green function for this representation is

Gt (x,xs ) =
µ

H(x3 °xs,3)V +(x,xs ) 0
0 °H(xs,3 °x3)V °(x,xs )

∂
, (2.49)

where H is the Heaviside function and V is the propagator that includes transmission,
unlike the W operator which we will encounter next.

Note that the Green function G0
t includes transmission of the background medium

but does not include reflection of the background medium and therefore Equation 2.48
has the term R(x), while Equation 2.46 uses ±R(x). Table 2.4 lists the sources, wavefields
and set of operators in state A and B.

Table 2.4 States A and B for deriving the directional representation theorems of type-II and type-
VII.

State A State B
Wavefield Type-II G0

t (x,x0) p(x)
Wavefield Type-VII Gt (x,x0) p(x)
Source I±(x°x0) s(x)
Operators Type-II ° j!§§§A +TA ° j!§§§B +£££B
Operators Type-VII ° j!§§§+T ° j!§§§+£££

2.6.3. REPRESENTATION OF TYPE III
We can also assume that the transmission operator of the background state (state A)
vanishes (i.e. TA = 0), in order to derive another form, Type-III (see Table 2.5), which
results in

p(xd ) =
Z

Ds

d 3x G0
r (xd ,x)s(x)+

Z

Dp

d 3x G0
r (xd ,x){° j!±§§§(x)+±R(x)+T(x)}p(x). (2.50)

Here the Green function does not include transmission but it contains the reflection of
the background state, State A. It does contain, however, primary and multiple interac-
tions of wavefields. The Green function in this situation is

Gr (x, xs ) =
µ
G+,+

r (x, xs ) G+,°
r (x, xs )

G°,+
r (x, xs ) G°,°

r (x, xs )

∂
, (2.51)

where it contains four constituents; rather than two constituents since they contain the
reflection operator of background medium.
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Table 2.5 States A and B for deriving the directional representation theorems of type-III and type-
VI.

State A State B
Wavefield Type-III G0

r (x,x0) p(x)
Wavefield Type-VI Gr (x,x0) p(x)
Source I±(x°x0) s(x)
Operators Type-III ° j!§§§A +RA ° j!§§§B +£££B
Operators Type-VI ° j!§§§+R ° j!§§§+£££

2.6.4. REPRESENTATION OF TYPE IV
In order to obtain another distinct representation, one could assume that TA = 0 and
RA = 0 (see Table 3), while keeping the perturbation in the vertical slowness intact, to
derive another version (Type-IV) that states

p(xd ) =
Z

Ds

d 3x G0
p (xd ,x)s(x)+

Z

Dp

d 3x G0
p (xd ,x){° j!±§§§(x)+R(x)+T(x)}p(x), (2.52)

which is the basis for Model-Independent Joint Migration Inversion (MI-JMI), derived by
Hammad and Verschuur [12] and further discussed in Chapter 8. It can also be written
as

p(xd ) =
Z

Ds

d 3x G0
p (xd ,x)s(x)+

Z

Dp

d 3x G0
p (xd ,x)≠≠≠(x)p(x), (2.53)

where≠≠≠(x) =° j!±§§§(x)+R(x)+T(x). In this situation, the Green function is

G0
p (xd ,x) =

µ
H(xd ,3 °x3)W +

0 (xd ,x) 0
0 °H(x3 °xd ,3)W °

0 (xd ,x)

∂
, (2.54)

where W0 is propagator [10], which does not include the transmission, but rather it be-
longs to a medium that is transparent of any reflection or transmission scattering and
contains only direct arrivals [10].

Table 2.6 States A and B for deriving the directional representation theorems of type-IV and type-V.

State A State B
Wavefield Type-IV G0

p (x,x0) p(x)
Wavefield Type-V Gp (x,x0) p(x)
Source I±(x°x0) s(x)
Operators Type-IV ° j!§§§A ° j!§§§B +£££
Operators Type-V ° j!§§§ ° j!§§§+£££
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2.6.5. REPRESENTATION OF TYPE V
Another representation can by obtained by assuming that TA = 0 and RB = 0 (see Ta-
ble 3), while keeping vertical slowness the same for both states. Then we then arrive at
another version, (Type-V), which states

p(xd ) =
Z

Ds

d 3x Gp (xd ,x)s(x)+
Z

Dp

d 3x Gp (xd ,x){R(x)+T(x)}p(x), (2.55)

which is derived by Wapenaar [10] and de Hoop [8] and which can also be written as

p(xd ) =
Z

Ds

d 3x Gp (xd ,x)s(x)+
Z

Dp

d 3x Gp (xd ,x)£££(x)p(x). (2.56)

A similar form is presented by Berkhout [13], being referred to as full wavefield modeling
(FWMod) and its inverse, which is full wavefield migration (FWM) [14]. Note that with
such modeling scheme, iterations are needed even for the primary wavefield as trans-
mission effects are not included in the Green function. We will discuss the implementa-
tion of this equation in the next chapters.

2.6.6. REPRESENTATION OF TYPE VI
We can also let the propagator include transmission (see Table 4) to arrive at

p(xd ) =
Z

Ds

d 3x Gt (xd ,x)s(x)+
Z

Dp

d 3x Gt (xd ,x)R(x)p(x), (2.57)

which was derived by Hammad and Verschuur [15], but was also previously derived by
Corones [16] yet using a different derivation scheme. This form is the basis for the gen-
eralization of the so-called Bremmer series [17] since the propagator includes transmis-
sion. Using the so-called Neumann series, one can model wavefields scattering order
by scattering order, and therefore the iterative process is not purely mathematical but
rather physical. Hence, it provides insight into the scattering process in terms of the
multiple orders of primaries. Another method to achieve such objective, but only for
surface multiples, is the so-called scattering order decomposition [18]. However, it is
based on a boundary integral and assumes the full wavefield is readily available.

2.6.7. REPRESENTATION OF TYPE VII
A distinct final representation can also be obtained by including the reflection operator
in the propagator, while the transmission operator is not included, (see Table 2.5) to
arrive at

p(xd ) =
Z

Ds

d 3x Gr (xd ,x)s(x)+
Z

Dp

d 3x Gr (xd ,x)T(x)p(x), (2.58)
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which could be used to model the transmission scattering rather than the reflection scat-
tering as we was used in the previous representation 2.57. Such approach could be useful
for tomographic experiments.

2.7. CONCLUSION
We have reviewed and derived various integral representations forms. We can classify
them into four categories whether they are model-based or operator-based, directional
or non-directional. The various forms are then readily available for different applications
such as model-independent JMI, as well as operator-based non-directional inversion.

Alternative representations of the so-called Lippmann-Schwinger equation are dis-
cussed in this chapter. While the Lippmann-Schwinger equation invokes model-
perturbations and non-directional wavefields, other representations invoke operator
perturbations and/or directional wavefields. In fact four categories of representations
are discussed in this chapter, which are summarized in Table 2.1. Although each cate-
gory is represented by one or two equations, one category (operator-based directional
representation) provides various forms of which seven are shown in this chapter. It is
the most versatile representation. Those representations can be the basis for different
modeling and inversion methods.
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3
MODELING AND ANALYSIS OF

WAVENUMBER AND TRANSFER

OPERATORS

“Nature does nothing without reason or in vain."

Aristotle [1, p. 480 (On the Heavens, 291b 13)]

Full wavefield modeling is a method that invokes the transfer operators in order to model
wave propagation. However, generalized transfer operators, which are more general than
those that are equivalent to Zoeppritz’ equations in acoustic media, are needed in order
to model waves in such media. We compute those generalized transfer coefficients and in-
voke them into the full wavefield modeling method, which models multiples along with
primaries. We compute those coefficients using a formulation that allows discontinu-
ous media to be modeled. A comparison between the conventional approach of using
the acoustic equivalent of Zoeppritz’ equations and our proposed method shows a pro-
nounced difference. In one example, it is shown that neighboring sand channels have a
clear impact on the reflection coefficient at a single sand channel. This work sets the stage
to an elastic formulation that has the potential to replace the commonly used Zoeppritz’
equations for laterally varying elastic media.

33
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3.1. INTRODUCTION
In Chapter 2, we have presented several representations that invoke operators which, in
turn, are generated using model parameters. In this chapter we pick a single representa-
tion and we start implementing and analyzing it, first through its operators. In Chapter
4, we go beyond generating those operators to generating the end product of such a
modeling method, which is the full wavefield. As shown in Figure 3.1, we first map the
model parameters into operators and in the next chapter we map those operators into
wavefields. Although we address the acoustic situation in this chapter, we address the
anisotropic situation in Chapter 6 and the elastodynamic situation in Chapter 7.

Figure 3.1 A schematic showing the mapping discussed in this chapter, where model parameters
are mapped to operators. The next chapter is concerned with mapping the operators to
directional wavefields.

3.2. GENERAL EQUATION FOR MODELING
Our aim is to implement an integral equation that takes operators as input and produces
wavefields as output. Although we have discussed the underlying theory in Chapter 2,
we state the equation to be implemented and discuss it in detail in this chapter. The
equation states [e.g. 2, 3] that

p(xd ) =
Z

IR3

d 3x Gp (xd ,x)s(x)+
Z

IR3

d 3x Gp (xd ,x)£££(x)p(x), (3.1)

where the wavefield, ppp, is composed of downgoing and upgoing components such that

p =
µ

p+

p°

∂
, the source s =

µ
s+

s°

∂
, is, likewise, composed of downgoing, s+, and upgoing,

s°, components and £££ = °
µ
T

+
R

°

R
+

T
°

∂
is the set of transfer operators, where R

± is the

reflection operator and T
± is transmission operator from above and below. The Green’s

function is defined as

Gp (x,x0) =
µ

H(x3 °x 0
3)W +(x,x0) 0
0 °H(x 0

3 °x3)W °(x,x0)

∂
, (3.2)
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where, H(x3 ° x 0
3) is the Heaviside function, and W +(x,x0) is the propagator, which is

obtained using the generalized wavenumber operator, H̃1, such that

W ±(x,x0) = exp[® j (x3 °x 0
3)H̃1(x)]. (3.3)

In addition, the initial solution is obtained via the Green’s functions such that

p0(x0) =
Z

R3
d 3x Gp (x0,x)s(x). (3.4)

Now that we have stated the general representation, we can then dive deeper into those
operators and how they are modeled.

3.3. HELMHOLTZ AND WAVENUMBER OPERATORS
In this section, we first begin by stating the main equations that allow for medium het-
erogeneity starting with the Helmholtz operator, from which the generalized vertical
wavenumber operator can be derived. Subsequently, a generalized slowness operator
can then be derived and used to investigate the kinematics. The dynamics can then be
studied using a formulation that includes this generalised slowness operator. We fol-
low the notation and equations given by Wapenaar and Grimbergen [4] throughout this
section.

The Helmholtz operator in the constant density situation[e.g. 3, 4] is given by

Ĥ2(x) =
µ
!

c 0(x)

∂2

+@Æ@Æ, (3.5)

where ! is the angular frequency, c 0(x) is the velocity and Æ takes on the values of 1 and
2 for the lateral axes (i.e. x1 and x2 ), where the summation convention is implied. The
Helmholtz kernel operator H2(xh ;x0H ) is defined as [4]

Ĥ2(xH )F (xH ) =
Z

IR2
d 2x0H H2(xH ;x0H )F (x0H ), (3.6)

where F is any arbitrary function. Modal expansion of the Helmholtz kernel operator
can be carried out such that [4]

H2(xH ;x0H ) =
Z

IR2
d 2∑ ¡(xH ,∑)∏(∑)¡§(x0H ,∑)+

X

∏i2discr
¡(i )(xH )∏i¡

(i )(x0H ), (3.7)

where ¡ are eigenfunctions and ∏ are eigenvalues and where the expansion results in
discrete and continuous parts. The wavenumber operator can then be obtained by tak-
ing the square root of the eigenvalues such that [4]

H1(xH ;x0H ) =
Z

IR2
d 2∑ ¡(xH ,∑)∏1/2(∑)¡§(x0H ,∑)+

X

∏i2discr
¡(i )(xH )∏1/2

i ¡(i )(x0H ). (3.8)
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Figure 3.2 A schematic showing the order of which the operators are obtained; first the Helmholtz
operator, H2, from which the wavenumber operator, H1, is obtained and finally the
transfer operators, R and T , are obtained.

3.4. SLOWNESS AND COSINE OPERATORS
Note that the wavenumber operator is defined in both space and local offset, x0H , the
integration dummy variable. In order to obtain the wavenumber operator in space and
local wavenumber (k0

H ), i.e. H1(xH ;k0
H ), we need to apply the spatial Fourier transfor-

mation, yielding

H1(xH ;k0
H ) = 1

4º2

Z

IR2
d 2x0H H1(xH ;x0H )e j k0

H x0H . (3.9)

One could obtain such result directly from the modal decomposition, but we limit the
discussion to this form in this chapter. Similarly, one can also obtain slowness operator
§1(xH ;x0H ) =!°1

H1(xH ;x0H ), in the local slowness domain, p0
H , resulting in

§1(xH ;p0
H ) = 1

4º2

Z

IR2
d 2x0H §1(xH ;x0H )e j!p0

H x0H . (3.10)

Since velocity varies spatially, one would need to normalized the slowness operator by
velocity so that a reasonable comparison can be achieved between different slowness
curves at different locations.Thus, we then normalize by velocity in order to obtain a
velocity-normalized slowness or cosine-sine curves, where the generalized cosine oper-
ator,¶1(xH ;x0H ) = c 0!°1

H1(xH ;x0H ), is given by

¶1(xH ;∞0
H ) = 1

4º2

Z

IR2
d 2x0H ¶1(xH ;x0H )e j!c 0°1∞0x0H , (3.11)

where ∞0 is the sine of the scattering angle. Similarly, one can obtain the reflection oper-
ator R(xH ;∞0

H ) using the formulas of the flux-normalized operator for vertically piece-
wise continuous media given, whose details are given by Hammad and Verschuur [5].

3.5. TRANSFER OPERATORS
Transfer coefficients can be computed using two methods [6]. The first method assumes
smoothly varying media, where they are assumed to be infinitely differentiable. The
second method allows discontinuous media where the vertical derivative may not ex-
ist. For instance, a situation of relevance to seismic prospecting is the case where a jump
of the velocity happens when transitioning from clastics to top halite and back to clas-
tics again at the base of halite. We refer to the transmission coefficient generated by the
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first method and second method as the transfer coefficient of the first and second kinds,
respectively.

The first method’s advantage is that the vertical interaction of the wave with the
medium is captured, whereas the second method does not capture such interaction. It
assumes that a discontinuity separates two half spaces. Nevertheless the second method
can model transfer coefficient in situations where the first methods cannot unless a
smoothing operator is applied to the model.

3.5.1. TRANSFER COEFFICIENTS OF THE FIRST KIND
We can express the transfer coefficients in operator form similar to that of [7] and [6] as
follows, the power-flux normalized reflection coeffcient [4] is

R̂
±
1 = (Ẑ1 ° Ẑ2), (3.12)

where Ẑ1 is the impedance ratio per unit depth along the distance direction and Ẑ2 is
the impedance ratio per unit depth along the local offset direction.

Similarly for the transmission coefficient we arrive at

T̂
±

1 = (Ẑ1 + Ẑ2). (3.13)

The impedance ratio per unit depth is expressed as

Ẑ1 =
1
2
Ĥ

1
2
1 %̂

° 1
2 @3(%̂

1
2 Ĥ

° 1
2

1 ) (3.14)

and

Ẑ2 =
1
2
Ĥ

° 1
2

1 %̂
1
2 @3(%̂°

1
2 Ĥ

1
2
1 ), (3.15)

where %̂ is mass density and Ĥ

1
2
1 is the vertical wavenumber square-root operator, which

can be determined from the eigen decomposition of the Helmholtz operator.

3.5.2. TRANSFER COEFFICIENTS OF THE SECOND KIND
For the situation where the vertical derivative of the wavenumber operator of the
medium does not exist (i.e., discontinuous medium properties), there is an alternative
way to compute the transfer coefficient operators. We derive expressions similar to those
derived for the pressure normalized situation in [6]. After such derivation, the reflection
coefficient operator is

R̂
±
2 = (Ẑ 0

1 ° Ẑ 0
2)(Ẑ 0

1 + Ẑ 0
2)°1 (3.16)

and the transmission coefficient is

T̂
±

2 = (Ẑ 0
1 + Ẑ 0

2)°1, (3.17)

where the impedance ratio along the x direction is

Ẑ 0
1 =

1
2
Ĥ

1
2
1,u %̂

° 1
2

u %̂
1
2
l Ĥ

° 1
2

1,l (3.18)
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and the impedance ratio along the local offset direction is

Ẑ 0
2 =

1
2
Ĥ

° 1
2

1,u %̂
1
2
u %̂

° 1
2

l Ĥ

1
2
1,l . (3.19)

The subscripts u and l refers to the operators for the upper layer and the lower layers
respectively.

We can arrive at those results by assuming a welded contact where vertical particle
velocity and pressure are continuous, which results in equating

µ
L1,u L1,u
L2,u °L2,u

∂µ
p+

u
p°

u

∂
=

µ
L1,l L1,l
L2,l °L2,l

∂µ
p+

l
p°

l

∂
, (3.20)

where the subscripts u and l refer to upper and lower layers. Then we can derive the
coefficients from above by equating [e.g. 6, p. 98]

µ
L1,u L1,u
L2,u °L2,u

∂µ
I
R

+
2

∂
=

µ
L1,l L1,l
L2,l °L2,l

∂µ
T

+
2
0

∂
. (3.21)

Similarly, we can derive those coefficients from below such that

µ
L1,u L1,u
L2,u °L2,u

∂µ
0
T

°
2

∂
=

µ
L1,l L1,l
L2,l °L2,l

∂µ
R

°
2

I

∂
, (3.22)

where

L1,u = L1,l = (
! %

2
)1/2

H
°1/2
1 (3.23)

and
L2,u = L1,l = (2! %)°1/2

H
1/2
1 . (3.24)

Solving the linear system of equations 3.21 and 3.22 results in equations 3.16 and
3.17. Note that we derive the flux-normalized transfer operators in this situation. For
pressure-normalized transfer operators, one could refer to Wapenaar and Berkhout [e.g.
6, p. 98].

3.6. ASPECTS OF NUMERICAL IMPLEMENTATION

3.6.1. STRETCHED-COORDINATE PML
For implementing such a scheme, an absorbing boundary condition needs to be incor-
porated in order to avoid the undesired back-scattered energy off the boundaries. We im-
plement for this purpose a stretched-coordinate perfectly-matched layer (PML). Apply-
ing a stretched-coordinate PML is also commonly used for solving Maxwell equations. It
can be interpreted physically as introducing a lossy layer at the desired boundaries, but
it can also be interpreted mathematically as transforming the spatial coordinates into
stretched ones [e.g. 8] such that

x̃Æ := xÆ+ j
1
!

ZxÆ

0
ªÆ(x)d x, (3.25)
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where x̃Æ is the transformed coordinate and xÆ is the original coordinate, where the sub-
script Æ takes on values of 1 and 2 and ªÆ is the relaxation function. Note that the PML is
not needed along the preferred extrapolation direction unlike the case for conventional
modeling with the two-way wave equation.

This transformation results in

@

@xÆ
:= ¥Æ

@

@x̃Æ
, (3.26)

where ¥Æ is the stretch factor determined using the relaxation function such that

¥Æ = 1
1+ jªÆ/!

, (3.27)

where ! is the angular frequency. Applying such transformation to the Helmholtz oper-
ator, H2 [e.g. 4, 5], results in

H̃2 =
!2

ĉ2 +¥Æ@Æ
°
¥Æ@Æ

¢
+ J̃ , (3.28)

where

J̃ =°3(¥Æ@Æ%̂)(¥Æ@Æ%̂)

4%̂2 +
¥Æ@Æ

°
¥Æ@Æ%̂

¢

2%̂
, (3.29)

in which %̂ is the density and ĉ is the velocity. We choose a relaxation function, which is
also used in [8], such that

ªÆ(xÆ) =

8
><

>:

0, if |xÆ| < aÆ

ª̄Æ

√
|xÆ°aÆ|

LÆ
°

sin
≥

2º|xÆ°aÆ |
LÆ

¥

2º

!

, if aÆ ∑ |xÆ|∑ aÆ+LÆ,
(3.30)

where LÆ is the PML width, Æ takes on the values 1 and 2 (i.e. the lateral spatial co-
ordinates), aÆ and ª̄Æ are spatial and relaxation reference values, respectively. Those
equations are discretized using finite differences in the next section.

We also note that the resulting transformed Helmholtz operator is not self-adjoint,
unlike the case for purely lossless media. This also results in complex eigenvalues and
eigenfunctions, whose combined effect gives the desired solutions. The Helmholtz oper-
ator is decomposed into different modes such that H̃2 = Ỹß̃Ỹ°1, where Ỹ are the eigen-
functions and ß̃ are the eigenvalues. The generalized wavenumber operator, H̃1, is then
obtained using H̃1 = Ỹß̃1/2

Ỹ
°1. Note that the inverse rather than the transpose of the

eigenfunctions is used since the medium is essentially lossy, unlike the lossless situation
assumed by Grimbergen et al. [9].

3.6.2. FINITE DIFFERENCE DISCRETIZATION
We can discretize the Helmholtz operator using a staggered-grid central finite difference
discretization scheme with second-order accuracy. Using such a scheme yields



3

40 3. MODELING AND ANALYSIS OF WAVENUMBER AND TRANSFER OPERATORS
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where J̃ j ,l = J̃
0
j ,l + J̃

00
j ,l , which each, in turn, is discretized as
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and
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3.6.3. TOP AND BOTTOM BOUNDARY CONDITIONS
For the top and bottom boundaries, one can apply Sommerfeld radiation condition if the
medium is assumed unbounded and that results in R= 0 and T = 0. For implementing
a free surface, we can then let R=°I and T = 0. For further details the reader is referred
to [6, p. 142] .

3.7. NUMERICAL EXAMPLES AND APPLICATIONS
In this section, we present three numerical examples. The first example compares the
propagation operator for a locally heterogeneous medium, i.e. the conventional ap-
proach, to the more accurate operator for generally heterogeneous media. The second
example presents the slowness curves for a heterogeneous model, and finally the third
example shows the scattering operators in a fully heterogeneous realistic model of clastic
alluvial channels.

3.7.1. PROPAGATION OPERATOR IN GENERALLY HETEROGENEOUS VS. LO-
CALLY HETEROGENEOUS MEDIA: A COMPARISON

In this first numerical example, the effect of inhomogeneity on the propagation operator,
W , is illustrated. This example compares two methods, the method used in this chapter
and the conventional method which is often used for one-way wavefield extrapolation
[e.g. 10], which is based on the pressure-normalized formulation.
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Figure 3.3 Velocity model with laterally heterogeneity used to demonstrate the difference between
the formulation involving locally homogeneous media and that of generally heteroge-
neous media.

We use the velocity model shown in Figure 3.3, where the embedded velocity in this
example is 3000 m/s and the other background velocity is 2000 m/s with a modeling fre-
quency of 10 Hz. The W for fully inhomogeneous media is shown in Figure 3.4(b) and
that for locally homogeneous media is shown in Figure 3.4(a). Note that in Figure 3.4(a),
the analytical form of the kz operator is used to populate the rows of the matrix and,
hence, only the rows carry the lateral velocity information. However, the other opera-
tor shown in Figure 3.4(b) carries the full lateral velocity information in both rows and
columns while its edges are directly tapered using the PML boundary conditions.

3.7.2. SLOWNESS AND REFLECTION OPERATOR CURVES IN LATERALLY

HETEROGENEOUS MEDIA

Next, we examine the effects of lateral heterogeneity using the velocity model given in
Figure 3.5, which contains a lateral velocity change with a slight smoothing of the ver-
tical discontinuity. Since the lateral differentiability of the medium is assumed, a lat-
eral mild smoothing ensures the existence of such derivatives. We then compute the
velocity-normalized slowness operator for the laterally homogeneous part of the model,
where the resulting curve, Figure 3.6(a), is nothing but a circle, as expected in this homo-
geneous isotropic region.

We then compute the vertical-velocity-normalized slowness curves for the laterally
heterogeneous part of the model (at 3941 m lateral distance, 200 m depth and a fre-
quency of 20 Hz), see Figure 3.6(b). Note that the deviation from a circle occurs more
to the right hand side of the curve but not to the left hand side of the curve, which indi-
cates that heterogeneity exists only on one side but not on the other. We then change the
frequency to 50 Hz, see Figure 3.6(c). Note that changes occur from Figure 3.6(b) espe-
cially at higher angles. The deviation from a circle occurs after a certain angle after which
both curves in Figure 3.6(b) and Figure 3.6(c) look different for different frequencies and,
hence, those curves are dispersive for laterally heterogeneous media unlike their coun-
terparts for homogeneous media.

We then compute the negative power-flux normalised reflection coefficient curves,
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(a)

(b)

Figure 3.4 The propagator, W , for locally homogeneous (a) and fully inhomogeneous formulation
(b). The propagator belongs to a constant depth level at the middle of the velocity model
in Figure 3.3. Note how the presence of the velocity anomaly impacts the middle part of
the rows and column of each operator differently.

Figure 3.7, at a constant depth level (180m) but at different lateral locations equally
spaced from 3566 m to 3941 m. The curve at 3566 m is the one closest to zero ampli-
tude since no vertical heterogeneity exists at this location. The curve at 3941 m is the
one with the highest amplitude and the one closest in shape to the well-known classical
situation that involves no lateral heterogeneity. The rest of the curves are between those
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Figure 3.5 The velocity model used to demonstrate the role of lateral heterogeneity. The model
consists of two velocities with a slight smoothing at the vertical discontinuity.

two extremes. Note that the amplitudes of the reflection coefficients, at different lateral
locations, vary differently at both vertical incidence angle and at the rest of the angles.
This variation could have impact on AVO/AVA methodologies that are based on laterally
invariant media.

We note that the power flux-normalization entails not a scalar normalization but
rather angle dependent scaling as it ensures that the reflection coefficients from above
and from below are the same and, hence, reciprocity holds. For details the reader is re-
ferred to [4].

3.7.3. SCATTERING IN A MODEL OF CLASTIC ALLUVIAL CHANNELS
In the next example, the effect of inhomogeneity is illustrated using the Book Cliffs model
[11]. The location of investigation is at a lateral location 11800 m and at a depth of 12.8 m.
Figure 3.8 shows part of the Book Cliffs model. The white line indicates the depth level
at which the reflection coefficient operator is computed. The model shown in Figure
3.8(a) is the interface separating two homogeneous interfaces, an assumption used for
the acoustic equivalent of Zoeppritz equations.

The monochromatic reflection coefficient operators are computed, for those models,
for a frequency of 8 Hz, and the result is shown in Figures 3.9(a) and 3.9(b), respectively.
The operator shown in Figure 3.9(a) is a diagonal symmetric matrix. The operator shown
in Figure 3.9(b) is symmetric but not diagonal. It contains the response of the neighbor-
ing sand channels. In fact, the anomalies in this operator correspond to the neighboring
sand channels. A thresholding of the amplitudes is applied, visually, in order to see the
details of the operator.

3.8. CONCLUSION
We have shown and implemented the modeling of vertical wavenumber and transfer
operators, a step towards full implementation of full wavefield modeling. In order to
avoid boundary artifacts, the implementation requires absorbing boundary conditions,
which can be implemented using the so called stretched coordinate PML using a stag-
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(a) (b)

(c)

Figure 3.6 Velocity-normalized slowness curves or cosine-sine curves of the scattering angle, (a)
for the laterally homogeneous part of the model with a velocity of 3500 m/s; (b) for the
laterally heterogeneous part of the model at depth level 200 m and lateral distance of
3754 m with frequency of 20 Hz. (c) The same as (b) but with a frequency of 50 Hz. Note
that the normalized slowness curves (b) and (c) are different for different frequencies
and hence are dispersive for the laterally heterogeneous part of the model unlike that of
the laterally homogeneous one.
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Figure 3.7 The negative power-flux normalized reflection coefficient curves at different, equally
spaced lateral locations between 3566 m and 3941 m with a depth of 180 m in the ve-
locity model. The curves closest to zero in amplitude is at 3566 m and the one furthest
away is at 3941m in lateral distance. Note that the upper blue curve is the closest to
the classical situation that involves two homogeneous half spaces, while the rest are in
between this curve and the on with zero amplitude. Also note that not only the value at
vertical incidence angle is different for each curve, but also at the other angles.

gered finite difference stencil. The impact of heterogeneity on slowness curves can then
be assessed and we found that it is dispersive and hence changes from one frequency
to another with larger impact on slowness curves of higher frequency, as one would in-
tuitively expect. We can then see the impact of heterogeneity on reflection coefficient
curves and what we find is that those curves, depending on their lateral position from
the heterogeneity, exhibit deviation from the classical curve which involves two homo-
geneous half spaces — the situation assumed in Zoeppritz equations. We then compare
the reflection operator of a fully heterogeneous medium and that of a Zoeppritz situa-
tion that involves two homogeneous half spaces. What we found is that the impact of
heterogeneity represented by alluvial channels is clear and global on the operator in-
volving heterogeneous media, whereas the influence of those channels is not present in
the operators belonging to the Zoeppritz situation.
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Figure 3.8 A portion of the Book Cliffs model (b) and a zoomed-in laterally locally homogeneous
part (a).



3.8. CONCLUSION

3

47

(a)

(b)

Figure 3.9 Monochromatic reflection and transmission operators for a frequency 8 Hz computed
using a) the acoustic equivalent of Zoeppritz equations and b) using the fully inhomo-
geneous formulation.
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4
MODELING WAVEFIELDS

"One may conceive light to spread successively, by spherical waves."

Christiaan Huygens [1, p. 171]

Full wavefield modeling is divided into two steps: operator generation and wavefield gen-
eration. In this chapter, we generate wavefields first using a homogeneous model where
we benchmark the solution with the analytical one and we find good agreement. We then
model diving waves using the x-direction as a direction of preference, and, as it turns out,
a single iteration is sufficient using such configuration in order to model the diving wave
for a model that changes linearly with depth. We then use a more complex model and we
model approximately each scattering order using a Neuman’s iterative scheme. We show
the evolution of the wavefield in terms of the scattering orders in both frequency and time
domains. This example shows that this method is useful for such cases where one is inter-
ested in understating the wavefield in terms of its scattering orders.

49
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4.1. INTRODUCTION

Figure 4.1 A schematic diagram showing the mapping discussed in this chapter, where operators
are mapped to directional wavefields.

Full wavefield modeling is a method that incorporates transfer operators: reflection
and transmission operators. It also utilizes propagation operators in order to simulate
wave propagation[2–4]. We have presented in Chapter 3 those operators and we have
compared the propagation operators to the ones obtained for locally inhomogeneous
media. In this chapter, we proceed to the next step of full wavefield modeling: generating
the wavefields using those operators, as shown in Figure 4.1.

So, we start his chapter by discussing the theory including the Neuman’s series which
is used to generate the wavefields iteratively. We then show three examples: one for ho-
mogeneous media where we benchmark the method against the analytical one, another
example where we examine diving waves, and a third example where we generate the
wavefields for an inhomogeneous medium.

Full wavefield modeling is a method that incorporates transfer operators, reflection
and transmission operators, as well as, propagation operators, in order to model wave
propagation [2–4]. [5] have implemented full wavefield modeling for homogeneous me-
dia and have also shown the transfer operators for such media [6]. They have also shown
propagation operators and compared them to the ones obtained for locally inhomoge-
neous media. However, handling strongly inhomogeneous media requires the physical
direct arrival rather than an approximate and consequently one would expect an im-
proved convergence rate.

This chapter shows the derivation of a representation theorem that can handle such
media. The representation theorem is similar to that derived by Corones [7]. A Neu-
mann, as well as, a generalized Neumann expansion is also presented. Some examples
illustrate the implementation aspects of the theorem.

4.2. MODELING USING THE NEUMANN ITERATIVE SCHEME
Now that we have modeled the operators in Chapter 3, we turn our attention to modeling
wavefields using the following equation, by combining Equations 3.1 and 3.4:

p(x0) = p0(x0)+
Z

R3
d 3x Gp (x0,x)£££(x)p(x). (4.1)
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In order to demonstrate how this equation can be solved, let’s first express it in sym-
bolic form such that

p = p0 +Gp£p. (4.2)

Letting
L = I°Gp£, (4.3)

we can then express the equation as a typical inverse problem such that

Lp = p0. (4.4)

The most straight-forward solution to this equation is by using a direct solver. However,
such a solution is only practical for small-scale problems. Therefore, we seek an iterative
solution, and the simplest and perhaps the most straight forward method, as we will
see in Chapter 5, is that of Neumann. Such a method results in the following iterative
scheme:

pk = p0 +Gp£pk°1, (4.5)

where k is the iteration number. Hence, we recursively obtain the solution using previ-
ous solutions, and we start with the direct arrival such that

p0 = Gp s. (4.6)

4.3. NUMERICAL EXAMPLES

4.3.1. VALIDATION AND SIMPLE EXAMPLE
In order to validate the numerical implementation and assess the accuracy of the mod-
eling algorithm, a comparison is performed between a Green’s function obtained using
the proposed algorithm and a Green’s function obtained via an analytical solution us-
ing the Hankel transform. The 2D Green’s function for a homogeneous medium can be
represented as [8]

G2D (x, z, xs , zs ,!) =° j H (2)
0 (r k), (4.7)

where H (2)
0 is the zeroth order Hankel function of the second kind, r is the radius, where

r =
p

(x °xs )2 + (z ° zs )2 and k is the wave-number such that k = !
c .

Since the two approaches are different in their numerical implementation, they need
to be calibrated with a scale factor. Figure 4.2 shows the results of such comparison using
a velocity model of 2000 m/s and a frequency of 15 Hz. A good fit is achieved especially
in the far field with a slight mismatch in the near field due to the fact that the PML is not
perfect.

We also show the full 2D wavefield in Figure 4.3 , where we model a wavefield for
a using the same homogeneous model and the same monopole source. We place the
source inside the medium and extrapolate the wavefield from the surface all the way
downward first. Once the propagation operator encounters the source the wavefield is
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emitted downward. When the propagation operator returns to finish a roundtrip, it en-
counters the source again and emits the wavefield upward. Note that this process occurs
not only for the induced sources, which are often placed on the surface, but also for the
secondary sources within the subsurface. This example also shows that the extrapola-
tion operator is able to propagate the wavefield without any significant limitation on the
propagation angles even in the simple Cartesian coordinate system.

The white boundaries on both the left and the right hand sides represent the PML
layer. The wavefield energy on these boundaries is absorbed by this layer without the
need to taper the propagation operator. The quality of the PML result depends on both
the width and the slope of the relaxation function. Those parameters control the cost of
the computation. In this example we only used a width of almost 250 meters on both
sides.

(a)

(b)

Figure 4.2 Comparison between an analytical and a numerical Green’s function in a homogeneous
medium with a velocity of 2000 m/s and for a frequency of 10 Hz ; real (a) and imaginary
parts (b).
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(a)

(b)

(c)

Figure 4.3 The extrapolated wavefield for a monopole source of 15 Hz embedded in a homoge-
neous medium with a velocity of 2000 m/s. The wavefield in a) is generated when the
downward component of the source is encountered while extrapolating the wavefield
downward. Similarly for the upward propagating wavefield in b). c) shows the sum of
both wavefields in a) and b). The dashed white lines, in all figures, show the extent of
the PML. Note that finally the full angles of the wavefield are constructed.
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4.3.2. DIVING WAVES

Although the proposed method can handle generally inhomogeneous media, it is im-
portant to investigate a particularly important case of horizontally propagating waves,
which is referred to as diving wave, whose exact solution in two-dimensions for a linear
velocity gradient is given by Kuvshinov and Mulder [9]. For simplicity, we choose the x-
direction as the direction of preference. Figure 4.5a shows the time domain shot record
modeled for linearly increasing velocity model. The first arrival in this case is the direct
wave along the short offsets and turns into a diving wave at large offset, where the first
arrival time becomes curved rather than linear. The dotted red line shows the solution of
the eikonal equation obtained using the method of [10]. Note the consistency between
the two solutions.

Figure 4.5b shows a monochromatic wavefield of 15 Hz. The dotted black lines show
the eikonal solution. Note once again the consistency between the two solutions. We
also note the desired effect of the PML shown above and below, where the wavefield
is gently tapered and absorbed with minimal back-scattering off the top and bottom
boundaries.

Although we flip the coordinates and we model a diving wave in this example, we
need to point out that the wave is not strictly horizontally propagating with respect to
the flipped coordinates. In Chapter 5, we model diving waves using the z-direction as a
direction or preference but, as we will see, we have to iterate several times unlike mod-
eling with the x-direction as a direction of preference. So, in this situation, it is more
computationally efficient to model diving waves using the x-direction as a direction of
preference since no further iterations are necessary beyond the initial one.

Figure 4.4 A linearly-increasing velocity model used for modeling diving waves.
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(a)

(b)

Figure 4.5 (a) Shot gather modeled in a linearly increasing velocity model, Figure 4.4, with the
red-dashed line representing the first-arrival time modeled using the eikonal equation.
The receiver line is at 0.6 km. (b) A monochromatic wavefield of frequency 15 Hz with
black-dashed lines representing the solution of the eikonal equation. Only the right-
going wavefield is shown in both figures. Notice the consistency between the wavefield
solution and the arrival times modeled using the eikonal equation.



4

56 4. MODELING WAVEFIELDS

4.3.3. INHOMOGENEOUS MODEL
Next, we demonstrate the full wavefield modeling method using the model shown in
Figure 4.6. In this example, we assume the absence of a free surface, in addition to the
absence of an upgoing component of the source. Figure 4.7 shows the downgoing wave-
fields and upgoing wavefields for different orders of scattering. Figure 4.7a shows the
downgoing direct arrival, Equation 4.6, used to initiate further iterations.

The upgoing primary is shown in Figure 4.7b. The downgoing, as well as, the upgoing
multiples are shown in the rest of the plots (Figure 4.7c-4.7f). Since this example does
not include a free surface, nor does it include an upgoing component of the source, the
multiples, mn for a scattering order n > 0 can be computed from the difference between
the even and odd-numbered wavefieds such that m+

n = p+
2n °p+

2n°2 and m°
n = p°

2n+1 °
p°

2n°1, as demonstrated in the original work of [11]. The time-domain shot records are
shown in Figure 4.8 for each scattering order. Note that the amplitudes are thresholded
so that later multiples are also visible.

Figure 4.6 A laterally-inhomogeneous velocity model used for modeling. Although the method can
handle strongly inhomogeneous media, the model is kept relativity simple for illustra-
tion purposes.

4.4. CONCLUSION
We have implemented the wavefield generation phase of full wavefield modeling. We
implemented the Neumann iterative series, which represents one of the simplest itera-
tive methods. We first benchmarked the method with the analytical solution for a ho-
mogeneous medium and we found good agreement between the two solutions. We then
modeled diving waves using the x-direction as the direction of preference and one iter-
ation seems to be sufficient to model such wavefields using such configuration. We also
benchmarked the diving wave solution kinematically with the solution of the eikonal
equation and also found good agreement between the two solutions. We then turned
to modeling the wavefield using a more complex heterogeneous model and we found
that each iteration corresponds approximately to an order of scattering and hence this
method seems to attractive in modeling such wavefields where one is interested in the
evolution of the wavefield in terms scattering orders.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.7 The real part of monochromatic wavefields, 15 Hz, for different scattering orders. (a)
The downgoing direct arrival. (b) The upgoing primary. (c,d) The downgoing and up-
going first-order multiples, respectively, as well as, (e,f) the upgoing and downgoing
second order multiples. Note that not only the upgoing and downgoing wavefields are
obtained, but also the ones for each scattering order.
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(a) (b)

(c) (d)

Figure 4.8 A time-domain shot record for different scattering orders measured at depth level 0.02
km for the model in Figure 4.6. (a) Direct arrival. (b) Primary wavefield. (c) First-order
multiples. (d) Second-order multiples.
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5
ITERATIVE SOLUTIONS TO

MODELING WAVEFIELDS

"to be learning something is the greatest of pleasures not only to
the philosopher but also to the rest of mankind."

Aristotle [Poetics, 1448b]

Full Wavefield Modeling is a directional modeling method, which simulates wavefields
such as upgoing and downgoing wavefields. The most straightforward implementation
of such a method is to employ the Neumann’s iterative method, which is, nonetheless,
well-known not to be necessarily convergent for all situations. Thus, we use three dif-
ferent methods that represent a generalization of the Neumann’s solution; one is a precon-
ditioned overrelaxation, and the other two are preconditioned conjugate gradient and a
truncated Krylov method, the so-called GMRes. We compare the convergence of all those
methods, as well as, stationary and successive overrelaxation methods without precon-
ditioning. We find that such truncated Krylov method, i.e., GMRes, is overall faster to
converge and requires no preconditioning to ensure convergence. We show two examples,
one using a velocity model linearly increasing with depth and one using a complex salt
model adapted from the SEG SEAM model. In the first model, full wavefield modeling
provides the upgoing and downing diving waves including the horizontally propagating
constituents, while in the second model, it provides the evolution of the scattering process
with different iterations, providing insight into the actual scattering process.
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5.1. INTRODUCTION
In the previous chapter (Chapter 4), we used a simple iterative method, Neumann’s
method, to solve our modeling problem. In this chapter we investigate the convergence
of this iterative method and we compare its convergence to other methods. As we will
discuss in detail, the Neumann’s series— as a general iterative method for solving inte-
gral equations — is known not be unconditionally convergent [1]. For example, using
the nondirectional counterpart of our problem, the Lippmann-Schwinger equation, it
has been demonstrated that the Neumann series is not always convergent and its con-
vergence depends on how strong the perturbation is relative to the background model
[2]. So, one would legitimately wonder if similar behavior could be encountered in our
problem.

However, de Hoop [3] has shown that the Neumann series is theoretically convergent
in the time domain when applied to the directional modeling method. Nevertheless, it
has not been shown to be convergent in the frequency domain, which is of interest to us
since it reduces the computation cost by transforming the more expensive convolutions
into simple multiplications. Therefore, it is important to investigate if indeed the full
wavefield modeling method is convergent in the frequency domain when Neumann’s
series is used and whether it is indeed convergent in practice rather than in theory.

Throughout this chapter, we use the Neumann series as well as some of its gener-
alizations. Because of the similarity between our problem and that of the Lippman-
Schwinger equation, we use the generalizations presented by Kleinman and van den
Berg [2] and Fokkema and Van Den Berg [1]. Such generalizations have been utilized
in different papers such as [4] and [5].

5.2. NEUMANN SOLUTION
We state here the Neumann solution as a point of reference since all other solutions are
generalized forms of this fundamental solution. As we have discussed in Chapter 4, our
modeling equation is

p(x0) = p0(x0)+
Z

R3
d 3x Gp (x0,x)£££(x)p(x), (5.1)

where

p0 =
Z

R3
d 3x Gp (x0,x)s(x). (5.2)

Stating Equation 5.1 in symbolic form — as we did in Chapter 4 — but replacing Gp with
G for simplicity , results in

p = p0 +G£p, (5.3)

where p0 = Gs. Letting

L = I°G£, (5.4)

our linear inverse problem becomes

Lp = p0. (5.5)
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That is, the wavefield could be obtained by directly inverting the operator L such that

p = L°1p0, (5.6)

but as we discussed in Chapter 4, a direct solution is impractical for the size of prob-
lems we typically encounter in exploration seismology and, hence, an iterative solution
is necessary and one of the simplest solutions is that of Neumann where the iterative
solution is given by

pk = p0 +G£pk°1. (5.7)

Although, we have discussed some aspects of the Neumann series in Chapter 4, we have
not discussed how this method reduces the residual with each iteration. As it turns out
(see [2] for details), Neumann’s method reduces an l2 norm, krk, with each subsequent
iteration, k, such that

rk = G£rk°1, (5.8)

starting from the initial residual, which encompasses the direct arrival such that

r0 = G£p0. (5.9)

The iterative solution then becomes

pk = pk°1 + rk°1. (5.10)

Knowing this residual is essential for convergence comparison analysis and in cases
where Neumann’s series diverges. As it turns out, in order for Neumann’s series to con-
verge — and hence for the residual not to blow up — the norm, kG£k, needs to be always
less than one so that the operator L stays positive. Otherwise the residual increases with
each iteration rather than decreases. For such situations, one would need to look for
generalizations of the Neumann series, which we investigate next.

5.3. BEYOND NEUMANN VIA OVERRELAXATION METHOD
We present two solutions beyond that of Neumann using the so-called stationary and
successive overrelaxation methods [e.g. 2], which were used for the non-directional do-
main integral problem. Using those methods, we can generalize the Neumann solution
by simply choosing a scalar, Æ, such that it forms a cap over the residual and attempts to
prevent if from growing such that

pk = pk°1 +Ærk°1. (5.11)

We can immediately see that ifÆ= 1 then we get the exact Neumann solution, (i.e. Equa-
tion 5.10). Therefore, the Neumann method is essentially a special case of those meth-
ods and that’s why those methods are, in turn, mere generalizations of the Neumann
method. The same observation can be pointed out when the residual is derived such
that

rk = [I°ÆI+ÆG£]rk°1, (5.12)
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while the initial residual is kept the same as that of Neumann, i.e. r0 = G£p0. Substi-
tuting the residuals one can obtain the iterative wavefield solution in terms of previous
iterations of wavefields such that

pk =Æp0 + [I°ÆI+ÆG£]pk°1. (5.13)

We can observe from Equation 5.13 that the scalar Æ suppresses not only subsequent it-
erations of wavefields but even the initial solution, i.e the direct arrival. Compare that to
Neumann’s method (Equation 5.10), where no scalars are used but rather all wavefields
are left without any caps.

What remains now is only the value of the scalarÆ that can be derived using different
ways (see [2] for details) and we pick Æ such that

Æ=
r†

0(I°G£)r0

k(I°G£)r0k
, (5.14)

where the dagger refers to conjugate transpose. Then we come to the question: Why
keep Æ constant? Why could it not change with iterations so that it adapts to how large
the residual is in each iteration? Such method is called the successive overrelaxation
method [2]. Then the scalar step length Æ becomes

Æk =
r†

k (I°G£)rk

k(I°G£)rkk
, (5.15)

and hence the residual is
rk = [I°Æk I+Æk G£]rk°1. (5.16)

For implementation purposes, one can always start by implementing the first method,
stationary overrelaxation, and then progress by varying the scalar, Æ, for subsequent it-
erations. Thus, from theoretical and practical point of view, it is beneficial to consider
both methods.

5.4. PRECONDITIONED SUCCESSIVE OVERRELAXATION
We can now state even more generalized forms of the Neumann series, which were ap-
plied to the non-directional form of our integral equation (i.e. the Lippmann-Schwinger
equation) by Kleinman and van den Berg [2] . One such form is the preconditioned suc-
cessive overrelaxation method, which is almost always convergent. Such a method in-
troduces an preconditioning operator, T, such that

pk = pk°1 +Æk Trk°1. (5.17)

One could choose T = L† = (I°G£)†, where the dagger refers to the adjoint operation
(the conjugate transpose of the operator), which results in

rk = [I°Æk (I°G£)†(I°G£)]rk°1. (5.18)

Notice that the resulting operator L†L = (I°G£)†(I°G£) is always positive and hence
this method is always convergent unlike the previous ones. However, its main problem,
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as we will see in the examples, is that it is slow. Also, notice that if T = I and Æ = 1 then
we are back to the Neumann solution, (i.e. Equation 5.10).

Consequently, we can get the form that includes the wavefields such that

pk = pk°1 +Æk (I°G£)†rk°1, (5.19)

or equivalently

pk =Æk (I°G£)†p0 + [I°Æk (I°G£)†(I°G£)]pk°1. (5.20)

The step length is then

Æk =
∞∞(I°G£)†rk°1

∞∞2

∞∞(I°G£)†(I°G£)rk°1
∞∞2 . (5.21)

5.5. PRECONDITIONED CONJUGATE GRADIENT METHOD
Now, we attempt to solve the slow convergence of the previous method with the precon-
ditioned conjugate gradient method. This method uses not only one step length but two
and hence we have Æ and Ø.

While the conjugate gradient method is convergent for only positive operators, the
operator can be made positive by preconditioning with the adjoint. For our problem the
wavefields are updated such that ( see [2] )

pk = pk°1 +Æk qk , (5.22)

where
qk = (I°G£)†rk°1 +Øk°1qk°1, (5.23)

and
rk = rk°1 °Æk (I°G£)qk , (5.24)

but q1 = ro . The step lengths are then

Æk =
∞∞(I°G£££)†rk°1

∞∞2

∞∞(I°G£££)qk
∞∞2 , (5.25)

and

Øk°1 =
∞∞(I°G£££)†rk°1

∞∞2

∞∞(I°G£££)†qk°2
∞∞2 . (5.26)

5.6. TRUNCATED KRYLOV METHODS
Considering the preceding extension to the Neumann’s method, we can also consider
more step length values rather using than only two, as in the conjugate gradient method.
This brings us the Krylov method. So, the solution is obtained using a series such that

pk = pk°1 °Æk qk (5.27)
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where

qk = rk°1 +
k°1X

j=1
∞k, j q j . (5.28)

and q1 = ro . Consequently, for every single solution, all previous iterations are involved
but with different scalars, ∞k, j .

While the conjugate gradient method uses two previous iterations, the full Krylov
method [2] uses all the previous iterations in order to scale the wavefields properly. The
series can be truncated, however, to a few previous iterations — five previous iterations
for instance (i.e. j = 1 to j = k °1 if k < 6, and j = k °5 to j = k °1 if k > 6).

Another method is the one by Saad and Schultz [6], the so-called GMRes, general-
ized minimal residual method, which uses so-called Arnoldi orthogonalization to com-
pute the step lengths, while the one by Kleinman and van den Berg [2] computes them
explicitly. So, we use GMRes method, which is more widely available.

The only drawback of any truncated Krylov method is that the previous intermediate
solutions are needed instead of only one or two as in all previous methods. As a con-
sequence, one would trade off memory for CPU as we will point out in the numerical
examples.

5.7. MODELING DIVING WAVES
We apply full wavefield modeling to the velocity model shown in 5.1a in order to model
diving waves. Figure 5.2 shows the diving waves for both upgoing and downgoing wave-
fields for a single frequency of 15 Hz. The initial downgoing and upgoing solutions are
shown in Figure 5.2a and 5.2b with a zero upgoing source. The intermediate solutions
for the first two iterations are shown in Figure 5.2c-5.2f. Note how the intermediate solu-
tions reveal the horizontally propagating constituents of the diving waves, thus provid-
ing an insight into the scattering process. The solutions were computed using the GMRes
method, whose convergence plot is compared to other methods in Figure 5.3. Note that
all preconditioned methods, i.e., preconditioned stationary, preconditioned successive
overrelaxation and preconditioned conjugate gradient, are slower than the other meth-
ods, with the fastest convergence provided by GMRes. The reason is that the condition
number of the resulting operator is higher when the adjoint operator, L†, is used as a
preconditioner and the convergence is slower as a result. Note that the purpose of the
so-called preconditioning, in this situation, is not necessarily to speed up the conver-
gence but rather to guarantee it by making the resulting operator positive. We also note
the Neumann solution is convergent for this model. It remains to see if the Neumann
solution is indeed convergent for a more complex model, which is next.

5.8. MODELING IN COMPLEX MEDIA: SALT
We also model the wavefields using the velocity model shown in Figure 5.1b. The wave-
fields modeled for a frequency of 6 Hz and are shown in Figure 5.4. Note that in Fig-
ure 5.4c the update of the wavefield is mostly surrounding the wavefield passing through
the salt. The reason for such an update is that transmission effects are not included in
the propagator but added with subsequent iterations. The wavefields are computed with
GMRes, whose convergence is compared with other methods in Figure 5.5. We note that



5.8. MODELING IN COMPLEX MEDIA: SALT

5

67

(a)

(b)

Figure 5.1 Velocity models used to demonstrate the modeling method. (a) Velocity model (Model
A) containing only linearly increasing velocity for modeling diving waves. (b) Velocity
model (Model B) adapted form the SEG SEAM model, with the shallow position of the
mobile salt body.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.2 Wavefields modeled for the linearly increasing velocity model, Model A (Figure 5.1a).
The updates are shown to demonstrate how the wavefield evolves with iterations. (a)
The downgoing direct arrival, p+

0 . (b) The upgoing direct arrival, p+
0 , which is set to

zero. (c) The first downgoing residual, r+1 (d) The first upgoing residual, r°1 . (e) The
second downgoing residual, r+2 . (f ) The second upgoing residual, r°2 . (g) The final
downgoing wavefield, p+

30 and (h) the final upgoing total wavefield, p+
30.
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Figure 5.3 Convergence plot for the first model A with comparison between Neumann’s method
(N), stationary overrelaxation (StO), successive overelaxation (SuO), precondition sta-
tionary overrelaxation (PStO), preconditioned successive overrelaxation (PSuO), pre-
conditioned conjugate gradient (PCG) and GMRes.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4 Wavefields modeled for the salt model, Model B (Figure 5.1b). (a) The downgoing direct
arrival, p+

0 . (b) The upgoing direct arrival, p+
0 , which is set to zero. (c) The first downgo-

ing residual, r+1 . (d) The first upgoing residual, r°1 . (e) The second downgoing residual,
r+2 . (f ) The second upgoing residual, r°2 . (g) The final downgoing wavefield, p+

30 and
(h) the final upgoing total wavefield, p+

30.

the fastest convergence is provided with GMRes, while the slowest is provided with pre-
conditioned conjugate gradient method, due to the preconditioning with the adjoint, as
mentioned in the previous section. We also note that the Neumann solution is conver-
gent even for this more complex model.
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Figure 5.5 Convergence plot for the wavefield modeled in the SEAM-based salt model shown in
model B (Figure 5.1b).

5.9. CONCLUSIONS
We have extended the solutions of the full wavefield modeling method beyond those
of Neumann. We have presented three generalizations applied to this modeling prob-
lem; preconditioned successive overelaxation, preconditioned conjugate gradient and
a truncated Krylov method, the so-called GMRes method. We have also compared
the solutions and found that a truncated Krylov method, GMRes, provides faster con-
vergence and requires no preconditioning to assure convergence, unlike the precondi-
tioned methods, which suffer from slower convergence due to the preconditioning with
the adjoint operator. We have shown two examples; one using a model which is linearly
increasing with depth, to demonstrate diving waves. Full wavefield modeling shows
clearly the upgoing and the downgoing waves, including the horizontally propagating
constituents of the diving waves. We have also shown an example using a salt model,
which shows the full evolution of the wavefields with iterations, thus providing insight
into scattering in such a complex medium. The Neumann solutions are convergent for
both models, and hence the Neumann solution might be unconditionally convergent in
the frequency domain, similar to its time-domain counterpart, as known theoretically.
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6
MODELING OPERATORS AND

WAVEFIELDS IN QUASI-ELASTIC

TRANSVERSELY ISOTROPIC MEDIA

“What, then, impels us to devise theory after theory? Why do
we devise theories at all? The answer ... is simply: because we

enjoy “comprehending," i.e., reducing phenomena by the process
of logic to something already known or (apparently) evident.”

Albert Einstein [1]

Full wavefield modeling is a modeling process that utilizes reflection and transmission op-
erators for inhomogeneous media in order to produce the wavefields. We extend this mod-
eling process to the quasi-elastic anisotropic situation, where the elastodynamic general-
ized vertical wavenumber operator for P-waves is embedded in the acoustic formulation,
assuming transversely isotropic media. Two examples are presented; one for a homoge-
neous and the other for an inhomogeneous medium. The wavefields generated exhibit the
typical angular distortion behavior introduced by anisotropy. While useful on its own, this
extension of generalized full wavefield modeling paves the road to the inversion process,
model-independent joint migration inversion.
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6.1. INTRODUCTION
We have investigated in detail the full wavefield modeling method in the previous chap-
ters. In this chapter we extend this method to the anisotropic situation. One of the sim-
plest but realistic anisotropic situations used in exploration seismology is that of trans-
verse isotropic media although the simplest situation, elliptic anisotropy, is known not
to be realistic for exploration seismology [2]. Hence, we adopt transverse anisotropy with
vertically axis of symmetry (TIV) in this chapter.

Although the locally laterally homogeneous situation has been considered previously
[e.g., 3], we extend in this chapter the method to laterally heterogeneous TIV media and
we use the full P-wave vertical wavenumber operator rather than an approximation of it
that assumes weak anisotropy [4]. So, it is derived from the full elastodynamic situation,
but since we embed it in the acoustic situation that models solely P-wave, we refer to
such configuration as quasi-elastic.

Hence, this chapter extends the modeling process to the quasi-elastic situation
where only P-waves are modeled using their full elastodynamic generalized vertical
wavenumber operator and for the TIV situation. This chapter first starts by stating the
differential system of equations, so that we are clear on the starting configuration. Then,
we derive the generalized vertical wavenumber for P-waves from the elastodynamic sit-
uation and use it for our modeling integral equations. We then show a simple example
for a homogeneous medium followed by an example for an inhomogeneous medium.

6.2. DIFFERENTIAL SYSTEM OF EQUATIONS
We first state the two-way wave equation and the one-way wave equations similar to
those presented by Wapenaar and Grimbergen [5] and Wapenaar and Berkhout [6]. Then
we show how a key component, the generalized vertical wavenumber operator, is used
to generalize the formulation to the quasi-elastic situation. The two-way acoustic wave
equation states that (see also section 2.2.3)

@q
@x3

= Aq+d, (6.1)

where

q =
µ

p
v3

∂
, (6.2)

which encompasses the vertical particle velocity, v3, and pressure p. The operator

A =
µ

0 ° j!Ω
1

j!Ω H2 0

∂
, (6.3)

where H2 is the vertical Helmholtz operator, Ω is the density and ! is the angular fre-
quency. The source term is expressed as

d =
µ

f3

q 0 ° 1
j!@Æ( 1

Ω fÆ)

∂
, (6.4)

where f is the force component and q is the pressure source. Equation 6.1 can be de-
composed into directional wavefields, e.g. upgoing and downgiong wavefields, by ap-
plying eigen decomposition to the operator A =° j!L§L, which results in the equations
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@p
@x3

= Bp+s, (6.5)

where the operator
B =° j!§§§+£££, (6.6)

such that the scattering operator
£££=°L°1@3L. (6.7)

Opting for the so-called power-flux normalization [7] of the wavefields results in the op-
erator

H2 = Ω°1/2(H2Ω
1/2·). (6.8)

Modal decomposition can then be carried out in order to obtain the generalized
wavenumber operator such that

H1 =H
1/2
2 = Y Q1/2Y °1. (6.9)

One can obtain the directional wavefield using the composition operator such that

p = Lq. (6.10)

Thus, we have presented the basic differential system of equations, which will be ex-
tended to the quasi-elastic anisotropic situation next.

6.3. GENERALIZATION TO THE QUASI-ELASTIC ANISOTROPIC

SITUATION
Although we have presented the equations for the acoustic situation, the equations for
the elastodynamic situation are also known [e.g 6]. However, our objective is to extract
an expression for the Helmholtz operator from the elastodynamic situation and insert
it into the equations of the acoustic situation. Thus, we ultimately arrive at a situation
that is in between the acoustic and fully elastodynamic anisotropic situation, and hence
the name quasi-elastodynamic situation. This allows modeling of P-wave reflections ac-
cording to the elastodynamic anisotropy, which can play an important role in inverting
P-wave data. The vertical slowness, s3, for the TIV situation can be expressed [e.g 6, 8] as

s2
3 = 1

2c33c44
(d ° (d 2 °4e)1/2), (6.11)

where
e = c33c44(Ω° c11sÆsÆ)(Ω° c44sÆsÆ) (6.12)

and

d = (c33 + c44)Ω° [c11c33 ° (c13 + c44)2 + c2
44]sÆsÆ, (6.13)

where, for instance, c33 and c44 are the vertical compression and shear stiffness, respec-
tively. Transforming Equation 6.11 to the wavenumber and then to the spatial domain
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and using the same Fourier sign convention as that used by Wapenaar and Berkhout [6],
yields

H2 =
1

2c33c44
[D° (D ·D°4E)1/2], (6.14)

where
E = c33c44

°
!2Ω+ c11@Æ@Æ

¢°
!2Ω+ c44@Æ@Æ

¢
(6.15)

and

D =!2(c33 + c44)Ω+ [c11c33 ° (c13 + c44)2 + c2
44]@Æ@Æ. (6.16)

We can derive the H1 operator from the Helmholtz operator using modal decompo-
sition, as is done in the isotropic acoustic situation.

The solution to the wavefield can then be obtained using the same integral solution
used in Chapter 3. Although we have defined our model in terms of stiffness parameters,
the so-called Thomsen parameters [2] can also be used and we show our example models
using those parameters.

The integral solution is then given by

pk (xd ) =
Z

IR3

d 3x Gp (xd ,x)s(x)+
Z

IR3

d 3x Gp (xd ,x)£££(x)pk°1(x), (6.17)

which is the same solutions used for the acoustic situation, where k is the iteration num-
ber of the Neumann iteration scheme.

6.4. NUMERICAL EXAMPLES
We present two numerical examples to illustrate the method; one for a homogeneous
model, and the other for an inhomogeneous model. Figure 6.1 shows the wavefields
for the homogeneous isotropic situation, Figure 6.1a, and the homogeneous anisotropic
situation, Figure 6.1b, where vertical velocity vp = 2000 m/s, vertical shear velocity vs =
vp /2, ≤= 0.2 and ±= 0.2. Note that the wavefield for the isotropic situation differs from
that of the anisotropic situation. The wavefields for the anisotropic situation shows a
clear lateral and near vertical stretch. In the vertical direction, however, both wavefields
are kinematically the same since the vertical velocities are the same — a behavior that is
expected in such a situation.

We then consider the wavefields for the inhomogeneous situation. Figure 6.2 shows
the models used for vp , ≤ and±. The model for the vertical shear velocity is half that of the
vertical compressional velocity. We note again the clear kinematic differences/distortion
of the anisotropic situation relative to that of the isotropic case for both the incident and
the scattered wavefields, see Figure 6.3.

6.5. CONCLUSION
We have introduced anisotropy to the full wavefield modeling method that is valid
for inhomogeneous media. By considering a quasi-elastodynamic formulation where
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(a)

(b)

Figure 6.1 Monochromatic wavefield for a homogeneous isotropic model. (b) Monochromatic
wavefield for a homogeneous anisotropic medium. Note how stretched the wavefield
is in the horizontal and near vertical directions, as expected, compared to the isotropic
case.
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(a)

(b)

(c)

Figure 6.2 (a) Vertical compressional velocity model used for modeling the wavefields shown in
Figure 6.3. (b) ≤ model (c) ± model. The velocity model is inhomogeneous with respect
to vertical velocities and anisotropic parameters and features an anomaly in the middle
of the model.
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(a)

(b)

(c)

(d)

Figure 6.3 Monochromatic incident wavefield, p+, (a) and scattered wavefield, p°, (b) for the
isotropic situation and (c,d) for the anisotropic situation, showing p+ and p°, respec-
tively. Note that the incident as well as the scattered wavefields in the anisotropic situ-
ation exhibit kinematic distortions and, therefore, the curvature of the two wavefields
are clearly different.
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the elastodynamic generalized vertical wavenumber operator for P-waves is embedded
in the acoustic formulation, we introduced anisotropy to the full wavefield modeling
method. We have implemented the method, and we have shown two examples. One ex-
ample shows the typical behavior of anisotropy in the homogeneous situation, whereas
the other one shows both the incident and the scattered wavefields in an anisotropic
inhomogeneous medium. The anisotropy examples show clear kinematic and curva-
ture differences compared to the isotropic situation. This development paves the road
to not only understanding different phenomena, such as multiples, in anisotropic me-
dia but also (and more importantly) to understanding the so-called Model-Independent
Joint Migration Inversion process, whose goal is to obtain operators rather than model
parameters from the measured data.
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7
ELASTODYNAMIC MODELING

"A man becomes a person thanks to the intellect."

Al-Farabi

We extend in this chapter the full wavefield modeling method to the elastodynamic case.
While the acoustic case encompasses directional decomposition — where upgoing and
dowing wavefields are modeled in addition to modal decomposition, through which het-
erogeneity is properly handled — the elastodynamic case encompasses three types of de-
composition: directional, polarizational and modal. The polarizational decomposition
separates the wavefields into its constituent polarizations: quasi-P, quasi-SV, and quasi-
SH waves. We present two formulations: one is simpler to implement yet it contains no
polarizational decomposition while the other one handles all three types of decomposi-
tion. Although we begin with the most general equations for anisotropic inhomogeneous
media, we reduce those equations to the isotropic case, and we consider only P-SV waves
for simplicity. We implement only the square wavenumber operator, whose implementa-
tion closely resembles that of the acoustic case.
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7.1. INTRODUCTION
We have presented previously the acoustic version of full wavefield modeling, which can
accommodate inhomogeneous media, with various formulations, see Chapters [3-6].
We extend in this chapter our analysis to the elastodynamic situation, which is consid-
erably more involved than the acoustic case.

The elastodynamic version of full wavefield modeling is not as well developed as the
acoustic one. The theory is thoroughly discussed by various authors [e.g. 1–4] with gen-
eralizations to anisotropic media. The elastodynamic version encompasses operators
that are generalizations of the Zoeppritz equations — the basis for seismic AVO analysis
[e.g. 5] — to heterogeneous media. Different aspects of elastodynamic in seismology, as
well as, the Zoeppritz equations are discussed in various references[e.g. 6].

We start by stating the general equations of motion for anisotropic inhomogeneous
media. We then show how three distinct types of decomposition are applied to the equa-
tions. The first decomposition is directional where wavefields are decomposed into up-
going and downgoing wavefields or for that matter left-going or right-going wavefields.
The second decomposition is polarizational where different polarizations of the direc-
tional wavefields are obtained in the form of quasi-P, quasi-SV, and quasi-SH waves. The
third and final decomposition is the lateral modal decomposition, through which lat-
erally heterogeneity is accounted for in the modeling process. One can also work with
directional decomposition alone without the polarizational one. The resulting equations
are easier to normalize, manipulate and implement. However, they contain no polariza-
tional decomposition. We show the details of such approach in Appendix B.

7.2. GENERAL EQUATIONS FOR ELASTODYNAMICS IN INHO-
MOGENEOUS ANISOTROPIC MEDIA

Throughout this chapter, we follow the formulations presented by de Hoop and de Hoop
[2], Wapenaar and Berkhout [3], de Hoop [7] and some of the notation used by Wape-
naar et al. [8]. We start by stating the equations for elastodynamics in inhomogeneous
anisotropic media. The equation states that

@3qo = Ao qo +do , (7.1)

where

qo =
µ

v
øøø3

∂
, (7.2)

such that v is the particle velocity consisting of (v1, v2 , v3) and øøø3 is vertical traction
consisting of ø31, ø32, and ø33. The source is defined as

do =
µ

d1
d2

∂
, (7.3)

where

d1 = j!C°1
33æ3 (7.4)
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and
d2 =°@Æ(CÆ3C°1

33æ3 °æÆ)° f, (7.5)

where f is the force and æ3 contains the deformation sources. The stiffness matrices
are those indicated by Ci j . The operator Ao is a matrix that consists of the following
elements:

Ao =
µ

Ao
11 Ao

12
Ao

21 Ao
22

∂
, (7.6)

where

Ao
11 =°C°1

33 C3Ø@Ø, (7.7)

Ao
12 = j!C°1

33 , (7.8)

Ao
21 = j!ΩI3 °

1
j!

@Æ(UÆØ@Ø·), (7.9)

and
Ao

22 =°@Æ(CÆ3C°1
33 ·). (7.10)

Also, the matrix UÆl consists of a combination of stiffness parameters such that

UÆl = CÆl °CÆ3C°1
33 C3l . (7.11)

Note again that we use the summation convention where the subscripts Æ and Ø take on
the values 1, 2 and 3.

7.2.1. ANTI-DIAGONAL SYSTEM
In order to simplify the operator A, it can be made into an anti-diagonal matrix, by shuf-
fling the rows and columns [2]. The system can be anti-diagonal up to the mono-clinic
symmetry. The operator A then becomes

A =
µ

0 A12
A21 0

∂
. (7.12)

One can also permute the system, as demonstrated by Wapenaar and Berkhout [3],
for easier manipulation and permute it back. We will consider this permutation in detail
later in the 2D situation.

7.3. DIRECTIONAL DECOMPOSITION
Equation 7.1 can be decomposed into directional wavefields, e.g. upgoing and down-
giong wavefields, by applying eigen decomposition to the operator

A =° j!L§L,= LNL, (7.13)
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i.e. N =° j!§, which results in the equations

@pd

@x3
= Bd pd +sd , (7.14)

where
Bd =°N+£££d , (7.15)

such that the scattering operator

£££d =°L°1@3L, (7.16)

and with the resulting wavefield pd =
µ

p+
d

p°
d

∂
where

p±
d =

0

@
¡±

1
¡±

2
¡±

3

1

A . (7.17)

The resulting wavefields ¡±
i are decomposed by direction but not by polarizational de-

composition. One can obtain the directional wavefields using the composition operator
such that

pd = Lq. (7.18)

The composition operators (eigenvectors) can be defined as

L =
µ

L1 L1
L2 °L2

∂
, (7.19)

with the inverse

L°1 = 1
2

µ
L°1

1 L°1
2

L°1
1 °L°1

2

∂
, (7.20)

where L1 = A12, x L2 = N. The normalization of the eigenvectors is similar to the pressure-
normalization in the acoustic situation, as proposed by de Hoop and de Hoop [2] and
de Hoop [7].

7.4. POLARIZATIONAL DECOMPOSITION
One can also perform further decomposition of the matrix operator A such that we go
from the directional decomposition, which is

A = LNL°1, (7.21)

to further polarizational decomposition of the operator N so that

N = MHM°1. (7.22)

Then A becomes
A = LMHM°1L°1, (7.23)
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or equivalently

A = Lc HL°1
c , (7.24)

where Lc = LM and

M =
µ

Mb 0
0 Mb

∂
. (7.25)

The resulting directional wave equation then becomes

@3p = Bp+s, (7.26)

where

B =°H+£££, (7.27)

and

p =
µ

p+

p°

∂
. (7.28)

The resulting wavefields are then fully decomposed into their respective polarizations
yet they are also directional, such that

p± =

0

B@
√±

qP
√±

qSV
√±

qSH

1

CA . (7.29)

Note that pd = Lc p. The scattering operator, then, becomes

£££=°(M°1@3M+M°1£££d M) (7.30)

or equivalently

£££=°L°1
c @3Lc . (7.31)

The source term is

s = M°1L°1d (7.32)

Unlike N, which mixes different polarizations, the operator H is defined clearly as

H =
µ

j H+
1 0

0 ° j H°
1

∂
, (7.33)

where

H±
1 =

0

B@
H

±
1,qP 0 0
0 H

±
1,qSV 0

0 0 H
±
1,qSH

1

CA . (7.34)
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7.5. MODAL DECOMPOSITION
In order to include lateral heterogeneity, the medium can be treated as a waveguide with
different radiating modes. Decomposing the operators into different modes can be car-
ried out through eigen decomposition [e.g. 2, 9]. The generalized Helmholtz slowness
operator is

H2 = H H = Y•Y°1, (7.35)

and the generalized vertical wavenumber operator can be obtained by

H = Y•1/2Y°1. (7.36)

Including directional, polarizational and modal decomposition into A results in

A = LMY•1/2Y°1M°1L°1 (7.37)

or equivalently
A = Lc Y•1/2Y°1L°1

c . (7.38)

7.6. TWO-DIMENSIONAL ELASTODYNAMIC ISOTROPIC SITUA-
TION

7.6.1. NON-DIRECTIONAL EQUATIONS
We can reduce Equation 7.65 to the simple two-dimensional isotropic situation where P-
SV and SH wavefields decouple and we can consider only the P-SV waves. The operator
A in the wavenumber domain [e.g. 10] then becomes

Ão =

0

BBBB@

0 j kx j !µ 0

j kx
∏

∏+2µ 0 0 j!
∏+2µ

j!Ω+ 1
j!¥k2

x 0 0 j kx∏
∏+2µ

0 j!Ω j kx 0

1

CCCCA
, (7.39)

where

¥= 4µ(∏+µ)
∏+2µ

, (7.40)

and

qo =

0

BB@

v1
v3
ø13
ø33

1

CCA , (7.41)

where ∏ and µ are the compressional and shear stiffness. We can then re-arrange the
matrix similar the that done by de Hoop and de Hoop [2], such that

q =

0

BB@

v1
ø33
ø13
v3

1

CCA , (7.42)
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leading to

Ã =

0

BBBB@

0 0 j !µ j kx

0 0 j kx j!Ω
j!Ω+ 1

j!¥k2
x j kx

∏
∏+2µ 0 0

j kx
∏

∏+2µ
j!

∏+2µ 0 0

1

CCCCA
. (7.43)

Therefore, we now have two sub-matrices

Ã21 =
√

j!Ω+ 1
j!¥k2

x j kx
∏

∏+2µ

j kx
∏

∏+2µ
j!

∏+2µ

!

, (7.44)

and

Ã12 =
µ

j !µ j kx

j kx j!Ω

∂
, (7.45)

which we can then transform to the spatial domain such that

A12 =
µ

j !µ °@x

°@x j!Ω

∂
(7.46)

and for inhomogeneous media

A21 =
√

j!Ω° 1
j!@x

°
¥@x ·

¢
@x

≥
°∏
∏+2µ ·

¥

° ∏
∏+2µ@x

j!
∏+2µ

!

. (7.47)

7.6.2. DIRECTIONAL, POLARIZATIONAL AND MODAL DECOMPOSITION
Performing both directional and polarizational decomposition results in

@3p = Bp+= s, (7.48)

where

p =

0

BBB@

√+
qP

√+
qSV
√°

qP
√°

qSV

1

CCCA . (7.49)

Also,
B =°H+£££, (7.50)

where the scattering operator is

£££=°L°1
c @3Lc =°(M°1@3M+M°1£££d M), (7.51)

and the source term is
s = M°1L°1d, (7.52)

and the generalized vertical wavenumber operator is

H =
µ
° j H1 0

0 + j H1

∂
, (7.53)
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where

H1 =
µ
H1,p 0

0 H1,s

∂
. (7.54)

In the wavenumber domain, the square vertical wavenumber operators then become

H̃2,s =
Ω!2

µ
°k2

x (7.55)

and

H̃2,p = Ω!2

∏+2µ
°k2

x , (7.56)

which become

H2,s =
Ω!2

µ
+@2

x (7.57)

and

H2,p = Ω!2

∏+2µ
+@2

x (7.58)

in the spatial domain. The composition and decomposition operators then become (in
the wavenumber domain)

L̃ =
µ

Ã12 Ã12
Ñ °Ñ

∂
(7.59)

and

L̃°1 = 1
2

µ
Ã°1

12 Ñ°1

Ã°1
12 °Ñ°1

∂
, (7.60)

where Ã12 is given in Equation 7.45, and its inverse is

Ã°1
12 =

µ° jΩ!H̃°1
2,s j kxH̃

°1
2,s

j kxH̃
°1
2,s ° j!µ°1

H̃
°1
2,s

∂
. (7.61)

Analogous to the pressure-normalized analog, the generalized Helmholtz operator
can be obtained such that

Ñ2 = Ã21Ã12. (7.62)

where

Ñ = Ñ1/2
2

= (̃A21Ã12)1/2

= M̃H̃1/2
2 M̃°1

= M̃H̃M̃°1,

where

M̃b =
√

1 Ω!
kx

° 2kxµ
!

1 ° 2kxµ
!

!

, (7.63)

and

M̃°1
b =

√
Æ 1°Æ
kx
Ω!

°kx
Ω!

!

, (7.64)

which have mixed-normalization.
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7.7. INTEGRAL SOLUTION
The modeling or wavefield generation can be done similar to the acoustic situation that
we covered in the previous chapters. A generalized integral can be used such that for
iteration k the wavefield is given by

pk (xd ) =
Z

IR3

d 3x Gp (xd ,x)s(x)+
Z

IR3

d 3x Gp (xd ,x)£££(x)pk°1(x), (7.65)

with a the Green’s functions, Gp , such that

GGGp (xxx,xxx 0) =
µ

H(x3 °x 0
3)W+(xxx,xxx 0) 0
0 °H(x 0

3 °x3)W°(xxx,xxx 0)

∂
, (7.66)

while the propagator is now different such that

W± = exp{° j¢zH}

= Yexp{° j¢z•••1/2}Y°1,

where the elastodynamic wavenumber operator, H, is invoked.

7.8. NUMERICAL EXAMPLE
We show a simple example for a homogeneous medium with compressional velocity,
v p = 3500 m/s, and shear velocity, vs = 2300 m/s with a vs /vp ratio of 0.66. A particularly
useful feature of the modeling scheme is that it does not only provide decomposition
of the wavefields into different directions, such as downgoing and upgoing, but also it
decomposes the wavefields into different phases, compressional and shear. As expected,
the wavelength of the shear wave is smaller than to the compressional wave due to the
fact that shear velocity is lower—a fact that is s confirmed by this example.

7.9. CONCLUSION
Elastodynamic full wavefield modeling could encompass three types of decomposition:
directional, polarizational and modal. If no polarizational decomposition is needed,
one can implement a simpler version that can be easily normalized into the acoustic
equivalent of pressure, particle-velocity, and power-flux normalization. We have imple-
mented the vertical wavenumber operator and subsequently the propagator, through
which we model the homogeneous situation. Those operators closely resemble their
acoustic counterparts. Although we have derived the scattering operator which con-
tains all the elastodynamic amplitude behavior, the implementation of such an operator
is beyond the scope of the present chapter.
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(a)

(b)

Figure 7.1 (a) Compressional downgoing wavefield. (b) Shear downing wavefield. The velocity
model is homogeneous with vp = 3500 m/s and vs = 2300 m/s.
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8
TOWARDS MODEL-INDEPENDENT

JOINT MIGRATION INVERSION

"We cannot define anything precisely. If we attempt to, we get into that
paralysis of thought that comes to philosophers, who sit opposite each

other, one saying to the other, "You don’t know what you are talking
about!". The second one says, "What do you mean by know? What do

you mean by talking? What do you mean by you?"

Richard Feynman, [1, Sec. 8-2]

This chapter presents an operator-based inversion process, which is referred to as model-
independent joint migration inversion (MI-JMI).The operators ultimately sought by the
proposed JMI method are reflection and augmented transmission operators (the sum
of slowness and transmission operators), yet the reference/background operators are
only the simpler Green’s primary-only operators. The proposed method is an operator-
based model-independent approach to the inverse problem, in contrast with the model-
dependent conventional approach of Full Waveform Inversion, which not only uses the
physical model parameters, velocity and density in the acoustic situation, but also forces
the data to obey a certain model, e.g. isotropic or anisotropic. Two frameworks are pro-
posed in this chapter: one where those operators are inverted directly and another where
those operators are inverted via what is referred to as phantom sources — a combination
of operator contrasts and wavefields. An implementation of the direct framework shows
that the method is capable of distinguishing between the relatively easy to obtain vertical
heterogeneity, embedded in the reflection operator, and the more difficult to obtain lateral
heterogeneity, embedded in the augmented transmission operator. This feature, among
others, is expected to have a major influence on the inversion process, including its con-
vergence properties.
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8.1. INTRODUCTION
While we discussed modeling (i.e. the forward problem) in the previous chapters, we
turn our attention in this chapter to the inverse problem, which encompasses the for-
ward one. In other words, the inverse problem uses modeling iteratively to compare the
observed data to the synthetic ones since ultimately a valid model or solution should be
able to explain or reproduce the observations [e.g. 2, 3].

The seismic inverse problem of fitting the measured wavefields, has been tradition-
ally addressed with the full waveform inversion (FWI) method [4, 5], as it is referred to in
the geophysical literature. Other methods that are similar are those of the inverse scat-
tering, which are developed perhaps in different disciplines but are treated coherently in
applied mathematics [e.g. 6]. One such method is the so-called contrast source method
[7]. However, all those methods have something in common; they solve for the actual
physical parameters, such as velocity and density in the acoustic situation, for instance.
While they attempt to match synthetic waveforms with the observed ones, they are fun-
damentally built on a core engine which is migration. In other words, they are based on
migrating or backprojecting data residuals iteratively in order to match the waveforms
[5].

Starting from migration, let us take a step back and attempt to look at the broader
picture of this type of inverse problems. Those inverse problems can be classified into
different categories. The first category is only simple qualitative imaging, i.e. migra-
tion. An assumption of migration is that a reasonable smooth model is given; that is,
non-blocky with generally no sharp boundaries. The output of migration is a qualita-
tive image that shows those boundaries. Because only smooth models are given, mainly
primary events, i.e. the first order of scattering, that get migrated properly but not mul-
tiples, i.e. further orders of scattering. The book of Berkhout [8] among others [e.g. 9–11]
talk about this basic process, upon which further methods are based.

The second category aims for quantitatively accurate images of reflectivity using pri-
maries and/or multiples. The quantitatively accurate image can then be analyzed and
used as an input to AVO/AVA analysis. If the primary wavefield is of concern, then linear
iterative migration of the data is performed; a process referred to as a primary wave-
field migration by Berkhout [12]. Another analogue methods are those of least-squares
migration [13], or the more direct methods that are often referred to as true amplitude
migration [e.g. 14, 15]. One could also aim for a migration of multiples (or one could
argue removing them) by iterative non-linear migration, which is also refereed to as full
wavefield migration [12, 16].

The third category aims for a model, in addition to a quantitatively accurate image
using non-linear iterative migration. That is referred to as JMI [17, 18]. Another analogue
to JMI is FWI yet no quantitative reflectivity image is produced in most FWI processes,
although a qualitative one is used by some variants of FWI such as the so-called Tomo-
graphic FWI [19].

The fourth category, which is perhaps the most general one, aims for a data-adaptive
inversion that let the data determine its physics model similar to the well-known process
of SRME [20–22]. Therefore, rather than forcing a model on the data, we let the inversion
adapt to the model provided by the actual data.

This chapter proposes an underlying representation — derived and discussed briefly
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in Chapter 2 — which includes this type of data-adaptive inversion. It is so general that it
compasses those basic methods such as JMI and FWM as special cases so we focus only
on it.

We will look at the inverse problem. We also propose two different frameworks to
solve this operator-based inversion method.

One framework inverts operators directly, that is, without using or inverting for any
intermediate variables. Another method is akin to the so-called contrast source inver-
sion method — mentioned previously — in such a way that it inverts the operators
through intermediate variables referred to in this chapter as phantom sources. Another
framework uses the full Green’s functions rather than the primary-only Green’s func-
tions, used by the previous two methods. While using the primary Green’s functions of-
fers simplicity and computational efficiency, using the full Green’s functions might have
other advantages that have to do with multiples, but we leave this method to Appendix
C.

We, then, analyze the problem for laterally homogeneous media. Finally, a numerical
example is shown, revealing different key aspects of the method including its tendency to
isolate vertical heterogeneity, which is easier to obtain, from lateral heterogeneity, which
is harder to obtain.

8.2. THE UNDERLYING REPRESENTATION
As we have discussed briefly in Chapter 2, the purpose of those representations derived
there is to ultimately utilize them for inversion; that is for inferring information about
the medium from the recorded wavefield. One such representation — which we pointed
out previously (Equation 2.53) — that could be used for such a purpose is repeated here
as follows:

p(xd ) =
Z

Ds

d 3x G0
p (xd ,x)s(x)+

Z

Dp

d 3x G0
p (xd ,x)≠≠≠(x)p(x), (8.1)

or equivalently

p(xd ) = pr e f (xd )+
Z

Dp

d 3x G0
p (xd ,x)≠≠≠(x)p(x), (8.2)

by letting pr e f (xd ) =
R

Ds

d 3x G0
p (xd ,x)s(x).

However, one could rightfully ask that of all those representations given in Chapter
2, why would one pick Equation 8.1 in particular? In order to address this question, let
us remind ourselves of what≠≠≠ is composed of.

The operator≠≠≠ in this situation is nothing but a composition of the operator R and
T for the actual state and a slowness perturbation or a slowness contrast to the reference
state, i.e. j!±§, and hence

≠≠≠(xxx) =
µ
°+(xxx) R°(xxx)
R+(xxx) °°(xxx)

∂
, (8.3)

where
°± =® j!±§(xxx)±T ±(xxx). (8.4)
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It follows that this representation is suitable because it contains a difference between
what is in inversion a known reference or starting state and an unknown actual state, un-
like the other representations that contain perhaps a single reference state or that con-
tain no contrast to the slowness operator, which is what is actually pursued in inversion.
The other justification of using this representation — as opposed to Equation 2.44 — is
that this representation contains the primary, G0

p , rather than the full Green’s functions
G0

f .
For clarity, we start by recasting Equation 2.44 with ±B(x) written explicitly such that

p(xd ) =
Z

Ds

d 3x G0
f (xd ,x)s(x)+

Z

Dp

d 3x G0
f (xd ,x)±B(x)p(x), (8.5)

where

G0
f (xd ,x) =

√
G0

f
+,+(xd ,x) G0

f
+,°(xd ,x)

G0
f
°,+(xd ,x) G0

f
°,°(xd ,x)

!

, (8.6)

whereas

G0
p (xd ,x) =

µ
H(xd ,3 °x3)W +

0 (xd ,x) 0
0 °H(x3 °xd ,3)W °

0 (xd ,x)

∂
, (8.7)

so the computational complexity is significantly reduced when using G0
p as opposed to

G0
f . It is reduced not only because two Green’s functions are not computed in the an-

tidiagonal of matrix in Equation 8.7, but also because the full Green’s functions contain
all orders of scattering and require further iterations for computing them, unlike the pri-
mary Green’s function, which does not require any iteration — it can be derived directly
from the wavenumber operator [see 23].

However, since all orders of scattering are contained in G0
f , it is not obvious what im-

pact would it have on multiples and whether its computational complexity could result
in any advantage at all. Thus, it is not wise to disregard it completely at this point, and
hence, it is covered in Appendix C.

In the next two sections, we will look at two different frameworks of solving the in-
verse problem. One inverts the operator ≠≠≠ directly and the other one does so through
intermediate solutions, which we refer to as phantom sources, akin to the ones used in
the contrast source inversion method [7].

8.3. FIRST FRAMEWORK: OPERATOR INVERSION
Let us now look at the inversion scheme involving inversion of operators directly. The
framework is described schematically in Figure 8.1.

Casting Equation 8.2 in symbolic form for easier subsequent mathematical manipu-
lation yields

p = pr e f +Gp≠p, (8.8)

where we drop the superscript 0 of G0
p for simplicity. We can then state the objective of

the inversion scheme through the so-called objective functional

¡mea =
X

i
krik , (8.9)
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Figure 8.1 A schematic diagram that shows the workflow of MI-JMI where the input is the mea-
sured data with initial reflection and augmented transmission operators. Those opera-
tors are then updated iteratively and represent the final output.

which contains a residual to be reduced, summed over shot index, i . The residual can be
expressed explicitly as

r = pmea ° (pr e f +Gp≠≠≠p), (8.10)

which is a difference between measured wavefield, pmea and synthetic or modeled one
expressed by (pr e f +Gp≠≠≠p).

We are then interested to find the gradient of the objective functional, since a
gradient-based optimization scheme is typically needed for such large-scale problems
as ours. The gradient is then

@¡mea,n

@≠≠≠
= ±≠≠≠n = 2G†

p,n rn°1p†
n , (8.11)

where the dagger refers to the adjoint operation — the conjugate transpose of the oper-
ator. Finally, the iterative scheme becomes

≠≠≠n =≠≠≠n°1 °Æn±≠≠≠n . (8.12)

where the step length Æ can be derived easily depending on the inversion scheme.
It is evident that when working with inverse problems, some sort of regularization is

needed [e.g 3]. That is typically achieved by adding a term to the objective functional
such that the norm of the model space is minimized after applying a regularization op-
erator L, which is typically subject to empirical test (i.e. trial and error) and determined
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by the user. In mathematical form

¡r eg ,n =∏n kL≠≠≠nk , (8.13)

where ∏n is typically chosen empirically or through for instance the so-called L-curve
analysis [see e.g. 2, 3]. Since it adds some complexity fo the formulas above, the regular-
ization term is kept separate.

8.4. SECOND FRAMEWORK: PHANTOM SOURCE INVERSION
We turn our attention to an alternative framework, which we propose in this section. Its
advantage is that it uses even simpler Green functions. They are for homogeneous me-
dia, although they are not required to be. Choosing Green’s functions for homogeneous
media, as in the case of conventional contrast source inversion, provides us with the
opportunity of turning the convolution with Green’s functions, G0

p (x,xs ) into multiplica-
tion in the wavenumber domain. That is because the Green functions for homogeneous
media is G0

p (x°xs ); that is, the non-stationary convolution is converted into a station-
ary one [see 24] and in the wavenumber domain it turns into scalar multiplication with
G̃0

p (k). That was realized by Stolt [25] and that’s the basis of the so-called Stolt migration.
Hence, at the core of this method is the simple yet powerful Stolt migration when applied
in the wavenumber domain.

Let us now define those phantom sources upon which this method is based. We can
define the phantom sources as

ŝ(x) =≠≠≠(x)p(x). (8.14)

Then, substituting Equation 8.14 into Equation 8.2 results in

p(xd ) = pr e f (xd )+
Z

Dp

d 3x G0
p (xd ,x)ŝ(x). (8.15)

The objective functional of this method is then the same as Equation 8.9, but the residual
now is expressed in terms of the phantom sources such that

r = pmea ° (pr e f +Gp ŝ). (8.16)

The gradient of the misfit functional becomes

@¡mea,n

@ŝ
= ±ŝn = 2G†

p rn°1, (8.17)

where G†
p refers to the adjoint operator. The gradient weighting factor, Øn is

Øn =
P

i < ±ŝn ,±ŝn °±ŝn°1 >P
i < ±ŝn°1,±ŝn°1 >

. (8.18)

Then, the modified gradient, ±ŝ0n , is computed such that

±ŝ0n = ±ŝn°1 °Øn±ŝ0 (8.19)
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and the step length direction, Æn , such that

Æn =
P< ±ŝn ,±ŝ0n >

P∞∞Gp±ŝ0n
∞∞ . (8.20)

Finally, the phantom source is then updated, where

ŝn = ŝn°1 °Æn±ŝn . (8.21)

Estimating the actual operator requires another inverse problem. A different objec-
tive functional is then used for deriving the actual operator,≠≠≠, containing the reflection
and augmented transmission operators. The objective functional for this scheme is

¡op =
X

i

∞∞q̄i
∞∞ , (8.22)

where q̄i is the phantom source residual such that

q̄i = ŝi °≠≠≠pi . (8.23)

We then derive the gradient of the operator objective functional with respect to the de-
sired operators such that

@¡op

@≠≠≠m
= ±≠≠≠m(x,x0) =

X

i

√
ŝ+i ,m p+

i ,m
† ŝ+i ,m p°

i ,m
†

ŝ°i ,m p+
i ,m

† ŝ°i ,m p°
i ,m

†

!

, (8.24)

which is then used for updating the weighted gradient ±≠≠≠0
m such that

±≠≠≠0
m = ±≠≠≠0

m°1 °≤m±≠≠≠m . (8.25)

Finally, the actual gradient≠≠≠m is updated such that

≠≠≠m =≠≠≠m°1 °∞m±≠≠≠
0
m . (8.26)

The weighting factors ≤m and ∞m can be derived in a similar manner to the Æ and Ø,
derived previously.

8.5. NUMERICAL EXAMPLE AND DISCUSSION
The foundation of an inverse problem, like ours, lies on the gradient of the misfit func-
tional for it is used to update the model iteratively. Hence, generating such a gradient
reveals the core of the inverse engine and many aspects of the method. The gradient
contains essentially the update to the model except for a scale factor and in some cases,
it might require some preconditioning or regularizations.

We compute the gradient, using the first framework, for what might seem a peculiar
model in Figure 8.2. This model is chosen on purpose — to reveal some keys aspects of
this method. It contains only a perturbation with only vertical and horizontal dips.

The gradients of reflection and augmented transmission operators — computed and
stacked for a frequency of 10 Hz — are shown in Figure 8.3. The reflection operator
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seems to be similar to the reflection images we get in conventional migration, although
it is missing entirely the vertical dips. This is expected if we examine the theory closely
to realize that the direction of preference is vertical and hence the reflection operator is
only that of the vertical direction — not the horizontal one. That is to say that the re-
flection operator is almost a vertical derivative of the model and thus contains no lateral
variations of the model.

The fact that the lateral heterogeneity is missing from the reflection operator seems
to be a weakness in this method unless it is obtained via other means. If we examine the
augmented transmission, shown in Figure 8.3b, we can see that it does indeed contain
the lateral heterogeneity. It also seems relatively smooth and, hence, heavy smoothing
or regularization may not be required.

Hence, this method obtains a term (reflection operator) that has no lateral variations
but it obtains another term that contains all the lateral variations. One could realize that
this fact agrees with the theory by examining the vertical wavenumber operator, which
contains all the lateral heterogeneity.

We see that the bulk of this lateral heterogeneity is present in this gradient of aug-
mented transmission shown in Figure 8.3b. It is not completely resolved as we would
expect, but it is a reasonable start. As well-known in FWI literature, great amount of re-
search just goes into shaping and steering this gradient to make it closer to reality. In our
situation, we start with a reasonable gradient, which is encouraging.

Another encouraging property of this method is the fact that it is capable of sepa-
rating a term that contains all the lateral heterogeneity, i.e. augmented transmission
operator, from a term that contains none of it, i.e. reflection operator. Since lateral het-
erogeneity is harder to obtain from seismic data as opposed to vertical heterogeneity,
otherwise we would not need such complicated methods, we end up with essentially a
term that contains information that is easier to obtain — the reflection operator — and
a term that contains information that is harder to obtain — the augmented transmission
operator. Then, the easier information could assist in obtaining the more difficult one.
So, one could think of this method as operator inversion assisted by reflectivity as this
kind of assistance makes it seem gradual and hierarchical in nature.

Figure 8.2 A velocity model containing an anomaly of 2500m/s and a background velocity of 2000
m/s. The model contains two extreme situations; vertical and horizontal dips, which
are suitable for illustrating the method.
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(a)

(b)

Figure 8.3 A stack of of the estimated gradients for the vertical reflection operator from above, R+,
and a stack of the estimated gradient for the augmented transmission operator from
below °°. The stacks are for data containing only a single frequency of 10 Hz and are
only for the first iteration of inversion. Note that the vertical reflection operator does not
contain the vertical dips, but it contains the more easily-obtained horizontal ones. The
augmented transmission operator, in contrast, attempts to find the vertical dips and all
the difficultly-obtained lateral heterogeneity.

8.6. CONCLUSION
We have presented a completely operator-based model-independent method for seis-
mic inversion. The method does not require the use of actual physical model parame-
ters, such as velocity and density in the acoustic situation, and only updates operators.
The operators are those pertaining to reflection and augmented transmission (the com-
bination of transmission and essentially a slowness perturbation). Two frameworks are
proposed; one that directly inverts for the operator and the other inverts for them but via
phantom sources, which involve the wavefields and the desired operators. A numerical
example demonstrates the implementation of the gradient of misfit functional — an es-
sential step towards analyzing this method. The example shows that while one operator
contains all the lateral heterogeneity, the other (reflection operator) contains none —
only vertical heterogeneity. So, the method tends to separate information that is easier
to obtain, i.e. vertical heterogeneity, from information that is more difficult to obtain,
i.e. lateral heterogeneity. We expect that this feature of separating lateral from vertical
heterogeneity, among others, to have a positive impact on the inversion process.
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9
CONCLUDING REMARKS

" Absence of understanding does not warrant absence of existence."

Avicena

We have started this dissertation with an introduction in which we clarified our ob-
jective, which is to investigate operator-based, model-independent methods for mod-
eling, imaging and inversion. We started in chapter 2 by deriving actual representation
theorems that can be used for such an objective and we classified them as directional
and non-directional, while each is further categorized into operator-based and model-
based methods.

We clarified what we mean by model-based methods as those that explicitly define
the model — The Earth, in our situation, — as for instance an isotropic, lossless medium;
while the operator-based methods allow a more abstract formulation that has less biased
tendencies towards such specific models. Although, we have derived several represen-
tations, we have investigated two of them for modeling and inversion. Both represen-
tations use primary Green’s functions, while the full Green’s function could also be used
and is investigated in Appendix B.

We then investigated those operators and specifically the ones for heterogeneous
media. We defined two types of operators: those for heterogeneous but differentiable
(i.e. smooth) media and those for heterogeneous but vertically discontinuous media. We
implemented the modeling method using current knowledge of boundary conditions
using the so-called stretch-coordinate PML and we also looked for curves that show the
variation of slowness and reflection coefficients in heterogeneous media; and we found
them deviating from the ones for laterally homogeneous media, as one would expect.

We compared the slowness curves for laterally heterogeneous media and the ones
that belong to the situation involving two homogeneous half spaces, which is used in the
so-called Zoeppritz equations. What we found is that lateral heterogeneity dictates that

107
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those slowness curves deviate from the known circular ones and become dispersive (i.e.
change with frequency) unlike the homogeneous situation, where they form a circle that
remains frequency-independent. We also compared the propagator, the W operator, and
we found that the one commonly used in migration algorithms artificially introduces
laterally changing operators but the one we introduce for heterogeneous media changes
in both lateral position as well as with local offset.

Although we only described and generated wavefield operators in Chapter 3, we
modeled the full wavefields in Chapter 4, using a straight forward implementation us-
ing Neumann’s iterative method. We first benchmarked the method with an analytical
solution, a homogeneous Green’s function, with a monopole source, which is what we
often assume in exploration seismology, and we find reasonable agreement. We then
modeled diving waves and benchmarked the solution with that of the eikonal equation.
In this example we showed that one is free to choose the direction of preference and it
may be advantageous to not always use the vertical one. We chose to use the horizontal
one in this example and we managed to find the solution with a single iteration; thanks
to the operators that can handle lateral heterogeneity. We also modeled wavefields for a
heterogeneous model where we showed that different Neumann iterations correspond
approximately to an order of scattering and, hence, multiples can be modeled and re-
vealed through such a method.

While Neumann’s method seems reasonable to start with, it is not guaranteed to con-
verge, as one would suspect. Although it has been theoretically (but not numerically)
shown to converge in the time domain, it is known not to always converge in the fre-
quency domain. So, we investigated the convergence in Chapter 5 and we compared it to
several methods. We found it surprisingly convergent for both the simple and the com-
plex salt models we used. Although some other methods such as GMRes could converge
faster at the expense of saving a few iterations in memory. Nonetheless the difference in
saving does not seem to be warranted compared to Neumann’s iterations.

Since we are dealing with operators that could be more abstract and hence can
accommodate anisotropic or lossy media, we investigated the forward problem for
anisotropic media and we implemented the one for transversely isotropic media in
Chapter 6. As it turns out, unlike the conventional approach that assumes zero vertical
shear-wave velocity, we can directly implement the operator without such an assump-
tion since we are able to evaluate the fractional derivatives. So, it seemed more straight-
forward to extend this method to anisotropy than the conventional methods based on
direct implementation of two-way wave equation.

We then turn our attention to the elastodynamic situation and we derive the equa-
tion while pointing our clearly that one would could use directional, polarizational and
modal decomposition. The directional decomposition would separate the wavefields
into upgoing and downing wavefields, the polarization decomposition decomposed the
wavefields into compressional and shear waves, while the modal decomposition incor-
porated lateral heterogeneity. We could implement the method and computed the wave-
field for both compressional and shear waves.

We then look into the inverse problem in Chapter 8; where we make the distinction
between two inverse problems; one for imaging where one has reasonable knowledge
of the macromodel and would like to obtain reflection and/or transmission operators;



9

109

and one where one would like to obtain not only those operators but those of the macro-
model represented by the vertical wavenumber or vertical slowness operators. We lay
the groundwork in this chapter for both methods and we show that such a methodology
is feasible.

In summary, we have investigated the wavefield operators, and developed the full
forward problem for acoustic, quasi-elastic anisotropic and elastic media and we looked
at those operators and we have also laid the groundwork for the inverse problem using
those operators.

While we have investigated many aspects to operator-based modeling and inver-
sion in this dissertation, we do not claim by any means that we have done a perfectly
thorough investigation that does not require any further work. On the contrary, many
aspects can be investigated further and could be a subject to future research. One of
those aspects is a full-fledged implementation of our proposed operator-based inversion
method, MI-JMI, with a test of anisotropy or lossy media using the anisotropic modeling
framework we propose in this thesis with further application from synthetic to field data.
Another aspect could be the full extension of the modeling method to the elastodynamic
anisotropic situation with the extension to three dimensions. We have not looked at
computational efficiency and many methods could be used to speed up the implemen-
tation both for modeling or inversion. The full production-ready solution would require,
before hand, thorough investigation of the full extension to three-dimensions and the
computational requirements, including CPU and memory requirements. In summary,
what is needed next could be similar in breadth to the investigation that was conducted
to mature such methods as migration and Full Waveform Inversion.
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DERIVATIONS AND DETAILS

RELATED TO CHAPTER 2

A.1. DERIVATION OF OPERATOR-BASED LIPPMANN-
SCHWINGER EQUATION

As stated in Equation 2.35, the reciprocity theorem involving the Helmholtz equation [1,
p. 172] is

¬(xd ) p(xd ) =
Z

D

d 3x GH (xd ,x)s(x)

+
Z

D

d 3x
£
!2GH (xd ,x)±∑(x)p(x)°@kGH (xd ,x)±l (x)@k p(x)

§

+
I

@D

d 2x
£
GH (xd ,x)

©
l (x)@k p(x)

™
°p(x) {l (x)@kGH (xd ,x)}

§
nk ,

(A.1)

where the characteristic function ¬(xd ) is defined in Equation 2.29. Applying the chain
rule to the term involving the lightness — inverse density — contrast in Equation A.1,
yields the identity

Z

D

d 3x @kGH (xd ,x)±l (x)@k p(x) =
Z

D

d 3x
£
@k {GH (xd ,x)±l@k p(x)}°GH (xd ,x)@k {±l@k p(x)}

§
.

(A.2)
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Then, applying Gauss’ divergence theorem to the first term in Equation A.2 yields
Z

D

d 3x @kGH (xd ,x)±l (x)@k p(x) =
I

@D

d 2x
£
GH (xd ,x)±l@k p(x)

§
nk

°
Z

D

d 3x
£
GH (xd ,x)@k {±l@k p(x)}

§
.

(A.3)

Substituting Equation A.3 into the main Equation A.1 results in

¬(xd ) p(xd ) =
Z

D

d 3x GH (xd ,x)s(x)

+
Z

D

d 3x
£
!2GH (xd ,x)±∑(x)p(x)+GH (xd ,x)@k {±l@k p(x)}

§

+
I

@D

d 2x
£
GH (xd ,x)

©
l0(x)@k p(x)

™
°p(x) {l (x)@kGH (xd ,x)}

§
nk ,

(A.4)

which can also be written as

¬(xd ) p(xd ) =
Z

D

d 3x GH (xd ,x)s(x)

+
Z

D

d 3x GH (xd ,x)
£
!2±∑(x)+@k (±l@k ·)

§
| {z }

±L

p(x)

+
I

@D

d 2x
£
GH (xd ,x)

©
l0(x)@k p(x)

™
°p(x) {l (x)@kGH (xd ,x)}

§
ni .

. (A.5)

Letting the domain be unbounded in a homogeneous embedding [see 2, p. 172] so
that the surface integrals vanish when the Sommerfeld radiation condition is applied
(see e.g. [see e.g. 1, p.165], we finally arrive at

p(xd ) =
Z

IR3

d 3x GH (xd ,x)s(x)+
Z

IR3

d 3x GH (xd ,x)
£
!2±∑(x)+@k (±l@k ·)

§
| {z }

±L

p(x), (A.6)

which is identical to that derived by Taylor [3, p. 133], albeit it was derived for
Schrodinger equation and using a simple operator identity involving forward and in-
verse operators. The equation is also discussed by Weglein et al. [4] and derived by Stolt
and Weglein [5, p. 132], although their derivation is different from ours.

A.2. DERIVATION OF OPERATOR-BASED NON-DIRECTIONAL

REPRESENTATION
We can also express the wave equation in only vertical particle velocity, v3, and pressure,
p, leading to the coupled equations [e.g. 1]
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(
@3p + j!Ωv3 = f3

@3v3 ° 1
j!Ω H2p = q 0 ° 1

j!@Æ( 1
Ω fÆ),

(A.7)

where

H2 =
!2

c2 +Ω@Æ(
1
Ω
@Æ ·). (A.8)

Another form is to express Equation A.7 as

@3q = Aq+d, (A.9)

where

q =
µ

p
v3

∂
, (A.10)

A =
µ

0 ° j!Ω
1

j!Ω H2 0

∂
, (A.11)

and the source term is expressed as

d =
µ

f3

q 0 ° 1
j!@Æ( 1

Ω fÆ)

∂
. (A.12)

We derive in this appendix the operator-based non-directional reciprocity theorem.
We first start by applying the chain rule to the interaction quantify @3(pa v3,b ° v3,a pb),
after which we substitute the resulting terms using the wave equation and we rearrange
the terms as follows:

@3(pa v3,b ° v3,a pb) = v3,b@3pa +pa@3v3,b ° [v3,a@3pb +pb@3va,3]

= v3,b[ f3,a ° j!Ωa v3,a]+pa[sb +
1

j!Ωb
H2,b pb]

° v3,a[ f3,b ° j!Ωa v3,b]°pb[sa +
1

j!Ωa
H2,a pa]

= v3,b f3,a +pa sb + v3,a f3,b +pb sa

+ j!v3,b v3,a±Ω+
1

j!
pa pb±H̃2.

(A.13)

Then we apply Gauss’ divergence theorem to obtain

Z

@D

d 2xh [pa v3,b ° v3,a pb]n3 =
Z

D

d 3x [vb f3,a +pa sb + v3,a f3,b +pb sa]

+
Z

D

d 3x [ j!v3,b ±Ω v3,a +
1

j!
pa ±H̃2 pb],

(A.14)

which can be written as operator form
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Z

@D

d 2xh {qT
a Nqb}n3 =

Z

D

d 3x qT
a N±Aqb +

Z

D

d 3x
£
qT

a Nqb +dT
a Nqb

§
, (A.15)

where

N =
µ

0 1
°1 0

∂
, (A.16)

qa =
µ

pa
v3,a

∂
, (A.17)

and qb is similarly defined but with replacing the subscript from a to b. Replacing qa
with the Green’s function, GA (and hence da = I), qb with q, db with d and assuming that
the medium in unbounded, we then arrive at

q(xd ) =
Z

IR3

d 3x GA(xd ,x)d(x)+
Z

IR3

d 3x GA(xd ,x)±A(x)q(x). (A.18)

A.3. GREEN’S STATES
Green’s functions can be normalised, and hence defined, in different ways. In this sec-
tion, we define explicitly the Green’s functions used in different representations. We start
with the Green’s function for the Helmholtz equation, which can be defined as

{@i ( l @i ·)+!2∑}GH (x, xs ) =°±(x °xs ). (A.19)

We can then define the Green’s matrix used in Equation 8, which can be defined as

@3GA(x,xs )°A(x)GA(x,xs ) = I±(x°xs ), (A.20)

where the constituents of GA are as follows:

GA =

0

B@
Gp, f

A Gv3, f
A

Gv3,q
A Gp,q

A

1

CA , (A.21)

where the superscripts indicate the receiver and source types, respectively.
Next, we define the various directional Green’s functions used in Section 2.6. The

full wavefield Green’s matrix, G f , that encompasses primary and multiple interactions is
thoroughly derived and discussed by Wapenaar [6]. It is defined as

@3G f (x,xs )°B(x)G f (x,xs ) = I±(x°xs ), (A.22)

which, for clarity, can also be written as

@3G f (x,xs )+ { j!§§§(x)+R+T}G f (x,xs ) = I±(x°xs ), (A.23)
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where

G f (x, xs ) =
√

G+,+
f (x, xs ) G+,°

f (x, xs )

G°,+
f (x, xs ) G°,°

f (x, xs )

!

. (A.24)

The superscripts (±,±) refer to the propagation direction at the detector, at location x,
and at the source, at location xs , respectively.

We then define the Green’s matrix Gr as

@3Gr (x,xs )+ { j!§§§(x)+R}Gr (x,xs ) = I±(x°xs ), (A.25)

where

Gr (x, xs ) =
µ
G+,+

r (x, xs ) G+,°
r (x, xs )

G°,+
r (x, xs ) G°,°

r (x, xs )

∂
. (A.26)

Note that the Green’s matrix Gr is defined by eliminating the transmission operator, T,
while keeping the reflection operator, R, in addition to the slowness operator§§§(x), which
so essential that without it no propagation occur.

We can then eliminate the reflection operator while keeping the transmission oper-
ator to arrive at the transmission Green’s matrix, Gt , defined as

@3Gt (x,xs )+ { j!§§§(x)+T}Gt (x,xs ) = I±(x°xs ), (A.27)

where

Gt (x,xs ) =
µ

H(x3 °xs,3)V +(x,xs ) 0
0 °H(xs,3 °x3)V °(x,xs )

∂
, (A.28)

in which H is the Heaviside function and V is the propagator that includes transmission.
We can then define the so-called primary Green’s matrix, Gp , as

@3Gp (x,xs )+ j!§§§(x)Gp (x,xs ) = I±(x°xs ), (A.29)

where

Gp (x,xs ) =
µ

H(x3 °xs,3)W +(x,xs ) 0
0 °H(xs,3 °x3)W °(x,xs )

∂
, (A.30)

and W is the primary propagator, which — unlike V — does not include transmission.
However, those two operators share the feature that they both model primary-only inter-
actions, while the constituents of G f and Gt model both primary and multiple interac-
tions, with the difference being that one includes transmission (G f ) while the other (Gt )
does not.

We also note that the Green’s matrices, G0
f , G0

r ,G0
t and G0

p of the background medium
are defined similarly to their counterparts in the actual medium with the exception that
the operators used are those of the background medium rather than the actual one.

The Green’s functions related to particle velocity and pressure wavefields are defined
as

(
j!ΩQq

i (x,xs )+@i Gq (x,xs ) = 0

j!∑Gq (x,xs )+@i Q f
i (x,xs ) = ±(x°xs ),

(A.31)
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and

(
j!ΩQ f

i , j (x,xs )+@i G f
j (x,xs ) = ±(x°xs )±i , j

j!∑G f
j (x,xs )+@i Q f

i , j (x,xs ) = 0,
(A.32)

where ±i , j is the Kronecker delta.

A.4. SIXTEEN-COMPONENT NON-DIRECTIONAL REPRESENTA-
TIONS

Given a volume injection source, such as a marine seismic air-gun or a force source such
as a marine seismic vibrator, eight-component data can be acquired with existing tech-
nology using four-component receivers, i.e. pressure and and the three components of
particle velocity. Eight other components can also be acquired with lateral force sources
to make a total of sixteen components.

In order to analyze and invert such data one would need to use the appropriate inte-
gral equation with the proper Green functions. We state here the respective representa-
tion, all are derived from the general form. The representation of pressure due to vertical
or lateral force sources is given as

pi (xd ) =°
Z

D

d 3x ±i , j Qq
j (xd ,x) fi (x)

° j!
Z

D

d 3x [Gq (xd ,x)±∑(x)p(x)°Qq
i (xd ,x)±Ω(x)vi (x)].

(A.33)

The representation of pressure due a volume injection source is given as

p4(xd ) =
Z

D

d 3x Gq (xd ,x)q(x)

° j!
Z

D

d 3x [Gq (xd ,x)±∑(x)p(x)°Qq
i (xd ,x)±Ω(x)vi (x)].

(A.34)

The representation of particle velocity due to lateral or vertical forces sources is given as

v j ,i (xd ) =
Z

D

d 3x ±i ,kQ f
k, j (xd ,x) fi (x)

+ j!
Z

D

d 3x [G f
j (xd ,x)±∑(x)p(x)°Q f

i , j (xd ,x)±Ω(x)vi (x)].
(A.35)

The representation of particle velocity due a volume injection source is given as

v j ,4(xd ) =°
Z

D

d 3x G f
j (xd ,x)q(x)

+ j!
Z

D

d 3x [G f
j (xd ,x)±∑(x)p(x)°Q f

i , j (xd ,x)±Ω(x)vi (x)].
(A.36)
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A.5. WAVE EQUATION IN PARTICLE-VELOCITY ONLY
For completeness, one can also derive a vector Helmholtz equation containing only par-
ticle velocity. The result is

@i (K@ j v j )+!2Ωvi = @i (K q)° j! fi , (A.37)

where K = 1/∑, which is the bulk modulus. We can then derive reciprocity theorem and
domain-boundary representation and so on. We state here the scalar Helmholtz equa-
tion for comparison. The scalar Helmholtz equation states that

@i ( l @i p)+!2∑p = @i ( l fi )° j!q. (A.38)

Note that not only the receiver is assumed different (i.e. particle velocity vs pres-
sure) but also the sources are defined differently and hence the Green functions are also
different. The Green’s functions can be defined as

{@i (K@ j ·)+!2Ω}Qv
i (x °xs ) = ±(x °xs ). (A.39)

Alternatively, one can distinguish between the different Green’s functions based on
its source and the resulting Green’s functions are then Q̃q

i , j (due to the presence of a spa-

tial derivative) and Q̃ f
i , j .

A.6. EXTENDABLE FORM
For completeness, we also state an easily extendable form of the wave equation proposed
by de Hoop [7, p. 207]. The form contains all the components of particle velocity and
pressure. This formulation can be easily extended to the elastodynamic formulation. It
states that

(D+ j!M)q0 = d0, (A.40)

where

M =

2

664

∑ 0 0 0
0 Ω 0 0
0 0 Ω 0
0 0 0 Ω

3

775 , (A.41)

and

D =

2

664

0 @1 @2 @3
@1 0 0 0
@2 0 0 0
@3 0 0 0

3

775 . (A.42)

In addition,
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d0 =

2

664

q
f1
f2
f3

3

775 (A.43)

and

q0 =

2

664

p
v1
v2
v3

3

775 . (A.44)

The reciprocity theorem then becomes [7, p. 214]

I

@D

d 2x {q0
a}T

N±Nq0
b =

Z

D

d 3x [{q0
a}T

N±d0
b ° {d0

a}T
N±q0

b]°
Z

D

d 3x j! {q0
a}T

N±±Mq0
b ,

where

±M = Mb °Ma , (A.45)

N =

2

664

0 n1 n2 n3
n1 0 0 0
n2 0 0 0
n3 0 0 0

3

775 , (A.46)

and

N± =

2

664

1 0 0 0
0 °1 0 0
0 0 °1 0
0 0 0 °1

3

775 . (A.47)
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B
ELASTODYNAMIC MODELING

B.1. FORMULATION INCLUDING ONLY DIRECTIONAL AND

MODAL DECOMPOSITION
The following formulation contains no polarizational decomposition, only directional
and modal decomposition. For applications where directional wavefield decomposition
is needed regardless of the polarization, the current formulation is useful. The advantage
of this formulation is its simplicity with respect to implementation but the disadvantage
is that it contains no decomposition with respect to P- and S-waves. We follow the nor-
malization schemes given in the acoustic situation by de Hoop [1].

For simplicity, let∞1 = j!
µ , ∞2 = j!Ω , ∞11 = ∞2 = j!Ω , ∞12 =° 1

j!¥=° 1
j! , ∞13 =° ∏

∏+2µ

and ∞14 = j!
∏+2µ . Also, let the derivative, @1 = D1. We can then recast matrices A12 and A21

as follows:

A12 =
µ
∞1 °D1
°D1 ∞2

∂
, (B.1)

and

A21 =
µ
∞11 +∞12D1(¥D1·) D1∞13

∞13D1 ∞14

∂
. (B.2)

Next, we consider three formulations. For implementation purposes especially for
including a staggered grid implementation, which is absolutely necessary, one would
need to implement the operator, N2, directly rather than through its constituent matri-
ces, i.e. A21 and A12. For this reason, we include the explicit product of the corresponding
matrices.
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B.2. PRESSURE-NORMALIZED ANALOG
The formulation equivalent of the pressure-normalized formulation in the acoustic sit-
uation dictates that

N2,pr = A21A12 =
µ
∞11 +∞12D1(¥D1·) D1∞13

∞13D1 ∞14

∂µ
∞1 °D1
°D1 ∞2

∂
, (B.3)

which results in

N2,pr =
µ°
∞11 +∞12D1(¥D1·)

¢
∞1 °D1∞13D1 °

°
∞11 +∞12D1(¥D1·)

¢
D1 +D1∞13∞2

∞13D1∞1 °∞14D1 °∞13D2
1 +∞14∞2

∂
.

(B.4)
The (de)/composition operator are defined as

L =
µ

A12 A12
N °N

∂
, (B.5)

and

L°1 = 1
2

µ
A°1

12 N°1

A°1
12 °N°1

∂
. (B.6)

B.3. PARTICLE-VELOCITY-NORMALIZED ANALOG
The formulation equivalent of the particle-normalized formulation in the acoustic situ-
ation dictates that

N2,pl = A12A21 =
µ
∞1 °D1
°D1 ∞2

∂µ
∞11 +∞12D1(¥D1·) D1∞13

∞13D1 ∞14

∂
, (B.7)

which results in

N2,pl =
µ
∞1(∞11 +∞12D1(¥D1·))°D1∞13D1 ∞1D1∞13 °D1∞14
°D1(∞11 +∞12D1(¥D1·))+∞2∞13D1 °D2

1∞13 +∞2∞14

∂
. (B.8)

The eigenvectors are then

L =
µ

N °N
A21 A21

∂
, (B.9)

and its inverse

L°1 = 1
2

µ
N°1 A°1

21
°N°1 A°1

21

∂
. (B.10)

B.4. FLUX-NORMALIZED ANALOG
The formulation equivalent of the flux-normalized formulation in the acoustic situation
dictates that

N2, f l = A1/2
12 A21A1/2

12 =
µ
∞1 °D1
°D1 ∞2

∂1/2 µ
∞11 +∞12D1(¥D1·) D1∞13

∞13D1 ∞14

∂µ
∞1 °D1
°D1 ∞2

∂1/2

.

(B.11)
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The result is

N2, f l =
µ
E11 E12
E21 E22

∂
, (B.12)

where

E11 = ∞1/2
1

°
[∞11 +∞12D1(¥D1·)]∞1/2

1 °D1∞13D1/2
1

¢
°D1/2

1

°
∞13D1∞

1/2
1 °∞14D1/2

1

¢

= ∞1/2
1 [∞11 +∞12D1(¥D1·)]∞1/2

1 °∞1/2
1 D1∞13D1/2

1 °D1/2
1 ∞13D1∞

1/2
1 +D1/2

1 ∞14D1/2
1 ,

E12 = ∞1/2
1

°
°[∞11 +∞12D1(¥D1·)]D1/2

1 +D1∞13∞
1/2
2

¢
°D1/2

1

°
°∞13D1D1/2

1 +∞14∞
1/2
2

¢

=°∞1/2
1 [∞11 +∞12D1(¥D1·)]D1/2

1 +∞1/2
1 D1∞13∞

1/2
2 +D1/2

1 ∞13D1D1/2
1 °D1/2

1 ∞14∞
1/2
2 ,

E21 =°D1/2
1

°
[∞11 +∞12D1(¥D1·)]∞1/2

1 °D1∞13D1/2
1

¢
+∞1/2

2

°
∞13D1∞

1/2
1 °∞14D1/2

1

¢
, (B.13)

and finally

E22 =°D1/2
1

°
°[∞11 +∞12D1(¥D1·)]D1/2

1 +D1∞13∞
1/2
2

¢
°∞1/2

2

°
°∞13D1D1/2

1 +∞14∞
1/2
2

¢
.

(B.14)
Note that

E21 = E T
12. (B.15)

The eigenvectors are then

L = 1
p

2

µ
A1/2

12 N°1/2 A1/2
12 N°1/2

A°1/2
12 N1/2 °A°1/2

12 N1/2

∂
, (B.16)

and its inverse

L°1 = 1
p

2

µ
N1/2A°1/2

12 N°1/2A1/2
12

N1/2A°1/2
12 °N°1/2A1/2

12

∂
. (B.17)

For completeness, we also include the operator Ñ — the directional-only Square
wavenumber operator in the wavenumber domain — which is

Ñ = jÆ
µ
H̃1,p °H̃1,s +Æ°1

H̃1,s H̃1,s °H̃1,p +Æ°1(H̃1,p °H̃1,s )
H̃1,p °H̃1,s H̃1,s °H̃1,p +Æ°1

H̃1,p

∂
, (B.18)

whereas its inverse is

Ñ°1 = jÆ

√
H̃

°1
1,p + (1+Æ°1)H̃°1

1,s (Æ°1 °1)H̃°1
1,p + (1°Æ°1)H̃°1

1,s
H̃

°1
1,p °H̃

°1
1,s (Æ°1 °1)H̃°1

1,p +H̃
°1
1,s

!

. (B.19)
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C
MI-JMI USING FULL GREEN’S

FUNCTIONS

In this appendix we derive the formulas for inversion — similar to what we did in Chapter
8 — but using a representation that includes the full directional Green’s functions. The
representation used here (Equation 2.44) is as follows

p(xd ) =
Z

Ds

d 3x G0
f (xd ,x)s(x)+

Z

Dp

d 3x G0
f (xd ,x)±B(x)p(x), (C.1)

and the objective functional can be written explicitly in terms of the directional wave-
fields as

¡d =
X

i

Z
dxd

∞∞∞p+
i ,mea(xd )°p+

i (xd )
∞∞∞+

X

i

Z
dxd

∞∞∞p°
i ,mea(xd )°p°

i (xd )
∞∞∞ , (C.2)

where the summation is over shot index i similar to what is done in Chapter 8.
We minimize such an objective functional by utilizing the previous representation

theorem, C.1, in order to obtain Fréchet derivatives, although the adjoint-state method
[e.g. 1] can also be used.

Linearizing Equation C.1 gives what we could describe as the directional Born inte-
gral equation — akin to that of the non-directional reciprocity theorem — where

p(xd ) º
Z

Ds

G0
f (xd ,x)s(x) d 3x+

Z

Dp

G0
f (xd ,x)±B(x)p̄(x) d 3x, (C.3)

where p̄(x) is the wavefield of the reference/background state. Then, the wavefield resid-
ual can be written as

r(xd ) = ±p(xd ) = pmea(xd )°
Z

Ds

G(xd ,x)s(x) d 3x°
Z

Dp

G0
f (xd ,x)±B(x)p̄(x) d 3x. (C.4)
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Next, taking the Fréchet derivatives of the wavefield using the directional Born integral
equation gives

KKK
+(x,x0) = @p+(x0)

@B(x)
=

0

B@
@p+(xd )
@R+(x)

@p+(xd )
@°+(x)

@p+(xd )
@°°(x)

@p+(xd )
@R°(x)

1

CA=

0

@
G+,°

f (xd ,x)p̄+(x)

G+,+
f (xd ,x)p̄+(x)

G+,°
f (xd ,x)p̄°(x)

G+,+
f (xd ,x)p̄°(x)

1

A

(C.5)
and

KKK
+(x,xd ) = @p+(xd )

@B(x)
=

0

@
@p°(xd )
@R+(x)

@p°(xd )
@°+(x)

@p°(xd )
@°°(x)

@p°(xd )
@R°(x)

1

A=

0

@
G°,°

f (xd ,x)p̄+(x)

G°,+
f (xd ,x)p̄+(x)

G°,°
f (xd ,x)p̄°(x)

G°,+
f (xd ,x)p̄°(x)

1

A ,

(C.6)
where the superscript 0 is dropped so that the Green functions would change as the ref-
erence state changes in the full iterative scheme. Then, the gradient of the objective
functional can be obtained such that

KKK
0(x) =

X

i

Z
dxd {KKK+(x,xd )}§±p+

i (xd )+
X

i

Z
dxd {KKK°(x,xd )}§±p°

i (xd ). (C.7)

Finally, one can iterate using a gradient-based optimization method such that

Bn+1(x) = Bn(x)°ÆnKKK
0
n(x), (C.8)

where Æn is a step length. The operator B, once again, includes scattering and slowness
operators, see Ch. 2 for details and in particular Equation 2.17.
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