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The evolution of secondary instabilities in a three-dimensional stationary-crossflow-domina-
ted boundary layer is investigated by means of Direct Numerical Simulations (DNS) and linear
spanwise BiGlobal stability analysis. Single-frequency unsteady disturbances and a critical
stationary crossflow mode are considered. Unsteady perturbation content at 1 kHz manifests
in the form of the type-III instability mechanism in the lower portion of the boundary layer
in both the DNS and the stability approach. Considering disturbances at 6 kHz, the results
from the stability analysis reveal the existence of largely amplified type-I and type-II secondary
instability mechanisms. Strong growth displayed by the former is measured in the DNS,
which potentially overshadows manifestations of the type-II mechanism. Laminar-turbulent
transition primarily induced by the growth of type-I disturbances is captured in the 6 kHz case.
Overall, we report good agreement between DNS and stability analysis in terms of perturbation
organization and growth rate for all cases studied.

Nomenclature

50 = fundamental temporal frequency
V0 = fundamental spanwise wavenumber
(·)B = base flow variable
(·)DB = distorted base flow variable
˚(·) = stationary perturbation variable measured from the unperturbed base flow
(·) ′ = unsteady perturbation variable measured from the distorted base flow
: = index of perturbations with temporal frequency : 50
9 = index of perturbations with spanwise wavenumber 9 V0
| · |(:, 9) = amplitude function of a Fourier coefficient (:, 9)
X0 = characteristic length
D∞ = characteristic velocity
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I. Introduction

Advances in laminar-turbulent transition research in three-dimensional boundary layers have been historically
motivated by the need to understand and control the transition process in swept-wing flows. Significant reduction of

aircraft drag and hence fuel consumption has been shown possible by achieving laminar flow on wings, tail, and nacelles
(Henke, 1999, Malik et al., 2015). Despite significant progress over the last decades, maintaining laminar flow on the
wings of subsonic transport aircraft remains a major challenge. Degradation of laminar flow is generally attributed to
the impact of surface irregularities such as insect contamination or steps in the juncture between wing panels. The
inability of classic boundary-layer stability methods to model the effect of such surface irregularities poses a challenge
for systematic transition-prediction studies. This particularly concerns the sensitivity of the unsteady mechanisms
leading to laminar-turbulent transition to distortions of the primary base state due to the presence of surface roughness
(Rius-Vidales and Kotsonis, 2021).

Laminar-turbulent transition in swept-wing boundary layers in smooth configurations is typically initiated by
the primary crossflow instability (Mack, 1984, Saric et al., 2003). The underlying laminar base state –the so-called
unperturbed base flow– is subject to an inflectional instability and supports the exponential growth of small-amplitude
perturbations. The receptivity of the boundary layer to surface imperfections and free-stream disturbances mainly governs
whether the primary instability manifests in the form of either travelling or stationary (zero temporal frequency) wave-like
perturbations (Deyhle and Bippes, 1996, Bippes, 1999). The present work focuses on stationary-crossflow-dominated
environments, which is the prevalent scenario in low-disturbance backgrounds as in free-flight (Saric et al., 2003).
Under these circumstances, stationary (crossflow) vortices develop and modulate the boundary layer. The axes of the
vortices are approximately aligned with the local trajectory of the streamlines in the inviscid region far from the wall.

Laminar breakdown in a stationary-crossflow-dominated boundary layer is typically preceded by a stage of non-linear
growth and saturation of the stationary crossflow perturbation. As such, traditional transition-prediction methods that
rely on linear stability theory (Mack, 1984, Reed et al., 1996, Theofilis, 2003), as for instance the 4# method (Van Ingen,
1956, Smith and Gamberoni, 1956), are unsuitable for predicting the onset of transition. Early experiments showed
that measured perturbation growth rates differ from those predicted by linear stability analysis when sufficiently large
perturbation amplitudes are attained (Müller, 1990, Kachanov and Tararykin, 1990, Bippes, 1991). The Non-linear
Parabolized Stability Equations (NPSE) technique was later proven capable of modeling the stages of strong non-linear
crossflow-perturbation evolution; see Bertolotti (1996), for instance. Stability analyses carried out with NPSE further
confirmed that major discrepancies between experiments and theoretical results were caused by the non-linear saturation
of the crossflow vortices (Haynes and Reed, 2000).

The distorted base flow, i.e., the base state non-linearly deformed by the primary crossflow mechanism, is prone
to secondary instability amplification. Due to the broad range of flow states and perturbation-quantity definitions
in the crossflow problem, the following nomenclature is introduced: letting q be the vector of state variables
q = [v ?]T = [D E F ?]T, the instantaneous flow field is decomposed as

q(G, H, I, C) = qB (G, H) + q̊(G, H, I)︸                    ︷︷                    ︸
qDB

+ q′(G, H, I, C), (1)

where D, E, F denote the chordwise, wall-normal, and spanwise velocity components, respectively, and ? is the static
pressure. The field qB is the unperturbed laminar base flow, which under the infinite-span assumption is conceived as a
spanwise-invariant solution. The field q̊ is the stationary crossflow perturbation and qB + q̊ forms the distorted base
flow, qDB. Lastly, q′ denotes the unsteady perturbations developing with respect to qDB.

In the distorted base flow, the co-rotating crossflow vortices redistribute momentum by displacing low-momentum
fluid upward and high-momentum fluid towards the wall. Strong shear layers develop as a consequence of such
momentum redistribution. The distorted inflectional velocity profiles support the growth of unsteady secondary
instabilities, ultimately responsible for laminar breakdown. Secondary perturbations displaying a high-frequency content
were initially identified in swept-cylinder (Poll, 1985), swept-wing (Deyhle and Bippes, 1996, Kohama et al., 1991), and
swept-Hiemenz (Malik et al., 1994) flow configurations. Considering a swept-wing boundary layer, Malik et al. (1999)
report two families of secondary instability eigenmodes using Secondary Linear Stability Theory (SLST). The type-I
(or I-)mode is produced most strongly by the spanwise shear in the outer part of the upwelling region of the primary
crossflow vortex (or: “on its shoulder”). The type-II (or H-)mode, on the other hand, gains its energy primarily from the
wall-normal shear and is located on top of the crossflow vortex. Theoretical results of Fischer and Dallmann (1991)
identify a low-frequency eigenmode dominant in the near-wall shear layer of the crossflow vortex, which is nowadays
referred to as type-III (Koch et al., 2000). It is commonly interpreted as the primary traveling crossflow mechanism
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distorted by the action of the stationary crossflow mechanism.
Direct Numerical Simulations (DNS) of Högberg and Henningson (1998) of a Falkner-Skan-Cooke boundary layer

reveal type-I and type-III structures; however, manifestations of the type-II eigenmode are not observed. Högberg and
Henningson (1998) postulate that, in a low-disturbance environment, laminar transition is triggered by high-frequency
instabilities, inasmuch as they display larger growth rates than the low-frequency ones. Contrarily, in high-disturbance
conditions, low-frequency instabilities may dominate the transition process since their onset is placed at a more
upstream location than the high-frequency ones (Högberg and Henningson, 1998). In line with findings of Högberg and
Henningson (1998), Wassermann and Kloker (2002) identify in their DNS the high-frequency type-I and low-frequency
type-III instability mechanisms. Type-II perturbations are argued to arise only in less physically relevant cases, as for
instance, when the primary crossflow vortex has a subcritical spanwise wavelength. In such cases, the narrow spacing
between the stationary vortices potentially weakens the type-I amplification, which may facilitate the development of
type-II disturbances (Wassermann and Kloker, 2002). Nonetheless, in the recent years, manifestations of the type-II
mechanism in numerical simulations have been widely reported (Li et al., 2016, 2017). The type-I,-II,-III mechanisms
have been identified experimentally as well; see for instance Serpieri and Kotsonis (2016) for a detailed characterization
of the secondary instabilities using Particle Image Velocimetry (PIV).

Even though a broad body of knowledge on secondary instabilities has been developed during the last two decades,
to establish a criterion for breakdown onset from a single major base-flow property remains a challenge (Wassermann
and Kloker, 2002). More elaborate techniques consider secondary #-factor correlation methods, as suggested by Malik
et al. (1999). Nevertheless, the existence of multiple unstable secondary eigensolutions poses a challenge for systematic
transition-prediction methodologies (Li et al., 2017). Although secondary stability analyses are reasonably efficient
methods for perturbation growth rate computations, the literature reports disagreement between DNS and SLST with
regard to the role played by the type-II mechanism. The SLST generally predicts large growth rates for this instability
mechanism (Malik et al., 1999, Koch et al., 2000), which does not correspond to the observed behaviour in DNS
(Högberg and Henningson, 1998, Wassermann and Kloker, 2002, Bonfigli and Kloker, 2007).

White and Saric (2005) ascribe the aforementioned discrepancies to receptivity mechanisms. Bonfigli and Kloker
(2007), on the other hand, attribute inconsistencies in the literature to inaccuracies of the growth rates from SLST.
Moreover, the results provided by SLST are found to be very sensitive to the representation of the distorted base flow in
the stability problem. Groot et al. (2018) have applied BiGlobal stability analysis to experimentally measured base
flows and deepened into the stability characteristics of the type-I and type-II mechanisms. In our present work, the
novelty with respect to the work of Groot et al. (2018) lies in that the two-dimensional stability problem is solved using
a non-orthogonal coordinate system, similar to the approach presented by Li and Choudhari (2011). Accordingly, the
conditions of periodicity in the spanwise direction and flow quasi-invariance in the direction of the crossflow-vortex
axis can be accounted for simultaneously. The use of a non-orthogonal coordinate system moreover enables solving
an important issue brought up in the literature. As one of the shortcomings of computing the distorted basic state
necessary for the stability approach with DNS, Bonfigli and Kloker (2007) describe (see their § 4.2) that “the basic
assumptions of the [stability analysis] are not sufficient to determine the extraction procedure [of the distorted base flow]
uniquely”. Hence, they defined 3 alternative extraction procedures, which ensured the satisfaction of the continuity
equation for the distorted base flow in 3 different orthogonal coordinate systems, while adhering to the slow-evolution
hypotheses underlying the stability analysis. By the advent of the approach of Li and Choudhari (2011), incorporating
non-orthogonal coordinates, this ambiguity is uniquely resolved: data are extracted in planes in which the flow field
satisfies the continuity equation as formulated in the DNS, while the (non-orthogonal) out-of-plane direction is aligned
with the direction of least variation of the distorted base flow.

The discrepancies reported in the literature with regard to secondary instability behaviour prediction between DNS
and stability analysis have motivated the present work. In this article, we study the type-I and type-III instability
evolution in a stationary-crossflow-dominated boundary layer developing over a flat plate. DNS of the stationary
distorted base flow is performed. Secondary instability mechanisms are then triggered via upstream forcing of selected
(monochromatic) temporal frequencies corresponding to 1 kHz and 6 kHz. In addition, we carry out a linear spanwise
BiGlobal stability analysis on the distorted DNS base flow. A full comparison between disturbance growth-rate evolution
and topology between both methods is provided. The article is structured as follows: Section II introduces the flow
problem and the setup of the DNS. Section III describes the topology of the distorted base flow and the formulation of
the BiGlobal stability problem. Section IV analyzes the unsteady disturbance behaviour and compares the results from
DNS and BiGlobal analysis. Finally, Section V presents the conclusions of this work.
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x⊥
y

−z‖

2π/β0

u∞
w∞

Figure 1 Sketch of the flow problem: flat plate, external inviscid streamline with associated crossflow profile,
flat-plate-aligned coordinate system (G⊥, H, I ‖), and BiGlobal plane.

II. Setup of the DNS
Two methods are considered in this work to compute secondary-crossflow-instability evolution: Direct Numerical

Simulations (DNS) and spanwise BiGlobal stability analysis applied on the distorted base flow provided by DNS. The
present section first introduces the geometry and flow problem and describes the setup of the DNS.

A. Steady DNS
Upon replicating the setup of Rius-Vidales and Kotsonis (2021), the swept-wing flow problem is modeled as flat-plate

flow with an imposed external airfoil-like pressure gradient. Data obtained from independent experiments carried out
at TU Delft on a 45◦ swept wing (Rius-Vidales and Kotsonis, 2021) are employed to model the acceleration of the
freestream in the chordwise direction, G⊥. The stationary distorted base flow qDB is obtained by performing DNS of the
three-dimensional incompressible Navier-Stokes equations. The numerical computations are carried out in a sequential
manner; first, we compute the spanwise-invariant unperturbed base flow, qB. This base-flow solution then serves as initial
condition for the computation of the steady-state qDB = qB + q̊, with q̊ denoting the stationary-crossflow-perturbation
field (Eq. 1).

The computational domain is swept and aligned with the spanwise direction of the wing, I ‖ . The coordinate H
denotes the wall-normal direction. The instantaneous velocity vector v = [D E F]T expresses the velocity components
aligned with the flat-plate-based orthogonal coordinate system. The flow problem is illustrated in Fig. 1. The inflow,
which here corresponds to G⊥ = 0, is virtually placed at 5% of the chord of the wing model used in the experiments.
The effect of the sweep angle is accounted for by decomposing the inflow free-stream velocity into components parallel,
D∞, and perpendicular, F∞, to G⊥. In the present configuration, F∞/D∞ = −1.24. The inflow boundary layer thickness,
X0 = 7.71 × 10−4 m, and the inflow free-stream velocity, D∞ = 15.10 m/s, are the characteristic quantities used to
non-dimensionalize the flow problem.

The DNS are carried out with INCA, a conservative finite-volume-based flow solver (Hickel and Adams, 2008,
Hickel et al., 2014, Casacuberta et al., 2020). The free-stream evolution and the DNS setup considered in this work
are identical to the ones presented in a recent article (Casacuberta et al., 2021). The highly refined computational
grid for the current DNS computations has 6760, 576, and 72 points along the chordwise, wall-normal, and spanwise
directions, respectively, and more than 70 grid points cover the inflow boundary-layer thickness. Considering the
unperturbed base-flow solution, the minimum grid spacing in wall units is ΔG+⊥ = 5.68, ΔH+ = 0.52, ΔI+‖ = 4.73.
A high level of refinement is maintained in the upper portion of the crossflow vortex. In Fig. 3 we show matching
perturbation amplitudes between the results of DNS and an independent non-linear stability analysis performed on the

4

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
4,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

23
30

 



DNS unperturbed base flow using the NPSE method (Westerbeek, 2020).
To trigger stationary crossflow growth, the laminar inflow is perturbed with a stationary crossflowmode pre-calculated

using Linear Stability Theory. While being left free to grow in G⊥, the crossflow disturbance is constrained to be
periodic in I | | by imposing periodic boundary conditions at the transverse boundaries; the spanwise domain length,
_I = 2c/V0 = 7.5 mm, is set equal to the spanwise wavelength of the fundamental crossflow instability. The main
stability features of the stationary-crossflow field are recovered from the DNS by spanwise-Fourier decomposition of the
perturbation-velocity field:

v̊(G⊥, H, I ‖) =
9=#∑
9=−#

v̂ (0, 9) (G⊥, H) ei 9V0I‖ , (2)

where v̂ (0, 9) ∈ C denotes the coefficients of the Fourier expansion, # is the number of modes considered, and i2 = −1.
The nomenclature (0, 9) denotes the 9 th stationary (zero temporal frequency) perturbation Fourier mode. Furthermore,
hereafter we refer to the modulus of the components of v̂ (0, 9) as amplitude functions. The amplitude function associated
to the chordwise-velocity perturbation component, |D̂ |(0, 9) , is used to characterize stationary crossflow evolution. In
particular, |D̂ |(0, 9) measured at the wall-normal location of its peak value, �̂D

(0, 9) (G), is the main metric used to quantify
stationary crossflow growth in G⊥.

B. Unsteady DNS
The secondary perturbation evolution in the DNS is numerically triggered by applying unsteady forcing. A

disturbance strip placed sufficiently upstream locally modulates the wall-normal velocity at the wall (H = 0) as follows:

E(G⊥, 0, I ‖ , C) = �0 5 5 (G⊥) cos(V0I ‖ + l0C), (3)

where l0 = 2c 50 and �0(:, 9) are the fundamental angular frequency and amplitude of the wall disturbances, respectively,
and

5 5 (G⊥) =
(4

(
G⊥ − G⊥,start

) (
G⊥,end − G⊥

)
(G⊥,end − G⊥,start)2

)3

, (4)

is a smooth function which modulates the wall-normal velocity in G⊥. The functional 5 5 has vanishing first and second
derivatives at G⊥,start and G⊥,end, the starting and ending positions of the disturbance strip, respectively. It is noted that
this unsteady forcing method does not add a net mass into the domain. Wassermann and Kloker (2002) consider a
similar approach to numerically investigate crossflow instabilities. In the outflow region, a damping zone is used to
reduce unsteady fluctuations and avoid possible reflections. The damping zone, which starts at G⊥/X0 = 475, relies on a
temporal-filter technique through the application of the Selective Frequency Damping (SFD) method (Akervik et al.,
2006, Casacuberta et al., 2018).

In this work, monochromatic (i.e., single temporal frequency) unsteady forcing is applied. DNS for two different
fundamental frequencies, 50 = 1 kHz and 6 kHz, are performed and analyzed independently. A BiGlobal stability
analysis performed a priori revealed that the aforementioned values are expected to yield manifestations of the type-I,
-II, and -III mechanisms. The wall forcing is placed closely upstream of the neutral point for each considered frequency,
as indicated by the stability analysis. In particular, we choose to place the start of the disturbance strip, G⊥,start, 24X0
upstream of the corresponding neutral point; this length represents approximately two times the local streamwise
wavelength of the primary stationary-crossflow component. Accordingly, G⊥,start/X0 = 201, 251, for 50 = 1 kHz and
6 kHz, respectively and G⊥,end − G⊥,start = 12X0 for all cases. The initial forcing amplitude in the disturbance strips,
�0 (Eq. 3), is chosen such that secondary-perturbation exponential growth is captured for a sufficiently large G⊥-range
downstream of the forcing location. Based on tests performed a priori, we choose �0/D∞ = 10−5 for 50 = 1 kHz and
�0/D∞ = 10−3 for 50 = 6 kHz.

The secondary instability behaviour is analyzed from the unsteady DNS data once the disturbance strip is activated
and transient flow structures are washed out. Snapshot data are collected at a rate of approximately 20 samples per
period of the fundamental frequency. The perturbation-velocity field v′ (Eq. 1) is Fourier decomposed in the spanwise
direction and in time and expressed as a sum of modes, i.e.,

v′(G⊥, H, I ‖ , C) =
"C∑

:=−"C

"I∑
9=−"I

ṽ (:, 9) (G⊥, H) ei( 9V0I‖−:l0C) , (5)
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G⊥/
X 0

D/D∞
H/X0

D e

Figure 2 Instantaneous&-criterion isosurface colored by wall distance and H-I | | , G⊥-H planes of instantaneous
chordwise velocity. The DNS data are duplicated 4 times in I | | in a periodic manner for illustration purposes.

where ṽ (:, 9) ∈ C expresses the Fourier coefficient, and "C , "I indicate the number of modes. We choose "I = 5. The
modulus of the components of ṽ (:, 9) read |D̃ |(:, 9) , |Ẽ |(:, 9) , |F̃ |(:, 9) and are hereafter referred to as amplitude functions.
The subscript (:, 9) denotes perturbation quantities of temporal frequency :l0 and spanwise wavenumber 9 V0. The
maximum along H of a corresponding amplitude function, hereafter denoted by �@

(:, 9) , where @ = D, E, F, characterizes
the perturbation amplitude. A corresponding perturbation growth rate is evaluated as

U@
8, (:, 9) = −

1
�@
(:, 9)

3�@
(:, 9)
3G⊥

. (6)

III. Formulation of the BiGlobal stability problem and distorted base-flow topology
In this section, an overview of the distorted-base-flow behaviour is presented and we introduce the formulation and

the setup of the stability approach.

A. Topology of the distorted base flow
The distorted base flow features prominent co-rotating vortices whose axes of rotation are practically aligned with

the local direction of the inviscid streamlines. Figure 2 portrays these stationary crossflow vortices in the present DNS,
characterized as isosurfaces of Q-criterion (Hunt et al., 1988). The vortices grow in G⊥ and induce a wavy pattern, i.e.,
they modulate the velocity field in the chordwise and the spanwise directions and introduce strong shear layers.

The amplification of the crossflow vortices and the associated stationary-crossflow-perturbation is illustrated in Fig. 3
portraying the chordwise evolution of the perturbation amplitude, �̂D

(0, 9) , 9 = 0-5. The fundamental crossflow mode
(i.e., q̊ (0,1) ) imposed at the inflow initially undergoes a stage of exponential amplification. The harmonic perturbation
components arise gradually as they are triggered by non-linear perturbation mechanisms. To further assess the nature
of the stationary perturbation mechanisms, we solve the linear and non-linear Parabolized Stability Equations (PSE)
approaches on the unperturbed DNS base flow. The solution to linear PSE matches the amplitude evolution of the
fundamental mode obtained from DNS up to approximately G⊥/X0 = 180. At this chordwise location, non-linear
perturbation mechanisms start to significantly influence the evolution of �̂D

(0,1) in the DNS. The latter is further confirmed
by the agreement between the results of DNS and non-linear PSE (NPSE) further downstream (Fig. 3). After the stages
of linear and non-linear growth, the perturbation system reaches saturation. The fundamental crossflow mode attains a
saturation amplitude corresponding to 33% of D4, the local free-stream velocity. The amplitude curves of the high-order
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(a)

0 50 100 150 200 250 300 350 400 450 50010−4

10−3

10−2

10−1

100

G⊥/X0

�̂
D (0
,9
)/D

∞

Figure 3 Chordwise evolution of the stationary crossflow perturbation from DNS (lines), linear PSE (white
symbols), and non-linear PSE (blue symbols). Dotted line indicates �̂D

(0,0) , solid lines express �̂D
(0, 9) , 9 = 1 - 5

(thick to thin).

harmonics reach a plateau as well, whereas the mean-flow distortion, �D
(0,0) , maintains a positive growth rate near the

outflow.
The distorted base flow is the reference primary state used in the stability problem to model the unsteady perturbation

behaviour. There are two key aspects of the present distorted base flow that allow simplifying the three-dimensional
linear perturbation problem. The first aspect is that the distorted base-flow field is periodic in the direction parallel to
the leading edge, enabling the use of periodic boundary conditions. The second aspect is that the flow develops slowly
in the direction of the axis of the crossflow vortex; while the vortex imposes a large distortion on the steady flow field,
the vortex itself develops slowly downstream.

In simultaneously demanding periodicity in the spanwise direction and slow evolution along the vortical axis, it is
necessary to formulate the stability problem in a system of non-orthogonal coordinates. The essentials of the formulation
are presented in § VI.A. Hereafter, the G coordinate denotes the non-orthogonal “out-of-plane direction” whereas, as
stated above, G⊥ indicates the leading-edge-orthogonal direction (Fig. 1). The variable \ is used to indicate the angle
between G and G⊥, such that \ = 0◦ corresponds to considering the chordwise direction identically. Due to considering a
negative sweep angle, \ < 0◦ corresponds to G pointing towards the outboard direction, i.e., in the negative I ‖ direction.
The first step to formulate the stability problem is to extract the orientation of the vortical axis from the distorted
base-flow variables. To be more precise, the direction is sought in which the base-flow quantities vary the least, so that
dropping their derivative in that direction from the stability equations imposes the smallest modeling error.

Figure 4 depicts different representations of the derivative in question for different choices of \. These angles are
determined at a given G⊥-location by: 1) computing the G-derivative along a given angle for the entire I ‖-H plane, 2)
evaluating the maximum and Root-Mean-Square (RMS) of the derivative in the I ‖-H plane, and 3) varying the given
angle until the minimum is found. After the crossflow vortex attains a significant magnitude, the minimum angles for
the different velocity components and measures collapse onto an angle that is about 2 to 4 degrees less (in magnitude)
than that corresponding to the inviscid streamline. That is, the direction corresponding to the least variation in the base
flow is removed from the leading-edge-orthogonal direction by a slightly smaller extent than the inviscid streamline.
This is expected as a consequence of the action of the crossflow velocity component on the crossflow vortices.

The difference in magnitude in the out-of-plane derivative is illustrated in Fig. 5. If the out-of-plane direction is
not chosen appropriately, the magnitude of the derivatives becomes comparable to the strong wall-normal shear as the
crossflow vortex saturates.

B. Setup of the BiGlobal stability problem
As elaborated before, the stability problem is formulated in a non-orthogonal coordinate system to minimize the

model error. In particular, the unsteady linear perturbation is cast into the following form:

q′(G, H, I, C) = q̌(I, H) ei( ǓG−l0C) + c.c., (7)
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Figure 4 Angles indicating the direction along which the out-of-plane derivative is minimal per G⊥-location:
mDDB/mG (black symbols), mEDB/mG (red symbols), mFDB/mG (blue symbols), sum of components (green symbols),
maximum over I ‖H-plane (diamonds), rms over I ‖H-plane (circles), reference inviscid streamline (solid black).

where Ǔ is the complex wavenumber in the non-orthogonal G-direction and q̌ = [Ď Ě F̌ ?̌]T represents the corresponding
two-dimensional eigenvector. The G-coordinate locally points along the vortical axis of the crossflow vortex. Note that
although I is parallel to I | | , I differs from I | | by an G⊥-dependent shift; see § VI.A. The BiGlobal stability equations are
obtained by substituting ansatz (7) into the linearized Navier-Stokes equations and neglecting the G-derivatives of the
base-flow quantities. The resulting system of equations is given in Appendix A of Groot and Eppink (2021).

Due to the assumption that the eigenfunctions are locally independent of G, the domain can be shifted such that
the I-coordinate covers the same values in the I | |-coordinate at a given G-station. Upon imposing periodic conditions
for all variables in I, these conditions are imposed at the same location as where they are imposed in the DNS. The
no-slip and the no-penetration conditions are applied for the perturbation velocity components and the H-momentum
equation is used as a compatibility condition for the pressure at H = 0. At the top boundary, whose location matches
the top boundary of the DNS domain, homogeneous Dirichlet conditions are used for all perturbation variables. In
what follows, the spatial stability framework will be adopted, which implies that a real frequency is imposed and the
BiGlobal stability equations are solved for Ǔ, which will be complex, in general. In fact, if Ǔ8 < 0, the perturbation
grows exponentially in the G-direction.

The stability problem is discretized with a sixth-order finite-difference approach in the H- and I ‖-directions in
combination with the BiQuadratic mapping described in Groot et al. (2018). This approach allows prescribing a high
resolution in the wall-normal direction across the very broad range considered in the streamwise direction. In the
spanwise direction, the collocation nodes are mapped onto the physical domain by starting from a cosine distribution and
using (I ‖,81, I ‖,82, I ‖,max) = (1/3, 2/3, 1)_I . While the cosine distribution provides a clustering toward the boundaries
in order to prevent the Runge phenomenon, this setup of the BiQuadratic mapping ensures a practically-uniform
node-distribution in the middle-third of the domain. In the wall-normal direction, again a cosine distribution is mapped
with the parameters: (H81, H82, Hmax) = (2.5, 5, 25.8)X0. Using 100 and 200 nodes in the spanwise and wall-normal
directions, respectively, and ΔG⊥/X0 ≈ 1 results in 10−4 relative differences in the #-factors for all instability mechanisms
at the end of the integration in the chordwise direction.

The stability results were obtained by first using the Arnoldi algorithm with an appropriate eigenvalue guess and
thereafter continuing the solutions in the G-l0 parameter space by the use of 1) the Arnoldi, 2) a Newton-Raphson, or 3)
a Rayleigh-quotient algorithm; see Pinna (2012, Appendix C) for the conceptual elaboration of the latter two approaches.
Unless an eigensolution “is lost”, all 3 algorithms yield matching solutions up to the set iterative tolerance for the
relative error in the eigenvalue of 10−13. The different algorithms were implemented in preparation of the deployment
of more advanced stability approaches. It is generally observed that a solution can be lost when using the Arnoldi
method as the continuation approach if the change in the eigenvalue is large and when other eigenvalues are close to
the solution of interest. The Newton-Raphson and Rayleigh-quotient approaches are much more robust in this regard.
The Newton-Raphson algorithm usually requires less iterations to converge, while the Rayleigh-quotient approach is
observed to be more robust when deployed in regions where the change in the eigenvalue is relatively large.

In order to provide an in-depth comparison with the DNS perturbation data, the BiGlobal eigenfunctions are Fourier
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Figure 5 Measures of the out-of-plane derivative in the direction of least variation (a) and in the chordwise
direction (b): mDDB/mG (thin black), mEDB/mG (dash-dotted red), mFDB/mG (dashed blue), sum of components
(thick green), maximum over I ‖-H plane (diamonds), rms over I ‖-H plane (squares). The maximum magnitude
of the wall-normal derivative (thick solid gray and circles) is given for reference.

transformed in the spanwise direction according to the following decomposition:

q̌(I, H) =
"I∑

9=−"I

ˇ̌q (:=1, 9) (H) ei( 9V0I) , (8)

as evaluated at a particular G⊥-station. The numerical evaluation of Transform (8) is performed identically as the
I-transform represented by Decomposition (5). Note that q̌ is necessarily defined in the non-orthogonal I-coordinate; the
data is shifted to the I | |-coordinate in order to compare against the DNS data. The subscript of ˇ̌q is defined analogously
to the subscript of ṽ in Decomposition (5). Note that : is set equal to 1, inasmuch as the BiGlobal approach represents
perturbations as a monochromatic signal following on ansatz (7).
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IV. Unsteady perturbation evolution
The evolution of the unsteady disturbance field for each fundamental frequency, 50 = 1 kHz and 6 kHz, is analysed

in this section. Emphasis is placed on the comparison between the results from the DNS and the BiGlobal computations.

A. Overview of stability results
To provide an overview of the amplification results, they are presented in the form of #-factors defined as follows:

# = −
∫ G

Gneut

Ǔ8 (Ḡ) dḠ = −
∫ G⊥

G⊥,neut

Ǔ8 (Ḡ⊥) sec \ (Ḡ⊥) dḠ⊥ (9)

where Ǔ8 represents the imaginary part of Ǔ as introduced in Eq. 7, the overbarred Ḡ and Ḡ⊥ represent (dummy)
integration variable equivalents of G and G⊥, and the subscript neut indicates the (most upstream) neutral point, where
Ǔ8 = 0. Only the eigenvalue is accounted for in the amplification factor, due to the local nature of the stability problem
in the streamwise direction.

The overview is presented in Fig. 6, showing the streamwise evolution of the #-factors per frequency in panel (a)
and the maximum #-factor in the G⊥-direction versus the frequency in panel (b). Before interpreting Fig. 6, two aspects
should be highlighted. First, all but the type-III #-factor curves for 50 ∈ (900; 1100) Hz are truncated downstream of
the station G⊥/X0 = 380. Upon tracing the solution at 50 = 1 kHz downstream of this point, the type-III eigenfunctions
(dominant in the inner side of the upwelling region of the vortex) develop an (at first spatially disconnected) structure
reminiscent of the type-II mechanism (i.e., that is located on top of the crossflow vortex) and closely resembles the
structure shown in Fig. 8(0) of Groot et al. (2018) and Fig. 35 of Bonfigli and Kloker (2007). This could hence be
referred to as a type-II/III hybrid structure. In the literature (Choudhari et al., 2013a, Li et al., 2014), a similar hybrid of
the type-I and -II mechanisms has been previously described. Although this behavior is recovered with all 3 solvers (viz.
the Arnoldi, Newton-Raphson, and Rayleigh-quotient approaches) at 50 = 1 kHz, the emergence of the type-II structure
was found to display a sensitive dependence on 50, which resulted in an unusual distribution of the #-factor curves. This
behavior is hence deemed to require a careful, further investigation, i.e. to eliminate unexpected uncertainty that could
potentially be attributed to the spatial resolution, the frequency spacing, and/or the used solver. Due to the truncation of
the type-III results in G⊥, some lower-frequency type-III disturbances might attain larger amplification factors than the
data in this paper presently report. Second, also the type-I mechanism displays a sensitive behavior for low frequencies:
50 < 2.8 kHz. In this case, the eigenvalues Ǔ undergo a steep dive when following the solution upstream toward the
(most upstream) neutral point. The solutions for 50 = 1.2, 1.4, and 1.6 kHz were carefully traced upstream, so that
#-factor curves could be drawn at these frequencies. As a consequence, no calculated data (i.e. no markers) are present
in-between 50 = 1.6 and 2.8 kHz in Fig. 6(b). Nevertheless, the straight-line connection of the neighboring datapoints is
deemed to provide a reasonable approximation of the expected results. Despite these two gaps in the parameter space,
solid conclusions can be drawn from Fig. 6 in its present state.

Mostly importantly, it is observed that the type-I disturbance is amplified most (# = 16.79; at 50 = 5.8 kHz; and
G⊥/X0 = 500), type-II second-most (8.98; 8.0 kHz; 500), and type-III the least (4.05; 0.8 kHz; 380). In order to attempt
forcing the different modes in the DNS in an isolated manner, the frequencies: 6 and 1 kHz were selected for the type-I
and -III mechanisms, respectively. The most upstream neutral points corresponding to these mechanisms at these
frequencies are located at G⊥/X0 = 279 and 225. For type-I, the selected frequency is close to the most amplified one.
Although the type-III mechanism is most amplified at much lower frequencies, the type-I mechanism still competes
in terms of the maximum achieved #-factors: reaching values of approximately 5 for 50 ≈ 1 kHz. In invoking the
spatial evolution as depicted in Fig. 6(a), however, the type-III mechanism is found to reach maximum amplification at a
significantly farther upstream station (at G⊥/X0 = 386 for 50 = 1 kHz) than type-I. In particular, note that the dash-dotted
lines indicate the type-I #-factors for 50 ≈ 1 kHz. This should hence provide an appropriate condition to excite the
type-III mechanism.

In what follows, we will compare the DNS versus BiGlobal stability results. In this comparison, there are several
potential sources for discrepancies:

• the present stability equations are discretized differently than the Navier-Stokes equations in the DNS.
• the BiGlobal stability equations are obtained as a simplification of the three-dimensional linearized Navier-Stokes
equations. In particular, the out-of-plane variation of the base flow is neglected.

• the stability approach models linear perturbations, while the DNS permits non-linear disturbance evolution. This
is expected to affect results at large G⊥, when large amplitudes are attained.
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Figure 6 #-factor (a) curves versus G⊥ and (b) maximum in G⊥ versus 50 (type-I: squares, II: diamonds,
III: circles); note the horizontal correspondence between the subplots. Targeted modes and corresponding
frequencies are dashed; the type-I #-factor curves for 50 ∈ [1.2; 1.6] kHz are dash-dotted; symbols in (b)
indicate calculated datapoints.

• the wall-forcing approach in the DNS does not force the secondary instability mechanisms purely, or in an isolated
sense, the induced perturbations are subject to a receptivity process into the shear layers supporting the instability
mechanisms.

• although this is not expected to yield a noticeable difference, the stability results rely on a continuous Fourier
transform in time, while a discrete transform is used for the DNS data.

B. Unsteady perturbation evolution for 50 = 1 kHz
Considering monochromatic unsteady disturbances with 50 = 1 kHz, as anticipated, the type-III mechanismmanifests

as the main instability in both the DNS and the BiGlobal stability results. Figure 7 illustrates the organization of the
unsteady perturbation field at different G⊥-locations by portraying

∑"I

9=−"I
D′(1, 9) . That is, the superposition of spanwise

Fourier modes with associated fundamental temporal frequency 50 = 1 kHz. The location and topology of this total
unsteady disturbance field in the near-wall shear layer is in qualitative agreement with the results of previous numerical
and theoretical work which identified this instability mechanism as of type-III (Högberg and Henningson, 1998, Bonfigli
and Kloker, 2007, Janke and Balakumar, 2000). The classical literature on crossflow instabilities attributes the nature of
this secondary eigenmode to the interaction between primary travelling and primary stationary crossflow disturbances;
see the analysis provided by Fischer and Dallmann (1991).

Initially at G⊥/X0 = 316 (Fig. 7(a)), the secondary eigenmode topology from DNS and stability analysis are in
good agreement. Whereas the main area of influence of the secondary eigenmode is common in both methods, minor
discrepancies arise in the near-wall region. When moving in G⊥, see Fig. 7(b,c), the unsteady disturbance shape expands
towards the shoulder of the stationary crossflow vortex; as it was elaborated upon before (§ III), the development of
the stationary crossflow vortex in G⊥ carries growth of the shear layers embedding it. This upward expansion of the
unsteady disturbance system is observed in both the DNS and the BiGlobal results. At the same time, both methods
capture an increase of the perturbation strength in the lower portion of the distorted base flow for increasing G⊥. When
moving farther in G⊥, major discrepancies between DNS and stability analysis arise in the upper portion of the crossflow
vortex. The BiGlobal eigenmode shape rapidly expands in G⊥ along the top of the crossflow vortex, a feature which does
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Figure 7 Organization of the unsteady perturbation field
∑"I

9=−"I
D′(1, 9) from DNS (color map) and BiGlobal

(solid green) at G⊥/X0 = 316 (a), 341 (b), 365 (c), 390 (d). Isolines of distorted base flow (solid black).

not manifest in the DNS results. Figure 7(d) depicts an G⊥-station where the aforementioned effect starts to appear
visually evident. The disagreement in the near-wall region becomes more pronounced as well.

To gain further insight into the secondary perturbation behaviour, we next present and discuss the topology of the
individual spanwise Fourier modes composing the disturbance shape previously illustrated in Fig. 7. In particular,
following Definition 5, Fig. 8 portrays the unsteady disturbance shape of D′(1, 9) , | 9 | ≤ 3, at G⊥/X0 = 365. It shall be noted
that in a three-dimensional boundary layer, disturbances with l = :l0 ≠ 0, V = 9 V0 ≠ 0 represented as a Fourier series
do not hold symmetry in I. That is, whereas in a two-dimensional boundary layer ṽ (:,− 9) =

[
D̃ (:, 9) Ẽ (:, 9) − F̃ (:, 9)

]T
(Herbert, 1993), this does not hold in the present swept-wing boundary layer. The latter is highlighted by the different
perturbation topology associated to D′(1,± 9) in Fig. 8. Fourier modes with V < 0 represent perturbation structures
propagating with the crossflow vortex in the outboard leading-edge-parallel direction, I ‖ < 0, whereas those with
V > 0 propagate against the crossflow vortex in the inboard leading-edge-parallel direction, I ‖ > 0. Strong topological
differences are observed as well between modes D′(1, 9) , 9 = −1,−2,−3. Overall, we find a reasonably good agreement
between the results from DNS and stability analysis in terms of secondary eigenmode shape of individual Fourier modes
(Fig. 8).

An agreement between methods is obtained as well when comparing the perturbation amplification factors in G⊥;
see Fig. 9. In the DNS, after a stage of exponential growth, the perturbation components |D̃ |(1,−1) and |D̃ |(1,−2) become
gradually stabilised in G⊥ for G⊥/X0 > 410, as highlighted by their positive chordwise growth rate in this region. On the
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Figure 8 Unsteady perturbation organization fromDNS (colormap) andBiGlobal (solid green) at G⊥/X0 = 365:
D′(1,−1) (a), D

′
(1,−2) (b), D

′
(1,−3) (c), D

′
(1,1) (d), D

′
(1,2) (e), D

′
(1,3) (f ). Isolines of distorted base flow (solid black).
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Figure 9 Chordwise evolution of the amplitude |D̃ |max
(1, 9) from DNS (lines) and BiGlobal (symbols): 9 = −1 (solid

black and circles), −2 (dash-dotted cyan and squares), −3 (dotted blue and triangles) (a), 9 = 1 (solid black and
circles), 2 (dash-dotted orange and squares), 3 (dotted red and triangles) (b).
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D e

Figure 10 Instantaneous&-criterion isosurface colored by wall distance and H-I ‖ , G⊥-H planes of instantaneous
chordwise velocity. The DNS data are duplicated 4 times in I | | in a periodic manner for illustration purposes.

other hand, the component |D̃ |(1,−3) displays a rather constant amplification in this regime. The amplification curves
corresponding to the stability approach display significant stabilization in the G⊥-range where the DNS curves exhibit
mild stabilization or reach a plateau; the large differences between both methods in this regime highlights that the
perturbation growth in the DNS is affected by non-linear interactions.

At the location of the wall forcing, only disturbances with V = V0 are explicitly modulated; the associated harmonic
spanwise components (i.e., |D̃ |(1,−2) , |D̃ |(1,−3) , etc.) are initially induced by the latter and thus first arise with a smaller
amplitude than the fundamental component. This is illustrated in Fig. 9. However, sufficiently downstream of the
forcing location, the secondary component |D̃ |(1,−2) displays a growth rate larger than the fundamental component and
reaches the outflow zone with a similar amplitude.

The effect of the unsteady disturbance growth on the instantaneous three-dimensional flow behaviour is illustrated
in Fig. 10. In a fashion similar to the stationary developed flow field discussed in previous sections (Fig. 2), the
main feature is the stationary crossflow vortices identified as isosurfaces of &-criterion. When moving in G⊥, a weak
modulation of the near-wall &-criterion isosurfaces in the G⊥- and I ‖-directions is captured. This is naturally linked to
the aforementioned unsteady perturbation eigenmode which lies close to the wall. The&-criterion isosurface modulation
is visually more evident at G⊥/X0 ≈ 400, the chordwise location at which the perturbation amplitude attains its maximum
value; see Fig. 9. Unsurprisingly, as the instability mechanism reduces its amplitude close to the outflow (Fig. 9), the
modulation of the near-wall isosurface vanishes; see Fig. 10.

C. Unsteady perturbation evolution for 50 = 6 kHz
Considering monochromatic disturbances with 50 = 6 kHz, the BiGlobal stability approach indicates that the type-I

instability eigenmode is the most amplified. Therefore, this mechanism is expected to dominate the perturbation
dynamics in the DNS.

Figure 11 portrays the total perturbation shape in the DNS at different G⊥-stations. We associate the perturbation
contours localized in the outer side of the upwelling region of the stationary crossflow vortex to the type-I mechanism.
This is substantiated in that the location of maximum perturbation strength coincides with the location of the maximum
spanwise shear in the distorted base flow, mDDB/mI > 0. Furthermore, the topology of these perturbation contours
qualitatively resembles that reported in previous numerical and theoretical investigations, which linked this unsteady
mechanism to the type-I kind (Malik et al., 1999, Högberg and Henningson, 1998, Wassermann and Kloker, 2002,
Bonfigli and Kloker, 2007, Janke and Balakumar, 2000). Overall, Fig. 11 and Fig. 12 show a good match of the DNS
perturbation contours with the BiGlobal eigenfunctions considering the total perturbation shape and the individual
Fourier components.

In noting that the amplification factors corresponding to the type-II mechanism are only about Δ# = −0.5 smaller
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Figure 11 Organization of the unsteady perturbation field
∑"I

9=−"I
D′(1, 9) from DNS (color map) and BiGlobal

(solid green) at G⊥/X0 = 316 (a), 341 (b), 365 (c), 390 (d). Isolines of distorted base flow (solid black).

than those for type-I, the emergence of the perturbations that are highly reminiscent of the type-I mechanism in the DNS
appears to overshadow possible type-II disturbances (§ IV.A). The type-II instability mechanism lies on the inclined
shear layer on top of the crossflow vortex. Nonetheless, as it will be discussed below, there is evidence supporting the
existence of the type-II instability mechanism in the present DNS. Wassermann and Kloker (2002) report that type-II
disturbances are not observed in the physically more relevant DNS cases, but they develop in base flows distorted by
a sub-critical stationary crossflow mode. This is ascribed by Wassermann and Kloker (2002) to the narrow spacing
between the stationary vortices in the latter case, potentially weakening the growth of the type-I mechanism and thus
facilitating the development of the type-II mechanism. However, the type-II kind has been reported in other numerical
experiments considering critical stationary crossflow conditions; see Choudhari et al. (2013b) and Li et al. (2017), for
instance.

Refocusing the attention to the most amplified mechanism, the type-I kind, the corresponding instability growth is
quantitatively characterized in Fig. 13. Upon comparing the DNS versus the stability data, a good match is achieved
while permitting an underestimation of the growth rate by the BiGlobal stability approach for G/X0 ≤ 330. The spanwise
harmonics have very similar growth rates.

The amplification in G⊥ of the initially small-amplitude perturbations leads to laminar breakdown near the end of
the computational domain, as it appears evident in Fig. 14 depicting instantaneous &-criterion isosurfaces. Therefore,
the current results are representative of laminar-turbulent transition triggered by monochromatic unsteady forcing and
primarily induced by the growth of the type-I instability mechanism. Next, we elucidate on the role of the secondary
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Figure 12 Unsteady perturbation organization from DNS (color map) and BiGlobal (solid green) at G⊥/X0 =
365: D′(1,−1) (a), D

′
(1,−2) (b), D

′
(1,−3) (c), D

′
(1,1) (d), D

′
(1,2) (e), D

′
(1,3) (f ). Isolines of distorted base flow (solid black).
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Figure 13 Chordwise evolution of the amplitude |D̃ |max
(1, 9) from DNS (lines) and BiGlobal (symbols): 9 = −1

(solid black and circles), −2 (dash-dotted cyan and squares), −3 (dotted blue and triangles) (a), 9 = 1 (solid black
and circles), 2 (dash-dotted orange and squares), 3 (dotted red and triangles) (b).

16

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
4,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

23
30

 



G⊥/
X 0

D/D∞
H/X0

D e

Figure 14 Instantaneous&-criterion isosurfaces colored bywall distance and H-I ‖ , G⊥-H planes of instantaneous
chordwise velocity. The DNS data are duplicated 4 times in I | | in a periodic manner for illustration purposes.

D e

G⊥/
X 0

D e

G⊥/
X 0

(a) (b)

Figure 15 Zoom of instantaneous &-criterion isosurfaces colored by wall distance and G⊥-H plane of instanta-
neous chordwise velocity at G⊥/X0 ≈ 370 (a), 410 (b). The DNS data are duplicated 4 times in I | | in a periodic
manner for illustration purposes.

instability growth in the ultimate breakdown process. The type-I-dominated case as recently reported by Li et al. (2016)
and Li et al. (2017) is similar to the presently considered case.

A detailed representation of the breakdown mechanisms is shown in Fig. 15, zooming near the end of the domain in
Fig. 14. Gradually when moving in G⊥, the &-criterion isosurfaces display modulation of the region containing the
lateral inclined shear layer. This phenomenon precedes the formation of large-scale ridge-like structures. The axis of
these new structures is elevated with respect to the wall (i.e., with respect to the G⊥-I ‖ plane) and is inclined with respect
to the axis of the stationary crossflow vortices projected in the G⊥-I ‖ plane. A significantly different orientation between
the axis of the ridge-like structures and that of the crossflow vortices is widely reported in the literature (Wassermann
and Kloker, 2002, Serpieri and Kotsonis, 2016, Bonfigli and Kloker, 2007, Janke and Balakumar, 2000). As noted by
Serpieri and Kotsonis (2016), the characteristic orientation developed by the new prominent type-I-related structures is
a consequence of the fact that they span along a large portion of the boundary layer in H; hence, their lower and upper
parts are advected at different velocities.

Sufficiently upstream, the crossflow vortices coexist with the ridge-like structures while the former maintain their
topological features rather invariantly. Moving farther in G⊥, downstream of G⊥ ≈ 370, the upper part of the stationary
crossflow vortex becomes modulated as well, which is potentially a consequence of type-II amplification. This would
be substantiated in that the new structures arising on the crest of the crossflow vortices, which develop a pointed arch
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shape, qualitatively resemble the upper large-scale structures reported by Li et al. (2016, 2017), who associate these
structures to the growth of the type-II instability. Eventually when moving in G⊥, the lateral ridge-like structures become
connected with the structures arising on the crest of the crossflow vortices. This could possibly point towards non-linear
interaction between type-I and type-II perturbations when sufficiently large amplitudes are attained. However, whereas
the interaction between the upper part of the ridge-like structures and the legs of the pointed arch-shape structures
appears evident in our results, Li et al. (2017) argue that both aforementioned structures develop in distinct locations
and thus do not display strong interaction.

At G⊥/X0 = 414, two distinct families of hairpin vortices are visually captured. They all initially move along the
trajectory of the distorted crossflow vortices, but reside at different wall-normal locations. On the one hand, a first group
of hairpin vortices develops close to the wall, around the lower part of the ridge-like structures. Their point of inception
is G⊥/X0 ≈ 400. On the other hand, at G⊥/X0 ≈ 412 a second family of hairpin vortices is induced farther from the
wall, around the legs of the pointed arch-shaped structures that form on top of the crossflow vortices. In the presently
studied case, transition is ultimately triggered by the non-linear spreading near the wall, which appears to be linked to
the action of the type-I mechanism and the associated near-wall hairpin vortices. Contrarily, the large-scale pointed
arch-shaped structures and the second generation of hairpin vortices are maintained far from the wall. This suggest that,
despite attaining significantly large amplitudes, they play a secondary role in the ultimate laminar-turbulent transition
mechanism. This is in line with observations of Li et al. (2016, 2017).
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V. Conclusions
Direct Numerical Simulations (DNS) and linear spanwise BiGlobal stability analysis are carried out to investigate

the evolution of secondary instabilities in a three-dimensional swept-wing boundary layer that is preconditioned by
imposing the most amplified stationary-crossflow perturbation. The analysis is carried out for single-frequency unsteady
disturbances with 50 = 1 kHz and 50 = 6 kHz; the two cases are treated and analyzed independently. In this article,
we identify and describe the behaviour of two main secondary instability mechanisms that develop on the primary
crossflow-distorted state. The type-III eigenmode is the dominant instability in the lower frequency case ( 50 = 1 kHz).
Considering 50 = 6 kHz, the type-I (or I-)eigenmode and the type-II (or H-)eigenmode are both found to be highly
unstable from the results of the stability analysis. When forcing this frequency in the DNS, the type-I mechanism is
found to dominate the perturbation dynamics. Laminar-turbulent transition is captured in the 50 = 6 kHz case; thus, the
present results are representative of a stationary-crossflow breakdown scenario where the type-I instability leads the
process. Good agreement between DNS and stability analysis in terms of perturbation organization (i.e., shape) around
the crossflow vortices and amplification factors is obtained for all cases studied.

The stationary distorted base flow, i.e., the superposition of the unperturbed laminar base flow and the stationary
crossflow instability, used as primary state for the secondary instability analysis, is characterized by co-rotating
(crossflow) vortices which significantly deform the boundary layer. In the DNS, unsteady perturbation growth is
triggered via wall forcing upstream of the neutral point, imposing a time-periodic modulation of the wall-normal-velocity.
The unsteady perturbation behaviour is recovered from the DNS by Fourier-decomposing the instantaneous flow field in
the leading-edge-parallel (or spanwise) direction and in time. The extracted spatio-temporal Fourier modes are used to
compare the perturbation evolution between DNS and the BiGlobal stability approach.

In previous investigations, major discrepancies between DNS and stability methods were ascribed to the sensitivity
of the latter to the representation of the distorted base flow in the stability problem (Bonfigli and Kloker, 2007). In the
present work, the problem formulation considers a non-orthogonal coordinate system. Accordingly, it is made possible
to simultaneously account for periodicity conditions in the leading-edge-parallel direction, I ‖ , and the slow variation of
the base flow along the trajectory of the crossflow vortices. This trajectory is found to be close to the inviscid-streamline
direction for a large spatial extent. The satisfaction of the slow-variation condition reduces the underlying modeling
error of the two-dimensional stability approach, in demand for the condition of flow invariance in one spatial direction.
This solves the base-flow-extraction ambiguities pointed out by (Bonfigli and Kloker, 2007, §4.2).

Considering unsteady disturbance evolution for 50 = 1 kHz, the total perturbation shape (i.e., the superposition
of spanwise Fourier modes associated to the fundamental temporal frequency) of the associated type-III eigenmode
is initially localized in the near-wall shear layer. As the stationary crossflow vortex develops and grows in the
leading-edge-orthogonal direction, G⊥, the secondary eigenmode shape gradually expands towards the inner side
of the upwelling region of the crossflow vortex. For a large range in G⊥ downstream of the neutral point location,
good agreement in terms of perturbation organization is reported between DNS and the BiGlobal stability approach.
Disagreement between methods gradually arises when moving sufficiently downstream; the BiGlobal eigenmode
topology expands towards the upper part of the crossflow vortex, which is a feature that is not captured in the DNS.

A matching perturbation shape between methods is obtained as well when comparing the topology of individual
Fourier modes associated to a particular combination of temporal, 5 , and spanwise, V, frequencies. It is noted that
topological differences exist when comparing the different Fourier modes with V < 0, i.e., perturbation structures
propagating in the outboard leading-edge-parallel direction, I ‖ < 0. This contrasts with the rather similar shape
displayed by perturbation structures with V > 0, i.e., perturbations propagating in the inboard leading-edge-parallel
direction, I ‖ > 0. The amplitude evolution of the spanwise Fourier modes attributed to the type-III eigenmode displays
an excellent match between methods for a significant downstream region. The maximum amplification factor of the
total disturbance is attained upstream of the end of the computation domain. Close to the outflow, unsteady disturbances
display mild and strong stabilization in the DNS and stability approach, respectively; the large differences between
methods in this regime highlights that the DNS perturbation behaviour is non-linearly dominated.

As mentioned, the perturbation dynamics are dominated by the type-I instability when forcing the flow field at
50 = 6 kHz. Although the stability approach points out that type-II disturbances are highly unstable as well, they are
likely overshadowed by those attributed to type-I. This has consequently limited a thorough comparison of type-II
growth-rate evolution between DNS and the BiGlobal stability approach. The most amplified perturbations are found to
be dominant in the shoulder of the crossflow vortex. In the literature, this type of disturbances are often attributed to
the type-I secondary instability. Upon comparing the total perturbation shape as computed with DNS and the stability
approach, an excellent match is achieved. The same applies to the shape of the spanwise Fourier modes associated to the
type-I eigenmode. The amplitude evolution of these Fourier modes, however, is found to be slightly underestimated
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initially by the BiGlobal stability approach.
Breakdown of the stationary crossflow vortices induced by the growth of secondary instabilities is captured within

the DNS domain only for the 50 = 6 kHz case. The breakdown scenario is dominated by type-I perturbations. The
stages of the breakdown process are detailed as follows: the growth of the initially small-amplitude type-I disturbances
modulates the shear layer at the lateral part of the crossflow vortex. This modulation precedes the formation of large-scale
ridge-like structures which span over a large portion of the boundary layer in the wall-normal direction. A new family
of hairpin vortices moving along the trajectory of the distorted crossflow vortices is induced in the lower part of the
ridge-like structures. The hairpin structures reside close to the wall and appear to initiate the non-linear spreading in the
near-wall portion of the boundary layer ultimately leading the transition process. On the other hand, the growth of
structures that could potentially be related to the type-II disturbances on the crest of the crossflow vortex induces a
second family of large-scale hairpin vortices which are maintained sufficiently far from the wall and thus appear to play
a less critical role in triggering laminar-turbulent transition.
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VI. Appendix

A. Non-orthogonal coordinate system
The perturbation problem is periodic in the direction parallel to the leading edge, I | | , while the distortion of the

crossflow vortices causes the variation of the base flow to be least in the direction of the crossflow vortices’ axes. The
latter direction differs from the leading-edge-orthogonal direction, G⊥, by an amount approximately equal to the sweep
angle. This implies that the stability problem ought to be formulated in a non-orthogonal coordinate system in order to
minimize the model error.

Using a non-orthogonal coordinate system is uncommon, hence we briefly elaborate on the formulation of the
governing equations in this appendix. See Fig. 16 and Eqs. (11) for the relation between the various coordinates that are
used. In what follows, the variation of the angle \ with G⊥ will be assumed to be negligible; Fig. 4 supports that d\/dG⊥
is small for the streamwise stations considered for the stability analysis, i.e., G⊥/X0 > 170. The angle \ is drawn as
positive in Fig. 16. Note that, due to the use of a negative sweep angle in the present study, \ will be negative as well.
To re-express the equations, the first step is to realize that the same function is expressed in different ways:

5⊥ (G⊥, I | |) = 5 (G, I). (10)

𝑥⊥

𝑧||

𝜃

𝑧

𝑥

𝑥 = 𝑐st
𝑥⊥ = 𝑐st

1

tan 𝜃

sec 𝜃𝜃

G
(a)
= G⊥/cos \ = G⊥ sec \

I
(b)
= I | | − G⊥ tan \

G⊥
(c)
= G cos \

I | |
(d)
= I + G sin \




(11)

Figure 16 Coordinate systems and transformations. .

However, the expression for the function changes upon changing the coordinate system. Hence 5⊥ (G, I) ≠ 5 (G, I) and
5 (G, I | |) ≠ 5 (G, I), for example; but 5 (G, I) = 5 (G⊥ sec \, I | | − G⊥ tan \). The original equations are given in terms of
the orthogonal G⊥- and I | |-coordinates. Therefore we want to rewrite the derivatives with respect to those coordinates,
which is done as follows:

m 5⊥
mG⊥

����
I| |
=

m 5

mG⊥

����
I| |
=
m 5

mG

����
I

mG

mG⊥

����
I| |
+ m 5
mI

����
G

mI

mG⊥

����
I| |
=
m 5

mG

����
I

sec \ − m 5

mI

����
G

tan \; (12a)

m 5⊥
mI | |

����
G⊥
=
m 5

mI | |

����
G⊥
=
m 5

mG

����
I

mG

mI | |

����
G⊥
+ m 5
mI

����
G

mI

mI | |

����
G⊥
= 0 + m 5

mI

����
G

, (12b)

where Eq. (10) is used in the equation on the far left and Eqs. 11 to evaluate the partial derivatives in letting
5 = 5 (G(G⊥), I(G⊥, I | |)). The higher-order and inverse relations are obtained similarly, see Groot and Eppink (2021) for
further details and the resulting system of equations.
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