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Chapter 7
Distributed Stochastic Thermal Energy
Management in Smart Thermal Grids

Vahab Rostampour, Wicak Ananduta and Tamás Keviczky

Abstract This work presents a distributed stochastic energy management
framework for a thermal grid with uncertainties in the consumer demand profiles.
Using the model predictive control (MPC) paradigm, we formulate a finite-horizon
chance-constrained mixed-integer linear optimization problem at each sampling
time, which is in general non-convex and hard to solve. We then provide a uni-
fied framework to deal with production planning problems for uncertain systems,
while providing a-priori probabilistic certificates for the robustness properties of the
resulting solutions. Our methodology is based on solving a random convex program
to compute the uncertainty bounds using the so-called scenario approach and then,
solving a robust mixed-integer optimization problem with the computed random-
ized uncertainty bounds at each sampling time. Using a tractable approximation of
uncertainty bounds, the proposed formulation retains the complexity of the prob-
lem without chance constraints. We also present two distributed approaches that are
based on the alternating direction method of multipliers (ADMM) to solve the robust
mixed-integer problem. The performance of the proposed methodology is illustrated
using Monte Carlo simulations and employing two different problem formulations:
optimization over input sequences (open-loop MPC) and optimization over affine
feedback policies (closed-loop MPC).
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7.1 Introduction

Smart Thermal Grids (STGs) represent a new concept in the energy sector that
involves the use of the smart grid concept in thermal energy networks connecting
several households and greenhouses (agents) to each other via a transport line of ther-
mal energy. One of the major challenges in sustainable energy systems is to improve
the efficiency, reliability, and sustainability of the production and the distribution
of energy. STGs can contribute to obtaining sustainable energy systems by intro-
ducing a reliable production plan using renewable energy sources such as solar or
geothermal energy and provide efficient large-capacity storage options. This results
in a reduction of carbon dioxide (CO2) emissions, improved energy efficiency, and
the implementation of renewable energy systems [1].

In an STG setting, the agents have a potential to contribute to the overall energy
balance. Every agent fulfills the role of a consumer when it demands more energy
than it produces with its production units (e.g. micro-combined heat and power),
and fulfills the role of a producer when the demand is less than the production of its
productionunits [2]. Since themajor energy consumption is typically used for thermal
purposes, the motivation for STGs can be both economical and environmental. A
better price is achieved with less energy transport when the resources are used more
efficiently, while the thermal energy losses are reduced.

We therefore foresee a shift towards a situation where a large number of small
scale agents (e.g. utility companies and independent users) have more impact on the
energy balance of the grid, while their optimal decisions are made by considering the
thermal demand profiles, which are uncertain. The planning of thermal energy pro-
duction to match supply and demand is challenging since predictions on the thermal
energy demand are not perfect. This highlights the necessity of formulating stochas-
tic variants of standard day-ahead planning problems in the grid, while providing
probabilistic guarantees regarding the satisfaction of smart grid system constraints.

Model predictive control (MPC) is one of the most widely used advanced control
design methods that can handle constraints on both inputs and states, and can obtain
an optimal control sequence that minimizes a given objective function subject to
the model and operational constraints in a receding horizon fashion. One way to
treat uncertainty is to use a robust MPC formulation [3–5], which provides a control
law that satisfies the problem constraints for all admissible uncertain variables by
assuming that the uncertainty is bounded. However, the resulting solution tends to be
conservative since all uncertainty realizations are treated equally. Stochastic MPC
offers an alternative approach to achieve a less conservative solution, thereby the
system constraints are treated in a probabilistic sense (chance constraints), meaning
that the constraints need to be satisfied only probabilistically up to a pre-assigned
level to reduce the conservatism of robust MPC. An effective solution to address
such problems is to employ randomized algorithms that require substituting the
chance constraint with a finite number of hard constraints corresponding to samples
of the uncertainty set. Randomized MPC approximates stochastic MPC via the so-
called scenario approach (see [6] and the references therein), and if the underlying
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optimization problem is convex with respect to the decision variables, finite sample
guarantees can be provided for a desired confidence level of constraint fulfillment.

In this work we cannot employ the well-known scenario approach due to the fact
that the underlying problem is not convex (mixed-integer program). The main chal-
lenge here is in the presence of the uncertain thermal energy demands to compute a
discrete (binary) variable vector that corresponds to the on-off status of the generat-
ing units, and a continuous variable vector that is related to the amount of thermal
energy that each unit should produce to satisfy a given demand level at each sam-
pling time. Instead, we propose a two-step procedure that is based on a mixture of
randomized and robust optimization [7]. We first determine a probabilistic bounded
set of uncertainties that is guaranteed to include a given percentage of uncertainty
realizations. Then, we use the obtained set in a deterministic robust MPC approach.
Note that the first step leads to a convex sub-problem even if the original problem
contains binary variables. In this way we can have similar results in terms of con-
fidence level of constraint fulfillment as in the standard scenario approach. Using a
tractable approximation of uncertainty bounds, the deterministic robust formulation
leads to a tractable problem for each sampling time. A framework for stochastic
linear systems using a combination of randomization and robust optimization was
introduced in [8]. In this work instead we introduce a new framework for stochastic
hybrid linear systems that leads to stochastic mixed-integer optimization problems.
Due to the large number of agents in a large-scale multi-agent setting as in this work,
computational burden may also become an issue. In this line, distributed approaches
are seen to be more suitable, and also, more flexible and scalable than the centralized
counterpart [9]. We therefore propose two distributed schemes that can be applied
to solve the resulting tractable problem using the alternating direction method of
multipliers (ADMM). The main contributions of this work are as follows:

• A technical description of smart thermal grids with uncertainties in the consumer
demand profiles as an optimization problem formulation.

• The problem formulation leads to a finite-horizon chance-constrained mixed-
integer linear program at each sampling time. To solve this problem, we first
formulate an auxiliary problem to obtain a bounded set for the uncertainty. Using
the scenario approach, the result of this sub-problem is a subset of the uncertainty
space that contains a portion of the probability mass of the uncertainty with high
confidence level.We then solve a robust version of the initial problem subject to the
uncertainty confined in the obtained set. Note that our method does not restrict the
underlying probability distribution of uncertainty as in robust optimization meth-
ods and it is only assumed that the uncertainties are independent and identically
distributed.

• To guarantee that the resulting problem is solvable, we develop a tractable scheme
based on the dependency of the constraint functions on the uncertainty sets.

• Both the open-loop stochastic MPC formulation and the closed-loop affine feed-
back policies of stochastic MPC formulation are described and used to illustrate a
performance of the proposed methodology using Monte Carlo simulations.
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• We provide two distributed ADMM schemes to solve the resulting tractable opti-
mization problem: (1) a fully distributed and (2) a distributed with coordination
schemes.

It is important to highlight that this work is based on the conference paper pub-
lished in [10] and thesis report in [11]. The layout of this work is as follows: Sect. 7.2
provides a general stochastic MPC framework for the problem of uncertain smart
thermal grids. In Sect. 7.3 a tractable methodology is developed and probabilistic
performance guarantees are provided. The distributed ADMM schemes are formu-
lated in 7.4. In Sect. 7.5, we demonstrate the efficiency of the proposed methodology
through a numerical example. Finally, Sect. 7.6 provides some concluding remarks
and directions for future work.

7.2 Problem Formulation

This section provides a brief description of smart thermal grids with multiple agents
that can be producers and consumers of power and heat in a smart grid setting. The
goal of the agents is tomatch the local consumption and production to avoid transport
losses in the network and improve energy efficiency.

System Description

Consider a regional thermal grid consisting of N agents (households, greenhouses).
We describe the model of a single agent that is facilitated with a micro-combined
heat and power plant (micro-CHP), a boiler, and a heat storage. Each agent can be
both producer and consumer which is known as the prosumer concept. This model
introduces the technical constraints of each agent and the coupling between such
agents in the network. Moreover, for every transaction of thermal energy in the smart
grid, there are several heat exchangers located near the corresponding agents and we
assume that the heat exchangers do not add additional costs to the heat production
for the sake of simplicity.

For a day-ahead planning production problem of each agent, we consider a
finite horizon Nt = 24 problem with hourly steps, and introduce the subscript t in
our notation to characterize the value of the quantities for a given time instance
t ∈ {0, 1, . . . , Nt − 1}. For each sampling time t of the problem for all agents
i ∈ {1, 2, . . . , N }, we define the main vector of control decision variables to be

umi,t := [pg,t , pug,t , pdg,t , hg,t , hb,t , him,t , c
su
g,t , c

su
b,t , zg,t , zb,t ]� ∈ R

10,

where pg,t , hg,t denote the electrical power and heat production by the micro-CHP,
pug,t , pdg,t relate to the up and down spinning of electrical power by the micro-CHP,
hb,t , him,t correspond to the heat provided by the boiler and imported heat from
external parties during period of high heat demand, csu

i,t := [csu
g,t , c

su
b,t ]� is a vector

that contains the startup cost of micro-CHP and boiler, and zi,t := [zg,t , zb,t ]� are
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auxiliary variables needed to model the minimum up and down times of each micro-
CHP and boiler, respectively. Moreover, vi,t : [vg,t , vb,t ]� ∈ {0, 1}Nv=2 is a binary
vector of dimension 2 and denotes the on-off status of each micro-CHP and boiler
for each agent i at step t . We call the difference between the level of heat storage and
the forecast of heat demand hf

d,t the imbalance error xi,t ∈ R
Nx=1 at agent i , defined

as

xi,t = hs,t − hf
d,t , (7.1)

where hs,t represents the heat storage level (assuming there are no thermal losses
in the conversion and storage system). The heat storage level has the following
dynamics:

hs,t+1 = ηsxi,t + ηs

⎛
⎝hg,t + hb,t + him,t +

∑
j∈N−i

(1 − αi j )h
i j
ex,t

⎞
⎠ ,

where ηs ∈ (0, 1) and αi j ∈ (0, 1) denote the efficiency of storage and the heat loss
coefficient due to transportation between agent i and j , respectively. N−i is the set
of neighbors of agent i and is given by

N−i ⊆ {1, 2, . . . , N }\{i} .

In order for an agent to contribute to the local balancing of heat by exchanging
heat with neighbors, we define an auxiliary control variable vector uai,t ∈ R

|N−i | with
elements hi jex,t denoting the exchanged heat between agent i and other adjacent agents

j ∈ N−i . Notice that h
i j
ex,t can have either positive or negative values depending on if

agent i imports or exports heat from or to agent j , respectively. By substituting hs,t

in (7.1), one can derive the dynamical behavior of imbalance xi,t that is given by

xi,t+1 = Ai xi,t + Biui,t + wi,t , (7.2)

where Bi = ηs[b�
1 , b�

2 ]�, with b1 = [0, 0, 0, 1, 1, 1, 0, 0, 0, 0] ∈ R
10, b2 ∈ R

|N−i |
containing elements (1 − αi j ), and Ai = ηs. The complete vector of control deci-
sion variables is ui,t = [um�

i,t , ua�
i,t ]� ∈ R

Nui with Nui = 10 + |N−i | for every agent i
at each step t . By definition (7.1), wi,t := −hf

d,t+1 ∈ R
Nw=1 corresponds to the fore-

cast heat demand in the next time step. We now consider that the only uncertainty is
due to the deviation of the actual heat demand from its forecast value and therefore,
wi,t represents an uncertain parameter for every hour and for each agent.

Our goal is to find the control input ui,t for each agent i such that the imbalance
error stays a small positive value for all steps t ∈ {0, 1, . . . , Nt − 1} at minimal
production cost and satisfying physical constraints. We associate an economic linear
cost function with each agent i at step t as
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Ji (ui,t ) = c�
i u

m
i,t , (7.3)

where ci is a cost vector and is defined as

ci := [cgasη
−1
CHP, cup, cdp, 0, cbη

−1
b , cim, 1, 1, 0, 0]� ∈ R

10.

cgas relates to the cost of natural gas that is used by micro-CHP and ηCHP, ηb ∈ (0, 1)
are the efficiency of a micro-CHP and a boiler at each step, respectively. cup, cdp

denote the cost of up and down spinning electrical power production by micro-CHP,
respectively. We define pug,t , pdg,t to be up and down spinning variables that are
related to the amount of surplus and needed electrical power, respectively, in each
agent at each step with respect to the local power demand. The cost of heat generated
by a boiler is cb, and the cost of imported heat from an external party is cim. The
seventh and eighth entry of ci represent the start-up costs. The cost associated with
the thermal energy produced by the micro-CHP is considered to be zero due to the
fact that the electrical power and thermal energy generated by a micro-CHP are
coupled by hg,t = ηh

ηp
pg,t where ηh, ηp ∈ (0, 1) are the efficiency of a micro-CHP for

production of thermal energy and electrical power, respectively.
The resulting optimization problem for an agent i is given by

min
{ui,t ,vi,t }Nt−1

t=0

Nt−1∑
t=0

Ji (ui,t ) (7.4a)

subject to:

1. Startup cost constraints for t = 0, 1, . . . , Nt − 1:

csui,t ≥ �su(vi,t − vi,t−1) , csui,t ≥ 0 , (7.4b)

where �su is a diagonal matrix including the startup costs of each micro-CHP
and boiler.

2. Production and transportation capacity constraints for t = 0, 1, . . . , Nt − 1:

vg,t p
min
g ≤ pg,t ≤ pmax

g vg,t , (7.4c)

vg,t h
min
g ≤ hg,t ≤ hmax

g vg,t , (7.4d)

vb,t h
min
b ≤ hb,t ≤ hmax

b vb,t , (7.4e)

hmin
im,t ≤ him,t ≤ hmax

im,t , (7.4f)

hmin
ex,t ≤ hi jex,t ≤ hmax

ex,t , ∀i, j ∈ N−i (7.4g)

where pmin
g , pmax

g denote theminimum andmaximum electrical power production
capacities of each micro-CHP, hmin

g , hmax
g relate to the minimum and maximum

heat production capacities of each micro-CHP, hmin
b , hmax

b are the minimum and
maximum heat production capacities of each boiler, hmin

im , hmax
im are the minimum
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andmaximumavailable heat capacities of each external party, hmin
ex , hmax

ex represent
the minimum and maximum transportation capacities of neighbors.

3. Balance constraints for heat exchanged with neighbors for t = 0, 1, . . . , Nt − 1:

hi jex,t + h ji
ex,t = 0 . ∀i, j ∈ N−i (7.4h)

4. Up and down spinning electrical power constraints for t = 0, 1, . . . , Nt − 1:

−pdg,t ≤ pg,t − pd,t ≤ pug,t , pug,t ≥ 0, pdg,t ≥ 0, (7.4i)

where pd,t is a local electrical power demand for each agent i ∈ {1, . . . , N }.
5. Ramping capacity constraint for all t = 0, 1, . . . , Nt − 1:

−pdown
g ≤ pg,t − pg,t−1 ≤ pup

g , (7.4j)

where pdown
g , pup

g denote the down and up capacity of decreasing and increasing
electrical power of a micro-CHP within two consecutive periods, respectively.
Note that this constraint is considered just for the electrical power of micro-CHP
due to the fact that heat can be produced within each step.

6. Status change constraints for t = 0, 1, . . . , Nt − 1:

zi,t ≥ vi,t−vi,t−1 , zi,t ≥ 0 ,

t∑
τ=t+1−�tup

zi,τ ≤vi,t ,∀t ∈ {�tup, . . . , Nt − 1} ,

t+�tdown∑
τ=t+1

zi,τ ≤ 1−vi,t ,∀t ∈ {1, . . . , Nt − 1 − �tdown} ,

(7.4k)

where �tup,�tdown ∈ R+ denote the minimum time an agent needs to change
status of the micro-CHP and the boiler.

7. Probabilistic constraint:

P(xi,t+1 ≥ 0 , ∀t ∈ {0, 1, . . . , Nt − 1}) ≥ 1 − ε , (7.4l)

where ε ∈ (0, 1) is the admissible constraint violation parameter. Given xi,0 is
equal to xi (k)which is the current statemeasurement at real time k. This constraint
implies that the imbalance error should be a positive value atminimumproduction
cost for all heat demand realizations with high probability 1 − ε.

The proposed optimization problem (7.4) is a finite-horizon multi-stage, chance-
constrained mixed-integer linear program, whose stages are coupled by the startup
binary (7.4b), ramping (7.4j), status change (7.4k) and imbalance error (7.4l) con-
straints.
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Open-Loop Stochastic MPC

In order to formulate a stochastic MPC for the overall smart thermal grid imbalance
problem, we first extend the optimization problem (7.4) for all agents in the grid.
Let us define Xt := [x�

1,t , . . . , x
�
N ,t ]� ∈ R

Nx N ,Ut := [u�
1,t , . . . , u

�
N ,t ]� ∈ R

Nu , where

Nu = ∑N
i=1 Nui , and Vt := [v�

1,t , . . . , v
�
N ,t ]� ∈ R

NvN to be the state, control input and
binary variables of the grid, respectively. We also define Wt := [w�

1,t , . . . ,w
�
N ,t ]� ∈

R
NwN to be an uncertainty vector of all the agents. The grid cost J(Ut ) at step t is

assumed to be the sum of the individual costs for all agents

J(Ut ) = C�Ut =
N∑
i=1

Ji (ui,t ) ,

where C := [c�
1 , . . . , c�

N ]�. The dynamics of the imbalance error of all agents in the
grid can be expressed as

Xt+1 = AXt + BUt + Wt , (7.5)

where A = diag(A1, . . . , AN ) and B = diag(B1, . . . , BN ). The uncertain variable
vectorWt ∈ R

N is defined on a probability space�. It is assumed that� is endowed
with the Borel σ−algebra and P is a probability measure defined over�. It is impor-
tant to note that for our study we only need a finite number of instances of Wt , and
we do not require the probability space� and the probability measure P to be known
explicitly.

To illustrate the advantages obtained by adopting the policies that were discussed
at the end of the preceding section, we first need to introduce some compact notations
for the overall system dynamics evolution along the finite time horizon. Consider the
following vectors of state, control input, binary variables, and uncertainty parameter
matrices.

X =

⎡
⎢⎢⎢⎣

X1

X2
...

XNt

⎤
⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎣

U0

U1
...

UNt−1

⎤
⎥⎥⎥⎦ , V =

⎡
⎢⎢⎢⎣

V0

V1
...

VNt−1

⎤
⎥⎥⎥⎦ , W =

⎡
⎢⎢⎢⎣

W0

W1
...

WNt−1

⎤
⎥⎥⎥⎦ .

The imbalance error dynamics for all agents over the prediction horizon can be now
written as

X = AX0 + BU + HW ,

where
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A =

⎡
⎢⎢⎢⎣

A
A2

...

ANt

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎢⎣

B 0 · · · 0

AB B
. . . 0

...
. . .

. . . 0
ANt−1B · · · AB B

⎤
⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎣

I 0 · · · 0
A I

. . . 0
...

. . .
. . . 0

ANt−1 · · · A I

⎤
⎥⎥⎥⎥⎦

.

The initial state values are defined by X0 := X (k) = [x�
1 (k), . . . , x�

N (k)]� ∈ R
Nx N

and it is assumed that the current state measurement at real time k is given to each
agent together with the the forecasted thermal energy demand for the next day step-
wise. The objective function can be expressed by J(U) = C�U,whereC = 1Nt

⊗
C

using the Kronecker product.
We are now in a position to define the optimization problem for the overall smart

thermal grid as follows:

min
U

J(U) (7.6a)

s.t. PW(AX0 + BU + HW ≥ 0) ≥ 1 − ε , X0 = X (k) , (7.6b)

EU + FV + P ≤ 0 , W ∈ �N (7.6c)

where E, F and P are matrices of appropriate dimensions. Notice that PW depends
on the string of uncertain scenario realizations. The solution of (7.6) is the optimal
planned input sequence {U ∗

0 , V ∗
0 , . . . ,U ∗

Nt−1, V
∗
Nt−1}. Based on the MPC paradigm

the current input is set to {U (k), V (k)} := {U ∗
0 , V ∗

0 } and we proceed in a receding
horizon fashion. This means (7.6) is solved at each step t by using the current mea-
surement of the state X (k). Due to the presence of chance constraints, the feasible
set is in general non-convex and hard to determine explicitly. We describe a tractable
formulation to solve (7.6) by using robust randomization techniques in Sect. 7.3.

Closed-Loop Stochastic MPC

In the presence of uncertainty, the problem of finding the optimal state feedback
policy becomes quite challenging. Oneway to tackle this problem is to look for a sub-
optimal solution by parameterizing the control input variables. As a first approach,
one can directly parameterize the control input variables as an affine function of the
uncertainty

Ut = Ut +
t−1∑
j=0

θt, jW j ,

where Ut and θt, j are optimization variables. In this way the designed closed-loop
control system is equivalent to an open-loop control system with a feedforward
uncertainty compensator [12, 13]. Consider the following finite-horizon chance-
constrained mixed-integer linear program by adopting a feedback control policy
(7.7d) that is affine in the uncertainty samples.
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min
U,G,V

J(U) (7.7a)

s.t. PW(AX0 + BU + HW ≥ 0) ≥ 1 − ε , X0 = X (k) , (7.7b)

EU + FV + P ≤ 0 , (7.7c)

U = U + GW , W ∈ �N (7.7d)

where matrices U and G are given by

U =

⎡
⎢⎢⎢⎣

U 0

U 1
...

UNt−1

⎤
⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0

θ1,0 0
. . . 0

...
. . .

. . . 0
θNt−1,0 · · · θNt−1,Nt−2 0

⎤
⎥⎥⎥⎥⎦

.

Notice that each element of G has dimension R
Nu×NwN .

To solve (7.6) and (7.7), we have to transform the chance-constrained problem to
a tractable one without introducing any assumptions on P and its moments. Hence,
we follow a randomization-based approach. The proposed procedure in [6] is called
scenario approach that allows to substitute the chance constraints with a finite num-
ber of hard constraints corresponding to scenarios of the uncertainty and provides
a probabilistic guarantee, if the underlying problem is convex with respect to the
decision variables. The number of scenarios of the uncertainty realizations Ns that
needs to be extracted must satisfy

Ns ≥ 2

ε

(
d + ln

1

β

)
, (7.8)

where ε ∈ (0, 1) is a desired level of constraint violations, d is the number of decision
variables and β ∈ (0, 1) is a desired confidence level with which the drawn scenarios
lead to a feasible solution [14, 15]. Unfortunately, we cannot follow this approach,
due to the binary vectorV. Even if the convexity condition were satisfied, the number
of scenarios that one needs to generate grows linearly with the number of decision
variables, thus hampering the applicability of the method to large-scale problems [8].
For example, the number of decision variables in the proposed open-loop stochastic
MPC formulation (7.6) is d = (Nu + NvN )Nt , and the number of decision variables
in the proposed closed-loop affine uncertainty feedback policy stochastic MPC for-
mulation (7.7) is d + dG , where dG = NuNwN

(Nt−1)Nt

2 . Due to the high dimension
of decision space, we cannot even employ the extensions to non-convex problems in
[17]. To overcome this difficulty, we propose a tractable methodology based on the
results of [7] in Sect. 7.3.
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7.3 Centralized Stochastic MPC

In this section, we use the results in [3] to approximate the chance constraints that
appear in the proposed formulations (7.6) and (7.7). We then develop a tractable
methodology to reformulate the proposed robust formulations. The approximation
is done in a way to provide a feasible solution for all scenarios of the uncertainty
realizations with probabilistic guarantees. In the first step, a bounded set that contains
the uncertainty realizationswith a specific probability of violations is constructed.We
then formulate a robust optimization problem with respect to that set and show that
the solution is guaranteed to be feasible for the initial chance constrained problems
(7.6) and (7.7) with the desired level of confidence.

Randomization-Based Reformulation

Define Bi (γ ) to be a bounded set of uncertainty realizations and we assume that it
is an axis-aligned hyper-rectangle for each agent i . Note that the choice of a hyper-
rectangle is not restrictive and any convex set with convex volume could have been
chosen instead [7]. We parametrize Bi (γ ) := ×Nt−1

t=0 [γ
t
, γ t ] by γ = (γ , γ ) ∈ R

2Nt ,

where γ = (γ
0
, . . . , γ

Nt−1
) ∈ R

Nt and γ = (γ 0, . . . , γ Nt−1) ∈ R
Nt . Consider now

the following chance-constrained optimization problem

min
γ

Nt−1∑
t=0

γ t − γ
t

s.t. P(wi ∈ � | wi,t ∈ [γ
t
, γ t ], ∀t ∈ {0, . . . , Nt − 1}) ≥ 1 − ε.

(7.9)

By construction the problem (7.9) is a convex program andwe can apply the standard
scenario approach to obtain a solution as follows.

min
γ

Nt−1∑
t=0

γ t − γ
t

s.t. w j
i,t ∈ [γ

t
, γ t ] ,

{
∀t ∈ {0, . . . , Nt − 1}
∀ j ∈ {1, . . . , Ns} ,

(7.10)

where Ns is the required number of scenarios (7.8) for each agent i ∈ {1, . . . , N }with
d = Nt N . The optimal solution of (7.10) γ ∗ is a feasible solution for the problem
(7.9) with confidence 1 − β.

Determine Bi (γ
∗) for all i and define B∗ := {B1(γ

∗), . . . ,BN (γ ∗)} and pose
the robust counterpart of the problems (7.6)–(7.7) where W ∈ B∗ ∩ �N . Note that
the robust counterparts of (7.6)–(7.7) are not randomized programs and instead,
they are finite-horizon robust mixed-integer linear problems where the constraints
have to be satisfied for all values of the uncertainty inside B∗ ∩ �N . It is worth
to mention that any feasible solution of the robust counterparts of (7.6)–(7.7) is a
feasible solution for the problems (7.6) and (7.7) with at least confidence of 1 − β.
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The robust counterpart problems are tractable and equivalent to mixed-integer linear
programs, since the uncertainty is bounded in a convex set [18]. It is shown in [18]
that the robust problems are tractable and remain in the same class as the original
problems, e.g. robust mixed-integer programs remain mixed-integer programs, for
a certain class of uncertainty sets. This is achieved under the assumptions that the
constraint functions are linear and homogeneous with respect to the uncertainty
vector. In the sequel, we describe a tractable scheme for the robust counterparts of
(7.6)–(7.7).

Tractable Robust Reformulation

Following the methodology outlined in the previous section, we first define γ o :=
[γ o

0 , γ o
1 , . . . , γ o

Nt−1] ∈ R
NNt to be a vector whose elements are the middle points of

the hyper-rectangle B∗ and is defined as γ o = 0.5(γ ∗ + γ ∗) and each element of
γ o represents a vector for all agents i ∈ {1, 2, . . . , N }. Consider now the following
tractable reformulations of the proposed robust counterpart of problems (7.6) and
(7.7).

min
U,V

J(U) (7.11a)

s.t. AX0 + BU + Hγ o + η ≥ 0 , X0 = X (k) , (7.11b)

EU + FV + P ≤ 0 , (7.11c)

where η := [η0, η1, . . . , ηNt−1] ∈ R
NNt is a vector with each element ηt ∈ R

N denot-
ing a bound for the worst-case uncertainty realizations at step t for all agents
i ∈ {1, 2, . . . , N }. We refer to Proposition 7.1 below that shows how to achieve this
bound. We next present a tractable reformulation of the proposed robust counterpart
of problem (7.7).

min
U,G,V

J(U) (7.12a)

s.t. AX0 + BU + Hγ o + η ≥ 0 , X0 = X (k) , (7.12b)

EU + FV + P ≤ 0 , (7.12c)

U = U + Gγ o + ηg , (7.12d)

ηg,t ≤ [G(γ ∗ − γ o)]t ,∀t ∈ {0, 1, . . . , Nt − 1}, (7.12e)

ηg,t ≤ [G(γ ∗ − γ o)]t ,∀t ∈ {0, 1, . . . , Nt − 1}, (7.12f)

where ηg := [ηg,0, ηg,1, . . . , ηg,Nt−1] ∈ R
NNt is a vector with each element ηg,t ∈

R
N . The following proposition shows the link between the tractable problems (7.11)

and (7.12), and the proposed formulations (7.6) and (7.7), respectively.

Proposition 7.1 If the tractable problems (7.11) and (7.12) haveanoptimal solution,
where η is obtained by solving the following problem
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max
η∈RNNt

η

s.t. ηt ≤ [H(γ ∗ − γ o)]t ,∀t ∈ {0, 1, . . . , Nt − 1},
ηt ≤ [H(γ ∗ − γ o)]t ,∀t ∈ {0, 1, . . . , Nt − 1},

(7.13)

then it is a feasible solution for the chance-constrained problems (7.6) and (7.7) with
at least 1 − β confidence level, respectively.

Proof It is shown in [19, Proposition 1] that any feasible solution of the robust
counterparts of (7.6)–(7.7) is a feasible solution of the initial chance-constrained
problems (7.6) and (7.7), respectively. Therefore, we have to show that the proposed
tractable problems (7.11) and (7.12) are equivalent with the robust counterparts of
(7.6)–(7.7). Consider the following robust constraint,

0 ≤ AX0 + BU + HW , ∀W ∈ B∗ ∩ �N ,

that can be written in an equivalent format using the linearity and homogeneity
assumption of the constraint with respect to the uncertainty, leading to

0 ≤AX0 + BU + H(γ o + �γ ) =
AX0 + BU + Hγ o + H�γ , ∀�γ ∈ [γ ∗ − γ o, γ o − γ ∗] .

We need to introduce the vector η := [η0, η1, . . . , ηNt−1] ∈ R
NNt with each element

ηt ∈ R
N representing a bound for H�γ . Consider now the worst-case uncertainty

realizations to be (γ ∗ − γ o) and (γ ∗ − γ o). We pose the problem (7.13) to find
bound η. Using this bound leads to

0 ≤ AX0 + BU + Hγ o + η

≤ AX0 + BU + Hγ o + H�γ = AX0 + BU + H(γ o + �γ ).

The proof is completed. �

Remark 7.1 Note that we can use the same approach by introducing ηg,t to be
the worst-case superposition of the uncertainty realizations with the following con-
straints:

ηg,t ≤
∑t−1

j=0
θt, j [(γ ∗ − γ o)] j , ηg,t ≤

∑t−1

j=0
θt, j [(γ ∗ − γ o)] j .

Robust Randomized Model Predictive Control

The proposed procedure of a robust randomized MPC is summarized in Algorithm
4. We compare our proposed methodology to illustrate its performance against a
hybrid approach as a benchmark, where the generating unit status problem is solved
deterministically, meaning that we initialize γ o ≡ Wforecast, η ≡ 0 in (7.11), (7.12)
with the forecast value of the energy demand and solve the deterministic variant
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of the problems. At the next step, we fix the on-off status of the generating units
(and also the startup cost and auxiliary variables) to the binary vector computed by
the previous deterministic program, and formulate a stochastic production planning
problem. We refer to this as the Benchmark approach and the steps are summarized
in Algorithm 5.

Algorithm 4 Robust Randomized MPC

1: Fix X0 = X (k), ε ∈ (0, 1), β ∈ (0, 1) � the initial (current) state measurement, level of
constraint violations and confidence level of the agents, respectively.

2: Generate Ns scenarios (7.8) with d = 2Nt N and establish B∗ by solving the optimization
problem (7.10).
Open-loop

3: Solve (7.11) and determine an optimal solution U∗, V∗. Apply the first optimal solutionU (k) :=
U �
0 , V (k) := V �

0 to the STG agents.
Affine Uncertainty Feedback

4: Solve (7.12) and determine an optimal solution U
∗
, G∗, V∗. Apply the first optimal solution

U (k) := U �
0 + [G∗γ o + ηg]0 , V (k) := V �

0 to the STG agents.
5: k ← k + 1
6: Go to step 1.

Algorithm 5 Benchmark Approach
Deterministic Generating Unit Status

1: Fix X0 = X (k) and γ o ≡ Wforecast, η ≡ 0 � the initial (current) state measurement and no heat
demand prediction error.
Open-loop

2: Solve (7.11) and determine an optimal solution V∗
OLP.

Affine Uncertainty Feedback
3: Solve (7.12) and determine an optimal solution V∗

AUF.
Stochastic Production Planning

4: Fix ε ∈ (0, 1), β ∈ (0, 1) and consider γ o ≡ W( j), η ≡ 0, j = 1, . . . , Ns � level of constraint
violations and confidence, respectively.
Open-loop

5: Generate Ns scenarios (7.8) with d = NuNt .
6: Fix V (k) = V ∗

OLP,0 →Solve (7.11) and determine an optimal solutionU∗. Apply the first optimal
solution U (k) := U �

0 to the STG agents. Go to step 2.
Affine Uncertainty Feedback

7: Generate Ns scenarios (7.8) with d = Nt (Nu + NwN (Nt − 1)/2).
8: Fix V (k) = V ∗

AUF,0 and solve (7.12) and determine an optimal solution U
∗
, G∗. Apply the first

optimal solution U (k) := U
�

0 + [G∗γ o + ηg]0 to the STG agents.
9: k ← k + 1
10: Go to step 1.

Remark 7.2 The proposed framework solves a stochastic mixed-integer program
and it does not necessarily lead to a less conservative approach than the direct sce-
nario approach [14], due to the fact that the number of required scenarios (7.8) is
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a function of the dimension of the decision variables. The decision variable size
in our framework is proportional to the uncertainty dimension and in case of high
uncertainty dimension, the advantage of our solution comes at the expense of a more
conservative performance.

7.4 Distributed Stochastic MPC

In this section, we formulate two distributed approaches that are based on the alter-
nating direction method of multipliers (ADMM) [20] to solve the robust randomized
MPC (Algorithm 4). Due to the existence of the balance constraints (7.4h), problem
(7.11) is not trivially separable. Therefore, we decompose the problem by consid-
ering the dual problem that is associated with problem (7.11). Furthermore, the
ADMM approach is considered since the cost function is not strictly convex. In this
section we present two ADMM formulations, which are a fully distributed scheme
and a distributed scheme with a coordinator. Note that due to space constraints, we
only address the distributed formulation of (7.11). However, problem (7.12) can also
be solved in a distributed fashion with the same approach. Based on the proposed
distributed formulations, Steps 3 and 4 in Algorithm 4 can be done in distributed
manner.

Fully Distributed Scheme

Problem (7.11) can be expressed in a compact form as

min
{ũi ,ṽi }Ni=1

N∑
i=1

J i (ũi ) (7.14a)

subject to ũi ∈ Lu,i , ṽi ∈ Lv,i , (7.14b)

ũa
i +

∑
j∈N−i

Gi j ũ
a
j = 0, ∀i ∈ {1, . . . , N }, (7.14c)

where for each agent i , J i (ũi ) = ∑Nt−1
t=0 Ji (ui,t ), ũi = [

u�
i,0, . . . , u

�
i,Nt−1

]�
, ṽi =[

v�
i,0, . . . , v

�
i,Nt−1

]�
, and ũa

i = [
ua�
i,0 , . . . , ua�

i,Nt−1

]�
. Furthermore, Lu,i and Lv,i are

the sets definedby the local constraints, i.e., (7.4b)–(7.4g), (7.4i)–(7.4l).Additionally,
(7.14c) represents the coupling constraints, where Gi j , for each j ∈ N−i , is defined
appropriately according to (7.4h). We therefore can reformulate the problem as:

min
{ũi , ỹi ,ṽi }Ni=1

N∑
i=1

J i (ũi ) + ψ i ( ỹi ) (7.15a)

subject to ũi ∈ Lu,i , ṽi ∈ Lv,i , (7.15b)

ũa
i − ỹi = 0, ∀i ∈ {1, . . . , N } , (7.15c)
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where ψ i ( ỹi ) corresponds to a convex indicator function such that ψi ( ỹi ) = 0
if ỹi = −∑

j∈N−i
Gi j ũ

a
j and ψi ( ỹi ) = +∞ otherwise. Moreover, note that ỹi =

[ y�
i,0, . . . , y

�
i,Nt−1]� ∈ R

Nt |N−i | for all i ∈ {1, . . . , N }, are auxiliary variables. Con-
sider the augmented Lagrangian of this problem as follows:

Lρ =
N∑
i=1

(
J i (ũi ) + ψ i ( ỹi ) + λ̃

�
i (ũa

i − ỹi ) + ρ

2
‖ũa

i − ỹi‖22
)

=
N∑
i=1

Lρ,i (ũi , ỹi , λ̃i ).

where λ̃i = [λ�
i,0, . . . ,λ

�
i,Nt−1]� ∈ R

Nt |N−i | for all i ∈ {1, . . . , N } are the Lagrange
multipliers and ρ > 0 is the penalty parameter. Hence, the augmented dual problem
associated with Problem (7.15) is

max
{λ̃i }Ni=1

min
{ũi , ỹi ,ṽi }Ni=1

N∑
i=1

Lρ,i (ũi , ỹi , λ̃i ) (7.16a)

subject to ũi ∈ Lu,i , ṽi ∈ Lv,i , ∀i ∈ {1, . . . , N }, (7.16b)

ỹi = −
∑
j∈N−i

Gi j ũ
a
j , ∀i ∈ {1, . . . , N }. (7.16c)

We are now in a position to provide the ADMM steps that solves this problem in an
iterative fashion:

1. Updating ũi and ṽi for all i ∈ {1, . . . , N }:

{ũ(q+1)
i , ṽ(q+1)

i } ∈ argmin
ũi ,ṽi

Lρ,i (ũi , ỹ
(q)

i , λ̃
(q)

i )

subject to ũi ∈ Lu,i , ṽi ∈ Lv,i .

2. Sending ũa(q+1)
i to the neighbors, j ∈ N−i , for all i ∈ {1, . . . , N }.

3. Receiving ũa(q+1)
j from the neighbors, j ∈ N−i , for all i ∈ {1, . . . , N }.

4. Updating ỹ(q+1)
i for all i ∈ {1, . . . , N }:

ỹ(q+1)
i = argmin

ỹi

Lρ,i (ũ
(q+1)
i , ỹi , λ̃

(q)

i )

subject to ỹi = −
∑
j∈N−i

Gi j ũ
a(q+1)
j ,

which implies
ỹ(q+1)
i = −

∑
j∈N−i

Gi j ũ
a(q+1)
j . (7.17)
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5. Updating λ̃i for all i ∈ {1, . . . , N } via a gradient method:

λ̃
(q+1)
i = λ̃

(q)

i + ρ
(
ũa(q+1)
i − ỹ(q+1)

i

)
,

where ρ > 0.

The algorithm stops when

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

⎡
⎢⎣
ũa(q)

1 − ỹ(q)

1
...

ũa(q)

N − ỹ(q)

N

⎤
⎥⎦

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2

< ν,

for a small ν > 0. Note that the steps of updating ỹi and λ̃i are fully distributed
among the agents. Moreover, not all decision variables but only ũa

i , which contains
hi jex,t , needs to be communicated between the agents.

One issue of an iterative algorithm, such as thismethod, is that it possibly requires a
large number of iterations before the stopping criterion ismet. In this regard,we apply
warmstart to reduce thenumber of iterations. It is donebyusing the solutions obtained
in the previous sampling time since it often gives a good enough approximation [20].

For instance, consider that ỹ(q)

i = ỹi and λ̃
(q)

i = z̃i are the solutions obtained at the

last iteration (q) at sampling time t . We initialize ỹ(0)
i and λ̃

(0)
i for the next sampling

time as ỹ(0)
i = [

ỹ�
i (2 : Nt − 1) 01×|N−i |

]�
and λ̃

(0)
i = [

z̃�
i (2 : Nt − 1) 01×|N−i |

]�
.

Distributed Scheme with Coordination

The second ADMM method is formulated by perceiving the problem as an optimal
exchange problem [20]. In this regard, we can consider restating problem (7.11) as
follows:

min
{ũi ,ṽi }Ni=1

N∑
i=1

J i (ũi ) (7.18a)

subject to ũi ∈ Lu,i , ṽi ∈ Lv,i , (7.18b)
N∑
i=1

Ki ũ
a
i = 0, (7.18c)

in which (7.18c) represents the balance constraints (7.4h). This formulation is dif-
ferent from 7.14 since there is only one global coupling constraint (7.18c) instead
of N coupling constraints (7.14c). We can then follow the unscaled form of ADMM
for such problems as provided in [20] that consists of the following iterations:
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1. Updating of ũi and ṽi :

{ũ(q+1)
i , ṽ(q+1)

i } ∈ argmin
ũi ,ṽi

{
J i (ũi ) + λ(q)�

(
Ki ũ

a(q)

i

)

+ ρ

2

∣∣∣
∣∣∣Ki ũ

a(q)

i +
(
ỹ(q) − Ki ũ

a(q)

i

)∣∣∣
∣∣∣
2

2

}

subject to ũi ∈ Lu,i , ṽi ∈ Lv,i ,

2. Updating of ỹ:

ỹ(q+1) =
N∑
i=1

Ki ũ
a(q+1)
i .

3. Updating of λ̃:

λ̃
(q+1) = λ̃

(q) + ρ ỹ(q+1)
.

In this approach, although the optimization problem is solved in a distributed fashion,
the process of updating the auxiliary decision variable ỹ and theLagrangemultiplier λ̃
requires a coordinator that receives the decision of ũa

i at each iteration from all agents.

7.5 Numerical Study

Wecarried outMonte Carlo simulations and a comparisonwith theBenchmarkAlgo-
rithm 5 to illustrate the performance of our proposedAlgorithm 4 (robust randomized
MPC) for both open-loop and closed-loop formulations. All optimization problems
were solved using the solver BNB via the MATLAB interface YALMIP [21].

Simulation Setup

In this simulation study we consider a small thermal grid with three agents as an
example. Figure 7.1 depicts the connections between each agent and their local
components. Each agent has a micro-CHP, a boiler and a thermal storage. In the
proposedmodel the difference between the level of thermal storage and local thermal
energy demand (imbalance errors) is defined as the state of the local agent. The
thermal storage level of agent one, two and three are presented in Fig. 7.1 using
h1s , h

2
s , h

3
s , respectively. There are also three lines between agents indicating that

thermal energy exchange is possible. We assume that an external party is available
for all agents to provide thermal energy.

The proposed Algorithm 4 and the Benchmark approach are applied to the exam-
ple provided in Fig. 7.1 with N = 3. We solve a day-ahead production planning
problem for an uncertain thermal grid with Nt = 24 and hourly steps. It is assumed
that the up and down capacity of decreasing and increasing electrical power are
pup

g = pdown
g = pmax

g /3 and the minimum time for a change of production unit status
(�tup,�tdown) is 2h. Table 7.1 contains all parameters that are considered for the
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Fig. 7.1 Three-agent (households, greenhouses) thermal grid example. Each agent has a μ−CHP,
a boiler and a thermal storage. h1s , h

2
s , h

3
s are related to the local thermal storage in agent one, two

and three, respectively. There are also three lines between agents indicating that thermal energy
exchange is possible. It is considered to have an external party available for all agents to provide
thermal energy

Table 7.1 Parameters with their symbols and values

Parameter Value Unit

pmax
g , hmax

g , pmin
g , hmin

g 120.0, 120.0, 0.0, 0.0 [KW]

hmax
b , hmax

im , hmin
b , hmin

im 120.0, 120.0, 0.0, 0.0 [KW]

hmax
ex , hmin

ex , his,0 20.0,−20.0, 10.0 [KW]

ηCHP, ηh , ηp 0.25, 0.7, 0.3 –

ηs, ηb , αi j 0.85, 1.0, 0.25 –

cgas, cup , cdp, cb, cim 45.0, 0.0, 100.0, 45.0, 300.0 e

�su (micro-CHP, boiler) diag(60.0, 120.0) e

ε, β 0.1, 0.0001 –

example in Fig. 7.1. In order to generate scenarios for the thermal energy demand
error, we used a Markov chain based model (we refer the reader to [22] for more
details). Moreover, we consider to have different forecast of energy demand profiles
for each agent. We construct scenarios of uncertain demand profiles assuming that
the realization changes randomly to represent historical uncertain demand data.

Simulation Results: Centralized Stochastic MPC

Figure 7.2 shows imbalance error trajectories for different agents. Due to the defi-
nition of the imbalance error in Eq. (7.1), our goal is to minimize these errors. This
means that the requested thermal energy demand is provided for each agent at each
step with the desired level of violation ε as in Eq. (7.4l). The initial value for the
storage level in each agent is considered to be 10 [KW]. In Fig. 7.2 the ‘blue’, ‘red’
and ‘green’ lines are related to the imbalance error profiles (x1, x2, x3) in the first,
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Fig. 7.2 Imbalance error trajectories. ‘Blue’ lines show the imbalance error x1 in the first agent
and x2 the imbalance error in the second agent is shown by ‘Red’ lines. ‘Green’ lines represent the
imbalance error x3 in the third agent. The first, second and third sub-figures are related to the results
of open-loop MPC, closed-loop MPC considering affine uncertainty feedback, and the Benchmark
approach, respectively

Fig. 7.3 ON/OFF status of boilers. The first, second and third sub-figures are related to agent 1, 2,
and 3, respectively. The sub-figures on the left are the results of closed-loopMPC considering affine
uncertainty feedback, and the sub-figures on the right are the results of the Benchmark approach
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Fig. 7.4 Relative cost improvement (expressed in $) of the closed-loop MPC approach (affine
uncertainty feedback) over the Benchmark approach
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Fig. 7.5 The thermal energy exchanged between agents
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Fig. 7.6 The number of iterations and the computational time required by the distributed approaches
at each sampling time

second and third agent. The top sub-figure shows the result of optimizing directly
over input sequences in each sampling time (open-loop MPC), the middle depicts
the result of closed-loop MPC considering affine uncertainty feedback, and the last
sub-figure shows the result of the Benchmark approach. In Fig. 7.3 the ON/OFF
status of boilers at each sampling time using blue for the first, second and third agent
are shown, respectively. The left-hand-side sub-figures are related to the closed-loop
MPC considering affine uncertainty feedback, and the-right-hand side ones show
the results of the Benchmark approach. In Fig. 7.4 the relative cost improvement
between the cost generated by the closed-loop MPC considering affine uncertainty
feedback and the cost generated by the Benchmark approach in each sampling time
is shown.

The proposed Algorithm 4 offers a better working plan for production units as
well as an hourly-based production cost improvement compared to the Benchmark
approach. The improvement in terms of cost is due to the scheduling flexibility
offered by the proposed algorithm, where the binary variables are solved together
with the production planning problem, allowing us to identify more optimal working
status for production units.

Simulation Results: Distributed Stochastic MPC

We also compare the performance of the distributed approaches with the centralized
one. In summary, the distributed approaches are able to find quite similar solutions
to the centralized one. Moreover, Fig. 7.5 shows the satisfaction of the balance con-
straints in some agents when the distributed approaches are employed. Furthermore,
Fig. 7.6 shows the number of iterations and the computational time required by the
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distributed approaches to solve the problem at each sampling time. It can be seen that
both distributed methods have similar number of iterations as well as computational
times.

7.6 Concluding Remarks

This work formulated an optimization problem for a day-ahead prediction plan of
smart thermal gridswith uncertain local demands. Smart thermal grids refer to energy
networks whose main goal is to provide and distribute thermal energy among their
local agents. This formulation leads to amultistage chance-constrainedmixed-integer
linear program. We proposed a unified framework, namely a robust randomized
MPC approach to solve such a problem, while providing a-priori guarantees for the
chance constraint fulfillment. Additionally, we also propose to apply a distributed
optimizationmethod based onADMMto solve the robust randomizedMPCprogram.
Our current work focuses on incorporating aquifer thermal energy storage (ATES)
systems in the developed framework.
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