
 
 

Delft University of Technology

Safe Curriculum Learning for Linear Systems with Parametric Unknowns in Primary Flight
Control

De Buysscher, D.D.C.; Pollack, T.S.C.; van Kampen, E.

DOI
10.2514/6.2022-0790
Publication date
2022
Document Version
Final published version
Published in
AIAA SCITECH 2022 Forum

Citation (APA)
De Buysscher, D. D. C., Pollack, T. S. C., & van Kampen, E. (2022). Safe Curriculum Learning for Linear
Systems with Parametric Unknowns in Primary Flight Control. In AIAA SCITECH 2022 Forum Article AIAA
2022-0790 (AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022).
https://doi.org/10.2514/6.2022-0790
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/6.2022-0790
https://doi.org/10.2514/6.2022-0790


Safe Curriculum Learning for Linear Systems with Parametric
Unknowns in Primary Flight Control

D.D.C De Buysscher∗, T.S.C. Pollack† and E. van Kampen‡

Delft University of Technology, 2629HS Delft, The Netherlands

Safe Curriculum Learning aims at improving safety and efficiency aspects of Reinforcement
Learning (RL). Curricular RL approaches divide a task into stages of increasing complexity
in order to increase efficiency. This paper proposes a black box safe curriculum learning ar-
chitecture applicable to systems with parametric unknowns. The agent domain solely requires
knowledge of the state and action spaces’ dimensions for a given task and system. By adding
system identification capabilities to existing safe curriculum learning paradigms, the proposed
architecture ensures safe learning of tracking tasks without requiring initial knowledge of the
system dynamics. A model estimate is generated online to complement safety filters that rely
on uncertain models for their safety guarantees. This research explicitly targets linearised
systems with decoupled dynamics. The paradigm is initially verified on a mass-spring-damper
system, after which it is applied to a quadrotor altitude and attitude tracking task. The RL
agent is able to safely learn an optimal policy that can track an independent reference on each
degree of freedom.

Nomenclature

A = Set of all possible actions DC = Action vector at time C
2 = Damper constant [#/<B−1] W() = Probabilistic weight function
5C = Thrust force [#] -: = Augmented state at time step :
H() = Statistical entropy function GAC = Reference state vector at time C
� = Kernel matrix GC = State vector at time C
: = Spring constant[#/<] W = Discount factor
 = Gain \̂ = Model parameter estimates
< = Mass [:6] _ = Curricular step index
P = Regression matrix ` = Distribution mean
q() = @ value function ac = Value function conditioned on c
Q = State weight matrix b = Policy mapping matrix
R = Input weight matrix c = Agent policy
R = Reward function f = Distribution standard deviation
r or c = Reward or cost g• = Torque around • axis [#<]
S = Set of all possible states Ω8 = Rotor RPM of 8Cℎ rotor['%"]
T = Transition function n• = Error between a state (•) and its reference state (•A )

I. Introduction

The field of control has become increasingly important in numerous domains around the world ranging from
transportation to appliances or even the agricultural sector. A common desire in these industries is to have a system

that is capable of tracking a pre-defined trajectory. For example, in the airborne transport industry where personal UAVs
follow a defined flight path. The complexity of these systems along with their ever increasing variety, demands for
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controllers that are more flexible in their design process. Additionally, complex systems are often difficult to model
and validate. Consequently, controllers that can be derived using data-driven methods are preferred in such cases.
Advanced sensor-based controllers exist, such as incremental dynamic inversion controllers [1], to alleviate the burden
of modelling complex systems. However, the aforementioned methods suffer from state reconstruction dependencies
and synchronisation issues with the sensor data. Another approach to data driven controller design resides in machine
learning paradigms such as Reinforcement Learning (RL). The fundamental principle used in RL is the representation
of the world as an agent being confronted with a choice of action. The agent learns a control policy by interacting
with the environment and gaining experience of the dynamics over time. Its basic principle is simple yet effective.
However, with increasing task complexity (i.e., growing state and action spaces) increases, RL agents have a tendency to
struggle learning a policy reliably [2]. Curriculum Learning (CurL) indroduced in [2], provides a structured approach
to allow learning on more complex applications by dividing the initial task into sub-tasks [3, 4]. This facilitates the
agent’s learning process and increases the likelihood of successfully finding a control policy [5]. Given the examples
cited previously, certainly in transport applications where stringent (safety) requirements apply, the safety aspect of the
learning process and the correct operation of the controller is of crucial importance. Unlike RL methods which in their
simplest forms generally lack consideration of the safety aspect [6], Safe Learning (SL) does provide a framework to
this end [7].

The research outlined in this paper proposes a safe curriculum learning architecture that builds on the research
presented in [8]. Here, the dependency on knowledge about an uncertain model for the safety algorithm is removed by
complementing the paradigm in [8] with a system identification capability.

First a brief introduction to the fields of RL, Curriculum Learning, Safe Learning, and system identification is provided
in sections II.A, II.B, II.C and II.D, respectively. This is followed by a detailed presentation of the approach chosen
in this research outlined in Section III. Finally, the proposed paradigm is tested through two experiments. Initially, a
Mass-Spring-Damper (MSD) system is used to verify the architecture for which the results are presented in Section IV.A.
In Section IV.B, the results of a the safe curriculum architecture applied on a quadrotor are outlined. The paper is
concluded with a discussion of the results of the experiments, as well as a conclusion and recommendations for further
research.

II. Safe Curriculum Learning Framework
The core principles in safe curriculum learning are derived from three research fields: reinforcement learning, curriculum
learning and safe learning. Inherently, the fundamentals originate from the more general machine learning field of study
that is reinforcement learning. This learning process is then altered in curriculum and safe learning approaches.

A. Reinforcement Learning
Fundamentally, the concept of reinforcement learning aims at translating decision-making tasks into a logical

space that is more accessible to computational implementations. It does so by using the high-level and more general
formulation contained in a Markov Decision Process (MDP). All the possible actions available to the agent are contained
in the action space, A, and all possible states, G: are defined as part of the state space, S. Mathematically, the decision
is characterised by the policy function, c(GC ) = DC [6]. It should be noted that all MDP’s rest on the fundamental Markov
property, stating informally that the future is independent of the past given the present∗. In essence, this property
describes that all information from the past is contained in the present observation, which is used by the policy to define
the action to be taken by the agent. Once the agent has made a decision on the action to take, the action is executed and
the agent is then transitioned to a new state. All the transitions between states dependent on the chosen action are defined
in the transition function T : A × S → S. Finally, each transition is rated by a reward function, R : S × A → R,
assessing the optimality of the transition and as a consequence the state-action pair, (G, D). An MDP is uniquely defined
by a tuple, 〈A,S,T ,R〉 containing the aforementioned spaces and functions.

Canonical RL problems aim at optimising the path between an initial state, G8=8C , to the goal state, G6>0; , by finding
the optimal policy,c∗, for the MDP. The optimality of the policy is defined according to a reward function R. To estimate
this policy, RL agents perform a non-linear optimisation on the MDP at hand.

Reinforcement learning embodies two main optimisation strategies for MDP solvers, namely, Policy Iteration (PI)
and its truncated version called Value Iteration (VI), which can be generalised to Generalized Policy Iteration (GPI) [6].
Computational complexity is reduced when using VI compared to PI, since the policy evaluation step does not require

∗B. Langmead. Markov chains. University Lecture 22, John Hopkins Whiting School of Engineering, 2013
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the value function to be the true one. The true value function is reached only in the limit. The policy evaluation step is
outlined in Eq. (1), where ?(G ′, A |G, D) defines the probability of a subsequent state, G ′, occurring with the respective
reward, A. Furthermore, c(D |G) denotes the probability of an action to be taken at a given state, G. Finally, a discount
factor, W, is used to reduce the importance of the previous value function. The other iterative step in GPI, is policy
improvement (Eq. (2)), which based on the current estimate of the value function will adapt the policy.

a:+1c (G) =
∑
D

c(D |G)
∑
G′

∑
A

?(G ′, A |G, D)
[
A + Wa:c (G ′)

]
(1)

c:+1 =

{
c′ 8 5 ac′ (G) ≥ ac: (G)
c: 8 5 ac′ (G) < ac: (G)

(2)

Solving the MDP can be done using multiple methods, where the method of choice is dependent on the knowledge
of the MDP available to the operator. In [6], three methods are discussed, namely Dynamic Programming, Temporal
Difference and Monte Carlo. Dynamic Programming requires full knowledge of the MDP, full state space, action space,
transition function and reward function. The other two methods are used when a perfect model of the MDP is not
available. Temporal difference and Monte Carlo focus on experience driven optimisation, through sampling of visited
state and actions as well as the transitions that occurred with their respective rewards. The Monte Carlo approach is
derived from the statistical theorem of large numbers where the more a state is visited the more accurate the MDP
approximation of that state is. All make use of the value and policy iteration principles provided earlier in this section.

Applicability of these iterators is reflected in two common implementation of RL, namely SARSA and Q-learning
[6]. These take the concept of a value function further. Instead of assessing the value of states, both implementations
make use of a q-function, @(G, D), which considers the value of a state-action pair. Detailed algorithmic formulations
are provided in [6].

Besides the VI and PI strategies, other approaches do exist, such as Deep Deterministic Policy Gradient (DDPG) [9],
Proximal Policy Optimisation (PPO) [10] and Trust Region Policy Optimisation (TRPO) [11]. The core principle
behind each of these, is the use of the policy gradient to find the optimal policy of the topical MDP. Due to their more
complex implementation requirements, they are not considered in this research.

B. Curriculum Learning
Mimicking the learning process of humans and animals on complex tasks, Curriculum Learning (CurL) provides

a step-wise learning approach. Specifically, by decomposing the final task into sub-tasks that have relatively lower
complexity. Each subsequent curricular step uses knowledge gained in the previous one resulting in the agent learning
the ultimately complex task in a more gradual manner. Specifically, CurL has been proven successful in numerous fields,
such as system control and complex games [5, 12]. Ng et al [5] have used curriculum learning to gradually train an RL
agent to perform non-linear helicopter maneuvers. In 2016, Alpha Go defeated the – at the time – world champion in the
game Go. It was trained using curriculum learning enhancements to facilitating the learning process of the complex
game [4, 12, 13]. On a high-level and abstract basis, a curriculum obeys two statistical properties [2] which are detailed
in a subsequent paragraph.

The design of a curriculum can have substantial impact on the overall stability and convergence of the RL agent’s
learning process. As defined by Bengio et al [2], curricula are subject to two rules, summarised in Eq. (3), in order
to ensure a progressive learning strategy. One relates to a monotonically increasing statistical entropy, � (&_ (G)),
throughout the curriculum, increasing the uncertainty of which states will be encountered by the agent. The other
requires a monotonically increasing weight function,,_ (G), to add states to the state space made available to the RL
agent. In the equation below, the subscript _ denotes the curricular step index and n is a positive integer added to the
former to denote a subsequent curricular step.

1) � (&_ (G)) < � (&_+n (G)) ∀n > 0,∀G ∈ S
2) ,_ (G) ≤ ,_+n (G) ∀n > 0,∀G ∈ S

(3)

Statistical entropy is a mathematical expression for designating the amount of uncertainty in a statistical process. It can
be seen as a metric indicating how predictable a process is. In the case of the first condition given in Eq. (3), the entropy
is tied to the probability of occurrence of a certain state or observation,&(G). In essence, given a state space, the function
&(G) is the probability density function of that state space. If only a few states are likely to occur, the predictability is
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high. By adding entropy, the uncertainty of that distribution is increased and the occurrence predictability of a state or
observation is reduced.

The second condition proposed in [2] and repeated in Eq. (3), relates to the weighting function allocated to an
observation. By increasing,_ (G) throughout the curriculum, the state space available in the environment is enlarged.
Furthermore, using knowledge about the topical RL problem, more difficult situations can be added in a later stage of
the curriculum (with larger state and action spaces). This difficulty is problem dependent.

Inherently the two conditions are closely related. By increasing both the entropy and the weighting function
throughout the curriculum, the diversity in the state space in increased.

Recent research [4] has found that curriculum learning approaches can be categorised in three main branches: reward
shaping [14], variable task complexity and reversed problem space. All of which adapt one or multiple parts of the
MDP’s tuple in the design of the curriculum.

As the name suggests, reward shaping introduces variations in the reward function, R, of the MDP. The agent is
given higher rewards for good actions taken at a given state. Over the course of the curriculum, the bias introduced in
the reward function is gradually removed, to converge towards the true reward function of the MDP. One example of the
benefits of such approach is the non-linear helicopter maneuvering capabilities learned by the agent in Ng et al [5].

Gradually increasing task complexity is another approach to construct a curriculum which is more closely related to
the way the academic systems are designed. The benefit of a curriculum becomes clear when using the example of an
inexperienced agent being taught highly complex tasks (large state and action spaces). The learning process would be
inefficient in two aspects: the amount of knowledge gained by the student and the time required for that knowledge to be
assimilated. Instead, with a structured teaching approach the learning process’s efficiency is increased [15].

Finally, there is the reversed problem space approach where the agent is initially placed close to the goal state.
Throughout the curriculum, the agent is removed further away from the goal state. As such, it has to find a path to its
comfort space, which it learned in previous curricular steps. Intrinsically these approaches increase the size of the state
space and even the action space in each curricular step. As such, they allow the conditions presented in Eq. (3) to be
satisfied.

When moving from one curricular step to another, the purpose is to retain the knowledge and experience acquired
thus far in the curriculum. Transferring knowledge between two sub-tasks is achieved using methods contained in
Transfer Learning (TL) [16]. In RL, the gained experience and knowledge are generally contained in an agent’s internal
representation of the MDP. Based on the state and action space representations of the MDP by the agent, the knowledge
transfer, or mapping, has to be adapted. When state and action spaces are represented equally in both curricular steps
between which the knowledge transfer is to be performed, the mapping is straight forward. Indeed scaling is possible
and no intricate mapping strategy is required. However, when either one of these spaces is different, mapping strategies
become more strenuous. Two ideologies arise in this field [16]. The first focuses on learning the value function, ac ,
which is transferred between source and target task [17]. The other proposes to transfer the policy learned in the previous
curricular step to the target task, whilst re-iterating the value function during the new curricular step [18].

C. Safe learning
Reinforcement learning comes with the benefit of not being model-based. Indeed, methods such as temporal

difference and Monte Carlo are able to find optimal policies without knowledge of part of the MDP. However, the safety
of a system is not considered during the learning process. The safety aspect can be a crucial subject when applying
reinforcement learning on real-life experiments, particularly on systems that are expensive to build or set up, such as
aircraft, cars, boats or even robotic arms used in the production lines of factories [19, 20].

According to [7], safety in learning processes is attributed to either the optimisation criterion, or the exploration process.
The optimisation criterion relates to the reward function of the MDP, discussed in previous section. Ensuring safe
learning can indeed be addressed by adapting this criterion to be risk sensitive [7, 21]. As such, the reward function can
be adapted to give lower rewards when a transition leads to an unsafe state (elaborated upon in the next paragraph). The
exploration process can thus be interfered with by either providing external knowledge to the agent and guiding it away
from dangerous state spaces [22], or by adding an element of risk into the exploration process. This provides the agent
with a risk assessment tool enhancing its ability to define the optimal safe action.

During the exploration process of the state and action spaces, certain state-action pairs can pose danger to systems. In
safe learning research, safety is assessed by associating a given state to a state space with certain properties. In Fig. 1,
an overview is given of three approaches used to divide the state space into groups based on certain characteristics.
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Error
States

non-Error
States

(a) Error and Non-Error states within the
set of states S

Unknown

Known

(b)Known andUnknown states within the
set of statesS. Dashed line represents the
exploration of S over time.

FSS

SSS

(c) Safe State Space (SSS) and Fatal State
Space (FSS) within the set of states S.
Dashed line represents the exploration of
S by the agent over time. Note that this
figure is an overlap of figures 1a and 1b

Fig. 1 State space segregation based on different concepts: (left) error-states, (middle) known states, (right)
safe states. The grey rectangle represents the complete state space of the task at hand, S.

In a first instance, the state space system can be divided in error and non-error spaces which define the consequence
of being in their respective states (see Fig. 1a) [23]. Error states are considered as harmful to the system as they either
lead to system termination or to serious damage. Non-error states are considered innocuous to the system. In a second
instance, the state space can be segregated based on the experience gained by the agent. Shown in Fig. 1b, states are
labeled as known or unknown, depending on the agent having visited the state previously [24]. Finally, combining these
concepts, the definition of a Safe State Space (SSS) and a Fatal State Space (FSS) can be given [25–27]. In a SSS, only
states that are labeled non-error and known can be included. The FSS includes error states, regardless of whether the
agent has visited the state previously. This is shown in Fig. 1c.

In the scope of exploratory safety, the Safety Handling Exploration with Risk Algorithm (SHERPA) and optiSHERPA
introduced in [25–27] provide a risk-sensitive and model-predictive exploration method. SHERPA makes use of the
policy reuse concept outlined in [28], in which the probability of using a safe policy is related to the risk sensed at a
given state. In SHERPA’s terminology, this safe policy is defined as a backup policy, which relies on the ergodicity
condition. Discussed in [29], an exploration method based on ergodicity goes into more detail on this regard. When an
agent follows its policy, that policy is deemed safe if and only if there is the possibility to safely return to a previously
visited state. The way to return to a state, G ∈ (((, is SHERPA’s backup policy. This backup policy has to satisfy a
complementary condition that the trajectory to this state is within the SSS at all times. A considerable drawback of the
ergodicity condition and algorithms relying on its application is its dependence on knowledge of system dynamics,
albeit in the form of of a bounding model defined as [G:+1] = Δ( [G: ], D: ) (where [x] defines the interval notation of a
state) [27].

D. Safe Learning for Systems with Parametric Unknowns
Safe learning algorithms rely mainly on external knowledge, in the form of guidance during exploration or sensible

adaptions of optimisation criteria [7]. Lacking the availability of system dynamics, albeit certain or uncertain, has a
more significant impact on safety methods based in the exploration process of the state and action spaces by the agent.
More specifically, SHERPA and optiSHERPA that are methods founded on the ergodicity condition [25–27, 29]. By
consequence, these paradigms inherently rely on system and input dynamics representations to project trajectories
internally. In order to solve the problem in such methods when working with a system where only the state and action
orders are known, system identification techniques can be used.

Linear systems mostly make use of a state space model representation for their system and input dynamics. Moreover,
their non-linear counterparts can be approximated by time-variant linear state space systems, with the exception of
highly non-linear systems due to inaccuracies arising with such models. Consequently, for highly non-linear systems
multivariate splines or Artificial Neural Networks (ANN) are preferred for a more accurate model representation.
Multivariate splines are model representations that are constructed by a set of piecewise continuous functions, locally
approximating the dynamics. Data points are collected to optimise simplex coordinates, which in turn provide a baseline
for the piecewise functions. On the other hand ANN’s provide a non-linear model approximation by virtue of their
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Agent

Environment

System Identification

Safety 
 Filter

Excitation
Signal

Sensors

+
+uk,agent

uk,agent,excite

uk,agent,excite,safe

Xk

model parameters

uk,excite,safe

Xk

Xk

uk,excite,safe

Xk+1

rk+1

rk+1

X(k+1),measured

X(k+1),measured

Agent Domain

Supervisor
uk,supervisor

X(k+1),measured

Action
Combination

Fig. 2 Schematic overview of the online learning architecture illustrated for a single curricular step

activation functions defining their nodes [30].

E. Safe Curriculum Learning for Systems with Parametric Unknowns
The basis of the Safe Curriculum Learning paradigm was first introduced in [8], where it was used to regulate a

3-mass-spring-damper system as well as a quadcopter on its six degrees of freedom. Combining the knowledge found
in research discussed in previous sections, the paradigm aims at finding a control policy of complex systems whilst
considering safety of the learning process. The research provided successful results for a regulation task by using the
SHERPA algorithm as a safety filter.

Furthering the paradigm by providing independence of system dynamics knowledge, an overview of the learning
architecture is given in Fig. 2. Here, a system identification module is added to the process to provide the safety filter
with an estimate of the dynamics during the online learning process.

Each curricular step uses the logic demonstrated by this diagram to find an optimal safe policy for the topical task at
that stage of the curriculum and its respective MDP. Mapping the agent’s representation of the value function and policy
is then used to transfer knowledge between curricular steps. A curriculum can be constructed by repeating the schematic
provided in Fig. 2 in a sequential or parallel manner, depending on the curricular requirements of the task at hand.

III. Methodology
The research in this article proposes an online safe curriculum learning paradigm with the purpose of controlling systems
with parametric unknowns to track a reference signal. The black box approach assumes knowledge about the order
of the state and action spaces to be available. However, system dynamics and input dynamics are not provided in an
exogenous manner throughout the learning process. The decisions made during the research regarding the specific
methods used to construct the multiple building blocks of the safe curriculum learning paradigm are presented in this
section. The section is started with the task to be performed by the agent along the RL method of choice, after which the
curricular construct is elaborated, followed by the safety filter.

A. Learning Framework
Provided that a reference tracking controller is sought, as outlined in the introduction, a tracking task was devised to

obtain a high-performance tracking policy for a system. As mentioned in Section II.A, reinforcement learning processes
are guided by their underlying MDP’s reward function, R, for optimisation of the policy and value function. In this
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research the Linear Quadratic (LQ) cost function (shown in Eq. (4)) is selected as it can be used in optimal control
strategies in concordance with RL methods such as Q-Learning [31, 32]. The & and ' matrices found in the LQ cost
function are diagonal weighting matrices. Their respective diagonals contain a weight expressing the importance of the
state and input vector elements’ contribution to the cost [32].

R : 2 = G)&G + D) 'D (4)
By limiting the scope of the research to discrete-time linear systems, the Linear Quadratic Tracking (LQT) paradigm
proposed by [31] was found to be promising. That research uses Q-learningwith PI to learn a tracking task. Fundamentally
based on Linear Quadratic (LQ) optimal control theory, the authors provide analytical proof of a RL agent’s ability to
learn a tracking stabilising policy. Instead of finding a controller that regulates the states to an equilibrium, the LQT task
aims to regulate the error between the system’s state and the reference signal. The scope being limited to linear systems,
it was chosen to use the linear discrete-time state space (�, �, �, �) representation to model the system dynamics in the
environment and consequently as the transition function, T . By means of the � matrix of this representation and the
assumption that feedforward dynamics are omitted, the error is defined as shown in Eq. (5). This leads to the use of
an augmented state, -: containing both the system’s state and the reference’s state, GA

:
(generated by the command

module). Due to the introduction of an augmented state, -: , the & matrix of the LQ cost function in Eq. (4) needs to be
altered to accommodate for the new dimension of this augmented vector. In [31], a substitute matrix, &1 = �

)
1 &�1, is

defined to ensure conforming dimensions with the augmented state.

4: = H: − GA: = �G: − G
A
: =

[
� −�

] [
G:

GA
:

]
= �1-: (5)

The Q-Learning approach that was chosen is not of tabular form. Although the state and action spaces are discrete in
time, they are not discretised to fit within a tabular formulation where actions are related to ranges of states. Instead, the
possibilities of state-action pairs is infinite. In order to accommodate such spaces, a continuous Q-function is required.
For this purpose, Kiumarsi et al. [31] propose to use a kernel matrix, �, to determine the Q-value as outlined in Eq. (6).
The focus of the RL process is to find the optimal kernel matrix for the topical task. In the equations below, the vector,

/ =

[
-: D:

])
, contains both the augmented state as well as the action at a given time step. Additionally, the

constant W represents the discount factor.

@: =
1
2
/): �/: (6)

In more general terms, the Q-function satisfying the the Bellman equation [31, 33] for an LQT task is formulated in
Eq. (7). This equation holds for discrete-time linear systems. Obtaining the values of the symmetric kernel matrix, �,
is done by using sample based VI. By sampling the states and inputs along the system trajectory, an estimate of the
kernel matrix can be computed using a simple Ordinary Least Squares (OLS) regression. The estimator is discussed in
more detail in Section III.C. Mathematically, the estimate of the subsequent kernel matrix, � 9+1, is obtained by solving
Eq. (8), in which /: is sampled over time. This covers the policy evaluation step of the VI strategy.

/): �/: = -
)
: &1-: + D): 'D: + W/

)
:+1�/:+1 (7)

(/: ⊗ /: )) E42(� 9+1) = -): &1-: + D): 'D: + W/
)
:+1�

9/:+1 (8)
In order to complete the iterative loop of VI, the policy improvement step has to be performed. Here, the policy takes
the form of a control gain,  1, in control theoretical terms. Based on the findings in [31], the logic within the policy is
given by Eq. (9), where �DD and �D- are sub-matrices of the kernel matrix � (see Eq. (10)).

D: = −
(
�−1
DD�D-

)
-: = − 1-: (9)

Successful learning convergence is achieved by adding a Persistence of Excitation (PE) signal to the input vector, in
order to avoid non-invertible precision matrices in the OLS estimator. Random noise has been selected as the excitation
signal of choice. In accordance with Narendra and Annaswamy [34], the PE signal shall not integrate to zero over the
course of the sampling period if the PE condition is to be satisfied. White noise is not likely to fail this condition.
However, such signal comes with the drawback that it is fundamentally not band limited and the signal power is spread
equally over all frequencies.
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B. Curriculum Setup
The learning task presented in the previous section, although proven to have convergent learning behaviour, suffers

from the curse of dimensionality. Increasing the amount of states causes an exponential increase in the dimensions
of the kernel matrix. For complex systems that adhere to state and action spaces with numerous dimensions, such as
aircraft, this can result in relatively large kernel matrices. By designing a curriculum, the strain can be relieved from the
learning process and positively impact the learning convergence, performance and safety on the aforementioned state
and action spaces.

The curriculum learning strategy chosen for this research is a curriculum based on gradually increasing the task
complexity. Two staging approaches were considered for this research, namely intra-task and inter-task [8]. For intra-task
stages, the agent’s representation of the state and action spaces was set to be the same between two consecutive curricular
steps. On the other hand, inter-task staging assumes a different representation between the source and target tasks be it
in terms of dimensions or in terms of internal dynamics representation. Besides increasing the task complexity, reward
shaping was implemented on more complex systems as an additional guide for the agent. By changing the values on
the diagonals of & and ' from Eq. (4), the contribution of each state and action element towards the total cost can be
adjusted. Its use was primarily prominent when a state and its derivative were present in the state vector. For example,
when a position state element is tasked with tracking a reference, the respective rate component of that state is given a
lower value in & to focus the agent’s attention on the position tracking before the velocity tracking. In the consecutive
curricular step, the tracking of the rate is removed entirely.

A second point of attention when designing a curriculum is the transfer of knowledge between curricular steps. The
knowledge gained during a particular curricular step is stored in the kernel matrix �. Since this matrix is used to define
the Q-value space, it contains the necessary information to dictate the agent’s value function and policy. Here, it was
opted for a semantic mapping strategy of the kernel matrix. In essence, the environment and agent of the subsequent
curricular step dictate the new dimensions of the kernel matrix for that step as they set the dimensions of the state and
action spaces. The basis for the new kernel matrix is an identity matrix onto which the kernel values of the source task
are mapped based on corresponding state, reference and action elements. For the sake of clarity, Eq. (10) outlines an
overview of the different blocks of the kernel matrix relating to the state, reference and action elements denoted by the
subscripts G, GA and D respectively.

� =


�GG �GGA �GD

�GA G �GA GA �GAD

�DG �DGA �DD

 =
[
�-- �-D

�D- �DD

]
(10)

Mapping semantically requires an operator with a broad understanding of the system and input dynamics, which comes
as a disadvantage of this specific strategy. In this work, the operator is responsible for defining the mapping strategy by
allocating the state and and action positions correctly throughout the mapped kernel matrix. Additionally, it means that
knowledge of the specific internal dynamics (i.e., coefficients in the kernel matrix) is not a requirement for the mapping
process. An accurate mapping of the states and actions provides a more reliable starting point for the RL agent in the
subsequent curricular step.

C. Safety Filter for Systems with Parametric Unknowns
Completing the proposed paradigm in this research is the safety aspect. It is true that safety can be a consequence of

using curriculum learning. However, no guarantees can be asserted by these means alone. Consequently, an additional
safety module was used to ensure a safe learning process, as is shown in Fig. 2. The safety mechanism of choice is a
safety filter fundamentally relying on ergodicity named SHERPA [25–27].

Essential to the SHERPA safety filter are the concepts of the SSS and FSS discussed in Section II.C. In essence, the SSS
is an evolving part of the state space that is enlarged through experience. States that have been visited by the agent and
are considered safe are added to the space. To push the safety aspect further, a sensor reach is added to the state to act as
the risk function required for the SHERPA algorithm as it is defined by Mannucci et al [27]. For example, a radar sensor
can be equipped to a quadcopter, allowing it to sense for obstacles up to a certain distance thus giving it a better idea of
potential threats in its surroundings. The binary risk function sets risk at 0% when the sum of the state and the sensor
reach are outside of the FSS (and conversely sets it to 100% otherwise). Besides the expansion of the SSS over time, the
safety of the system is retained by finding backup policies. These policies aim at verifying that the agent is not in Lead
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to Fatal States (LFS), which are states excluded from the FSS but lead to it with certainty [27]. Additionally, backup
policies are validated by satisfying the ergodicity condition [27, 29].

The search for such policies lies at the core of SHERPA’s paradigm. Using a form of model representation, the
algorithm projects a number of trajectories for a pre-defined number of time steps based on a set of policies. The
trajectory generation proposed by Mannucci et al [27] relies on a series of random actions. Instead, this research
considers the SHERPA safety filter to be part of the agent domain (see Fig. 2). Consequently, SHERPA has access to the
agent’s current policy, from which it generates a set of policies used to define the series of inputs taken for the projected
trajectories. More specifically, the policy generation is based on the n-greedy [6] approach used to promote exploration
in RL. In most cases the agent’s current policy parameters are altered by a certain random factor. In the remaining cases,
a completely random policy is generated. The projection of these trajectories is performed using an uncertain model of
the system and input dynamics that is identified online.

The proposed contribution of this research finds itself in the addition of a system identification module to estimate a
model of the system and input dynamics. As model representation, the linear state space formulation was chosen by
virtue of its efficiency and fitness for the scope of this research. The model is estimated using sample based Ordinary
Least Squares (OLS), with an estimate update frequency that is different and higher than the VI iteration process.
Samples of the state and input at time step : as well as the subsequent state are collected to construct the regression
matrix, %, and regression vector, 1, which are then used to find the model estimate as shown in Eq. (11).

\̂ =

(
%) %

)−1
%) 1 (11)

The model uncertainty of the estimate is derived from the residuals between the estimated model and the sampled
data. Thereby resulting in the absolute parametric uncertainty of the system dynamics estimate, �̂, the input dynamics
estimate, �̂, and the reference dynamics estimate, �̂. These uncertainties are crucial for the uncertainty region’s
propagation in SHERPA’s backup policy projection process.

IV. Simulation Results
The safe curriculum learning architecture for systems with parametric unknowns proposed by this research was first
verified on a cascaded Mass-Spring-Damper (MSD) system supported at one end. This is followed by an example of the
application on primary flight control on a linearised quadrotor model, which has been limited to attitude and altitude
control.†

A. Model Verification on Mass-Spring-Damper System
The architecture presented in Fig. 2, was verified on a #-MSD system, where # denotes the number of masses

present in the system. This system is used because of its modularity and scalability. Additionally, making a #-MSD
system unstable can be achieved by making either the spring constant, : , or the damping constant, 2, negative. The
curricular construction is centred around inter-task staging steps where the agent’s representation of the system dynamics
varies throughout the curriculum. Initially, a single mass attached to fixed bound (1-MSD) is used as an environment
for the agent, with stable open-loop characteristics. The agent’s task is to have the mass position track a sinusoidal
reference signal. Throughout the curriculum, more masses are added between the wall and the previously existing
system. Moreover, the system is gradually made unstable to conform with the statistical conditions of entropy and
diversity that are needed for a curriculum. The ultimate goal is to have the agent track a sinusoidal reference signal on a

†Full code of the implementation used in theses simulations can be found at https://github.com/DBdiego/SafeCurriculumLearning.git

m2

u2

x2

m3

u3

x3

m1

u1

x1

k1

c1

k2

c2

k3

c3

Fig. 3 Figure showing a cascaded 3-Mass-Spring-Damper system
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Table 1 Characteristic parameters of the unsta-
ble 3-MSD system shown in Fig. 3

Mass m [:6] k [#/<] c [#/(<B−1)]
1 0.3 -1 6
2 0.8 3 -1
3 0.4 4 3

Table 2 Characteristic parameters of the persis-
tence of excitation signal and measurement noise

PE signal Measurement Noise
Parameter Value Parameter Value
`%� 0.0 `"# 0.0
f%� 1.5 f"# 2.0 · 10−3

f-band [−∞,∞]

3 − "(� system with the last mass’s position, G3, whilst staying within provided safety bounds. Additionally, the other
masses in the system are regulated. Finally, the actions taken by the agent are bounded by saturation limits set to 5N in
either application direction.

The focus of this verification is not only to prove that the agent can safely learn but also to show that the learning
efficiency is improved when complementing the agent with a safety filter and pacing it through a curriculum. Therefore,
the results of the proposed architecture are compared to flat learning of the aforementioned tracking task on the full
3-MSD system. With the characteristic parameters of the 3-MSD system and excitation signal presented in Table 1 and
Table 2, respectively, the agent converged to a stabilising policy without leading the system in the FSS in a curriculum
learning framework. Consequently, completing the input’s excitation signal, a measurement noise, with characteristic
hyperparameters outlined in Table 2, was added to the state time series to provoke unstable kernel and policy updates
by the agent. Without the addition of measurement noise, the learning process stays safe even without a safety filter.
By adding measurement noise, the benefits of SHERPA can be showcased more clearly. Consequently, to make the
results comparable, both the flat learning benchmark and the safe curriculum implementation were complemented by
measurement noise.

When neither the curriculum and the safety filter are activated, the agent’s learning behaviour is volatile and
divergent. This is reflected in Fig. 4. It takes two kernel updates (� 9 ← � 9+1) for the agent’s policy to dictate actions
that are continuously saturated. Furthermore, once the position of the three are well beyond the SSS (green area in
Fig. 4), the tracking task becomes more arduous. Conversely, when using the safe curriculum architecture proposed
in this research, the resulting learning process is stable and convergent. The convergence rate, however, varies with
the respective amplitudes of the PE and measurement noise signals. In Fig. 5, the position state and action force
propagation of all masses is given, showing an adequate tracking of the reference by G3. The total learning time for
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Fig. 4 Evolution of mass positions and control forces over time; Online VI; Flat Learning; No SHERPA;
Gaussian sensor noise, f = 0.0012; G8=8C ∈ [−0.2, 0.2]; ¤G8=8C ∈ [−0.25, 0.25]; Green is the SSS for G3
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Fig. 5 Evolution of mass positions and control forces over time; Online VI; Safe Curriculum Learning (step
3); SHERPA activated; Gaussian sensor noise, f = 0.0012; G8=8C ∈ [−0.2, 0.2]; ¤G8=8C ∈ [−0.25, 0.25]; Red is the
FSS for G3

the safe curriculum learning implementation was set to equal the flat learning benchmark’s total learning time. Each
curricular step provides 50 seconds (arbitrarily defined) to the agent to learn a stabilising tracking policy.

…

Fig. 6 Evolution of the absolute parametric uncertainty of all matrices forming the uncertain model estimate
used in SHERPA, �̂, �̂ and �̂; Online VI; Safe Curriculum Learning (step 3); SHERPA activated; Gaussian
sensor noise, f = 0.0012.
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Fig. 7 Evolution of the SSS over time along with SHERPA interventions

Furthermore, the system identification module (blue box in Fig. 2) gradually lowers the parametric absolute
uncertainty during the simulation. By assuming that the system to be modelled is linear, the estimated model parameters
are time-invariant. As such, the sliding window principle can be used for system identification. The initial estimate is
the only one that is delayed as it requires sufficient samples to be collected. During this sampling, SHERPA does not
need to be activated since no uncertain model estimate is available for the backup policy projection. The purpose is
to reduce the system identification module’s initial sampling time as much as possible whilst keeping the estimate’s
uncertainty relatively low. The evolution of these absolute parametric uncertainties are shown in Fig. 6. It can be
observed that the estimate becomes available at C = 5.8 seconds. Finally, SHERPA’s interventions are shown in Fig. 7.
Here, the grey area provides a better understanding of this architecture’s major drawback, namely, that the system is
prone to go into the FSS during this time interval.

This concludes the verification of the proposed architecture on a simple system such as a Mass-Spring-Damper
system. The results show that an agent can indeed safely learn a complex task by increasing the task complexity
throughout a curriculum with inter-task staging. Consequently, the paradigm can be applied on more complex systems
such as quadrotors.

B. Quadrotor Primary Flight Control
Having verified the proposed paradigm, it is possible to apply it to more complex systems such as a quadrotor for the

proof-of-concept. More specifically, the goal is to find a stabilising policy that can track references in all four Degrees
Of Freedom (DOF) available in this model. These are constituted of the pitch, roll and yaw attitudes, and the altitude.

A linearised continuous-time quadrotor model was derived based on the state and action vector formulations of
Eq. (12) and is shown in Eq. (13). Due to the paradigm’s limitation to discrete-time dynamics, the state space system
shown in Eq. (13) was discretised using the zero-order hold method. By assuming small angles for q, \ and k, the rates
?, @ and A can be assumed to be the same as ¤q, ¤\ and ¤k. Furthermore, the equilibrium point used for linearisation is
hovering flight. The quadrotor characteristics can be found in Table 4.

G =

[
q \ k ? @ A F I

])
D =

[
5C gG gH gI

]) (12)

� =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0


� =



0 0 0 0
0 0 0 0
0 0 0 0
0 1

�GG
0 0

0 0 1
�HH

0
0 0 0 1

�II

− 1
<

0 0 0
0 0 0 0


(13)
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Table 3 Curriculum setup. Red are the states
and inputs controlled by an external supervisor LQR-
controller. Green are the states and inputs controlled by
the agent. Underlined states track a reference.

Curricular Steps 1 2 3 4 5

Inputs

Thrust force 5C 5C 5C 5C Ω1

Torque around G gG gG gG gG Ω2

Torque around H gH gH gH gH Ω3

Torque around I gI gI gI gI Ω4

States

roll q q q q q

pitch \ \ \ \ \

yaw k k k k k

roll rate ? ? ? ? ?

pitch rate @ @ @ @ @

yaw rate A A A A A

vertical velocity F F F F F

z-position I I I I I

Table 4 Characteristic parameters for the
quadrotor system

Parameter Value Unit

�GG 0.045667 [<4]
�HH 0.045667 [<4]
�II 0.090667 [<4]
ℎ1>3H 0.1 [<]
F1>3H 0.1 [<]
;1>3H 0.1 [<]
;0A< 0.3 [<]
<1>3H 0.2 [:6]
<0A< 0.1 [:6]
<<>C>A 0.2 [:6]
<@D03 1.60 [:6]
U0A<B 45 [346]
1 2.04366e-3 [#/'%"]
3 2.78893e-4 [#</'%"]

In this implementation, a combination of intra-task and inter-task staging strategies was used, where the agent keeps
the system dynamics representation constant throughout the curriculum. However, the representation of the input and
reference dynamics varies. This was chosen based on the task complexity being relatively high in the curricular steps
presented in Table 3. The agent gains control of an additional input at every step. The other inputs are controlled by an
LQR supervisor supervisor. The gains of the supervisor were deduced using an LQR theory with the & and ' matrices
given in Table 7. Along with a new input dimension, comes one or multiple new degrees of freedom to be controlled by
the agent resulting in an additional reference signal for each step. The curricular setup has been summarised in Table 3
to provide a better overview. The order in which the inputs are switched from the supervisor to the agent has no specific
importance other than the hyperparameters shown in Table 5 should be altered. Indeed, the attitude angles that are not
learned have to remain small in order to satisfy the small angle assumption made when linearising the model.

In essence, each input has respective states that it controls. Not only does this provide better tractability during the
learning phases, but it also allows for an easier separation between the LQR supervisor and the agent’s control actions.
Indeed, this approach avoids the contribution of the supervisor actions and controlled states to the cost function (Eq. (4))
during the learning process. Consequently, the agent is able to better understand the influence of its own actions.

The fifth curricular step focuses on mapping the tracking policy found in the first four steps, into a policy that uses
the rotor RPMs as input vector instead of torques and forces along the respective degrees of freedom. In this last step,
no learning occurs; only state propagation checks to ensure the learned policy can track along all degrees of freedom
with minimal error ('"(� < 0.05).

The policy learned by the agent in the first four curricular steps applies to any quadcopter configuration as long as
there is a mapping, b, to a rotor RPM input vector, Ω. Note that the experiment conducted in this research has assumed
a linear relationship between a rotor RPM and the thrust force, 5C ,8 = 1 · Ω8 , and torque, gI,8 = 3 · Ω8 , it generates. This
assumption facilitates the mapping process and proof of concept. Notably, however, effects such as blade flapping and
aerodynamic disturbances are not considered in this experiment. With this assumption, the mapping matrix, b, for an
--configuration quadrotor can be defined as outlined in Eq. (15). This map is derived from a basic understanding of
forces on a quadrotor shown in the form of three free body diagrams in Fig. 8.

cΩ = b
−1 · c 5 ,g (14) b =


1 1 1 1

−1;1,H −1;2,H 1;3,H 1;4,H

1;1,G −1;2,G −1;3,G 1;4,G

3 −3 3 −3


(15)
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Fig. 8 Views of the quadrotor forces and other important dimension.

For a quadrotor, it was found empirically that the amplitude and the frequency of the PE signal both have an essential
impact on the learning behaviour; which was not apparent for the #-MSD system used to verify the architecture.
The agent was more specifically found to experience more difficulties learning in a convergent manner when the PE
signal has a low frequency bandwidth. Therefore, a band-limited excitation signal was used in this experiment. An
arbitrary frequency range was defined to be between 50Hz and 100Hz (without consideration to actuator dynamics). By
increasing the frequency, it was found that the lower derivatives of each DOF (i.e. attitude angles) are more centred
around their respective regulated values, specifically zero in this experiment.

Additionally, the frequency and amplitude of the reference signal play an essential role in the convergence and
stability of the learning process. They fundamentally define the task that the agent has to learn. Moreover, when their
frequency range is similar to the eigenfrequencies of the system, an additional complexity is added to the learning
process as the system starts to resonate. The hyperparameters for both signals throughout the curriculum are summarised
in Table 5. In this table, the amplitude of the attitudes’ reference signals diminish throughout the curriculum. Solely the
dimension on which the agent’s learning is focused receives a reference signal with a larger amplitude‡. Due to the
linearisation of the system, small angle approximation and the assumption that {?, @, A} = { ¤q, ¤\, ¤k}, the angles that are
not learned have to remain small in order for the modelled dynamics to be representative of a quadrotor.

The improvements provided by both a curriculum on the learning stability and a safety filter on the learning process’s
safety are shown by comparing their simulation results to a benchmark flat learning case. The cumulative learning time
within the simulation is limited to 170 seconds. Outlined in Fig. 9 is the evolution of all the attitude state angles and the
altitude position for flat learning. It is apparent that the agent is not able to find a stabilising tracking policy in the given
time frame. Furthermore, the safety-critical roll and pitch attitudes are constantly in the FSS. Consequently, this task
may benefit from a curriculum to more gradually increase the task complexity and use a safety filter to ensure a safe
learning process.
Following the curricular strategy presented in Table 3, the first sub-task was learning to track a reference on the yaw
angle, k, whilst all the other DOF are under the authority of a regulating supervisor. To guide the agent in the learning
process, an additional reference is provided for the yaw rate, A§. The learning behaviour is shown in Fig. 10a. In a
second instance, control of the roll attitude comes under the agent’s authority, and the agent learns a policy that tracks
both roll and yaw angle. This is presented in Fig. 10b. This is then followed by the addition of the pitch angle, which is
shown in Fig. 11a. Finally, the altitude DOF is controlled by the agent in the fourth curricular step giving the agent full
authority on all the system’s degrees of freedom. The final tracking time series is shown in Fig. 11b.

In Figs. 12 and 13, the evolution of the policy through the curriculum can be seen. The rows annotated with a ∗
contain the LQR supervisor gains, whereas the others contain ones that have been learned during the curricular step by
the agent. The policies reflect the curricular setup presented in Table 3, where the states and their respective references
that are learned and tracked during a curricular step are highlighted. This means that they receive a gain that is non-zero
(zero gains are white).
In the experiment proposed by this research only two states define the safety of the system, namely roll and pitch, for

‡Note that the agent has full observation of the system when learning states in each curricular step.
§A similar strategy is used on the other axes: (q, ?), (\ , @), (I, F)
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Fig. 9 Evolution of attitude and altitude over time; Flat Learning; Online VI; No Safety Filter (SHERPA)

which the FSS limits have been set at ±30◦. From figures 10b and 11a, it can be observed that the trajectory in the
respective states adventures into the FSS, which is considered to be equivalent to a crash or resulting in an undesired
situation. The final module required to complete the paradigm proposed in Fig. 2, is the safety filter SHERPA.

The limitations on roll and pitch angles serve as the principal safety constraints on the system, whereas the position of
the quadrotor has been left unbounded. As such, the safety filter is only applied to curricular steps 2 and 3. As seen in
figures 10b and 11a, the system goes into the FSS for both the roll and pitch states when the agent learns to control
these dimensions. As mentioned in Section II.C, a backup policy has to satisfy two conditions. One is the ergodicity
condition where the system has to come back to a previously visited state (or close to the said state). The other is a safe
trajectory to reach this previously visited state. As the model used in this experiment consists of decoupled dynamics,
the ergodicity can be limited to the set of states directly related to the input learned by the agent at a given curricular step.

In the second curricular step, the ergodicity and safe trajectory conditions apply solely to state elements related to
the input torque around the x-axis, gG . More specifically, only the roll angle, q, is checked for inclusion in the SSS. For
the ergodicity condition, both roll angle and roll rate, {q, ¤q}, as well as their respective reference signals, {qA , ¤qA }, are
used. Due to the use of augmented states (Section III.A), the reference plays an important role in state propagation
and, consequently, the system’s safety. The closeness interval is set to ±5◦ and ±7.5◦ for roll angle and roll rate states,
respectively. Furthermore, the reference states have a closeness interval of ±7.5◦. As an initial backup policy, SHERPA
uses the first policy given to the agent after the knowledge transfer between curricular steps.

In the subsequent curricular step, SHERPA ensures the safety of both the roll angle and the pitch angle. The
ergodicity condition is applied to all states related to the input torques in both directions, gG and gH . As such, it drastically
complicates the process of finding a backup policy. Due to the addition of six dimensions, the space in which to look for
these policies becomes relatively large, making the search more computationally expensive ¶.
The safe curriculum learning process is shown in Figs. 14a and 14b for curricular step 2 and 3 respectively. By
comparing the propagation of these states with the ones in Figs. 10b and 11a, it can be seen that safety is indeed

¶For the 40 second simulation time shown in Fig. 14b the run time was 3h+ on a MacBook Pro Intel i7 2.3 GHz (late 2013)
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(a) Attitude evolution during curricular step 1; Agent authority
= {k}; Learning yaw angle, k, tracking.
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(b) Attitude evolution during curricular step 2; Agent authority
= {q, k}; Learning roll angle, q, tracking.

Fig. 10 Evolution of attitude angles over time for curricular steps 1 and 2
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(a) Attitude evolution during curricular step 3; Agent authority
= {q, \, k}; Learning pitch angle, \, tracking.
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(b) Attitude evolution during curricular step 4; Agent authority
= {q, \, k, I}; Learning altitude position, I, tracking.

Fig. 11 Evolution of attitude angles over time for curricular steps 3 and 4

preserved at all times during the learning process of each respective curricular step. It should be noted, however, that
the presence of a safety filter impedes the learning efficiency. This effect can be attributed to the addition of PE before
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Fig. 12 Resultant policy parameters after the first and second curricular step, left and right, respectively.
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Fig. 13 Resultant policy parameters after the third and fourth curricular step, left and right, respectively.
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Fig. 14 Evolution of attitude and altitude over time for Safe Curriculum Learning steps 2 and 3.

the action is passed into the safety filter (as shown in Fig. 2). Without an appropriate PE signal, the agent cannot learn
correctly, and policy updates are more likely to be unstable.
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Fig. 15 Evolution of attitude and altitude states using cΩ (step 5); No learning.

By mapping the policy using the mapping matrix b given in Eq. (15), the tracking task could be defined in terms of
rotor RPMs. Ultimately, the goal is to obtain a policy for optimal tracking control of a given quadcopter configuration.
As such, no further learning is performed during the last curricular step. Instead, the mapped policy is simulated within
the environment and the final tracking performance is presented in Fig. 15.

The amplitudes and frequencies of the reference signal were changed in the last step to confirm that no overfitting
occurs during the curriculum. Furthermore, it allows for showcasing the range in which the obtained policy can be
applied. In Fig. 16a, the rotational speed of each motor blade is outlined. It can be seen that the rotors move in pairs
depending on the reference of each state. As shown in Fig. 16b, the tracking performance is similar to a standard LQT
controller for which the policy has been generated by solving the augmented LQT algebraic Ricatti equation (ARE)
directly [31]:

&1 − % + W)) %) − W2)) %�1 (' + W�)1 %�1)−1�)1 %) = 0 (16)

Note that this direct synthesis requires full knowledge of system dynamics. Even at extreme reference frequencies
and amplitudes, these tracking errors remain low, which is determined based on the action saturation imposed on the
rotor RPMs.

This section has shown the application case for the proposed paradigm in Fig. 2 on a quadrotor. Due to its larger state
and action spaces, this system complicates the agent’s task of learning a stabilising and tracking policy. Therefore, a more
elaborate curricular strategy was devised to provide the agent with a more gradual learning complexity. Furthermore,
modified policy search strategies were put in place within SHERPA to accommodate larger and sparse (safe backup)
policy spaces.

C. Discussion
The safe curriculum learning architecture presented in Fig. 2 has proven to be effective in learning an optimal

tracking control policy on linear systems with parametric unknowns. However, when analysing the results more closely,
it is found that the complexity of the system on which the paradigm is applied has an essential impact on the learning
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Fig. 16 Evolution of rotor RPMs over time (left) and the evolution of these states’ errors with respect to their
reference signal for both the agent and a standard LQT controller.

stability and the learning convergence. When the comparison is made between a more simplistic #-MSD system and a
linearised quadrotor model, it is noticeable that the curricular strategy and the safe learning one are more elaborated on
the more complex quadrotor system. The additional complexity is also reflected in the wall clock times of each learning
process, where the quadrotor simulation requires additional computational power.
Additionally, the complexity of the system on which the paradigm is applied defines the hyperparameter sensitivity
similar to the effect of the PE signal on the quadrotor. In contrast with the #-MSD system, the PE signal had to be
band-limited for the UAV to achieve conceivably positive results. Moreover, a more advanced backup policy search
strategy had to be implemented within SHERPA for the quadrotor to deal with the more sparse safe policy space. In
this strategy, a log is kept of previously used backup policies tested during the backup search at each time step in the
simulation.

An inherent deficiency was discovered during the experiments regarding the paradigm presented in Fig. 2, namely the
position of the PE module block in this figure. An adequate excitation signal is required for the agent to learn stably.
However, the safety filter receives the action combined with the PE signal. Should this combination lead to the FSS,
the safety filter overwrites the action and provides a new one. The latter lacks an excitation signal. The process is
worsened when a backup policy is followed for a relatively large number of time steps, or if multiple backup policies
are followed back-to-back. During these interventions, the agent is deprived of the PE signal essential for its learning
stability. Besides the agent, the system identification module in the experiments shown in this paper relies on the PE
signal for its model estimate. When that signal is removed, the system identification model estimate is more likely to
have increased parametric uncertainty. Higher uncertainty in the model has a consequence in the internal projection
algorithm of SHERPA, which it uses to find backup policies. It becomes harder to find backup policies, thus the safety
filter tends to follow more backup policies in its repertoire. It fits the description of an unstable loop affecting both
the learning stability and the system’s safety, with a snowball effect. It is, therefore, important to accurately tune the
hyperparameters for more complex systems since the paradigm is particularly sensitive to the persistence of excitation
and reference signals for the learning efficiency. Additionally, depending on the dynamic stability of the system, the
severity of SHERPA’s hyperparameters regarding the ergodicity condition has to be adapted to promote the quality of
the backup policies. Indeed, with backup policies of high quality, safety can be ensured using SHERPA [27, 29].

Finally, the design of the curriculum and the respective staging strategy still relies on the operator’s knowledge of
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the system’s approximate dynamics. In order to successfully transfer knowledge between curricular steps, a sensible
mapping is required. However, the agent inherently is not aware of the dynamics when simulated in the environment.

V. Conclusion
The insurgent needs for system controllers that can optimally track a reference signal have become apparent in recent
years. Not only does the range of applications for such controllers expand over time, but the complexity of the systems
in these applications is increasing as well. This paper proposes a safe curriculum learning architecture where the the
fundamental principles of reinforcement learning, curriculum learning, safe learning and system identification are
combined to provide a methodological approach for finding optimal stabilising tracking policies for such applications.
Through two different experiments, the paradigm has been proven effective in stable learning of such policies for systems
with parametric unknowns in their dynamics. Although computationally expensive, the results show it is possible to
learn a complex tracking task safely. The complexity of the system on which the learning problem is applied was found
to have an important impact on the level of strategies to be used and the sensitivity on hyperparameters. Even though
the paradigm proposed in this paper shows great potential for a variety of applications, it has only been demonstrated for
linear systems with decoupled dynamics thus limiting the conclusions of this research to linearised systems. However,
the results in this paper can serve as a foundation for further research in this direction.

A. Recommendations & Future Work
The research presented in this paper is focused on the analysis and experimentation on time-invariant linear systems.

Further research should detail the applicability of the architecture proposed in this paper to non-linear systems and
time-variant linear systems. For such implementations, more advanced reinforcement learning approaches are required
such as an actor-critic architecture [6]. A system identification module could be added to [8], for example. Furthermore,
the system identification module requires adaptation as well to allow accurate model representations of non-linear
systems.

Additionally, another limitation that became apparent in the experiments is the dependence on the persistence of
excitation signals for stable and convergent learning. In the paradigm presented in this paper the placement of a safety
filter between the PE signal and the state propagation in the environment poses a risk to the inclusion of such a signal.
One way this could be solved, would be to define an uncertainty that is representative of the PE signal and include it into
the model estimate uncertainties coming from the system identification module. Adding PE uncertainty would allow
SHERPA to perform its policy projections with the inclusion of PE and return an action with excitation.

Furthermore, the safety filter used in the experiments proposed in this paper, namely SHERPA is relatively
computationally expensive. Consequently, the learning process can not happen in real-time on conventional computers,
and certainly not onboard. However, the Mannucci et al [27] proposes another method, optiSHERPA, which has lower
computational complexities.

Finally, it should be investigated if this paradigm shows equivalent potential when applied on systems with coupled
dynamics. Coupled dynamics require a different approach in curricular and safe learning strategies when a supervisor is
present. This is due to the actions computed through the policy gain being partially defined by the agent and partially by
the supervisor. Consequently, the supervisor has an impact on the cost function in the agent’s learning process.
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Appendix
The table below contains the hyperparameters for the persistence of excitation signal and the reference signal throughout
the curriculum of the quadrotor. Note that the agent does not learn in the 5Cℎ curricular step, which justifies the absence
of excitation signals in this step.

Table 5 Hyperparameters of persistence of excitation signal and reference signal for each curricular step.

Curricular Steps 1 2 3 4 5

PE

5C [N]
Amplitude [N] 10.5 13.0 13.0 21.0 -
Frequency band [Hz] [50, 100] [50, 100] [50, 100] [50, 100] -

gG [Nm]
Amplitude [N] 10.5 5.0 5.0 21.0 -
Frequency band [Hz] [50, 100] [50, 200] [50, 200] [50, 100] -

gH [Nm]
Amplitude [N] 10.5 5.0 5.0 21.0 -
Frequency band [Hz] [50, 100] [50, 100] [50, 100] [50, 100] -

gI [Nm]
Amplitude [N] 90.0 15.0 15.0 21.0 -
Frequency band [Hz] [50, 100] [50, 100] [50, 100] [50, 100] -

Reference

k [rad]
Amplitude [rad] c

2
c
18

c
18

c
18

c
4

Frequency [Hz] 0.5 0.3 0.3 0.3 0.3
Phase [rad] [− c2 ,

c
2 ] [− c2 ,

c
2 ] [− c2 ,

c
2 ] [− c2 ,

c
2 ] [− c2 ,

c
2 ]

q [rad]
Amplitude [rad] - c

14
c
24

c
24

c
24

Frequency [Hz] - 0.8 0.5 0.5 0.5
Phase [rad] - [− c2 ,

c
2 ] [− c2 ,

c
2 ] [− c2 ,

c
2 ] [− c2 ,

c
2 ]

\ [rad]
Amplitude [rad] - - c

14
c
24

c
30

Frequency [Hz] - - 0.8 0.8 0.8
Phase [rad] - - [− c2 ,

c
2 ] [− c2 ,

c
2 ] [− c2 ,

c
2 ]

I [m]
Amplitude [m] - - - 1 2
Frequency [Hz] - - - 0.2 0.1
Phase [rad] - - - [− c2 ,

c
2 ] [− c2 ,

c
2 ]

Additionally, this appendix holds the & and ' matrices used while training the agent throughout the curriculum in
Table 6 and the matrices used to determine the gains for the LQR supervisor and the LQT comparative controller in
Table 7.

Table 6 Q and R diagonal values of agent throughout the curriculum

Step &3806 '3806

1 - - 1e5 - - 1e2 - - - - 1e1 -
2 1e5 - 1e5 1e2 - 0 - - 1e1 - 1e1 -
3 1e5 1e5 1e5 0 1e2 0 - - 1e1 1e1 1e1 -
4 1e5 1e5 1e5 0 0 0 1e7 1e4 1e1 1e1 1e1 1e1
5 - - - - - - - - - - - -

Table 7 Q and R diagonal values of LQR supervisor and Comparative LQT controller

Controller &3806 '3806

LQR Supervisor 1e5 1e5 1e5 3e0 3e0 3e0 1e1 1e3 1e0 1e0 1e0 1e0
LQT 1e5 1e5 1e5 0 0 0 1e7 0 1e1 1e1 1e1 1e1
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