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• UV/Cl2's application at alkaline pH was
harnessed via higher wavelengths UV-
LEDs.

• At alkaline pH, UV/Cl2 removed more
PPCPs that are amendable to ClO•

degradation.
• Trimethoprim removals via chlorine
photolysis worked best at UV (275)/Cl2.

• Congruency was achieved when ANN
modelling was applied to predict RRCS

and RHO•.
• ANNmodelling proved that exposure time
had the highest relative contribution.
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The UV/Cl2 process (also known as chlorine photolysis, which is the combination of chlorine and simultaneous irradi-
ation of UV light) is conventionally applied at acidic mediums for drinking water treatment and further treatment of
wastewater effluents for secondary reuse. This is because the quantum yield of HO• from HOCl (ϕHO•, 254 = 1.4) is
greater than the one from OCl- (ϕHO•, 254 = 0.278) by approximately 5 times. Moreover, chlorine photolysis in acidic
mediums also tends to have lower radical quenching rates than that of their alkaline counterparts by up to 1000 times.
The aim of this research is to investigate the applicability of the UV/Cl2 process by assessing its efficacy on the removal
of trimethoprim (TMP) at not only acidic to neutral conditions (pH 6-7), but also alkaline mediums (pH 8-9). At alka-
line pH, free chlorine exists as OCl- and since OCl- has a higher molar absorption coefficient as compared to HOCl at
higher wavelengths, there would be higher reactive chlorine species (RCS) formation and contribution. TMP removal
followed pseudo-first order kinetics and depicted that a maximum fluence based constant (kf′= 0.275 cm2/mJ) was
obtained using 42.25 μM (3 mg/L) of chlorine at pH 9, with an irradiation of 275 nm. At alkaline conditions, chlorine
photolysis performance followed the trend of UV (275)/Cl2 > UV (265)/Cl2 > UV (310)/Cl2 > UV (254)/Cl2. RCS like
Cl•, Cl2−• and ClO• contributed to the degradation of TMP. When the pH was increased from 6 to 8, contribution from
hydroxyl radicals (HO• ) was decreased whilst that of RCS was increased. Application of UV (310)/Cl2 had the highest
HO• generation, contributing to TMP removals up to 13% to 48% as compared to 5% to 27% in UV (254, 265, 275)/Cl2
systems at pH 6-9. Artificial neural networks modelling was found to be able to verify and predict the contribution of
HO• and RCS conventionally calculated via the general kinetic equations in the UV/Cl2 system at 254, 265, 275 and
310 nm.
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1. Introduction
Pharmaceuticals and personal care products (PPCPs) encompass
organic compounds such as hormones, drugs, and perfumes. These
are classified as environmental contaminants (Daughton and Ternes,
1999; Halling-Sørensen et al., 1998) as they are frequently found in
wastewater effluents, seawater, and surface waters around the world
(Vieno et al., 2007). Traces of PPCPs are also found in drinking
water (Houtman et al., 2014) and this only serves to reinforce the
said severity of widespread environmental contamination by such
PPCPs. Many PPCPs are unamenable to traditional water and waste-
water treatment processes such as sand filtration, coagulation, sedi-
mentation and activated sludge processes (Vieno et al., 2007);
rendering them to be still physically present in trace amounts when
discharged into aquatic environments (Jelic et al., 2011; Sui et al.,
2011; Yang et al., 2011).

An example of such PPCPs is trimethoprim (TMP). TMP has been
applied to eradicate infectious bacteria because of its high potency
and availability as a cheap antibiotic. TMP is usually prescribed
alone or in combination with sulfamethoxazole (SMX) for the treat-
ment of human urinary tract infections (Li et al., 2005). TMP is also ap-
plied by veterinarians for prevention and direct treatment of
infections of poultry and applied as steroids for growth purposes (de
Paula et al., 2008). After administration of TMP, nearly 50% of the ap-
plied dose is removed as renal and faecal waste - with approximately
20% remaining unchanged (Kolar et al., 2014). Due to such wide-
spread use and application, TMP has become ubiquitous in wastewa-
ters - because it is stable (Yang et al., 2011) and used in large
amounts (Hirsch et al., 1999). Subpar TMP removals of under 50% in
conventional activated sludge (CAS) and membrane bioreactors
(MBRs) processes has led to TMP's frequent detection in various
water environments (Batt et al., 2006; Jewell et al., 2016; Le et al.,
2018; Radjenović et al., 2009).

Advanced Oxidation Processes (AOPs) are physicochemical oxidative
methods, most based on the production and use of hydroxyl radicals (HO• )
and have been widely employed to deal with PPCPs like TMP. Amongst
AOPs, UV/Cl2 has been compared and preferentially favoured to UV/H2O2

due to its effectiveness to remove PPCPs (Fang et al., 2014). Firstly, tradi-
tional drinking water treatment processes would contain residual free chlo-
rine in the waters for disinfection purposes. The combination of chlorine
and suitable UV-C light source (Fang et al., 2014; Forsyth et al., 2013) can
effectively transform chlorine-based disinfection systems into AOPs. There-
fore, a UV/Cl2 system can be established by utilising existing infrastructure
without a need for heavy retrofitting in the plant. Secondly, the free chlorine
photolysis produces multifarious reactive oxidants - some of which include
HO•, Cl•and O3 (Buxton and Subhani, 1972; Kläning et al., 1984; Vogt and
Schindler, 1992). PPCPs can be removed via multiple oxidative pathways
as a result - via direct UV photolysis; direct reaction with HOCl/OCl- or reac-
tion with oxidative species formed by chlorine photolysis (Ben et al., 2016;
Chan et al., 2012; Fang et al., 2014; Forsyth et al., 2013; Jin et al., 2011;
Nowell and Hoigné, 1992; Sichel et al., 2011; Wang et al., 2012; Watts and
Linden, 2007). Lastly, UV/Cl2 is more efficient than UV/H2O2 in several as-
pects. Looking purely bymerit of quantum yield of HO• (ϕHO•) at wavelength
of 254 nm, ϕHO•, HOCl is 1.4 (Table S1, Eq. (R1)) and is greater than ϕHO•,

H2O2
of 1.16 (Goldstein et al., 2007). The scavenging rate of HO• by HOCl

(Eq. (1)) is approximately 320 times lower than that by H2O2 (Eq. (2))
(Rosenfeldt et al., 2013; Watts and Linden, 2007). Moreover, Feng et al.
(2007) posits that the molar absorption coefficient (ε) of free chlorine εUV/
HOCl, 254 is approximately 60 M−1cm−1 (Fig. S3) at λ = 254 nm whilst
εUV/H2O2, 254 is 19.6 M−1cm−1 (Barakat et al., 2005). The lower ε of H2O2

indicates that it is less efficient at producing HO• after photolysis as
compared to HOCl/OCl-, which results in excessive H2O2 dosing (Barakat
et al., 2005).

HO• þ HOCl →
kHOCl ClO• þ H2O; kHOCl ¼ 8:46 x 104 M−1S−1 ð1Þ
2

HO• þ H2O2 →
kH2O2 HO2•þ H2O; kH2O2 ¼ 2:7 x 107 M−1S−1 ð2Þ

Acidic chlorine photolysis has always superseded its alkaline counter-
parts. However, more investigations have to be done to improve the appli-
cability of UV/Cl2 in the alkaline mediums as well. From Table S1, the
quantum yield of HO• from HOCl (ϕHO•, 254 = 1.4) is greater than the one
from OCl- (ϕHO•, 254 = 0.278) by approximately 5 times. (Table S1,
Eqs. (R1) & (R2)). Employment of chlorine photolysis in acidic mediums
also tend to have lower HO• quenching rates by up to 1000 times.
(Table S1, Eqs. (R10) & (R11)) (Fang et al., 2014; Qin et al., 2014). UV/
Cl2 systems employed in alkaline mediums (pH > 7.5) should be irradiated
at higher wavelengths to attain the higher rate of photolysis. In alkalineme-
diums, the dominant chlorine species is OCl- and it has a molar absorption
coefficient (εOCl−) higher than εHOCl in the wavelengths spectra of 255 to
400 nm and peaks at 365 M−1cm−1 at 292 nm (Fig. S3) (Feng et al.,
2007; Wang et al., 2012). Therefore, at higher irradiation wavelengths,
the photolysis of HOCl becomes less pivotal to the efficiency of chlorine
photolysis as it absorbs minimal light due to low ε. In the present market,
UV-C wavelengths ranging from 255 − 285 nm are now commonly avail-
able in the form of light emitting diodes (LEDs) (Chen et al., 2017;
Muramoto et al., 2014). The ability of UV-LEDs to emit light at a designated
and specific wavelength can enable us tomatch the emission spectra of free
chlorine with the highest molar absorption coefficient - thus making UV/
Cl2 systems more energetically efficient and effective across wider treat-
ment conditions by permuting the wavelengths via the use of UV-LEDs.
Moreover, there are multifaceted benefits to the employment of LEDs to
water treatment - not only are LEDs sturdier than traditional mercury
lamps (Vilhunen and Sillanpää, 2010), they do not contain mercury and
hence do not require proper disposal protocols (Chevremont et al., 2013a,
2013b; Close et al., 2006). Therefore, water treatment system designs
need not be complex as barriers against mercury leakage are no longer
needed, enabling the usage of LEDs in water treatment to gain traction.

In recent years,machine learningmethods like Artificial Neural Networks
(ANN) have been welcomed in water treatment as a successful and powerful
tool to generate predictive models. For instance, Kulkarni and Chellam used
ANN to model DBP formation using simulated distribution system data
(Kulkarni and Chellam, 2010). McArthur and Andrews applied an ANN
data driven modelling approach to predict coagulant dosage in a water treat-
ment plant with high accuracy (McArthur and Andrews, 2015). Giwa, et al.
and Karadurmuş, et al. both applied ANN modelling to simulate removal of
certain contaminants in electrically enhanced membrane bioreactors (Giwa
et al., 2016) and drinking waters (Karadurmuş et al., 2019), respectively.
ANN is a mathematical model which its structure, like the human nervous
system, consists of several layers and each layer itself consists of several neu-
rons so that each neuron is associated to the neurons in the previous layer
through a weighted connection (Fig. 1) (Carvajal et al., 2017). Based on
mathematical relationships and algorithms, the network analyses the input
data in neuron and then transmits them to the neurons in the next layers
and finally computes the desired results. The structure of a simple neuron
consisting of three layers called input layer, hidden layer and output layer
is shown in Fig. 2. Finding a logical relationship between different parame-
ters without having a predetermined equation is not only time consuming,
but also near impossible to acquire should there be non-linear relationships
existing between parameters. In this regard, machine learning methods
have been effective in many cases - due to their independency of defining
the complicated behaviour of substantial process. In this study, ANN was
used to determine the importance and relationship amongst UV/Cl2 process
parameters and quantify the TMP removal contributed by reactive chlorine
species (RCS) and hydroxyl radicals (HO• ) in the system. Since the determi-
nation of RCS contributions in TMP degradation by UV/Cl2 systems is as-
sumed to be the subtraction of removal efficiencies by chlorine and HO•

from the total removal efficiency of TMP, this may result in underestimation
of RCS contribution (Eq. (S12)). There is no contribution by direct photolysis
(Eq. (S3)) in TMP degradation by UV/Cl2 systems. Thus, ANNwas applied to
not only predict the TMP removal contributed by RCS, but also ascertain if



Fig. 1.Weighted connections in ANN.
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there is any congruency between the values experimentally determined using
Eqs. (S2)–(S12) to that of the values predicted by ANN. Furthermore, as the
estimation of TMP removal contributed byHO• is a tedious experimental pro-
cess, there will be tangible benefits in applying ANN to predict the contribu-
tion of HO• in the UV/Cl2 systems.
Fig. 2. Structure of a sim

3

Four different UV wavelengths (i.e., 254, 265, 275 and 310 nm) were
applied in a UV/Cl2 AOP system in this study to investigate the kinetics of
TMP degradation. The investigation of UV/ Cl2 AOP with TMP must not
be confused with the UV/Chloramine process (see Text S1). The radicals
contributing in TMP degradation were also differentiated. Lastly, an ANN
ple artificial neuron.
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model was applied to predict and verify the contribution of both HO• and
RCS in the UV/Cl2 system.

2. Materials and methods

2.1. Reagents

All solutions were prepared with reagent-grade chemicals and ul-
trapure water (18.2M Ω-cm) was obtained from a Milli-Q water puri-
fication system (Thermo Scientific, SG). TMP (≥98%), sodium
hypochlorite solution (NaOCl, available chlorine 10-15%), sodium
thiosulfate (Na2S2O3), methanol and formic acid (LCMS grade) were
purchased from Sigma-Aldrich (US). Hydrogen peroxide (H2O2,
30%) was purchased from Merck (Germany). To calculate the fluence
rates of the UV-LED systems via the ferrioxalate actinometry proce-
dure, Titanium (IV) oxysulfate - sulfuric acid (27-31%) solution, ferric
sulfate hydrate (Fe2(SO4)3, 97%), potassium oxalate monohydrate
(K2C2O4·H2O, 99%), sodium acetate (CH3COONa·3H2O, 99%), 1, 10-
Phenanthroline (99%), hydroxylamine hydrochloride (NH2OH·HCl,
99%) and sulfuric acid (H2SO4, 95%-98%) were purchased from
Sigma-Aldrich (US).

2.2. Experimental procedures

Before conducting any experiments, LP-UV lamps (not including UV-
LEDs) were warmed up for approximately 15-20 minutes. Photochemi-
cal experiments were all conducted using 25 mL petri dishes, coupled
with a magnetic stirrer to provide rapid mixing at the bottom. A quartz
plate was used to cover the top of the dish to prevent evaporation during
irradiation. Both the 254 nm LP-UV (10 W, Calgon Carbon Corporation,
US) and UV-LED 265/275/310 (Taoyuan Electron, Hongkong) systems
were placed in the centreline of the petri dish and directly above to irra-
diate the testing solution as described in Fig. S1. The experiments were
conducted at approximately 25o C. The corresponding average UV
fluence rate was estimated to be 0.247 mW/cm2 for the 254 nm LP-UV
system - determined via the H2O2 actinometry method. As for the UV-
Fig. 3. The optimum structure of a three-layer neural network wi

4

LED 265/275/310 systems, the average UV fluence rate were estimated
to be 0.177, 0.256 and 0.177 mW/cm2 (Table S3) via the potassium
ferrioxalate actinometry method, respectively (Bolton et al., 2011).
The time-based rate constants (k′) were used when compiling data
solely from UV254 experiments, and fluence based rate constants (kf′ )
were used when comparing data across all four UV devices (254 nm
LP-UV and UV-LED 265/275/310 systems) because they have different
UV fluence rates. Therefore, the only basis of comparison will be via the
total fluence across the experimental timeframe. The path length used
for the experiments was 10.2 cm. All kinetics experiments were
consisted of a 20 mL testing solution containing 0.6889 μM (0.2 mg/L)
of TMP and 2 mM of PO4

3- buffer (pH 6, 7, 8) and 2mM of glycine-
NaOH (0.2M of glycine and NaOH) buffer for pH 9. Experiments were
initiated by spiking NaOCl stock solution to give an initial free chlorine
concentration of 42.25 − 84.51 μM (3-6 mg/L), which were then ex-
posed to UV irradiation from LP-UV and UV-LED systems. Samples
(0.5 mL) were collected at pre-determined experimental intervals and
were quenched with Na2S2O3 at a molar ratio of Na2S2O3 to chlorine
of 4:1. Control tests of TMP degradation by direct UV photolysis and
dark chlorination were conducted in the absence of chlorine and UV
light, respectively. All experiments were conducted at least in triplicate,
and samples collected were stored in the dark before LC-MS/MS analy-
sis. Experimentations were also conducted to identify the effect of chlo-
rine dosage and to differentiate the radicals responsible for TMP
degradation in both the UV/Cl2 and UV-LED/Cl2 systems. For the for-
mer, free chlorine concentrations employed were 4.225, 14.08, 42.25
− 84.51 μM (0.3, 1, 3-6 mg/L) and for the latter, nitrobenzene (NB)
was used as a radical probe to quantify the roles of reactive species at
a concentration of 0.8122 μM (0.1 mg/L) with all other parameters un-
changed. To minimise inhibition of the radicals generated in the UV/Cl2
system due to carbonation in the testing solution at higher pHs (at pH
8.5, all of carbon dioxide dissolved in water is ionised as bicarbonate
or carbonate ions), the solution was aerated with oxygen to remove car-
bon dioxide before starting the chlorine photolysis irrespective of the
experimental pH (pH 6, 7, 8, 9). Fresh batches of deionised water
were also used immediately for every experiment and the quartz plate
th 10 neurons in hidden layer and 2 neurons in output layer.



Fig. 4. Description on 15-Fold cross validation step on ANN model generation.
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will minimise transfer of carbon dioxide in the atmosphere into the test-
ing solution.

2.3. Analytical methods

The concentration of free chlorine in NaOCl stock solution was period-
ically standardized by DPD colorimetry (APHA et al., 1999). The solution
pH was measured with a pH meter (Schott, SG). The concentration of
TMP was determined by a liquid chromatography-double mass spectrome-
try (LC-MS/MS) system (8030, Shimadzu, Japan) equipped with a Shim-
pack FC-ODS column (150×2mm, particle size 3 μm) at 40 °C. The mobile
phase for the measurement consisted of 0.1% formic acid (A) andmethanol
(B), at a flow rate of 0.3 mL/min. The retention time for TMP was 4.53 min
and the sample injection volume was 10 μL. The gradient program of LC-
MS/MS was as follows (A/B, v/v %): 90/10 (0–1 min), decreasing linearly
to 10/90 (1–4 min) and 10/90 (4–8 min), increasing linearly to 90/10 (8-
8.1 min) and 90/10 (8.1–10 min). During 1-4 min and 8-8.1 min, the
value changed linearly with time. The LC was coupled to theMS using elec-
trospray ionization (ESI) in positive mode. Multiple reaction monitoring
(MRM) was applied to quantify the protonated product ([M+H]+) with
Q1 mass of 291.20 and Q3 mass of 230.10.

2.4. Artificial neural networks modelling

ANN uses previous observations of an element to predict the future
values which are not currently existing by assigning a weight coefficient
to each neuron to construct the neurons in the next layer. Assuming we
have n inputs x1, x2,…, xn, each of the neurons in the next layer (hidden
Table 1
Training, validation and test samples and range of unnormalized overall removal efficien
in UV/Cl2 system at λ = 254, 265, 275 and 310 nm at pH 6-9.

Wavelength (ƛ) pH Exposure Time (s) Number of Data O

254 6-9 60-360 20 0
265 6-9 30-180 24 0
275 6-9 30-180 24 0
310 6-9 30-180 24 0

5

layer) is obtained by assigning a specific weighted coefficient (wij) to
each input data in such a way that the weighted summation of all inputs de-
termines a neuron (yj) in the next layer (hidden layer) based on Eq. (3).

y j ¼
Xn
i¼1

xiwij ð3Þ

After the neurons are constructed in hidden layer, the signals (zj) from
hidden layer to output layer are generated using activation function f
(t) in which zj = f(yj). Then, similarly, by assigning a specific weighted co-
efficient to each signal and finding their weighted summation, the output
(k) of the neural network is determined based on Eq. (4). Themost common
types of activation functions are shown in Table S4.

k ¼
Xn
j¼1

z jwj ð4Þ

To achieve a desirable neural network model, it is necessary to perform
steps including data refinement, network architecture, network training
and validation (Lange, 1999). In this study, MATLAB R2020a was used to
run a three-layer feedforward neural network including one input layer,
one hidden layer and one output layer (Fig. 3)with Bayesian Regularization
backpropagation training algorithm. For training the model, a dataset with
92 records of R, RCl2, t, λ, and pH were used in input layer to predict RHO•

and RRCS in output layer. As the number of data is limited in this study to
generate a predictive ANN model, a cross validation method was used as
a practical and reliable method to evaluate the predictability of the model
cy of TMP and unnormalized removal efficiencies of TMP by chlorine, HO• and RCS

verall Rate (R) RCl2 R•OH RRCS

.3406-0.6862 0.0145-0.0585 0.0344-0.1856 0.2289-0.5428

.2139-0.6879 0.0061-0.0694 0.0115-0.1617 0.1379-0.6304

.4133-0.6889 0.0043-0.0335 0.0130-0.1399 0.2952-0.6136

.0577-0.6759 0.0079-0.1141 0.023-0.3333 0.0057-0.3628



Fig. 5. (A): Comparison of TMP degradation by UV254 irradiation, dark chlorination and UV(254)/Cl2 process. Conditions: UV intensity: 0.2467 mW/cm2, [TMP]0 =
0.6889 μM (0.2 mg/L), [Cl2]0= 42.25 μM (3 mg/L); (B): Comparison of rate constants of dark chlorination and UV(254)/Cl2 process. Conditions: UV intensity: 0.2467
mW/cm2, [TMP]0 = 0.6889 μM (0.2 mg/L), [Cl2]0= 42.25 μM (3 mg/L).
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on the whole dataset especially when the number of data is limited to pre-
dict generalization error without missing any records on the model crea-
tion. Hence, a K-Fold cross validation method with 15 number of folds
was caried out accordingly on the whole dataset as described in Fig. 4.
One separatedANNmodelwas then generated on each fold and the average
performance of all 15 generatedmodels was used to report as to better illus-
trate the generalization error of the final model. In addition, out of these 15
generated ANN models, the best model in terms of the performance on
predicting the test set was selected to report its prediction results in this
study. The description of the dataset in terms of the number and the
Fig. 6. Effect of dark chlorination on TMP degradation at pH 6-9. Conditions:
[TMP]0 = 0.6889 μM (0.2 mg/L), [Cl2]0 = 42.25 μM (3 mg/L). The inset shows
the pseudo first-order rate constants of TMP reacting with free chlorine at pH 6-9.

6

numerical range of the experimental parameters that have been used in
generating the ANNmodels are shown in Table 1. Normalizing data before
applying them to the network was carried out to make the training faster
and to increase the model accuracy. The 'mapminmax' process function
(Eq. (5)) was used for both input and output layers so that they fall in the
range [-1,1]. Sigmoid transfer function was then used in hidden layer to
translate the input signals to output signals (Table S4).

Xnorm ¼ Amin þ X−Xmin

Xmax−Xmin
Amax−Aminð Þ ð5Þ

where Xnorm is the normalised value, Xmin and Xmax are the extreme values
of the input variables, and Amin and Amax are the minimum and maximum
of normalization scale, respectively.

After normalizing the data in the desired scale using ‘mapminmax’, the
output data were converted to their original range. As the training algo-
rithm in ANN normalizes the input and output data automatically in the
system, to avoid re-normalisation of the removal efficiencies in Eq. (S4),
Eq. (S3) was used instead:

Z t

0
−d TMP½ � ¼ R ¼ TMP½ �o− TMP½ �t

¼
Z t

0
kCl2 Cl2½ � TMP½ � dtþ

Z t

0
kHO• HO•½ � TMP½ �dt

þ
Z t

0
k0RCS TMP½ �dt ðS3Þ

Eq. (S3) and the corresponding termswill be further defined throughout
the paper as:

R ¼ RCl2 þ RHO• þ RRCS ð6Þ

where R, RCl2, RHO•, RRCS are the unnormalised overall removal efficiency of



Fig. 7. (A): kf′ of TMP degradation by UV/Cl2 process at various pHs and wavelengths. Condition: [TMP]0 = 0.6889 μM (0.2 mg/L), [Cl2]0 = 42.25 μM (3 mg/L); (B):
Comparison of TMP degradation by UV/Cl2 process at λ of 254, 265, 275 and 310. Condition: [TMP]0 = 0.6889 μM (0.2 mg/L), [Cl2]0 = 42.25μM (3 mg/L), pH 8.
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TMP at time t, unnormalised removal efficiency of TMP by chlorine, HO•

radicals and reactive chlorine species, respectively.
After generating the ANN model, the correlation coefficient (R value)

was then assigned to describe the relationship between the experimentally
obtained and predicted RRCS values. R value represents how well the two
variables are correlated and accordingly, the performance of the model
can be evaluatedbased on this statistical criterion. In addition to correlation
coefficient (R value), Mean Squared Error (MSE)was also used in this study
to measure the performance of the network according to Eq. (7).

MSE ¼ 1
K
∑K
i¼1 pi − eið Þ2 ð7Þ

where K is the number of data, pi is the predicted value and ei is the ex-
perimental result. In the prediction of a parameter, different input variables
(predictors) are contributing to define the behavior of target component as
it depends on various affecting factors. By increasing the number of affect-
ing factors, the relative contribution of predictive variables is characterized
unclearly in predictive model. To overcome this problem, the different
input variables can be ranked in terms of their potential influence on target
value. This method determines those input variables that should be focused
on to improve the efficiency of the process (Santos et al., 2019) . In this
regards, relative importance is an index to specify the effect of different
input variables on prediction of output parameter. The relative effects of in-
dependent variables (RCl2, R, etc.) on dependent variables (RRCS, RHO•)
based on weighted coefficients can be derived using Eq. (8).

Ej ¼
Pt¼Nh

t¼1 jWih
jt j=

Pk¼Ni
k¼1 jWih

ktj
� �

� jWho
tn j

� �
PNi

k¼1 ∑t¼Nh
t¼1 jWih

jt j=∑Ni
k¼1jWih

kt

� �
� jWho

tn

� �n o ð8Þ

where Ej, W and N are the relative importance of the jth input variable on
RRCS, weighted coefficient, and the number of neurons, respectively. The
Table 2
kf, λ′ of TMP degradation by UV/Cl2 system at various pHs and wavelengths.

pH
K'f kf, 254′ (cm2mJ-1) kf, 265′(cm2mJ-1) kf, 275′(cm2mJ-1) kf, 310′(cm2mJ-1)

pH 6 0.0611 0.0305 0.0477 0.0106
pH 7 0.0649 0.0912 0.1275 0.0456
pH 8 0.0577 0.1743 0.2088 0.0874
pH 9 0.0424 0.2084 0.2747 0.1264
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subscripts ‘k’, ‘t’ and ‘n’ refer to input, hidden and output neurons, respec-
tively and the superscripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and output
layers, respectively (Kıranşan et al., 2015).

Furthermore, deciding on the best values for ANN hyperparameters is
one of themost challenging tasks inmodel generation. In this regard, an op-
timization method was implemented in this study to find the best possible
values for the size of the hidden layer and learning rate based on an objec-
tive function model containing two optimizable variables. Accordingly, the
objective function was optimized through 30 iterations of training process
with different random values of hidden layer size and learning rate and fi-
nally the optimum combination of variables was used to construct the ANN
model.

3. Results and discussion

3.1. Degradation kinetics

Fig. 5A illustrates the degradation of TMPwith respect to time via direct
UV photolysis at 254 nm, dark chlorination and UV(254)/Cl2 at both pH 7
and 8. For direct UV photolysis, there were negligible changes in TMP con-
centration of about 3% observed. In Table S2, TMP's molar absorption coef-
ficient (εTMP) is 2942M−1cm−1 (Baeza and Knappe, 2011) and peaks up to
3650 (±50) M−1cm−1 (Wu et al.,2016). Having a high εTMP indicates that
a compound is photo-labile. TMP, however, has a low quantum yield
(ΦTMP) of 1.18 (±0.11) × 10-3 (Baeza and Knappe, 2011). Therefore,
this gives TMP its photo-stability and attributes to its low decay rate due
to UV irradiation alone. Plots remained linear for both chlorination and
chlorine photolysis, ascertaining a pseudo first-order kinetics model. The
pseudo first-order rate constants (k′) were 2.78 (±0.25) × 10-3 s-1, 1.44
(±0.19) × 10-3 s-1 for dark chlorination at pH 7 and 8, and 1.56 (±0.10)
× 10-2 s-1 and 1.42 (±0.15) × 10-2 s-1 for UV/Cl2 at pH 7 and 8
(Fig. 5B). Dark chlorination at pH 7 achieved a 2 log TMP removal within
Table 3
Effect of chlorine dosage on kf′ of TMP degradation.

[Cl2] (mg/L) kf, 265′ (cm2mJ-1) kf, 275′(cm2mJ-1) kf, 310′(cm2mJ-1)

0.3 0.0023 0.008 0.0064
1 0.0576 0.06475 0.0286
3 0.17433 0.2088 0.0874
4 0.17354 0.23268 0.15591
5 0.17275 0.25656 0.23242
6 0.17195 0.28045 0.30493



Fig. 8. Effect of chlorine dosage on kf′ of TMP degradation byUV/Cl2 process at λ of
265, 275 and 310 nm. Condition: [TMP]0=0.6889 μM(0.2mg/L), [Cl2]0=4.225,
14.08, 42.25-84.51 μM (0.3, 1, 3-6 mg/L), pH 8.

Table 4
Normalised RRCS′ at different wavelengths and pH in UV/Cl2 system.

pH
Rrcs RRCS, 254′ RRCS, 265′ RRCS, 275′ RRCS, 310′

pH 6 67.90565 72.41922 76.87677 8.255017
pH 7 70.43572 72.99329 86.31932 18.48363
pH 8 78.79018 91.51267 89.07738 52.66731
pH 9 75.37535 77.69417 79.06214 48.07064
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30 minutes, whilst chlorine photolysis took 5 minutes. Chlorine photolysis
greatly improved the degradation rate of TMP by 44.3% and 119% com-
pared to dark chlorination at pH 7 and 8, respectively. Similarly, the k′
values for UV/Cl2 process were 5.61 and 9.86 times higher than that of
dark chlorination at pH 7 and 8, respectively. This can be attributed to
the formation of reactive oxidant species such as Cl•, Cl2−•, ClO• and HO•

from chlorine photolysis (Fang et al., 2014; Wu et al., 2016; Xiang et al.,
2016).

3.1.1. Effect of pH
Fig. 6 compares the performances of the dark chlorination process at pH

6, 7, 8 and 9. The pseudo first-order rate constants of TMP reacting with
free chlorine generally followed a descending order of magnitude with
the exception of pH 6: 2.78 (±0.25) × 10-3 s-1 (pH 7), 1.44 (±0.19) ×
10-3 s-1 (pH 8), 1.1 (±0.1) × 10-3 s-1 (pH 6) and 6.0 (±0.6) × 10-4 s-1

(pH 9). The variations in k′ and removal rates with pH are due to the pH-
dependent dissociations of TMP. In Fig. S5, TMP is a tri-protic acid across
the pH range of 1-14, with two pKas - namely pKa, 1(TMP++/TMP+) =
3.2 and pKa, 2(TMP+/TMP) = 7.1. According to Dodd and Huang
(2007), the rate constant of TMP with HOCl was 160M−1S−1, while the
rate constant of TMP+ with HOCl was 6.2M−1S−1. Since pH 7 is closer to
pKa, 2 = 7.1, there exists more TMP than TMP+ in the testing solution at
Fig. 9. (A): TMP removal efficiency by chlorine (RCl2′), (B): TMP removal efficiency b
0.6889 μM (0.2 mg/L), [Cl2]0 = 42.25 μM (3 mg/L), pH 6-9, [NB]0 = 0.8122 μM (0.1
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pH 7 compared to pH 6. Thus, dark chlorination occurred faster at pH 7
than 6.

As for the UV/Cl2 process, there was good agreement that employment
of chlorine photolysis at 254 nm in acidic mediums tended to achieve high
efficiency and efficacy than in alkaline mediums due to higher quantum
yields and lower radical quenching rates (Fang et al., 2014; Qin et al.,
2014). In Fig. 7B, the fluence based rate constants for the UV/Cl2 process at
254 nm (kf′) at pH 6 to 9 were 0.0611 mJ−1cm2, 0.0649 mJ−1cm2, 0.0577
mJ−1cm2 and 0.04243mJ−1cm2, respectively. The rate of chlorine photolysis
is a non-factor in this case because atλ=254 specifically, bothHOCl andOCl-

have approximately the same ε (εUV/HOCl, 254= εUV/OCl−, 254 ≈ 59~66
M−1cm−1) (Feng et al., 2007; Zhao et al., 2009) and thus the rate of chlorine
photolysis would be the same irrespective of pH. Both HOCl and OCl- contrib-
ute to radical scavenging and the rate constants of radical scavenging of HO•

and Cl• by OCl- were 4.9 and 2.7 times faster than that by HOCl, respectively
(Table S1, Eqs. (R10)–(11), (13)–(14)). Since the dominant chlorine species
would be OCl- at alkaline conditions, scavenging of HO• and Cl• would be
faster.

ClO• is generated as a result of radical scavenging of HO• and Cl• and
ClO• demethylates the trimethoxybenzyl moiety of TMP (Alfassi et al.,
1988) - also known as 3,4,5-Trimethoxytoluene (TMT). More ClO• is gener-
ated at alkaline conditions since radical scavenging of HO• and Cl• byOCl- is
faster than that by HOCl. In the radicals' reaction with TMT (Eqs. (9)–(12)),
Cl• reacted with TMT the fastest (NIST, 2002), followed by HO• (Luo et al.,
2012) and then ClO• (Alfassi et al., 1988). The kf, 254′ obtained is congruent
with literature that UV(254)/Cl2 systems are more effective at acidic condi-
tions because slower radical scavenging at acidic conditions by HOCl re-
sults in more HO• and Cl• and less ClO• generated to react with TMT, as
compared to alkaline conditions.

Cl• þ TMT →
kCl•=TMT

products; kCl•=TMT ¼ 1:9 x 1010 M−1S−1 ð9Þ

HO• þ TMT →
kHO•=TMT

products; kHO•=TMT ¼ 8:1 x 109 M−1S−1 ð10Þ
y HO• (RHO•′), (C): TMP removal efficiency by RCS (RRCS′). Conditions: [TMP]0 =
mg/L).



Table 5
The performance of the generated models with different hidden layer sizes and learning rates through 30 iterations.

Iteration Evaluation result Hidden layer size Objective learning rates Objective function Objective runtime (s) Best so far (Observed) Best so far (Estimated)

1 Best 10 0.014832 0.33973 4.2997 0.33973 0.33973
2 Accept 10 0.089718 0.34536 1.7747 0.33973 0.34032
3 Accept 16 0.042554 0.34763 4.6004 0.33973 0.33973
4 Accept 18 0.010618 0.34353 4.2072 0.33973 0.33973
5 Accept 5 0.015504 0.34037 0.56291 0.33973 0.33973
6 Accept 6 0.013609 0.34031 0.92159 0.33973 0.33998
7 Accept 18 0.014522 0.35032 2.1109 0.33973 0.34117
8 Accept 8 0.012247 0.34144 0.97211 0.33973 0.33973
9 Accept 8 0.015523 0.34369 0.53046 0.33973 0.34167
10 Accept 5 0.010177 0.341 0.30368 0.33973 0.34141
11 Accept 4 0.010013 0.33983 1.3951 0.33973 0.3411
12 Accept 1 0.010008 0.34922 0.41861 0.33973 0.34105
13 Accept 5 0.011192 0.34142 0.30384 0.33973 0.33973
14 Accept 10 0.01244 0.34191 1.2803 0.33973 0.33973
15 Accept 11 0.016051 0.34509 1.3119 0.33973 0.34111
16 Accept 6 0.01002 0.34239 0.28338 0.33973 0.3412
17 Best 5 0.017224 0.33935 0.28995 0.33935 0.34069
18 Best 5 0.022048 0.33809 0.3848 0.33809 0.34009
19 Accept 5 0.028835 0.33921 0.29264 0.33809 .33982
20 Accept 5 0.031543 0.33931 0.2615 0.33809 0.33943
21 Accept 5 0.029136 0.34066 0.2828 0.33809 0.33965
22 Accept 4 0.026181 0.34114 0.23955 0.33809 0.33979
23 Accept 1 0.099854 0.35004 0.22939 0.33809 0.34001
24 Accept 5 0.099794 0.3416 0.43122 0.33809 0.34005
25 Accept 14 0.010049 0.35059 3.1453 0.33809 0.34005
26 Accept 20 0.010012 0.33912 1.7434 0.33809 0.34007
27 Accept 20 0.010039 0.34342 2.3146 0.33809 0.34022
28 Best 3 0.01001 .33725 0.18883 0.33725 0.34023
29 Accept 4 0.010017 0.34007 0.30641 0.33725 0.3402
30 Best 3 0.01011 0.33662 0.19248 0.33662 0.33808
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ClO• þ TMT →
kClO•=TMT

products; kClO•=TMT ¼ 2:1 x 109 M−1S−1 ð11Þ

Cl−•
2 þ TMT →

kCl−•
2

=TMT

products; kCl−•
2 =TMT ¼ 2:0 x 108 M−1S−1 ð12Þ

3.1.2. Effect of wavelength
UV-LEDs at λ of 265, 275 and 310nm were applied for chlorine photol-

ysis experiments. Fluence-based pseudo first-order rate constant kf′ were
Fig. 10. The graphical illustration of the best possib
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used instead of time-based rate constant k′ because the four UV devices
have different UV fluence rates identified earlier in Table S3 and the corre-
sponding kf′ are listed in Table 2. Fig. 7A shows that kf′ had an upward trend
as pH was increased - deviating from the trend observed at 254 nm. Yin
et al. (2018) propounded that the wavelength dependency of chlorine pho-
tolysis on its molar absorption coefficients were higher at alkaline pHs - in-
dicating that (free) chlorine photo decay rates were more dependent on
their molar absorption coefficients (ε) than their quantum yields (Φ).
Since OCl- has a higher molar absorption coefficient compared to HOCl at
le solution in optimizing the objective function.



Fig. 11. The progression of optimization process during 30 iterations to obtain the
absolute minimum of objective function.
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higher wavelengths (Fig. S3), there is increased propensity for more RCS
formation and contribution in alkaline chlorine photolysis for TMP re-
movals. This results in more Cl•, Cl2−• and ClO• generated (Table S1,
Eqs. (R2), (R13)-(R22)) to react with TMP (Eqs. (10)–(12)).

At alkaline mediums of pH 8 and 9, the performances of UV-LED/Cl2
systems followed the following trend: UV(275)/Cl2 > UV(265)/Cl2 > UV
(310)/Cl2 > UV(254)/Cl2 (Fig. 7A-B). Following the observed trend -
changing the wavelengths improved kf′ by 362%, 302%, 151% at pH 8
and 648%, 492% and 298% at pH 9 by using kf, 254′ as a basis of compari-
son. Collectively, the UV-LED 275 systems triumphed all other UV systems
in the application of chlorine photolysis of TMP at alkaline pHs. The kf′
trend obtained is not congruent with Yin et al.'s hypothesis (Yin et al.,
2018) If chlorine photo decay rates were extremely dependent on their
molar absorption coefficients (ε), the performance of chlorine photolysis
would have been: UV(310)/Cl2 > UV(275)/Cl2 > UV(265)/Cl2 > UV
(254)/Cl2 because εOCl, 310 > εOCl, 275 > εOCl, 265 > εOCl, 254 (Fig. S3). This
implies that chlorine photolysis could have a higher dependency on not
only molar absorptivity, but also its quantum yields at higher pH. The
trend in quantum yields of OCl- across different wavelengths (ΦOCl, λ) is
the polar opposite to its molar absorption coefficient: ΦOCl, 254 = 1.058 >
ΦOCl, 265 = 0.995 > ΦOCl, 275 = 0.937 > ΦOCl, 310 = 0.737 (Yin et al.,
Table 6
The performance of each generated ANNmodel on their corresponding data fold in-
cluding MSE and correlation coefficient.

Fold
number

Number of
data in
training
set

Number
of data
in
test set

Correlation
coefficient
(Training)

MSE
(Training)

Correlation
coefficient
(Test)

MSE
(Test)

1 86 6 0.9991 6.94E-05 0.9994 2.77E-05
2 85 7 0.9986 1.00E-04 0.9944 6.01E-04
3 85 7 0.9988 9.40E-05 0.9908 7.79E-04
4 86 6 0.9995 3.76E-05 0.9991 1.10E-04
5 86 6 0.9999 7.09E-06 0.9992 5.87E-05
6 86 6 0.9994 4.86E-05 0.9705 1.94E-03
7 86 6 0.9999 1.02E-05 0.9979 1.21E-04
8 86 6 0.9997 2.37E-05 0.9951 2.87E-04
9 86 6 0.9983 1.23E-04 0.9970 3.24E-04
10 86 6 0.9994 4.37E-05 0.9996 3.72E-05
11 86 6 0.9977 1.81E-04 0.9622 2.62E-03
12 86 6 0.9995 3.71E-05 0.9953 3.88E-04
13 86 6 0.9997 2.64E-05 0.9881 6.41E-04
14 86 6 0.9991 6.47E-05 0.9988 1.23E-04
15 86 6 0.9994 4.59E-05 0.9993 3.29E-05
Average 86 6 0.9992 6.08E-05 0.992447 5.39E-04
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2018). Although OCl−at 275 nm does not have the highest molar absorp-
tion coefficient (as compared to 310 nm) nor does it have the highest quan-
tum yield to decompose themost OCl- to form radical chlorine species upon
UV irradiation (as compared to 254 nm), the UV(275)/Cl2 systems provide
a sweet spot for OCl- to have the best of both worlds. Results are in accor-
dancewithWang et al.'s application of UV-LED in chlorine photolysis of car-
bamazepine and Kwon et al.'s usage of UV-275 LEDs to remove
nitrobenzene and ibuprofen (Kwon et al., 2018; Wang et al., 2017).

3.1.3. Effect of chlorine dosage
Both Table 3 and Fig. 8 show the kf, λ′ of TMP degradation at pH 8 by

employing UV/Cl2 systems with wavelengths of 265, 275 and 310 nm, re-
spectively. As chlorine dosage was increased from 4.23 to 42.3 μM (0.3-3
mg/L), higher chlorine concentrations brought about an increased forma-
tion of reactive oxidant species such as Cl•, Cl2−•, ClO• andHO• from chlorine
photolysis. As a result, kf, λ′ was increased linearly by 74.8, 25.1 and 12.7
times for 265, 275 and 310 nm UV/Cl2 systems, respectively. However,
dosing chlorine beyond 42.25 μM resulted in different trends for the 3
UV-LED/Cl2 systems. kf, 265′ seemed to reach a limit of 0.0172 cm2mJ-1

and plateaued. kf, 275′was increased at a slower rate as compared with dos-
ing chlorine within a range of 4.23 to 42.3 μM. kf, 310′ , however, seemed to
deviate from the 265 and 275 nm systems by increasing faster. This anom-
alous behavior depicted in kf, 310′ could perhaps be attributed to photolyz-
ing OCl- at close to λ of 320 nm. The photolysis of OCl- at λ < 320 nm
generates products like O−• and Cl• (Table S1, Eq. (R2)) or excited single
state oxygen atoms O(1D) and Cl− (Table S1, Eq. (R3)). The conjugate
base of HO• is O−• and can react quickly with hydrogen ions to reform
HO• (Table S1, Eq. (R6)) whilst O(1D) can produce HO• after reacting
with water (Table S1, Eq. (R7)). At λ > 320 nm, OCl- produces ground
state oxygen atoms O(3P) and Cl− (Table S1, Eq. (R4)). O(3P) can react
with oxygen to form ozone (Table S1, Eq. (R8)). Ozone generation has re-
ceived minimal attention in literature because it is only favoured when
higher wavelengths of light are used. The further generation of both HO•

and ozone brought about by higher chlorine dosages accelerates trimetho-
prim degradation when applied at λ close to 320 nm.

3.2. Role of reactive species

Chlorine photolysis produces several oxidant species once chlorine is
subjected to UV irradiation. To quantify the varying contributions brought
about by the multifarious reactive species present in the system, character-
isation of UV/Cl2 process with available kinetic data is necessary (Eq. (S1)).
To prevent overcomplication of the general kinetic model established in Eq
(S1) to compare the UV/Cl2 systems across different wavelengths, several
assumptions were made:

Firstly, elucidating the exact rate constants and concentrations by each
RCS in UV/Cl2 systems is complex because the system produces multifari-
ous reactive oxidant species and as a result, the degradation of any com-
pound by the reactants are multifaceted and simultaneous. Since rate
constants of specific RCS - namely Cl•, Cl2−• and ClO• with most pollutants
are unavailable, the synonymous contributions of RCS to TMP degradation
will be simplified to Eq. (S2). The kinetic equation is further simplified to
Eq. (S3) due to TMP's photostability. Normalising Eq. (S3) by dividing the
equation with [TMP]o = 0.6889 μM gives us Eq. (S4) - which will be re-
ferred to throughout this section as:

R0 ¼ R0
Cl2 þ R0

HO• þ R0
RCS ð13Þ

where R′, RCl2′, RHO•′, RRCS′ are the normalised overall removal efficiency of
TMP at time t, normalised removal efficiency of TMP by chlorine, HO• rad-
icals and reactive chlorine species, respectively. To elucidate the concentra-
tion of HO• to calculate RHO•′ , nitrobenzene (NB) was used as an HO• probe
because not only is it unamenable to chlorination and UV photolysis, it also
has extremely low reaction rates with other oxidants generated in UV/Cl2
system (Fang et al., 2014; Watts and Linden, 2007; Xiang et al., 2016).
RCS contributions can be calculated by subtracting chlorine (Eq. (S5))



Fig. 12. Scatter plots of training datasets for (A), (B): predicted and experimental RHO•with corresponding correlation coefficient, (C), (D): predicted and experimental
RRCSwith corresponding correlation coefficient.

Y.S. Teo et al. Science of the Total Environment 812 (2022) 152551
and HO• contributions (Eqs. (S6)–(S11)) from the overall TMP removal
(Eq. (S12)). The full details of the derivation can be found in Text S3.
TMP removals attributed by various oxidants present in the UV/Cl2 system
are presented in Figs. S7-S10.

Secondly, the formation of hypochlorous radical anion (HOCl−•) via Cl•

(Table S1, Eq. (R16)) was not considered as part of the RCS in this study. By
virtue of reaction rate constants, Cl• would react preferentially with the
3,4,5-Trimethoxytoluene (TMT) portion of TMP at 1010 M−1S−1 (Eq. (9))
instead of forming HOCl−• via water at 102 to 104 M−1S−1 (Table S1,
Eq. (R16)). Thus, there will not be any depletion Cl• to form HOCl−•,
which in turn would not affect RRCS′ (normalised removal efficiency of
TMP by reactive chlorine species). Moreover, there will be no subsequent
formation of HO• due to dissociation of HOCl−• (Table S1, Eq. (R20)), no
formation of Cl2−• due to HOCl−• reaction with chloride ions (Table S1,
Eq. (R21)) and no reformation of Cl• due to HOCl−• reaction with hydrogen
ions (Table S1, Eq. (R22)).

Lastly, section 3.1.3 postulates that chlorine photolysis at wave-
lengths close to 320 nm will generate both HO• and ozone to accelerate
trimethoprim degradation. Since the irradiation wavelength is 310nm,
the main contributor of increased radicals in UV(310)/Cl2 systems is
not ozone, but rather, HO•. The photolysis of OCl- at λ < 320 nm gener-
ates products like O−• and Cl• (Table S1, Eq. (R2)) or excited single state
oxygen atoms O(1D) and Cl− (Table S1, Eq. (R3)). The conjugate base of
HO• is O−• and can react quickly with hydrogen ions to form HO•

(Table S1, Eq. (R6)) whilst O(1D) can produce HO• after reacting with
water (Table S1, Eq. (R7)). The quantum yields of O(1D) is 0.133 mol/
Es (McGrath and McGarvey, 1967), and that leads to the formation of
HO• at a rate of 1.2 x 1011 M−1S−1 (Table S1, Eq. (R7)). On the other
hand, the photolysis of OCl- at λ > 320 nm generates O(3P). The quan-
tum yield of O(3P) at 0.074 mol/Es (Buxton and Subhani, 1972;
Kläning et al., 1984; Treinin, n.d.) and that encourages the formation
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of ozone at a rate of 4 x 109 M−1S−1 (Table S1, Eq. (R8)). Since both
quantum yields and reaction rate constants favour the formation of
HO•, we shall presume that the main contributor of increased radicals
in UV(310)/Cl2 systems is not ozone, but rather, HO•.

In Fig. 9A, it can be seen that RCl2′ peaked across pH 7 across all UV/Cl2
systems. As pHwas increased from6 to 7, RCl2′was increased from4.62% to
8.49%, 8.58% to 10.1%, 4.72% to 4.86% and 13.8% to 16.6%, for UV
(254)/Cl2, UV(265)/Cl2, UV(275)/Cl2 and UV(310)/Cl2 systems, respec-
tively. The reason was previously elaborated in sections 3.1.1. At pH 7,
there exists more TMP than TMP+ (pKa, 2((TMP+/TMP)) = 7.1). TMP re-
acts with HOCl at 160M−1S−1, compared to TMP+ with HOCl at
6.2M−1S−1. Therefore, RCl2′would increase as pH was increased from 6 to
7. RCS played a pivotal role in TMPdegradation at all pHs andwavelengths.
From Table 4 and Fig. 9C, RRCS′ was increased from 67% to 76%, 70% to
86%, 78% to 91% and 75% to 79% as wavelength was increased from
254 to 275 nm at pH 6-9, respectively. Interestingly, RRCS′ was decreased
from 76% to 8%, 86% to 18%, 91% to 52% and 79% to 48% as wavelength
approaches UV-B (λ=310 nm) region at pH 6-9, respectively. This decline
in RRCS′ at λ=310 nm was compensated by an increase in RHO•′ in pH 7-9
(Fig. S10A–D). At pH 7-9, RHO•′was the highest ranging from36% to 48% in
UV (310)/Cl2 system as compared to 5% to 23% in UV (254, 265, 275)/Cl2
systems. The compensation of RCS by HO• can also be observed from a pH
increment angle - RRCS′ peaked at pH 8 at 78%, 91%, 89% and 52% before
declining to 77%, 75%, 79%and 48%at pH9 for 254, 265, 275 and 310 nm
respectively (Fig. 9A–C). When pHwas 9, the decline in RRCS′was compen-
sated by an increase in RHO•′ in all UV/Cl2 systems. RHO•′ also tended to be
the highest at pH 9 except for UV (254)/Cl2 systems. The reason attributed
for such increase in RHO•′ in UV (310)/Cl2 system is because photolysis of
OCl- generates products like O(1D) (Table S1, Eq. (R3)), which reacts with
water to form HO• (Table S1, Eq. (R7)). This increased the available HO•

in the system and resulted in increased RHO•′ at pH 9.



Fig. 13. Scatter plots of test dataset for (A), (B): predicted and experimental RHO•with corresponding correlation coefficient, (C), (D): predicted and experimental RRCSwith
corresponding correlation coefficient.
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3.3. Prediction of RHO• and RCS contribution

The contribution brought about by RCS could possibly be
underestimated or flawed because unnormalized removal efficiencies by
RCS on TMP are assumed to be the subtraction of removal efficiencies by
chlorine and HO• from the total removal efficiency of TMP (Eq. (S12)).
Eq. (S12) dismisses the possibility that RCS could play a much bigger role
than expected. Moreover, the estimation of TMP removal contributed by
HO• is a tedious experimental process, there will be tangible benefits in ap-
plying ANN to predict the contribution of HO• in the UV/Cl2 systems.

ANN was then applied to model experimental results, predict subse-
quent removal efficiencies, and ascertain the congruency between the ex-
perimentally determined RHO• and RRCS using Eq. (S2)–(S12) to those of
RHO•and RRCS predicted by ANN. As mentioned earlier, the optimum values
for hidden layer size and learning rate was obtained based on an optimiza-
tion objective function with two optimizable variables. It can be seen in
Table 5 the performance of the generated models with different hidden
layer sizes in the range of [1 20] and learning rates in the range of [0.01
0.1] was evaluated through 30 iterations. The best possible solution for
this optimization problem was finally obtained where the objective func-
tion had an absolute minimum and the corresponding values for hidden
layer size and learning rate were then used in ANN model generation
(Fig. 10). The progression of optimization process during 30 iterations to
obtain the absolute minimum of objective function is also provided in
Fig. 11. Based on the results, a hidden layer with 10 neurons and a learning
rate of 0.0346were selected as the optimum values for generating the ANN
model. To have a better generalization error, a 15-Fold cross validation step
was implemented to examine the performance of the ANN model and the
average correlation coefficient and MSE were obtained as 0.9992 and
6.0884e-05, respectively for training set and 5.3986e-04 and 0.9925,
12
respectively for test set. Table 6 shows the performance of each generated
ANNmodel on their corresponding data fold includingMSE and correlation
coefficient. Out of all generated ANNmodels on 15 folds of dataset, the best
model in terms of its MSE value on test set was separated to show the best
possible performance graphically and the results are shown in Fig. 12A-D
for training set and Fig. 13A-D for test set. According to the results, the
best model had correlation coefficients and MSE values of 0.9956 and
4.8950e-05, respectively on training set and 0.9993 and 2.6843e-05, re-
spectively on test set for predicting RHO•. Similarly, the correlation coeffi-
cients and MSE values for RRCS prediction were obtained as 0.9993 and
4.7266e-05, respectively on training set and 0.9994 and 2.8634e-05, re-
spectively on test set. The results showed high accuracy in predicting RHO•

and RRCS roles on TMP degradation using ANNmodel except in a few obser-
vations (i.e observation 71) in the training set which might be due to the
possible errors in experimental measurements and hence changing the
properties of these few records of data from other available records. There-
fore, observation 71can be considered as an outlier.

Furthermore, The obtained results showed that the relative importance
of exposure time, λ, overall rate (R), RCl2, and pH in prediction of RHO• and
RRCS roles on TMP degradationwas 46.43%, 18.26%, 14.05%, 12.49%, and
8.78% for RHO• and 51.50%, 17.30%, 11.24%, 10.91%, and 9.04% for RRCS

in descending order, respectively (Table S5). By comparing the relative im-
portance of independent variables in ANN model it can be concluded that
exposure time had the most effect on prediction of RHO•and RRCS among
other affecting input variables. The longer the experimental time frame
and exposure time UV light has on the entire UV/Cl2 system, it increases
the propensity of radical formation to remove TMP. The amount of free
chlorine available (HOCl and OCl-) decreases with exposure time, contrib-
uting to radical formation (Table S1, Eqs. (R1)–(R4)). Also, the increased
exposure time allows for more scavenging of HO• and Cl• (Table S1,
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Eqs. (R10)-(11), (13)-(14)), generating RCS like ClO• which contributes to
TMP degradation. On this basis, its concluded that ANNmodel constructed
in this study is reliable as it is representing that the main component in de-
fining the RHO• and RRCS is exposure time with highest relative importance.
Table of connection weights and biases is provided in Table S5.

4. Conclusion

This study investigated the use of the UV/Cl2 system for breakdown of
trimethoprim (TMP) across wider treatment conditions. By employing
UV/Cl2 in alkaline mediums and by changing the wavelengths via the use
of UV-LEDs, its performance and applicability can be enhanced. In this
study, TMP removals via chlorine photolysis followed the trend of UV
(275)/Cl2 > UV (265)/Cl2 > UV (310)/Cl2 > UV (254)/Cl2. The results re-
vealed that RCS played the most important role in TMP degradation and its
contributions were increased with increasing pH and wavelength. ClO•was
generated as a result of radical scavenging and demethylating the
trimethoxybenzyl moiety of TMP. However, the trend deviated when pH
reached 9 and wavelength reached UV-B region. The involvement of RCS
in TMP degradations in UV/Cl2 systems at alkaline conditions could possi-
bly be extrapolated to other PPCPs that contains aromatic moieties that are
amendable to degradation by ClO•. As a result, ClO• can compensate for the
reduction of HO• and Cl• due to scavenging. In this study, chlorine photoly-
sis employed inUV-B regionswas found to have higherHO• generation than
UV-C chlorine photolysis plausibly due to O(1D) formation, which reacts
with water to form HO•. An ANN model was applied on the datasets and
the results showed that the model was able to predict RHO• and RRCS accu-
rately and the best topology was 5-10-2 with Bayesian Regularization as a
training algorithm. Computing the relative importance of input variables
in ANNmodels showed that exposure time had themost effect in prediction
of RHO• and RRCS confirming the accuracy and reliability of the model.
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