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ABSTRACT

Automated fibre layup techniques are commonly used composite manufacturing processes in the aviation sector
and require a manual visual inspection. Neural Network classification of defects has the potential to automate
this visual inspection, however, the machine decision-making processes are hard to verify. Thus, we present an
approach for visualising Convolutional Neural Network (CNN) based classifications of manufacturing defects and
quantifying its robustness. Our investigations have shown that especially Smoothed Integrated Gradients and
DeepSHAP are particularly well suited for the visualisation of CNN classifications. The Smoothed Integrated
Gradients technique also reveals advantages in robustness when evaluating degraded input images.

Keywords: Defect classifications, CNN, Inline Inspection, xAI, Computer Vision, Composite Manufacturing,
Laser Line Scan Sensor

1. INTRODUCTION

With the production of the Airbus A350 XWB and the Boeing 787, lightweight components are widespread
in the aviation sector.1,2 Such structures are usually made of Carbon Fiber Reinforced Plastic (CFRP). The
production of these often sophisticated lightweight components is normally rather expensive. Hence, efficient
production processes are necessary for economical manufacturing. To satisfy the high safety standards in the
aviation industry, the fibre placement process involves a visual inspection. This visual check takes usually up to
50 %3 of the manufacturing duration. This provides huge opportunities for significant improvements in terms of
speed and quality through the automation of this step.
For automated inspection, a reliable machine-based classification of manufacturing defects in an image is nec-
essary.4,5 Methods from the field of machine learning are highly suitable for such a classification of fibre layup
defects.6,7 However, these techniques often face the disadvantage that the models’ decisions are hard to com-
prehend. This applies especially to Artificial Neural Network (ANN) or deep learning methods in general.
In order to be able to carry out a comprehensive analysis for this, the importance of individual pixels or small
image areas for the classification decision must be examined initially. For this purpose, we choose three suitable
techniques for the investigations in this paper. The analysis in this paper provide the basis for subsequent studies
on correlating the image areas that are important for a classification decision with the actual characteristics of
a given fibre layup defect.
For the investigations in this paper we consider height profile scans of layup defects from the Automated Fiber
Placement (AFP) manufacturing process.8–10 Therefore, we applied a Laser Line Scan Sensor (LLSS) for data
recording as this device is often used in industry and in research, for this particular application case.6,8, 9, 11,12
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The methodology of this paper involves an analysis and visualisation of the importance of individual image
areas for the Convolutional Neural Network classification of typical fibre layup defects. For this evaluation, the
Explainable Artificial Intelligence techniques Smoothed Integrated Gradients, Guided Gradient Class Activation
Mapping as well as Deep Learning Important Features with Shapley Additive Explanations are applied and the
results are examined.

2. STATE OF THE ART

2.1 Fibre placement inspection

The AFP process is often used for the production of complex composite structures.13,14 Various defects can
arise in the AFP process.15 Common fibre placement defects are wrinkles, twists, foreign bodies, overlaps and
gaps.6,11,15–17 For the aim of automated inspection, LLSS based technique are suitable for capturing defect
topology data during AFP manufacturing. This field is currently receiving much attention from industry and
research.8–10,18,19 In our recently published studies from Meister et al.6,11 on defect detection, classification and
data synthesis we already used a LLSS to acquire the investigated test data.

2.2 Explainable Artificial Intelligence techniques

This section briefly introduces different Explainable Artificial Intelligence (xAI) methods for analysing the im-
portance of individual image areas with respect the decision of an ANN. Comparatively much research has been
done in the field of Gradient and Decomposition based approaches. Due to the amount of available knowledge,
these methods are probably quite promising. Because of their diverse functional concepts and their performance
characteristics as stated in the study of Yeh et al.,20 the Smooth Integrated Gradients (Smooth IG),21,22 Deep
Learning Important Features (LIFT) with Shapley Additive Explanations (SHAP) (DeepSHAP)23 and Guided
Gradient Class Activation Mapping (Guided Grad-CAM )24 approaches are highly appropriate for examining an
unfamiliar scenario. These techniques evaluate several types of information obtained from the neural activation
of an ANN in order to reveal the significance of certain parts of the image for a machine decision.

3. METHODOLOGY

3.1 Experimental setup

As suitable defect types, none, wrinkles, twists, foreign bodies, gaps and overlaps were selected for the experi-
ments. The corresponding input defect images were captured with the following test setup. Each defect image
was cropped manually from an entire LLSS image. The individual defect images were downsized to a sensible
dimension of 128 × 128 px.
For recording of representative original images the test setup from Figure 1 was used. This setup was invariant to
disruptive effects from the production procedure like pollution, radiation of the heater or effector rotation. The
setup involved an articulated-arm robot, the Automation Technology GmbH (AuTech) C5-4090 LLSS25 as well
as a CFRP specimen. An AuTech C5-4090 LLSS recorded 16-bit single channel depth images with the size of
4096 (w)×500 (h) px. This measurement image contained a CFRP specimen with the dimension 250×150 mm.
Moreover, the material specimen was scanned at a speed of 200 mm/s.
In addition, the well suited Convolutional Neural Network (CNN) classifier with 16 hidden layers outlined in
Meister et al.6 was used as the basis for the investigations in this study.

3.2 Selection of xAI techniques

In this scenario a rather unknown classification case was considered. Thus, for the basic analysis in this paper,
relatively novel xAI methods with different operating principles were selected.
Guided Grad-CAM was chosen because it does not only consider the importance of individual pixels, but describes
the importance of small image areas.
The Smooth IG method has the advantage to use the same reference for all defect classes. Accordingly, the
calculation results are comparable across the defect samples of the same class and thus the results from individual
examples can be interpreted in a more general way. Additionally, the inherent integration and smoothing
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Figure 1: Data recording setup in which a jointed-arm robot moves the AuTech C5-4090 sensor parallel to a
CFRP specimen and captures height profile data of this specimen.

approach reduces noise in the outcomes.
According to the research of Yeh et al.20 as well as Lundberg and Lee,23 in their study the DeepSHAP method
yields the most faithful and robust results. Hence we also selected this approach for our investigations.

3.3 Investigation of the xAI findings

Initially, for the previously introduced CNN6 and the considered defect categories, a visual xAI explanation was
calculated for an example layup defect images. These visual explanations were presented as greyscale images,
where the pixel intensity represents their overall influence on the CNN decision.
Secondly the correlation between the xAI explanation result and the classification decision of the CNN were
examined. For each considered input defect image, the degree of activation at the output neurons of the CNN
for the associated defect class were observed. These served as the reference activations. Then, based on the
calculated xAI importance for each pixel, the n most important pixels in the original input image were set
to zero. For this manipulated input image, the previously described analysis of neuron activations was then
performed again. The influence of the neural activations was presented here as the degree of variation in neural
activation in relation to the previously defined reference activation for the unmodified, original input image. This
experimental design was inspired by the research of Srinivas and Fleuret.26

4. RESULTS

4.1 Visual xAI evaluation

Figure 2 presents the visualised xAI results for the six classes considered in this paper. In each case, the
original input image which serves as input for the CNN is shown on the far left. To the right, for each of the
three examined xAI methods, the absolute importance values are given as a greyscale image. The Smooth IG
method yields the most homogeneous result for the example images. But this method primarily assigns greater
importance to the brighter pixels in the defect image. This results from the fact that through the multiplication
with the corresponding gradients, the intensities of the pixels in the input image have a strong influence on the
result of this xAI method. Thus, the contours of the defects are rather similarly visible in the input image and
in the xAI calculation.
The DeepSHAP results show a consistent visual similarity of the input image to the xAI explanation. Hence,
gaps and overlaps are difficult to recognise and the results appear quite similar to none. The importance of
a defect region also seems to depend on the difference in brightness in the input image. However, these result
images are clearly subject to a kind of statistical noise. In the xAI output images a kind of skewed pattern of
the important pixels is partly visible.
The greyscale result images from the Guided Grad-CAM calculations reveal important defect regions, which
clearly distinguish themselves from the background. For gaps, overlaps and foreign bodies the respective xAI
outcomes match quite well with the defect region. For all the other classes, they only partially correspond to
the actual defect region in the original input image. Especially for none defect images this behaviour is quite
conspicuous and might be attributed to pre-processing artefacts within the image.
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Figure 2: The figure shows on the left, the original input image for the considered defect classes. Then, for each
of the three xAI methods DeepSHAP , Smooth IG , Guided Grad-CAM , the greyscale image of the magnitude of
the importance values are displayed.
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(a) Results for class none.
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(b) Results for class wrinkle.
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(c) Results for class twist.
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(d) Results for class foreign body.
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(e) Results for class overlap.
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(f) Results for class gap.

Figure 3: Class dependant change in neural activations ∆Ar over the percentage of removed pixels nr. Methods:
DeepSHAP (blue), Smooth IG (green), Guided Grad-CAM (orange), reference (red). The associated standard
deviations are presented as a coloured tubes.

4.2 Variance in neural activation for modified data

In Figure 3 the change in relative neural activation ∆Ar is plotted over the relative percentage of removed pixels
nr for the respective examined classes. The graphs represent the mean values over all input data sets of a certain
defect class. The coloured tubes indicate the associated standard deviations. The red curve serves as a reference,
as introduced above. For all curves, an initially very steep rise is evident up to 1-2 % removed pixels. Then
the curves flatten out considerably. In most cases, an almost constant value of the change in neural activation
∆Ar is reached for nr between 2 % and 10 %. According to the DeepSHAP calculation, the modification of
the input image leads to the smallest change in neural activation of ∆Ar = 40 % for foreign bodies. For all the
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other classes ∆Ar > 150 % for nr ≥ 8 % is reached. The Smooth IG results yield a similar curve with a much
lower end value of ∆Ar = 22 % for foreign bodies and about ∆Ar = 100 % for the other classes at nr ≥ 8 %.
The Guided Grad-CAM method achieves lower ∆Ar values for nr ≥ 8 % compared to the reference curve which
considers randomly removed pixels in the initial image. For the wrinkle, twist and overlap classes, the ∆Ar values
for nr ≥ 8 % are very similar for the Guided Grad-CAM and Smooth IG outcomes. The strong increase of ∆Ar

for the Guided Grad-CAM calculation up to about nr = 1 %, nevertheless, indicates a strong identification of
the most important image pixels for almost all classes except for foreign bodies. Across all xAI techniques, the
foreign body class is conspicuous. For this, the ∆Ar values for nr ≥ 8 % are significantly lower than for the other
classes. Also, the standard deviations of the ∆Ar values are much smaller. The comparatively small amount of
input images can of course be an issue for the significance of these findings. Based on the often almost constant
∆Ar values for nr ≥ 8 % and the gradient of the initial steep curve rise we can estimate the performance of a
xAI method. Further research is needed for more detailed conclusions on this.

5. DISCUSSION

The previously selected approaches Smooth IG ,21,22 DeepSHAP23,27 and Guided Grad-CAM 24 for the visuali-
sation of image areas that are particularly important for the classification decision provide a sound possibility to
represent the behaviour of a CNN. However, the different operating principles of the individual methods must
be taken into account. In some cases, these can have a great influence on the results. The analysis of the neural
activations of the CNN for a defined input image provide extensive insights about the actual behaviour of the
CNN as well as potential uncertainties in the classification process. Further research will be conducted to analyse
the individual xAI procedures in more detail.
Concluding, we can state that for the considered use case especially the xAI methods Smooth IG and DeepSHAP
are particularly well suited for the representation of important image regions for the decision-making process of
the CNN. In the following section, the major findings of this paper are summarised and the added value for the
community is highlighted.

6. CONCLUSION

The findings from this paper have revealed that the importance of individual image pixels for the decision-making
process of a Convolutional Neural Network classifier can be visualised and assessed. According to the research
in this study, the Explainable Artificial Intelligence methods Smooth Integrated Gradients and Deep Learning
Important Features with Shapley Additive Explanations are particularly well suited for this purpose.
The results from this paper support the developers of camera-based inspection systems for the lightweight com-
posite industry in the design and integration of reliable complex machine learning applications. Furthermore, the
presented findings provide guidance for respective certification procedures for such machine learning algorithms.
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