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a b s t r a c t

We study efficient implicit methods to denoise low-field MR images using a nonlinear
diffusion operator as a regularizer. This problem can be formulated as solving a nonlinear
reaction–diffusion equation. After discretization, a lagged-diffusion approach is used
which requires a linear system solve in every nonlinear iteration. The choice of diffusion
model determines the denoising properties, but it also influences the conditioning of the
linear systems. As a solution method, we use Conjugate Gradient (CG) in combination
with a suitable preconditioner and deflation technique. We consider four different
preconditioners in combination with subdomain deflation. We evaluate the methods
for four commonly used denoising operators: standard Laplace operator, two Perona–
Malik type operators, and the Total Variation (TV) operator. We show that a Discrete
Cosine Transform (DCT) preconditioner works best for problems with a slowly varying
diffusion coefficient, while Jacobi preconditioning with subdomain deflation works best
for a strongly varying diffusion, as happens for the TV operator. This research is part of
a larger effort that aims to provide low-cost MR imaging capabilities for low-resource
settings. We have evaluated the algorithms on low-field MRI images using inexpensive
commodity hardware. With a suitable preconditioner for the chosen diffusion model, we
are able to limit the time to denoise three-dimensional images of more than 2 million
pixels to less than 15 s, which is fast enough to be used in practice.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The context of the research

Many people benefit from the availability of MRI scanners for medical diagnostic purposes. However, conventional MRI
canners are expensive and difficult to operate and maintain, and therefore are out of reach in many low- and middle-
ncome countries. To provide affordable MRI systems, there has been an increase in research to develop low-cost MRI
canners [1,2]. We are involved in a project [3–6] that aims to design a low-field MRI device for imaging the head, primarily
o aid in the treatment of hydrocephalus, a condition that affects many newborns in Africa. The system [4] developed by
he Leiden University Medical Center (LUMC), uses a Halbach-array-based permanent magnet to eliminate the need for
xpensive super-conducting magnets that are typically used in conventional MRI systems. In the same way as for the
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traditional MRI systems, the inverse Fourier transform is applied to convert the k-space signal into a complex-valued
mage.

For conventional general-purpose MRI systems, also the image processing software, and its maintenance and improve-
ent costs, are relatively high [1]. This cost can be reduced by using commodity hardware, i.e., standard laptop or desktop
omputers, and open-source software. This, however, provides constraints on the processing algorithms that we can use:
hey should require limited computational resources while still being efficient. Low-field MR images are typically noisy
nd blurred. The focus of this paper is therefore on the development of effective denoising and edge-preserving algorithms,
hat are suitable for commodity hardware.

.2. Denoising models

The maximum a posterior (MAP) model for image denoising is formulated as, see, e.g., [7]

u = argmin
u

R(u) + µF(u, f ).

n which R(u) is the regularization term associated with an image prior, which promotes certain regularity properties
f the image, F(u, f ) is the fidelity term which guarantees the difference between the denoised image u and the initial,

noisy image f is not too big, such that the main features of the image f are preserved, and the fidelity parameter µ

determines the trade-off between the two terms. The well-known denoising Total Variation (TV) model, first proposed
by Rudin, Osher, and Fatemi [8], belongs to this class. The variational model can be minimized by solving the diffusion
equation using a gradient descent flow method. Chen et al. [9] study a generalization of the TV functional with a variable
exponent, which provides a model for image denoising, enhancement, and restoration.

The diffusion model in image processing interprets pixel intensities as a diffusion process in the image. Standard heat
diffusion was the first model of this type used for image denoising. The disadvantage of the method is that it smooths out
image edges and therefore results in a blurred image. In the early 90s, Perona and Malik [10] proposed a nonlinear diffusion
model (PM model) for image processing. The magnitude of the gradient of the image is assumed to be a good indication of
the location of the image edge. By replacing the constant-diffusion coefficient by a gradient-based coefficient, the model
is able to preserve edges while removing noise. However, the PM model suffers from ill-posedness of the solution. To
overcome the ill-posedness of the PM model, Alvarez, Lions and Morel [11] have introduced a regularization PM model
that makes the problem well-posed. A general class of diffusivities for image denoising is proposed in [12] and the authors
further utilize a numerical method to avoid piecewise constant structures in the numerical solution, which may happen
when evolving the TV and other diffusion models.

Several papers have appeared on denoising of three-dimensional MR images. Considering the original anisotropic
diffusion PM model, Gerig et al. [13] proposed a PDE-based filtering method. Golshan et al. [14] presented an LMMSE-ba-
sed method for denoising of three-dimensional images. In [15], the authors applied a three-dimensional anisotropic
diffusion process to MRI data and compared the efficiency and effectiveness of two parallel preconditioners: sparse
approximate inverse preconditioners and block-diagonal preconditioners in combination with the General Minimal
Residual method.

1.3. Motivation

In [16], Nordström shows that a global edge detection algorithm based on variational regularization can be seen as a
biased anisotropic diffusion method. The problem can be formulated as follows:

ut = ∇ · (cn(∥∇u∥)∇u) + µ(f − u) in Ω × (0, T ),

∂u
∂ n⃗

= 0 on ∂Ω × (0, T ), (1)

u(x, 0) = f in Ω,

where Ω ⊆ Rd for d = 2 or 3, T is the stopping time, u is the pixel value (which is complex for MR images), f is the
noisy image, µ is the fidelity parameter and cn is a non-negative monotonically decreasing function with cn(0) = 1 and
cn(∞) → 0. The bias term (f − u) (also called fidelity term) ensures that the filtered image u does not drift too far from
the original image f . The author further states that because of the bias term, a steady state solution exists for the diffusion
model. In the remainder of the paper, we adopt this widely used model for image denoising of low-field MR images. But
instead of integrating the equation in time, we directly solve for the steady state of the model. Formulated in this way,
Eq. (1) can be interpreted as the Euler–Lagrange equation of a variational model.

The numerical discretization of our denoising model leads to a nonlinear system
A(u)u = b
2
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where the operator A(u) depends on u if the diffusion coefficient is solution-dependent. This system can be solved using
the following Picard iteration

A(un)un+1
= b.

his iteration was first introduced by Vogel and Oman in [17], and is known as the lagged-diffusion method. In each
teration a large sparse system of linear equations

Au = b (2)

needs to be solved. Here A is a symmetric and positive-definite matrix. For such systems, the CG method is the method of
choice. If A is ill-conditioned, i.e., has a large condition number κ , convergence may be unacceptably slow. The standard
way to improve the rate of convergence is to apply CG to the preconditioned system M−1Au = M−1b, which yields the
Preconditioned CG (PCG) algorithm. The preconditioner M should be chosen such that it resembles A, and that systems
with M are easy to solve. A complementary way to speed up convergence is to combine PCG with deflation. This method
is called Deflated Preconditioned CG (DPCG). In 1987, Nicolaides [18] chose the deflation vectors to be piecewise constant,
where the nonzeros correspond to a partitioning of the domain into subdomains. This technique is particularly efficient
if the spectrum of the preconditioned matrix contains a limited number of small eigenvalues.

1.4. Review of preconditioners for the lagged-diffusion linear system

Several preconditioners have been proposed for the linear system (2). Vogel and Oman [17] combined PCG with a
multigrid method as a preconditioner for solving the TV model. Our approach is closely related to theirs. While they
restricted themselves to the solution of the TV model with multigrid, we extend this by investigating different types
of preconditioners in combination with different diffusion models. In 2007, Duarte-Carvajalino et al. [19] considered
image denoising for hyperspectral images using the regularized PM model. They employed the Additive Operator Splitting
(AOS) [20] and Alternating Direction Implicit schemes [21] as preconditioners for the PCG linear solvers. In 2010, Bertaccini
et al. [22] proposed an updating strategy for the (incomplete) Cholesky preconditioners for the sequence of lagged-
diffusion linear systems. In [23], the authors presented a simple, directionally-split, semi-implicit method for anisotropic
diffusion which is linearly stable for large timesteps. The authors also suggested that this method might be able to serve
as an effective preconditioner to further accelerate an unsplit iterative method. In 2013, a novel kind of regularization
of the classical Perona–Malik model was proposed in [24]. The authors used the Krylov subspace spectral methods to
implement the diffusion model. In 2014, Arridge et al. [25] derived a factorization-free preconditioned LSQR algorithm
for solving large-scale linear inverse imaging problems, regularized with a nonlinear, edge-preserving penalty term such
as Total Variation or the Perona–Malik technique. The method is aimed at problems defined on unstructured meshes,
where such regularizers naturally arise in unfactorized form as a stiffness matrix of an anisotropic diffusion operator and
factorization is prohibitively expensive.

1.5. Contributions of this paper

The goal of this paper is to analyze and evaluate suitable preconditioners in combination with deflation to solve Eq. (2).
We consider three preconditioners that are representative for different classes. The first is Jacobi preconditioning which
is a classical preconditioner that is based on a regular splitting of the matrix. The second is the AOS preconditioner, which
is an operator splitting method that splits the two- or three-dimensional problem into a sequence of one-dimensional
problems. The third preconditioner approximates the variable diffusion operator by the standard Laplace operator. The
action of the inverse of the (shifted) Laplace operator is computed using the Discrete Cosine Transform (DCT). All three
methods are trivial to parallelize and can be implemented matrix-free. For reasons of comparison, we also consider
unpreconditioned CG. We analyze the preconditioners for four different denoising models and provide upper bounds
on the number of CG iterations.

We combine the methods with deflation, which can be seen as a coarse-grid correction. We have evaluated our methods
on a wide range of low-field MR images. Our analysis and the numerical results show that the best choice of preconditioner
depends on the denoising model. If the diffusion is modeled by a smoothly varying function, the DCT preconditioner is
best, while for a strongly varying diffusion, Jacobi preconditioning combined with deflation works best.

1.6. Structure of this paper

This paper starts in Section 2 with the description of the denoising models. It also explains the structure of the linear
system that has to be solved in every Picard iteration. Section 3 describes the DPCG method that is used to solve these
linear systems. It explains the deflation operation and presents the preconditioners we consider: Jacobi preconditioning,
AOS, and DCT. Section 4 gives numerical experiments on low-field MR images. We present the denoised images and give
the numerical results for CG, PCG, and DPCG for the different denoising models. These results show that the relative

performance of the preconditioners depends on the denoising model. Finally, we end with conclusions in Section 5.

3
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1.7. Notation

We use the following notations. Vectors are denoted by bold characters, matrices by capitals, and scalars by regular
haracters. The superscript H denotes the conjugate transpose, and T the normal transpose. Norm is denoted by ∥ · ∥. ∥ · ∥

ith a subscript denotes a specific norm. Norms without subscripts are standard 2-norms. ⊗ stands for the Kronecker
roduct.

. Mathematical model and numerical algorithms

.1. The denoising models

The specific models we consider are formulated as follows:

∇ · (cn(∥∇u∥)∇u) + µ(f − u) = 0 in Ω × (0, T ),

∂u
∂ n⃗

= 0 on ∂Ω × (0, T ), (3)

u(x, 0) = f in Ω,

where Ω ⊆ R2 or R3. Choices for the function cn we consider are:

c1 = 1, (4)

c2(∥∇u∥) =
1

1 +
(

∥∇u∥
K

)2 , (5)

c3(∥∇u∥) = e−(∥∇u∥/K )2 , (6)

c4(∥∇u∥) =
1

∥∇u∥
, (7)

where K is a damping parameter.
The above equations define four different denoising models, which we denote as Models 1–4 according to the

coefficients c1-c4. Some of them have also been used in [26] for edge detections. Choosing c1 yields the stationary standard
heat equation with source term µ(u0 − u). It models the stationary solution of heat flow, which makes it efficient in
removing noise but tends to blur the edges of the image. c2 and c3 are choices that were already proposed in the classic
paper by Perona and Malik [10]. c2 privileges wide regions over smaller ones and c3 privileges high-contrast edges over
low-contrast ones. Taking c4, (3) corresponds to the Euler–Lagrange equation of the TV model [8]. In the original paper [8],
the authors suggested to use the gradient descent method to solve the evolution equation. Instead of using the gradient
descent method, Chan et al. [27] solved the steady state for the TV model directly, which is the approach we take in this
paper.

In [28], the authors explained in Section 2.7.6 that, under some assumptions, the solution u(t, ·) of the time-dependent
form of model (3) should approximate a minimizer u(·) of model (3) as t increases. Eq. (3) can also be viewed as one
ime step of the implicit Euler time-integration method applied to the diffusion equation ut = ∇ · (cn(∥∇u∥)∇u). A single
mplicit Euler time step applied to the diffusion equation is given by u1−u0

τ
= ∇ · (cn(∥∇u1

∥)∇u1), which can be rewritten
s ∇ · (cn(∥∇u1

∥)∇u1)+ 1
τ
(u0

− u1) = 0. The initial value of u is f , which means we can choose u0
= f and we set u1

= u
and µ =

1
τ
. This exactly matches the first equation in (3). Therefore, solving the steady-state equation with the fidelity

erm is equivalent to applying one implicit Euler step to the transient diffusion equation without fidelity term.

.2. Numerical discretization

We use the standard finite difference method to discretize (3) in space, see also [10]. For ease of presentation, we
ssume that the number of pixels is equal to N in each direction and that the images are defined on the unit domain.
his implies that for the step size we have

h =
1
N

.

We first consider the one-dimensional case. The one-dimensional discretization of ∇(cn · ∇u) at point xi is given by

∇(cn · ∇u)xi ≈ ci+ 1
2

(ui+1 − ui)
h2 − ci− 1

2

(ui − ui−1)
h2 ,

where ci± 1
2

=
ci±1+ci

2 . ci := c(|ux|i) = c(| ui+1−ui−1
2h |) for 0 ≤ i ≤ N − 1. Due to the Neumann boundary conditions, we have

that u = u and u = u .
−1 0 N−1 N

4
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The one-dimensional diffusion matrix is given by

C1d
=

1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c 1
2

c 1
2

c 1
2

−(c 1
2

+ c1+ 1
2
) c1+ 1

2

. . .
. . .

. . .

cN−
5
2

−(cN−
5
2

+ cN−
3
2
) cN−

3
2

cN−
3
2

−cN−
3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

ote that the diffusion matrix is diagonally equivalent, which means that for every row the absolute value of the main
iagonal is equivalent to the sum of the absolute values of the sub-diagonal elements. Moreover, the matrix is symmetric
nd negative definite.
For the two-dimensional case, we write our matrix as

C2d
= Cx + Cy

here Cl describes the diffusion in the l direction, l = x, y. Cl is a block-diagonal matrix, in which each block corresponds
o a one-dimensional diffusion matrix. We refer to, e.g., [20] for the precise definition of C2d. The resulting discretized
quation is given by

C(u)u + µ(f − u) = 0. (8)

here

u = (u0,0, . . . , uN−1,0, . . . , u0,N−1, . . . , uN−1,N−1)T ,

f = (f0,0, . . . , fN−1,0, . . . , f0,N−1, . . . , fN−1,N−1)T .

n two-dimensional case. The three-dimensional case can be defined similarly.
Eq. (8) can be rewritten as

(I −
1
µ
C(u))u = f. (9)

We solve the nonlinear system (9) with the lagged diffusion Picard iteration as proposed in [17]:

(I −
1
µ
C(un))un+1

= f. (10)

n every Picard iteration a linear system of the form

Au = b (11)

eeds to be solved. The matrix A is symmetric and positive definite. However, because of possible discontinuities in the
iffusion parameter c , the matrix A may be ill-conditioned.

3. Linear system solver

3.1. Deflated preconditioned conjugate gradients

We use the DPCG to solve the system (11). We first explain the deflation technique as proposed in [18]. This technique
splits the solution u into two parts, one in the range of the deflation subspace and another in its complement. To this
end, we define the projector P by

P = I − AZ(ZTAZ)−1ZT , Z ∈ Rn×m

where I is the identify matrix, and Z = [z1 z2 · · · zm] is the deflation matrix of rank m. The columns of Z span the deflation
ubspace. Since u = (I − PT )u + PTu and

(I − PT )u = Z(ZTAZ)−1ZTAu = ZA−1
c ZTb,

e only need to calculate PTu. We solve the deflated system as follows:

PAũ = Pb.

e use the DPCG method to get ũ, and multiply ũ by PT to obtain PT ũ which is equal to PTu.
5
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The initial residual is r0 = Pb − PAun. M is the preconditioner. Note that the matrices are real-valued, and that the
ectors are complex-valued.

= 0.
hile ∥rk∥ < ϵ∥r0∥ do
Solve zk = M−1rk
k = k + 1
if k = 1 then

p1 = z0
else

βk = rHk−1zk−1/(rHk−2zk−2)
pk = zk−1 + βkpk−1

end
αk = rHk−1zk−1/(pH

k PApk)
ũk = ũk−1 + αkpk
rk = rk−1 − αkPApk

end
u = Z(Ac)−1ZTb + PT ũk.

Algorithm 1: The DPCG algorithm for solving (11).

In [18], Nicolaides defined Z based on a decomposition of the domain Ω . The idea is first to decompose the domain
Ω into m nonoverlapping subdomains Ωi, i = 1, 2, . . . ,m. Then choosing vectors zi for i ∈ {1, 2, . . . ,m} such that zi = 1
n Ωi and zi = 0 on Ωj, j ̸= i, j ∈ {1, 2, . . . ,m}. With this choice of matrix Z , the resulting deflation technique is called
ubdomain deflation [18]. It can be interpreted as a two-level multigrid method [29], where the projection matrix P
orresponds to a coarse-grid correction using a piece-wise constant interpolation with extreme coarsening. In this paper,
e use squares or cubes of equal size as subdomains for deflation.

.2. Preconditioners

We consider four different preconditioning techniques. Each preconditioner has a low computational complexity
f (approximately) O(Nd), in which d is the dimension of the problem, both to construct and to apply and is easily
arallelisable. In this section, we will describe the preconditioners and give for each preconditioner an upper bound on
he condition number of the preconditioned matrix. Since both M and A are symmetric positive definite, the condition
umber of the preconditioned matrix, κprec is equal to the ratio of the largest and smallest eigenvalue of M−1A,

κprec =
λmax(M−1A)
λmin(M−1A)

.

Using our upper bounds on the condition numbers, we will derive upper bounds on the required number of iterations
for the different combinations of preconditioners and diffusion models. In our analysis, we frequently need the absolute
value maximum of main diagonal element of a matrix B. To simplify notation we therefore define

r(B) = max
i

|Bi,i|

o denote this value.

.2.1. No preconditioning
In case no preconditioner is applied, we can simply bound the eigenvalues λ(A) of A using Gershgorin’s theorem. By

using that C(un) is diagonally equivalent, we know that the eigenvalues are bounded by

|λ(A) − (1 +
1
µ
r(C(un)))| ≤

1
µ
r(C(un))

and, by using that A is symmetric and hence has real eigenvalues, we obtain

1 ≤ λ(A) ≤ 1 +
2
µ
r(C(un)),

and hence that the condition number κunprec of the unpreconditioned matrix is bounded by

κunprec ≤ 1 +
2
µ
r(C(un)).

We furthermore can make use of the definition of the diffusion coefficients ci,j(un) for the different models. Clearly

0 ≤ |ci,j(un)| ≤ 1 and hence r(C(un)) ≤
2d

h2

6
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for diffusion coefficients (4)–(6). Making use of this, we obtain that

κunprec ≤ 1 +
4d
h2µ

.

However, for c4, the entries of C(un) may become arbitrarily large for flat regions in an image, and hence for the TV
model r(C(un)) may become unbounded.

3.2.2. Jacobi preconditioning
A simple and popular preconditioning method is to use the main diagonal of A as a preconditioning matrix M . This

echnique is known as Jacobi preconditioning. The clear advantages are that it is easy to implement, parallelize, and apply.
sing Gershgorin’s theorem we obtain

|λ(M−1A) − 1| ≤

1
µ
r(C(un))

1 +
1
µ
r(C(un))

and hence

1 −

1
µ
r(C(un))

1 +
1
µ
r(C(un))

≤ λ(M−1A) ≤ 1 +

1
µ
r(C(un))

1 +
1
µ
r(C(un))

.

For the condition number of the Jacobi-preconditioned A, κJacobi, we obtain

κJacobi ≤ 1 +
2
µ
r(C(un))

which is the same as the bound for the condition number of the unpreconditioned matrix. However, an advantage of Jacobi
preconditioning is that, in case of strongly varying coefficients, the spectrum only contains a few small eigenvalues. When
this is the case, Jacobi preconditioning combined with deflation can be quite efficient, see for example [30].

3.2.3. AOS
Assuming the image domain to be d dimensional, we can rewrite Eq. (10) as[

1
d
Σd

l=1(I −
d
µ
Cl(un))

]
un+1

= f. (12)

n the one-dimensional case, (12) is a tridiagonal linear system that can be solved by the Thomas algorithm in linear
ime. In [20], the authors proposed a method called Additive Operator Splitting to approximately solve equation (12) in
he multi-dimensional case, by solving a sequence of tridiagonal linear systems. The AOS method is defined by

un+1
≈

1
d
Σd

l=1

[
I −

d
µ
Cl(un)

]−1

f.

The operators I − d
µ
Cl(un) describe the one-dimensional diffusion operators along the xl axes. They are strictly diagonally

ominant tridiagonal matrices (if properly ordered), hence systems with these matrices can be solved with linear
omplexity using the Thomas algorithm. Moreover, the one-dimensional systems along the same direction can be solved
n parallel. The AOS preconditioner is then defined as

M−1
=

1
d
Σd

l=1

[
I −

d
µ
Cl(un)

]−1

.

To bound the condition number κAOS for the AOS-preconditioner, we will again first bound the eigenvalues of the
preconditioned matrix M−1A. This matrix can be written as

M−1A =

(
1
d
Σd

l1=1

[
I −

d
µ
Cl1 (u

n)
]−1

)(
1
d
Σd

l2=1

[
I −

d
µ
Cl2 (u

n)
])

=
1
d2

Σd
l1=1Σ

d
l2=1

[
I −

d
µ
Cl1 (u

n)
]−1 [

I −
d
µ
Cl2 (u

n)
]

= I +
1
d2

Σd
l1=1Σ

d
l2=1,l2 ̸=l1

[
I −

d
µ
Cl1 (u

n)
]−1 [ d

µ
(Cl1 (u

n) − Cl2 (u
n))
]

.

e now use the Rayleigh quotient of the preconditioned matrix

R −1 (x) =
xHAx
M A xHMx
7
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to bound its eigenvalues

min
x

RM−1A(x) ≤ λ(M−1A) ≤ max
x

RM−1A(x),

by deriving upper and lower bounds on RM−1A(x). First we note that
d
µ
λmin(Cl1 (u

n))

1 −
d
µ
λmin(Cl1 (un))

≤
xH ( d

µ
Cl1 (u

n))x

xH (I −
d
µ
Cl1 (un))x

< 0

and that

0 ≤ −
xH ( d

µ
Cl2 (u

n))x

xH (I −
d
µ
Cl1 (un))x

≤ −
d
µ

λmin(Cl2 (u
n)).

Here we used that Cl1 and Cl2 are negative semi-definite, and that

xH (I −
d
µ
Cl1 (u

n))x ≥ xHx.

ombining these bounds, we obtain
d
µ
λmin(Cl1 (u

n))

1 −
d
µ
λmin(Cl1 (un))

≤
xH ( d

µ
(Cl1 (u

n) − Cl2 (u
n)))x

xH (I −
d
µ
Cl1 (un))x

≤ −
d
µ

λmin(Cl2 (u
n)).

e use this result to bound the Rayleigh quotient RM−1A(x), and with that the eigenvalues of the preconditioned matrix:

1 +
1
d2

Σd
l1=1Σ

d
l2=1,l2 ̸=l1

d
µ
λmin(Cl1 (u

n))

1 −
d
µ
λmin(Cl1 (un))

≤ λ(M−1A)

≤ 1 −
1
d2

Σd
l1=1Σ

d
l2=1,l2 ̸=l1

d
µ

λmin(Cl2 (u
n)).

Applying Gersgorin’s theorem yields

1 −
1
d2

Σd
l1=1Σ

d
l2=1,l2 ̸=l1

2d
µ
r(Cl1 (u

n))

1 +
2d
µ
r(Cl1 (un))

≤ λ(M−1A)

≤ 1 +
1
d2

Σd
l1=1Σ

d
l2=1,l2 ̸=l1

2d
µ

r(Cl2 (u
n)).

For Models 1–3, for which the diffusion coefficients are given by (4)–(6), this can be simplified to

1 − (d − 1)
4

µh2

1 +
4d

µh2
≤ λ(M−1A) ≤ 1 + (d − 1)

4
µh2 .

and for the condition number, we obtain

κAOS ≤

1 + (d − 1) 4
µh2

1 +
4

µh2
(1 +

4d
µh2 ) .

Note that this upper bound is sharp for d = 1, and for d = 2 it is the same as for no-preconditioning and Jacobi
preconditioning.

3.2.4. Discrete Cosine Transform preconditioner
The standard Laplace operator for the Neumann problem can be diagonalized using the Discrete Cosine Transform.

This means that it is easy to solve a system involving the shifted standard and scaled Laplace operator I −
1
µ
Cheat , where

heat denotes the standard Laplace operator for the Neumann problem. This operator is therefore potentially a good
reconditioner for the varying-coefficient matrix I −

1
µ
C(un), if the coefficients vary smoothly. The idea of exploiting

CT of the standard Laplace operator as preconditioner was first proposed in [31].
The DCT preconditioner uses knowledge of the eigenpairs of the discrete Laplace operators Cheat , which we now briefly

eview. The one-dimensional standard Laplace operator with Neumann boundary is given by

C1d
heat =

1
h2

⎛⎜⎜⎜⎜⎝
−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1

⎞⎟⎟⎟⎟⎠ .
1 −1
8
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The eigenvalues and eigenvectors of this matrix are well-known and can be found for example in [32]. The eigenvalues
matrix are given by

λi(C1d
heat ) = −

1
h2 (2 − 2 cos

2iπ
N

)

for i = 0, . . . ,N − 1. The corresponding orthogonal eigenvectors are

vi = [vi
], vi

= cos(j +
1
2
)
iπ
N

, for j = 0, . . . ,N − 1.

The eigenvector matrix

V 1d
heat =

[
v0, v1, . . . , . . . , vN−1

]
is exactly the one-dimensional DCT operator, and its adjoint [V 1d

heat ]
T the inverse DCT. Multiplication with the matrices

V 1d
heat and [V 1d

heat ]
T only requires N · O(log(N)) operations.

We can express the two-dimensional standard Laplace operator in terms of one-dimensional matrices by C2d
heat =

(C1d
heat ⊗ IN ) + (IN ⊗ C1d

heat ), where IN is the identity matrix. The eigenvalues are given by λ(i,j) = λi + λj for all pairs
(i, j). The corresponding eigenvectors are vi,j = vi ⊗ vj. The eigenvalues and eigenvectors of the three-dimensional case
can be obtained in the same way.

We can exploit the above theory by taking the matrix M = I −
1
µ
Cheat as a preconditioner. This matrix has the same

igenvectors as Cheat . The eigenvalues are given by

λ(M) = 1 −
1
µ

λ(Cheat ).

Operation with M−1 can be performed by taking sequences of N one-dimensional DCTs in the x, y, and z directions,
ollowed by multiplication with the inverse of a diagonal matrix with the eigenvalues of M on the diagonal, followed by
equences of N one-dimensional inverse DCTs in z, y, and x direction.
In order to bound the condition number κDCT for the preconditioned matrix M−1A, we first write

A = I −
1
µ
(Cheat + C(un) − Cheat ).

Therefore we have

M−1A = I +
1
µ
M−1(C(un) − Cheat ).

We can bound the eigenvalues of the matrix (C(un) − Cheat ) using Gershgorin’s theorem

0 ≤ λ(C(un) − Cheat ) ≤ 2|−r(C(un)) +
2d
h2 |.

or Models 1–3, we know that 0 ≤ r(C(un)) ≤ r(Cheat ) = 2d/h2, so

0 ≤ λ(C(un) − Cheat ) ≤
4d
h2 .

Using the Rayleigh quotient to bound the eigenvalues of this matrix yields

1 ≤ λ(M−1A) ≤ 1 + max
x

1
µ
xH (C(un) − Cheat )x

xH (I −
1
µ
Cheat )x

.

Since xH (I −
1
µ
Cheat )x ≤ xHx, we obtain

κDCT ≤ 1 +
4d
h2µ

,

which is the same bound that we obtained for κunprec and for κJacobi. Of course this bound is very pessimistic, when
(un) − Cheat is small. For Model 1, C(un) = Cheat , and we have κDCT = 1. For Models 2 and 3, the diffusion coefficients
re close to 1, if ∥∇u∥2/K 2 is small, in which case we can expect fast convergence.
A bound on the number of iterations to reduce the residual norm below a certain tolerance ϵ is given as below. A

lassical upper bound on the CG error is, see for example [33],

∥uk − u∥A ≤ 2
(√

κprec − 1
√

κprec + 1

)k

∥(un
− u)∥A. (13)

y referring to [34] Lemma 2.3.2, we have
∥rk∥

≤
√

κunprec
∥uk − u∥A

. (14)

∥r0∥ ∥un − u∥A

9
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Fig. 1. From left to right: Noisy image, Denoised images by Model 1 (µ = 5e3), Model 2 and Model 3 (K = 15, µ = 5e3), and Model 4 (µ = 2e3)
with 82 deflation vectors.

Giving the tolerance ϵ,

2
√

κunprec

(√
κprec − 1

√
κprec + 1

)k

= ϵ,

and taking the logarithm, we then obtain

k = ln
(

ϵ

2√κunprec

)
/ln

(√
κprec − 1

√
κprec + 1

)
. (15)

. Numerical experiments

The numerical tests have been performed on a MacBook Air computer equipped with an Apple M1 CPU and 16 GB of
emory. The M1 chip contains 8 cores, four for performance and four for energy efficiency. The algorithms have been

mplemented in F90/F95, and parallelized using OpenMP. The numerical methods have been tested on a wide range of
mages. We discuss the results for two representative images in this section. Appendix B presents the results for two
dditional images.

.1. Images

We show numerical results for two representative images: a two-dimensional Shepp–Logan (SL) image of 128 × 128
ixels, and a three-dimensional melon of 128 × 128 × 128 pixels. Both images have been obtained with the MRI scanner
escribed in [4]. The image data are complex valued, and we apply our algorithms directly to these complex data.
Figs. 1 and 2 show the raw images and the denoised images for the four different diffusion models. We have used
= 15 for the parameter in Models 2 and 3. For the fidelity parameter, we have taken µ = 5e3 for Models 1–3, and

or Model 4 we have taken µ = 2e3 for the Shepp–Logan image, and µ = 1.5e3 for the melon. These parameters have
een selected to give good visual results and are used in all numerical experiments. The results show that all diffusion
odels successfully denoise the images. Model 1, which is equivalent to a standard Gaussian filter, as expected, does not
reserve the edges well. The images become shaper from left to right. Model 4, Total Variation, gives visually the clearest
mages (see Figs. 1 and 2).

.2. Numerical results

This section evaluates the numerical techniques on the two test images. For each image and diffusion model, we report
he number of Picard iterations to denoise the image, and for each Picard iteration, we give the number of DPCG iterations.
e present the results for the four different preconditioners, and for 4 × 4, 8 × 8, and 16 × 16 deflation vectors for the

hepp–Logan image, and for 4 × 4 × 4 and 8 × 8 × 8 deflation vectors for the melon. As a convergence criterion for
PCG we use

∥rk∥
∥r0∥

< 10−5.

The convergence criterion for the Picard iteration is

∥un
− un−1

∥

∥f∥
< 10−2.

We take the solution of the previous Picard iteration as an initial guess for DPCG.
10
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4

i

Fig. 2. From left to right: Noisy image, Denoised images by Model 1 (µ = 5e3), Model 2 and Model 3 (K = 15, µ = 5e3), and Model 4 (µ = 1.5e3)
with 83 deflation vectors. From top to bottom: the center slices from x, y and z directions.

Fig. 3. Measured Shepp–Logan (128 × 128). Picard and CG iteration numbers for different models with different preconditioners.

Fig. 4. Measured Shepp–Logan (128 × 128). Run time for different models with different preconditioners.

.2.1. Shepp–Logan
Fig. 3 gives for each Picard iteration the number of DPCG iterations, and Fig. 4 the elapsed times for the Shepp–Logan

mage.
11
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Fig. 5. Melon (128 × 128 × 128). Picard and CG iteration numbers for different models with different preconditioners.

Fig. 6. Melon (128 × 128 × 128). Run time for different models with different preconditioners.

Model 1 is linear and therefore takes two Picard iterations to converge. This is the minimum since the termination
riterion is based on the change in the solution. The DCT preconditioner is a direct method for this model. This is confirmed
y the fact that DPCG immediately terminates at the exact solution. For the other preconditioners, the number of PCG
terations is less or equal to 30, which is in agreement with the upper bounds on the number of iterations which are given
n the previous section of 36 iterations. We furthermore notice that deflation does not give a significant improvement.
he DCT preconditioner without deflation is the fastest method for this model and takes only 7 ms.
Of the three nonlinear diffusion models, Model 2, the rational Perona–Malik model, yields the smoothest variations

n the diffusion coefficient. Only four Picard iterations are needed to reach convergence. Also for this model, the DCT
reconditioner, although no longer a direct method, yields the lowest number of iterations and computing time. For all
reconditioners, the number of iterations is below 30, which agrees with the upper bounds on the number of iterations.
lso for this model, deflation does not give a significant improvement.
Model 3, the exponential Perona–Malik model, yields larger variations in the diffusion coefficient than Model 2, which

ranslates into a higher number of seven Picard iterations to reach convergence. Also, DCT preconditioner is no longer the
est preconditioner. AOS takes the least number of PCG iterations. In time, however, Jacobi preconditioning is the fastest
ethod. We remark that DCT becomes relatively better than the other preconditioners when the Picard iterations proceed.
his is because the images become smoother, and as a consequence, the diffusion coefficients will be almost constant in
arge patches of the image, which favors DCT. As was the case for Models 1 and 2, deflation does not give a significant
mprovement for Model 3. The convergence bounds are satisfied. The number of iterations for unpreconditioned CG is
ven almost equal to the upper bound in the second Picard iteration, which shows that the upper bounds are reasonably
harp.
Model 4, Total Variation, yields the largest variations in the diffusion coefficients, and for this model, we do not have

priori bounds on the number of PCG-iterations. The performance of the different techniques is quite different from the
ther models. For this model, the number of CG iterations sharply increases when the Picard iterations proceed, since
he diffusion coefficients become unbounded in flat regions. The combination of Jacobi preconditioning with deflation
ives the best performance. The increase in the number of DPCG-iterations is greatly reduced by the use of deflation.
n particular, in the last Picard iteration, a reduction of a factor of three in the number of Jacobi-PCG iterations can be
bserved, if the method is combined with deflation. Due to the computational overhead of deflation, however, there is
o significant reduction of computing time for this example.
12



X. Shan and M.B. van Gijzen Journal of Computational and Applied Mathematics 400 (2022) 113730

t
a
t
F

o
n
m
e
b

w
p
a

5

d
P
i

Table A.1
SSOR for Model 1.
Image Preconditioner Method Picard Time[s]

1 2

Shepp–Logan

SSOR(ω = 1)

PCG 11 2 0.019
DPCG-4 11 2 0.022
DPCG-8 10 2 0.034
DPCG-16 9 2 0.026

SSOR(ω = 1.5)

PCG 8 2 0.016
DPCG-4 8 2 0.021
DPCG-8 8 2 0.018
DPCG-16 8 2 0.027

Melon

SSOR(ω = 1)
PCG 13 2 2.093
DPCG-4 13 2 2.198
DPCG-8 13 2 2.201

SSOR(ω = 1.5)
PCG 9 2 1.591
DPCG-4 9 2 1.682
DPCG-8 9 2 1.690

Table A.2
SSOR for Model 2.
Image Preconditioner Method Picard Time[s]

1 2 3 4

Shepp–Logan

SSOR(ω = 1)

PCG 8 9 8 7 0.049
DPCG-4 8 9 8 7 0.056
DPCG-8 8 9 7 6 0.052
DPCG-16 8 8 7 6 0.070

SSOR(ω = 1.5)

PCG 8 7 6 5 0.046
DPCG-4 8 7 6 5 0.052
DPCG-8 8 7 6 5 0.049
DPCG-16 8 7 6 5 0.072

Melon

SSOR(ω = 1)
PCG 8 11 10 8 5.408
DPCG-4 8 11 10 8 5.659
DPCG-8 8 11 10 8 5.692

SSOR(ω = 1.5)
PCG 8 7 6 5 4.069
DPCG-4 8 7 6 5 4.299
DPCG-8 8 7 6 5 4.320

4.2.2. Melon
Next, we consider the melon image. The main difference with the Shepp–Logan image is that the melon image is

hree-dimensional. While for the two-dimensional Shepp–Logan image, all computing times were in the order of seconds
t most, and therefore more of academic interest than of practical importance, we can expect much longer computing
imes for the three-dimensional melon image. Fig. 5 gives for each Picard iteration the number of DPCG iterations, and
ig. 6 the elapsed times for this image.
For Models 1–3 we can make the same observations as for the Shepp–Logan image. For these models, the upper bound

n the number of iterations for no-preconditioning, Jacobi preconditioning, and DCT is 45, and for AOS 62. The observed
umber of PCG iterations to reach convergence is always below 37. For Models 1 and 2 the DCT preconditioner is the
ost efficient with computing times of less than half second for Model 1, and less than 4 s for Model 2. AOS is the most
fficient for Model 3 and takes about 9 s. Deflation does not improve the convergence. The numbers of iterations are
asically the same with or without deflation.
For Model 4, however, the number of PCG iterations grows again for all methods to many hundreds of iterations

hen the Picard iterations proceed. The resulting computing times are factors larger than for the other models. Jacobi
reconditioning is the most efficient preconditioner, and the combination with deflation speeds up the convergence, and
lso reduces the computing time by a factor of two, to less than 15 s.

. Conclusions

We have investigated an efficient implicit method for denoising using diffusion filtering. We have considered four
ifferent models for the diffusion: constant diffusion, the rational and the exponential diffusion models proposed by
erona and Malik [10], and the Total Variation model. We solved the discretized equations using a lagged-diffusion Picard
teration. The linear systems were solved with Preconditioned CG in combination with deflation. We have evaluated the
13
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Table A.3
SSOR for Model 3.
Image Preconditioner Method Picard Time[s]

1 2 3 4 5 6 7

Shepp–Logan

SSOR(ω = 1)

PCG 8 9 8 8 7 7 – 0.071
DPCG-4 8 9 8 8 7 7 – 0.081
DPCG-8 8 8 8 7 7 7 – 0.078
DPCG-16 7 8 7 7 6 6 – 0.105

SSOR(ω = 1.5)

PCG 8 7 7 6 6 5 – 0.067
DPCG-4 8 7 7 6 6 5 – 0.079
DPCG-8 8 7 7 6 6 5 – 0.074
DPCG-16 8 7 7 6 6 5 – 0.094

Melon

SSOR(ω = 1)
PCG 8 10 11 10 10 9 9 9.654
DPCG-4 8 10 11 10 10 9 8 10.00
DPCG-8 8 10 10 10 9 9 8 9.801

SSOR(ω = 1.5)
PCG 8 8 7 7 6 6 6 7.348
DPCG-4 8 8 7 7 6 6 6 7.747
DPCG-8 8 8 7 7 6 6 6 7.800

Table A.4
SSOR for Model 4.
Image Preconditioner Method Picard Time[s]

1 2 3 4 5 6 7

Shepp–Logan

SSOR(ω = 1)

PCG 7 12 20 31 45 – – 0.145
DPCG-4 7 12 18 26 32 – – 0.133
DPCG-8 7 11 16 21 26 – – 0.118
DPCG-16 6 10 13 17 19 – – 0.124

SSOR(ω = 1.5)

PCG 8 10 17 28 36 – – 0.130
DPCG-4 8 10 16 23 28 – – 0.126
DPCG-8 8 10 15 21 24 – – 0.122
DPCG-16 7 10 13 16 18 – – 0.124

Melon

SSOR(ω = 1)
PCG 7 12 21 34 49 63 72 32.81
DPCG-4 7 12 20 29 37 42 45 25.86
DPCG-8 7 12 18 23 26 28 30 20.09

SSOR(ω = 1.5)
PCG 8 9 14 22 32 41 46 22.42
DPCG-4 8 9 14 19 25 28 30 18.42
DPCG-8 8 9 12 16 18 21 24 15.39

numerical methods on two noisy images that have been obtained with an inexpensive MRI scanner based on permanent
magnets. Also for the evaluation of our methods we used an inexpensive computer.

Our conclusions are as follows. For models with constant or slowly varying diffusion coefficients (Models 1 and 2) the
CT preconditioner is most efficient. For Model 3, the AOS preconditioner is best. For all these three models the diffusion
oefficients have bounded values between zero and one, which allowed us to give an upper bound on the number of PCG
terations. For these models the computing times are low, a few seconds at most, low enough for practical purposes. Model
, Total Variation, gives the best image quality. However, denoising with the TV model is computationally challenging,
ue to the much larger jumps in the diffusion coefficients. For this model, it turns out that a simple Jacobi preconditioning
ombined with subdomain deflation yields a fast and robust method.
The techniques that we have described in this paper will be used for processing low-field MRI images in low-resource

ettings. For this, we have focused on an implementation on the inexpensive commodity hardware. On such hardware,
e are able to denoise, with the techniques that we have examined, images with a resolution of 1283 pixels in less than
5 s. This is fast enough for operational purposes.
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ppendix A. SSOR as a preconditioner

Symmetric Successive Over Relaxation (SSOR) is a classical preconditioner based on a regular splitting of the matrix. It
elongs to the same family as the Jacobi preconditioner. For many problems the number of iterations for SSOR is smaller
han for Jacobi preconditioning, in particular if the relaxation parameter is optimized. A drawback of the method is that it
14
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Fig. B.7. From left to right: Noisy image, Model 1 (µ = 2e3), Model 2 and Model 3 (K = 10 and µ = 2e3). Model 4 (µ = 1e3), Residual image
(Noisy image - Model 4 image) calculated by DPCG with deflation vector number 83 . From up to down: the center slices from x, y and z directions.

Fig. B.8. From left to right: Noisy image, Model 1 (µ = 2e2), Model 2 and Model 3 (K = 10 and µ = 2e2). Model 4 (µ = 4e2) calculated by DPCG
ith deflation vector number 83 . From up to down: the center slices from x, y and z directions.

equires a back- and forward substitution operation on triangular matrices to be applied. These operations are not suited
or parallel computing.

In this part, we present the result for DPCG with SSOR as a preconditioner. We present the results for relaxation
arameter ω = 1, and for the average optimized value ω = 1.5. Our results show that, although the number of iterations
s reduced considerably in comparison to Jacobi preconditioning, the timings for SSOR are slightly worse due to the poor
arallel performance of the method (see Tables A.1–A.4).

ppendix B. Additional experimental results

We present additional experiments on two three-dimensional images of 64 × 64 × 64 pixels. The first image is of an
apple, and the second of a bell pepper. The second image has a very poor signal-to-noise ratio, and without noise filtering
15
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Fig. B.9. Apple (64 × 64 × 64). Picard and CG iteration numbers for different models with different preconditioners.

Fig. B.10. Apple (64 × 64 × 64). Run time for different models with different preconditioners.

Fig. B.11. Bell pepper (64 × 64 × 64). Picard and CG iteration numbers for different models with different preconditioners.

Fig. B.12. Bell pepper (64 × 64 × 64). Run time for different models with different preconditioners.
16
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it is impossible to recognize the bell pepper. The results, given in Figs. B.7–B.12, confirm the conclusions that we drew
before.
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