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Discrete-time Design and Stability Analysis for Nonlinear
Incremental Fault-Tolerant Flight Control

Jing Chang∗ , Roeland De Breuker† and Xuerui Wang‡

Shool of Aerospace Science and Technology, Xidian University, Xi’an, 710072, China
Delft University of Technology, Delft, Zuid-Holland, 2629HS, The Netherlands

Incremental control, including incremental nonlinear dynamic inversion (INDI) and in-
cremental backstepping (IBS), is a sensor-based control framework that enhances the control
robustness by exploiting sensor measurements. Although its effectiveness has been demon-
strated on various aerospace systems, the explicit and quantifiable expression for the ultimate
bound of the tracking error, as a function of the sampling frequency and perturbation bound,
has not been presented. This issue is addressed by the discrete-time domain stability analysis
of the incremental control in this paper, which allows convenient yet realistic performance
assessment and parameter tuning before performing real-world flight tests. Another challenge
faced by the incremental control is that its stability criterion can be violated in severe aircraft
fault scenarios, such as the control reversal. Therefore, this paper proposes a discrete-time
control-direction-based incremental sliding mode control, denoted as D-INDI-SMC, which has
broader applicability than the state-of-the-art incremental control methods. The robustness
of D-INDI-SMC against control reversal, sensing errors, model uncertainties, actuator faults,
and structural damage has been theoretically proved and numerically demonstrated.

Nomenclature

<2 = total mass, kg
�G , �H , �I = specific force projected to the body frame, m/s2

D, E, F = airspeed projected to the body frame, m/s
U, V = angle of attack, sideslip angle, rad
d0 = the air density, kg/m3

( = wing surface area, m/s2

2̄, 1 = mean aerodynamic chord and wing span, m
+ = airspeed, m/s
"0 = Mach number
�G = force coefficient in the x direction
�H = force coefficient in the y direction
�GG , �HH , �II , �GI = second moments of inertia, kg·m 2

@̄ = dynamic pressure, Pa
q, \, k = Euler angles, rad
?, @, A = roll, pitch, and yaw rates, rad/s
X0, X4, XA = deflections of the aileron, elevator, and rudder, rad
d(^) = the spectral radius of a matrix ^ ∈ R=×=
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I. Introduction

The aerospace industry has attracted much attention from different scientific and engineering communities such as
control engineering, mechanical engineering, and computer science for resolving numerous challenges in guidance,

navigation, and control (GNC) systems. Modern aircraft can be affected by multiple uncertainties (parametric and
nonparametric perturbations), external disturbances (turbulence, wind gust), and new fault modes [1]. Highly nonlinear
characteristics, structural damage, actuator/sensor fault, and complex coupling effects, combined with unknown multiple
uncertainties cause a considerable challenge in designing a reliable control system for modern aerospace systems.

The existing fault tolerant flight control (FTFC) methods can be classified into four groups: robust control approaches
against pre-specified faults (robust H∞ control), selection of a new pre-computed control law (multiple-model
approaches), synthesizing a new control strategy online (pseudo-inverse method, model predictive control, adaptive
control, sliding mode control), and using dynamic control allocation. The development and current status of FTFC and
its application in aerospace systems have been reviewed in [2, 3]. Many advanced FTFC techniques need a complicated
online model identification strategy to robustly resist the sudden properties changes of the aircraft. Furthermore,
there are several challenges in both theoretical and practical implementations: 1) the real-time implementation of
a fault-tolerant control system; 2) the safety, reliability, and reconfigurability analysis and assessment; 3) switching
mechanisms within the reconfiguration architecture. The strong motivation for the innovative technology development
of any fault-tolerant control methods is the transfer of knowledge in the aerospace arena which can generate economic
added value and benefits to society. However, only a few of the modern control methods have been applied to the
real-world aerospace industry. Most of them do not provide clear and formalized parameter tuning guidelines and lack
feasibility analysis and real-world requirement specifications.

A sensor-based control framework named incremental control, which includes incremental nonlinear dynamic
inversion (INDI) and incremental backstepping (IBS) has been developed for fault-tolerant control problems [4–6].
This sensor-based control framework can provide high-performance nonlinear control without requiring a detailed
model of the controlled vehicle, which is promising for the highly uncertain aerospace systems. Recent developments
in incremental control have highlighted the need for closed-loop analysis to identify and understand the effects of
perturbations in closed-loop characteristics. Using transfer functions, the effects of the model uncertainties on the
single-input single-output (SISO) aircraft attitude dynamics using both classical and incremental backstepping controllers
are assessed in [7, 8]. Lyapunov-based stability analyses for multi-input multi-output (MIMO) nonlinear systems
using incremental control in the presence of model uncertainties, sudden actuator faults, and structural damage are
presented in [9]. Thanks to the inherent robustness of INDI, it can passively resist faults and uncertainties that satisfy
the conditions given in [9, 10]. To further enhance the applicability of INDI, it has been hybridized with sliding modes
control (SMC) for matched disturbances and faults [10, 11]. The effectiveness and easy implementation of INDI-SMC
have been demonstrated by real-world quadrotor flight tests [11].

Although extensive research has been carried out on incremental control, there still exist many open research
questions. For example, what are the impacts of sensing error on the closed-loop characteristics? How to deal with
control reversal? To address these questions, this paper focuses on the design and stability analysis of incremental
fault-tolerant flight control in the discrete-time domain considering sensing errors, control reversal, model uncertainties,
actuator faults, and structural damage. The impacts of various sources of uncertainty on the ultimate bound of the
tracking errors are explicitly quantified. To deal with control reversal, a discrete-time control direction-based incremental
sliding mode control, denoted as D-INDI-SMC, is proposed. Its stability and robustness are proved theoretically and are
verified by numerical simulations.

The rest of this paper is structured as follows. The discrete-time stability analysis of INDI is discussed in Sec. II.
Section III deals with D-INDI-SMC design for MIMO system. A model of the rigid-body aircraft is given in Sec. IV.
Finally, the numerical simulation setup is explained, followed by the results and discussions in Sec. V.

II. Discrete-time Stability Analysis for Nonlinear Incremental Control

A. Preliminary
Consider an MIMO nonlinear control-affine system described in continuous time-domain by

¤x = f (x) + M (x)u, y = h(x) (1)

where x ∈ R= is the state of the system, u ∈ R< is the system input, y ∈ R< is the system output, f : R= → R=,
M : R= → R=×< and h : R= → R< are continuous functions. Denote the elements of h as ℎ8 , 8 = 1, . . . , <, and the
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9-th column vector of the matrix function M as g 9 , 9 = 1, . . . , <. The Lie derivatives of ℎ8 with respect to f and g 9 is
defined as [10]

Ld8
5
ℎ8 =

m (L (d8−1)
5

ℎ8)
mx

f , L6 9
L (d8−1)
5

ℎ8 =
m (L (d8−1)

5
ℎ8)

mx
g 9 (2)

where d8 represents the relative degree for the 8-th control channel. Assume d1 + d2 + · · · + d< = =. Using the Lie
derivatives, the input-output mapping of the system is given by

y (1) = "(x) +B(x)u (3)

where B(x) ∈ R<×<, "(x) ∈ R<×1, 1 = [d1, d2, . . . , d<]T and

"(x) =



Ld1
5
ℎ1

Ld2
5
ℎ2
...

Ld<
5
ℎ<


, B(x) =


L61L

(d1−1)
5

ℎ1 L62L
(d1−1)
5

ℎ1 . . . L6<L
(d1−1)
5

ℎ1
...

...
. . .

...

L61L
(d<−1)
5

ℎ< L62L
(d<−1)
5

ℎ< . . . L6<L
(d<−1)
5

ℎ<

 (4)

Define external state as /T = [/T
1 , /

T
2 , . . . , /

T
<], /8 = [ℎ8 ,L 5 ℎ8 , . . . ,L

(d8−1)
5

ℎ8]T, 8 = 1, . . . , <. The state vector
for internal dynamics of the system is indicated as (. Apply the change of coordinates z ↦→ ) (x), then a new state
representation zT = [(T, /T] is created. The nonlinear system in Eq. (1) can be transformed into a canonical form as

¤( = fin ((, /)
¤/ = G2/ + H2 ["(x) +B(x)u]
y = I2/

(5)

Taking the first-order Taylor series expansion of Eq. (3) at C − ℎ with x0 = x(C − ℎ), u0 = u(C − ℎ), where ℎ is one
sampling interval, we obtain the incremental dynamics

y (1) = y (1)
���
0
+ m ["(x) +B(x)u]

mx

���
0
Δx +B(x)

���
0
Δu + X1 (x, u, ℎ)

, y (1)0 + A0 (x)4x +B0 (x)4u + X1 (x, u, ℎ)
(6)

where X1 is the expansion remainder, whose Lagrange form is

X1 (x, u, ℎ) =
1
2
m2 ["(x) +B(x)u]

m2x

���
<
Δx2 + m

2 ["(x) +B(x)u]
mxmu

���
<
ΔxΔu (7)

where (·) |< means evaluating (·) at (x<, u<) where x< ∈ [x(C − ℎ), x(C)] and u< ∈ [u(C − ℎ), u(C)]. 4x and 4u
represent the state and control increments in one sampling interval ℎ.

The control object is to make the output y track a reference signal yA = [HA ,1, HA ,2, . . . , HA ,<]T. Denote the reference
state vector as r = [r1, r2, . . . , r<]T with r8 = [HA ,8 , H (1)A ,8 , . . . , H

(d8−1)
A ,8

], 8 = 1, . . . , <. Define the tracking error vector
as e = / − r. Substituting Eq. (6) into Eq. (5), the error dynamics are given by

¤e = G2e + H2
(
y (1)0 +B0 (x)Δu + A0 (x)Δx + X1 (x, u, ℎ) − y (1)A

)
(8)

where y (1)A = [Hd1
A ,1, H

d2
A ,2, . . . , H

d<
A ,<]T.

The incremental control law for stabilizing the error dynamics is then designed as

Δuindi = B̂
−1
0 (x)

(
v2 − ŷ (1)0

)
, v2 = −Qe + y (1)A , u = u0 + Δuindi (9)

where Q ∈ R<×= is designed such that G2 − H2Q is Hurwitz; B̂0 (G) is an estimation of B0 (G); ŷ (1)0 is the measured or
estimated signal of y (1)0 . Substituting Eq. (9) into Eq. (8), we have

¤e = (G2 − H2Q)e + H2
[
(B0 (x)B̂

−1
0 (x) − O)

(
v2 − ŷ (1)0

)
+ ỹ (1)0 + %(z, ℎ)

]
︸                                                              ︷︷                                                              ︸

9indi

, (G2 − H2Q)e + H29indi

(10)
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with
ỹ (1)0 = y (1)0 − ŷ (1)0 , %(z, ℎ) = [A0 (x)Δx + X1 (x, u, ℎ)]

���
z=) (x0) ,u=u0+Δuindi

(11)

Assumption 1 [10] The measurement or estimation error of y (1)0 is bounded; i.e., ‖ ỹ (1)0 ‖ ≤ X̄H .

Assumption 2 [9] The term %(z, ℎ) in Eq. (10), which contains the closed-loop values of the expansion remainder X1
and A0 (x)Δx, is bounded; i.e., ‖%(z, ℎ)‖ ≤ X̄I .

Remark 1 Assumption 1 is commonly used in observer-based controllers. The bounded estimation error is the basic
requirement for the design of an estimator. Assumption 2 is commonly made in many references [6, 10] for incremental
controller design since the linearization error is generally bounded. Moreover, based on Eq. (11), increasing the
sampling frequency can reduce the value of ‖%(z, ℎ)‖. Therefore, Assumptions 1 and 2 are reasonable.

Equation (10) gives the closed-loop system dynamics under the nominal INDI control. It can also be observed from
Eq. (10) that the perturbation terms 9indi determines the stability and convergent performance. The stability of system in
Eq. (5) under INDI control has been discussed in [9]. The following lemma has been proved.

Lemma 1 [9] If ‖9indi‖ ≤ XY is satisfied for all z ∈ R=, and ¤( = fin ((, /) is input-to-state stable, then the state z of
Eq. (5) is globally ultimately bounded by a class K function of XY .

If 9indi is bounded, then e is globally uniformly ultimately bounded. In the literature, the state variation-related terms
and Taylor expansion reminders are directly omitted in the some of the INDI derivations [6, 7, 12, 13]. However, the
statement for supporting the term omission (the 4x related term is smaller than the 4u related term when the sampling
frequency is high) is not mathematically rigorous. A continuous-time Lyapunov-based stability analysis without using
the term omission has been presented in [9]. However, the sensing error ỹ (1)0 is not considered in [9]. Furthermore, the
assumption of sufficiently high sampling frequency is used in [9] without presenting an explicit criterion for how high
the sampling frequency should be. These two issues are considered in a discrete-time stability analysis for the INDI
control in Sec. II.B.

B. Stability and Robustness Analysis
The stability and robustness of the INDI control in the presence of model uncertainties and sensing errors will

be analyzed in this subsection. Analogous to the derivation in [10], using the fact that y (1) = v2 + 9indi, the residual
cancellation error of INDI can be rewritten as

9indi =
(
O −B0 (x)B̂

−1
0 (x)

)
9indi,0 + (B0 (x)B̂

−1
0 (x) − O)Δv2 +B0 (x)B̂

−1
0 (x) ỹ

(1)
0 + %(z, ℎ)

= �0 (x)9indi,0 −�0 (x)Δv2 + (O −�0 (x)) ỹ (1)0 + %(z, ℎ)
(12)

with �0 (x) = � − B0 (x)B̂
−1
0 (x). Using �(:),Δv2 (:), ỹ (1)0 (:), %(:) to represent the value of �0 (x), Δv2 , ỹ (1)0 ,

%(z, ℎ) at C = :ℎ respectively, then the residual error at the (: + 1)-th time step is written in a recursive way as

9indi (: + 1) = �(:)9indi (:) −�(:)Δv2 (:) + (O −�(:)) ỹ (1)0 (:) + %(:) (13)

Note that v2 is designed to be continuous in time, thus lim
ℎ→0
‖Δv2 (:)‖ = 0. Therefore, under sufficiently high

sampling frequency, Δv2 (:) is bounded as ‖Δv2 (:)‖ ≤ Δ̄E2 . If �(:) satisfies ‖�(:)‖ ≤ 1̄ < 1, then the residual error
of the controller given by Eq. (12) is further derived as

‖9indi (: + 1)‖ ≤ 1̄: ‖9indi (0)‖ + Δ̄v2

1̄ − 1̄:+1

1 − 1̄
+ X̄I

1 − 1̄:

1 − 1̄
+ X̄H
(1̄ − 1̄: ) (1 + 1̄)

1 − 1̄
(14)

which follows

lim
:→∞
‖9indi‖ ≤

Δ̄v2 1̄

1 − 1̄
+ X̄I

1 − 1̄
+
X̄H 1̄(1 + 1̄)

1 − 1̄
(15)

which means 9indi is ultimately bounded. Using Euler’s forward approximation, the discrete error dynamics of (9) are
written as

e(: + 1) = (O + ℎ(G2 − H2Q))e(:) + ℎH29indi (:) (16)
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Additionally, since (G2 − H2Q) is Hurwtiz, then ‖O + ℎ(G2 − H2Q)‖ ≤ _̄ < 1 . Application of this property and the
Eq. (14) to Eq. (16) yields the bound

‖e(: + 1)‖ ≤ _̄: ‖e(0)‖ + ℎ(1 − _̄
: )

1 − _̄

(
1̄:−1‖9indi (0)‖ +

(1 − 1̄:−1) (Δ̄v2 1̄ + X̄I) + X̄H (1̄ − 1̄:−1) (1 + 1̄)
1 − 1̄

)
(17)

After taking into account _̄ < 1, 1̄ < 1, the following can be easily obtained

lim
:→∞
‖e(: + 1)‖ ≤

ℎΔ̄v2 1̄ + ℎX̄I + ℎX̄H 1̄(1 + 1̄)
(1 − 1̄) (1 − _̄)

(18)

Therefore, the system under INDI control (Eq. (9)) is globally uniformly ultimately bounded.

Remark 2 In essential, Eq. (18) presents the expression for the ultimate bound of the tracking error, which is a function
of the sampling interval and the model uncertain metrics. In the literature, the term y (1)0 is often directly assumed to be
known [6, 9, 13]. Although in observer-based control methods, the estimate error term ỹ (1)0 is often dropped out for the
convenience of control design [7, 9], it should be kept in the closed-loop system equations for rigorously analyzing
stability and robustness [14]. By contrast, the impacts of ỹ (1)0 on the closed-loop dynamics have been considered in the
preceding analysis, and will be further assessed in Section III .

III. Discrete-time Incremental Sliding Mode Control
The presented INDI control has shown promising inherent robustness to the regular perturbations without using any

robust or adaptive control technique [7, 10]. Based on the preceding analysis, the stability of INDI control is constrained
by ‖�0 (x)‖ < 1. However, in reality, this constrain can be violated in severe faulty circumstances. For example, the
elements of the control effectiveness matrix have the possibility to switch their signs [15]. Regarding the aircraft attitude
dynamics, the control effectiveness matrix B(x) is normally diagonally dominant. If the diagonal entries of B(x) and
B̂(x) have opposite signs, the condition ‖�0 (x)‖ < 1 would be violated. As a consequence, the stability of the INDI
control cannot be theoretically guaranteed in this scenario. To expand the applicability of INDI, a discrete-time control
direction-based incremental sliding mode control, denoted as D-INDI-SMC, will be proposed in this section.

The uncertainties in B(x) caused by actuator faults and damage are mainly resulted in degradation on the diagonal
entry. Consider the model of flight dynamics in [10], the incremental input-output mapping of this kind of system can
be rewritten in the following form

y (1) = y (1)0 + B̄0 (x)�Δu + A0 (x)4x + X1 (x, u, ℎ) (19)

where B̄0 (x) ∈ R<×< is the known nominal control matrix; � ∈ R<×< is a diagonal and unknown time-varying control
degradation matrix and � = diag{F1, F2, . . . , F<}. There is a common precondition for the control effectiveness
uncertainties in aircraft fault tolerant flight control. It is widely assumed that the control effectiveness degradation
satisfies w < |F< | < 1 [15–17]. Here, we consider that the control effectiveness could also be bigger than the nominal
value in practice. Thus, we assume that the uncertainties in the control matrix satisfy w < |F< | < 2 for a border
practical scenario.

Using Eq. (19), the error dynamics in (8) becomes

¤e = G2e + H2
(
y (1)0 + B̄0 (x)�Δu + A0 (x)Δx + X1 (x, u, ℎ) − y (1)A

)
(20)

and can be discretized using Euler’s forward approximation as

e(: + 1) = [O + ℎG2] e(:) + ℎH2
(
y (1)0 (:) + B̄0 (:)�(:)Δu(:) + A0 (:)Δx(:) + X1 (:) − y (1)A (:)

)
(21)

Assumption 3 The signs of the diagonal elements of the matrix � are known.

Lemma 2 [18] If the matrices ^1 ∈ R=×= and ^2 ∈ R=×= are similar, then they have the same eigenvalues and ranks.

5

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
4,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

20
34

 



The control structure of control direction-based discrete-time incremental sliding mode control is proposed as

Δuindi-s (:) = sgn(�(:))B̄−1
0 (:)

(
v2 (:) + vB (:) − ŷ (1)0 (:)

)
, (22)

where sgn(�(:)) = diag{sign(F1), sign(F2), . . . , sign(F<)}, v2 (:) = −Qe(:) + y (1)A (:) is the INDI virtual control
for stabilizing the unperturbed system, which is identical to the v2 in Eq. (9). The term vB is designed for perturbation
compensations.

Design the discrete sliding variable 2(e) : R= → R< as

2(:) = Ye(:) − Ye(0) + K� (:), K� (:) = K� (: − 1) + Q4e(: − 1) (23)

where Q4 = −ℎY(G2 − H2Q) = diag{[ 8,4, 0, · · · , 0]}, Y = diag{Y8}, Y8 = [ 8,1,  8,d8−1, 1] . Consider the motions
on the sliding surface, i.e., 2(: + 1) = 2(:) = 0, then using Eqs. (21) and (23), the following equations are derived:

2(: + 1) = Y [O + ℎG2] e(:) − Ye(0) + K� (: + 1)

+ ℎYH2
(
y (1)0 (:) + B̄0 (:)�(:)Δu(:) + A0 (:)Δx(:) + X1 (:) − y (1)A (:)

)
= 0

2(:) = Ye(:) − Ye(0) + K� (:) = 0, K� (: + 1) = K� (:) + Q4e(:)

(24)

Using Eq. (24), the equivalent control is calculated by:

Δueq (:) = �−1 (:)B̄−1
0 (:) (y

(1)
A (:) − Qe(:) − y (1)0 (:) − %B (:)) (25)

where %B (:) = [A0 (x)Δx + X1 (x, u, ℎ)]
���
z=) (x0 (:)) ,u=u0 (:)+Δuindi-s (:)

.
Substituting Eq. (25) into Eq. (21), the ideal sliding mode dynamic equation results in:

e(: + 1) = [O + ℎ(G2 − H2Q)] e(:) (26)

Equation (26) indicates that on the sliding surface, the desired error dynamics are achieved, which ensure e converges
to zero and / → r. To compensate for uncertainties and disturbances, the sliding mode virtual control vB is designed as

vB (:) = −QBsgn(2(:))$ = −[ B,1 |f1 (:) |W1sign(f1 (:)), . . . ,  B,< |f< (:) |W<sign(f< (:))]T (27)

where  B,8 > 0, W8 ∈ (0, 1).

Theorem 1 If Assumptions 1-3 are satisfied, fin ((, /) is continuously differentiable and globally Lipschitz in ((, /) ,
and the origin of ¤( = fin ((, 0) is globally exponentially stable, then using the proposed control law in Eq. (22), the
tracking error e in Eq. (20) converges to an arbitrary small bound, while the internal state ( in Eq. (5) is globally
ultimately bounded.

Proof 1 : Substituting Eq. (22) and Eq. (21) into Eq. (23) yields

2(: + 1) =Ye(: + 1) − Ye(0) + K� (:) + Q4e(:)
=Y [O + ℎG2] e(:) − Ye(0) + K� (:) + Q4e(:)

+ ℎYH2
(
y (1)0 (:) + B̄0 (:)�(:)sgn(�(:))B̄

−1
0 (:) (v2 (:) − ŷ (1)0 (:) + vB (:)) + %B (:) − y (1)A (:)

)
=2(:) − ℎYH2QBsgn(2(:))$

+ ℎYH2
©«
− (O − B̄0 (:) |�(:) |B̄

−1
0 (:))︸                             ︷︷                             ︸

�s (k)

(v2 (:) + vB (:) − y (1)0 (:)) + B̄0 (:) |�(:) |B̄
−1
0 (:) ỹ

(1)
0 (:) + %B (:)︸                                           ︷︷                                           ︸

�̃B (:)

ª®®®®¬
=2(:) + ℎYH2

(
−QBsgn(2(:))$ −�B (:) (v2 (:) + vB (:) − y (1)0 (:)) − �̃B (:)

)
(28)

where |�| = diag{|F1 |, |F2 |, . . . , |F< |}.

6

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
4,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

20
34

 



According to Corollary 2, we conclude that the eigenvalues of �B (:) are eig{O − |�|}. With Assumption 1 and 2, it
follows

‖�̃B (:)‖ ≤ (d(�) + Y)X̄H + X̄I , 0 < Y � 1 (29)

The following equation is established using the controller in Eq. (22)

y (1) (:) = v2 (:) + vB (:) + �̃B (:) −�B (:) (v2 (:) + vB (:) − y (1)0 (:))︸                                                 ︷︷                                                 ︸
9indiB (:)

(30)

Therefore, analogous to Eq. (12), yielding

9indiB (:) = �B (:)9indiB (: − 1) −�B (:) (Δv2 (:) + ΔvB (:)) + �̃B (:) (31)

According to [19], since both v2 (C) and vB (C) are designed to be continuous in time, the incremental terms
Δv2 (:),ΔvB (:) are in the order of magnitude of $ (ℎ2). Using the assumption F̄ < |F8 | < 2, 8 = 1, 2, . . . , < in the
system model Eq. (19), it obtains d(O− |�|) < 1. This yields d(�B (:)) < 1 and 9indiB (:) is bounded, i.e., ‖9indiB ‖ ≤ Y★.

The difference equation of 2(:) is

Δ2(:) = 2(: + 1) − 2(:) = ℎYH2
(
9indiB (:) − QBsgn(2(:))W

)
(32)

Then, every element in Δ2(:) is calculated by

Δf8 (:) = ℎYindiB ,8 (:) − ℎ B,8 |f8 (:) |Wsign(f8 (:)) (33)

• When the sliding variable f8 (:) > 0, this yields

Δf8 (:) = −ℎ B,8 |f8 (:) |W8 + ℎYindiB ,8 (:) (34)

It is observed that∀f8 (:) ≥
(
Y★

 B,8

) 1
W8 ,Δf8 (:) < 0, f8 (:) decreases, until it enters the range 0 < f8 (:) ≤

(
Y★

 B,8

) 1
W8 .

• When the sliding variable f8 (:) < 0, Eq. (32) becomes

Δf8 (:) = ℎ B,8 |f8 (:) |W8 + ℎYindiB ,8 (:) (35)

It is observed that ∀f8 (:) ≤ −
(
Y★

 B,8

) 1
W8 , Δf8 (:) > 0, f8 (:) increases, until it enters the range

(
Y★

 B,8

) 1
W8
<

f8 (:) < 0.

Then the ultimate bound of f8 (:) equals X̄B,8 =
(
Y★

 B,8

) 1
W8 , whose size can be made arbitrarily small. Therefore, the

control will lead to sliding motion in finite time )1 such that |f8 (:) | < X̄B,8 .

Denote the sliding variable in a quasi-sliding motion as 2(:) = d̃(:) and X̄B = sup8=1,...,<

(
Y★

 B,8

) 1
W8 , then

|3̃8 (:) | < X̄B,8 ≤ X̄B . The quasi-sliding mode dynamics equation can be written by:

e(: + 1) = [O + ℎ(G2 − H2Q)] e(:) + H2 (YH2)−1 ( d̃(: + 1) − d̃(:)) (36)

where d̃(:) has a magnitude of $ (X̄B) due to the non-ideal sliding motion. Recall that d(O + ℎ(G2 − H2Q)) ≤ _̄ < 1.
Eq. (36) indicates that the tracking error will converge to a small bound related to X̄B . As a consequence, the following
equation holds:

‖e(: + 1)‖ ≤ _̄: ‖e(0)‖ + ℎ(1 − _̄
: )

1 − _̄
2<20X̄B (37)

where 20 = ‖H2 (YH2)−1‖. Using the fact _̄ < 1, it follows that

lim
:→∞
‖e(: + 1)‖ ≤ 2ℎ<20X̄B

1 − _̄
(38)

Since the reference signal r is designed to be bounded r ∈ L∞, it can be shown that / ∈ L∞.
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Regarding the internal dynamics, choose +in (() defined in �[ = {( ∈ R=−d} as the candidate Lyapunov
function for ¤( = fin ((, /). Since the origin ¤( = fin ((, 0) is globally exponentially stable, then there exists class
K∞ functions U′1 and U′2 such that U′1 (‖e‖) ≤ ‖+in (()‖ ≤ U

′
2 (‖e‖) is satisfied. In the meanwhile, +in (() satisfies

m+in
m( fin ((, 0) ≤ −23‖(‖2, ‖ m+inm( ‖ ≤ 24‖(‖ for some positive constants 23 and 24. Due to the fact that fin ((, /) is
continuously differentiable and globally Lipschitz in ((, /), then there exists a global Lipschitz constant ! such that
‖ fin ((, /) − fin ((, 0)‖ ≤ ! (‖e‖ + ‖r‖),∀( ∈ R=−d. As a result, the time derivative of +in (() satisfies [9]

¤+in (() =
m+in

m(
fin ((, /) ≤ −23‖(‖2 + 24!‖(‖(‖e‖ + ‖r‖) ≤ −23 (1 − \1)‖(‖2, ∀‖(‖ ≥

24! (‖e‖ + ‖r‖)
23\1

(39)

with constant \1 ∈ (0, 1). Denote the initial time point as C0, and

` ,
24!

23\1

(
sup

C0+)1≤g≤C
(‖e‖ + ‖r‖)

)
(40)

As a result, there exists a class KL function V′ such that

‖(‖ ≤ V′(‖((C0 + )1)‖, C − C0 − )1) + U′−1
1 (U

′
2 (`)), ∀C ≥ C0 + )1 (41)

Then the normal value of the internal state satisfies

‖(‖ ≤ \2Y
★ + U′ −1

1

(
U′2

(
24!

23\1

(
2ℎ<20X̄B

1 − _̄
+ Ā

)))
, ∀C ≥ C0 + )1 + )2 (42)

for some finite )2 > 0 and \2 > 0, where Ā is the upper bound of ‖r‖. This shows that ( is globally ultimately bounded
by a class K function of _̄, X̄B , and Ā.

This completes the proof.

Remark 3 For the nonlinear system modelled in Eq. (19), the term �0 (x) in Eq. (12) equals O − B̄0 (G)�B̄
−1
0 (G). It

can be observed that if −2 < F8 < 0, then d(�0 (x)) = d(O − �) > 1. As a consequence, the boundedness of the
perturbation term in Eq. (12), as well as the closed-loop stability of conventional INDI cannot be guaranteed. By
contrast, the newly proposed discrete-time incremental sliding mode control has boarder applicability; because when
−2 < F8 < 0, the condition d(O − |�|) < 1 still holds (Eq.(31)). Consequently, the stability of the closed-loop system is
guaranteed.

IV. Fault-tolerant Flight Control Design
In this section, an aircraft model with actuator faults and structural damage is described.

A. Equations of Motion
The nominal six degrees of freedom nonlinear equations of motion for a rigid aircraft in the body reference frame

are given by [
¤\
¤8

]
=

[
−8̃\ + L

<2

−P−18̃P8 + P−1S

]
(43)

where \ = [D, E, F]T and 8 = [?, @, A]T represent the translational and rotational velocities of the body-fixed frame
with respect to the inertial frame, respectively. The inertia matrix is P, which is defined as

P =


�GG 0 −�GI
0 �HH 0
−�GI 0 �II

 (44)

The operator ˜(·) denotes the skew-symmetric matrix of the corresponding vector (·). The L and S are the total
external force and moment vectors, which incorporate gravitational, aerodynamic, and thrust forces and moments. A
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typical model for the aerodynamic force L0 and moment S0 is in the following form:

S0 = @̄(diag( [1, 2̄, 1])
©«

�; (V, A, ?, "0)
�< (U, @, "0)
�= (V, A, ?, "0)

 +

�;X0 (U, V, "0) 0 �;XA (U, V, "0)

0 �<X4
(U, "0) 0

�=X0 (U, V, "0) 0 �=XA (U, V, "0)



X0

X4

XA


ª®®¬

L0 = @̄(
[
�G (U, V, @, X4, "0), �H (U, V, ?, A, X0, XA , "0), �I (U, V, @, X4, "0)

]T

(45)

where �; , �<, �= are the rolling, pitching, and yawing moment coefficients, respectively. The dynamic pressure is
@̄ = 0.5d0‖\‖22. The dynamics of V is derived as:

¤V = 1
√
D2 + F2

(�V,G + �V,H + �V,I) +
F?

√
D2 + F2

− DA
√
D2 + F2

(46)

where

�V,G = −
DE

+2 (�G − 6 sin \), �V,H = (1 −
E2

+2 ) (�H + 6 sin q cos \), �V,I = −
EF

+2 (�I + 6 cos q cos \) (47)

and G = L
<2

= [�G , �H , �I]T denotes the specific force vector, 6 is the gravitational acceleration.
The kinematics for Euler angles [q, \, k]T are given by

¤q
¤\
¤k

 =

1 sin q tan \ − cos q tan \
0 cos q − sin q
0 sin q sec \ cos q sec \



?

@

A

 (48)

1. Actuator Faults
Aircraft actuator faults include loss of control surface area, control surface jamming, and the oscillatory failure cases

(OFCs). The inertial effects of actuator faults can be negligible. When an aircraft is subjected to the loss of control
surface area fault, it leads to the loss of effectiveness for actuators, which can be modeled by

� ′8 9 = ` 9�8 9 , ` 9 ∈ [0, 1], 8 = ;, <, =, 9 = X0, X4, XA (49)

where (·′) indicates the post-failure condition. Actuator jamming has two main impacts on system dynamics: 1)
influence on control effectiveness; 2) induced extra forces and moments. If one side of the ailerons or elevators get
stuck, the corresponding control derivatives are halved. Jamming faults also introduce new control derivatives such that
the decoupling between longitudinal and lateral controls no longer holds. The aileron jamming would introduce �<X0

,
and elevator jamming would introduce �;X4 and �=X4 . If one of the ailerons is jammed at X̄0, the induced force and
moment coefficients are

Δ�; =
1
2
�;X0 X̄0, Δ�= = −

1
2
�=X0 X̄0, Δ�H =

1
2
�HX0 X̄0, Δ�I =

�;X0 1

A0H
, Δ�< = −

Δ�;1A0G

2̄A0H
(50)

where where r0 = [A0G , A0H , A0I ]T is the position vector from the center of mass (c.m.) to the aerodynamic center of the
jammed aileron. The induced force and moment coefficients of one-side elevator jammed at X̄4 is calculated by

Δ�I = −
�<X4

X̄4 2̄

2A4G
, Δ�< =

1
2
�<X4

X̄4, Δ�; =
Δ�IA4H

1
(51)

with r4 = [A4G , A4H , A4I ]T indicates the position vector from the aircraft c.m. to the aerodynamic center of the jammed
elevator.

The OFCs are mainly caused by electronic components in fault mode or bymechanical breakages. These malfunctions
generate erroneous sinusoidal signals which propagate through the servo-loop control loop and may lead to unwanted
control surface oscillations [20].
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2. Structural Damage
Referring to the investigations in [17, 21], structural damage may lead to: the changes of aerodynamic properties,

inertia properties, and the control effectiveness. In Ref. [21], the aircraft structural damage was modeled in the form of
partial or complete tip loss of the horizontal stabilizers, the vertical tail, and the wings. Referring to the experiment
results in [17, 21], it can be concluded that

• Structural damage changes the following mass and geometry properties of the aircraft: 1) total mass; 2) mean
aerodynamic chords of lifting surfaces; 3) location of the center of mass; 4) moment of inertia.

• Structural damage also changes stability: 1) horizontal stabilizer damage varies the longitudinal stability; 2)
vertical tail damage results in a change in lateral forces and directional stability; 3) wing damage reduces the lift
force and causes unbalanced rolling moment.

Denote the distance vector from the original c.m. $ to the new c.m. location $ ′ as r$$′ = [AΔG , AΔH , AΔI]T. The
equations of motion using the non-CM approach is given by [9, 10][

¤\
¤8

]
=

[
<′O ỸT

Ỹ P′

]−1 [
−<′8̃\ − 8̃ỸT8 + L′

−\̃ ỸT8 − 8̃Ỹ\ − 8̃P′8 + S ′

]
(52)

where <′ denotes the mass of the damaged aircraft; P′ represents the inertia matrix of the damaged aircraft; L′,S ′
denote the new total force and moment vectors after structural damage. Y = [<′AΔG , <′AΔH , <′AΔI]T is non-zero when
using the non-CM approach, which leads to coupled translational and rotational motions. Using Eq. 52, the attitude
dynamics of aircraft are

¤8 = ( 1
<′

ỸỸ + P′)−1 (Ỹ8̃\ − 1
<′

Ỹ8̃Ỹ8 − 1
<′

ỸL′ − \̃ ỸT8 − 8̃Ỹ\ − 8̃P′8 + S ′) (53)

in which the translational and rotational dynamics are inertially coupled.
The influences of wing, horizontal stabilizer, and vertical tail damage on the aerodynamic coefficients of an aircraft

are summarized in the Table. I of Ref. [10]. The changes in aerodynamic coefficients can be modeled by magnitude
scaling [21]:

� ′G = (1 + Δ�G) · �G , � ′H = (1 + Δ�H) · �H , � ′I = (1 + Δ�I) · �I
� ′< = (1 + Δ�<) · �<, � ′; = (1 + Δ�;) · �; , � ′= = (1 + Δ�=) · �=

Δ�8 =
� ′
8
− �8
|�8 |

· 100%, 8 = G, H, I, <, ;, =

(54)

where � ′
8
, 8 = G, H, I, <, ;, = denote the post-damage aerodynamic coefficients.

B. Fault-tolerant Attitude Control Design
An attitude control system is designed to make the aircraft robustly track the roll and pitch angle references while

minimizing the sideslip angle V. Consequently, the control variables are chosen as y = [q, \, V]T. The nonlinear model
corresponds to the motion of a rigid-body aircraft with x1 = [q, \, V]T, x2 = [?, @, A]T, x = [xT

1 , x
T
2 ]

T, and control input
u = [X0, X4, XA ]T with the following representation:

¤x1 =


1 sin q tan \ − cos q tan \
0 cos q − sin q
F√
D2+F2 0 − D√

D2+F2

︸                                           ︷︷                                           ︸
g1 (x1)

x2 +


0
0

51 (x1)

︸    ︷︷    ︸
f1 (x1)

¤x2 = −P−18̃P8 + P−1S 5︸                     ︷︷                     ︸
f2 (x)

+ P−1I"D︸   ︷︷   ︸
g2 (x)

u

y = x1

(55)
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where

51 (x1) =
DE6 sin \ + (+2 − E2)6 sin q cos \ − EF6 cos q cos \

+2
√
D2 + F2

+
−DE�G + (+2 − E2)�H − EF�I

+2
√
D2 + F2

I"D
= @̄(


1�;X0 (U, V, "0) 0 1�;XA (U, V, "0)

0 2̄�<X4
(U, "0) 0

1�=X0 (U, V, "0) 0 1�=XA (U, V, "0)

 , S 5 = @̄(


1�; (V, A, ?, "0)
2̄�< (U, @, "0)
1�= (V, A, ?, "0)


In Eq. (55), \, U, V, �G , �H , �I are measurable.

The aircraft dynamics considering model uncertainties, structure damage, and actuator faults are modeled as:{
¤x1 = f1 (x1) + g1 (x1)x2

¤x2 = (1 − ^) f2 (x) + ^ f ′2 (x) + (1 − ^)g2 (x)u + ^g′2 (x)u
(56)

where ^ ∈ [0, 1] is designed as a unit step function to indicate sudden structure breaks and actuator faults during flight.
In the new dynamics after sudden faults or damage, f ′2 (x) and g′2 (x) are expressed as

f ′2 (x) = (
1
<′

ỸỸ + P′)−1 (Ỹ8̃\ − 1
<′

Ỹ8̃Ỹ8 − \̃ ỸT8 − 8̃Ỹ\ − 8̃P′8 − 1
<′

ỸL′ + S ′5 )

g′2 (x) = (
1
<′

ỸỸ + P′)−1I ′"D
= P−1I"D

� + (( 1
<′

ỸỸ + P′)−1 − P−1)I"D
�

(57)

where the time varying diagonal matrix � ∈ R3×3 models the scaling of control effectiveness caused by damage and
actuator faults. When ^(C) = 0,�(C) equals a three-by-three identity matrix.

The vector relative degree for y = [q, \, V]T is 1 = [2, 2, 2]T. Therefore, the output dynamics of the aircraft attitude
system are

y (2) =
m [ f1 (x1) + g1 (x1)x2]

mx1
( f1 (x1) + g1 (x1)x2) + g1 (x1)

(
(1 − ^) f2 (x) + ^ f ′2 (x) + (1 − ^)g2 (x)u + ^g′2 (x)u

)
(58)

which further leads to

"(x) = m [ f1 (x1) + g1 (x1)x2]
mx1

( f1 (x1) + g1 (x1)x2) + g1 (x1) ((1 − ^) f2 (x) + ^ f ′2 (x)),

B(x) = g1 (x1)
(
(1 − ^)g2 (x) + ^g′2 (x)

) (59)

Including the new variable ^ in Eq. (56), the first-order Taylor series expansion of y (2) is calculated by

y (2) = y (2)0 + A0 (x, ^)Δx +B0 (x, ^)Δu + H0 (x, ^)Δ^ + X1 (x, u, ^, ℎ) (60)

where H0 (x) = m[" (x)+B (x)u ]
m^

���
0
. The discrete-time incremental sliding mode control in Eq. (22) is applied for the

system Eq. (56) as
Δuindi-s (:) = sgn(�(:)) (g1 (:)g2 (:))−1

(
v2 (:) + vB (:) − ŷ (2)0 (:)

)
(61)

Based on Eq. (60), the closed-loop system dynamics of Eq. (59) under the control input Eq. (61) are:

y (2) (:) = v2 (:) + vB (:) + �̃B (:) −�B (:) (v2 (:) + vB (:) − y (2)0 (:))︸                                                 ︷︷                                                 ︸
9indiB (:)

(62)

where �B (:) and �̃B (:) in Eq. (30) become

�B (:) = O − g1 (:)
(
(1 − ^(:))g2 (:) + ^(:)g′2 (:)

)
sgn(�(:)) (g1 (:)g2 (:))−1

�̃B (:) = A0 (x, ^)Δx + H0 (x, ^)Δ^ + X1 (x, u, ^, ℎ)
���
x=x0 (:) ,^=^0 (:) ,u=u0 (:)+Δuindi-s (:)

+ (O −�B (:)) ỹ (2)0 (:)
(63)

For an aircraft with actuator fault and structural damage, it is reasonable to assume that %(:) is bounded [10].
Therefore, using Theorem 1, for faults and damage that satisfy d(�B (:)) < 1, the post-fault aircraft can still track the
given attitude commands.
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V. Numerical Simulations
In this section, the discrete-time stability of INDI presented in Sec. II and the controller proposed in Sec. III will

be numerically evaluated on a public model of F-16 [22]. Actuators are modelled as second-order linear systems
with rate and position limits (parameters from the Table II of Ref. [10]). This aircraft is initially trimmed at a
steady-level flight condition with airspeed + = 600 ft/s and altitude ℎ = 12, 000 ft. The initial states for the aircraft are
x1 = [0, 0, 0]◦, x2 = [0, 0, 0]◦/s. The maximum magnitude of the random parametric uncertainties are chosen as

Δ<2 = 5%, Δ( = 5%, Δ2̄ = 5%, Δ1 = 5%, Δ�GG = 10%,Δ�GI = 10%, Δ�HH = 10%, Δ�II = 20%

The angular acceleration sensor is modeled with first-order linear system �0 (B) = 1
0.033B+1 . In addition, the height of

the power spectral density (PSD) of the measurement noise of angular acceleration measurements are set to 1.04−5.
For all the numerical simulations presented in this section, the control parameters are kept invariant for robustness

testing as presented in Table 1.

Table 1 Control gains

Channel
INDI parameters SMC parameters
 8,0 in Eq. (22)  8,1 in Eq. (22)  B,8 in Eq. (27) W8 in Eq. (27)

Roll, q 15 5 1 0.3
Pitch, \ 15 5 1 0.3
Sideslip, V 15 5 1 0.3

The fault cases considered in this section include the effectiveness loss of rudder, aileron, elevator, as well as
structural damage. The influences of actuator faults and structural damage are modeled using the methods presented in
Sec. IV. In simulations, two types of reference commands are designed: Type 1 is a smoothly filtered step; Type 2 is a
single that smoothly combined from sigmoid functions. The simulated fault scenarios are as follows:

Scenario 1 Actuator faults, structural damage, and model uncertainties lead to ‖�0 (G)‖ < 1. To be specific, the aileron lost
50% of its effectiveness at 3 s with F1 = 0.5, the elevator lost 30% of its effectiveness at 5 s with F2 = 0.7, and
the rudder has lost its effectiveness at 7 s with F3 = 0.6. Moreover, the right aileron runs away and get jammed at
C = 3 s with X̄0A = 15.05◦. Also, at C = 5 s, the left elevator is jammed upwards at X̄4; = −12.5◦. Apart from these
actuator faults, the right wing lost 25% of its area at C = 3 s, the entire left horizontal stabilator is lost at C = 5 s,
and a half of the vertical tail is lost at C = 7 s.

Scenario 2 Actuator faults, structural damage, and model uncertainties lead to ‖�0 (G)‖ > 1 in a short time period. This
scenario is more severe than Scenario 1 as the aileron lost 70% of its effectiveness at C = 3 s, the elevator lost
50% of its the effectiveness at 5 s, and the left elevator is jammed upwards at X̄0A = −12.5◦, while the rudder
suddenly lost 60% of its effectiveness at C = 7 s, and the right aileron runs away and get jammed at C = 3 s with
X̄0A = 15.05◦ . Apart from these, the structural damage situations are the same as those in scenario 1.

Scenario 3 Actuator faults, structural damage, model uncertainties and control reversal. In this case, the aileron lost 30% of
its effectiveness at 3 s with F1 = 0.7, and the rudder has lost its effectiveness at 7 s with F3 = 0.6. The elevator
lost 50% of its effectiveness at 5 s and changed its actuation sign periodically after C = 7s. Besides, the solid OFC
fault is added to the left elevator from C = 5 s; the right wing lost 25% of its area at C = 3 s; and a half of the
vertical tail is lost at C = 10 s.

In order to analyze the impacts of various sources of the uncertainty on the ultimate bound of the tracking errors,
the trajectories of X̄H (:) = ‖ ỹ0 (:)‖, X̄I (:) = ‖y (2) (:) − ŷ (2)0 (:) −B0 (:)4u(:)‖, and X̄E2 (:) = ‖v2 (:) − v2 (: − 1)‖
are plotted. Using Eq. (13) and Eq. (14), the estimated upper bound of the residual cancellation error of INDI-SMC
is calculated by ˆ̄9indi (:) = 1̄:−:0 ‖9indi (:0)‖ + 1̄X̄E2 (: − 1) + (1 − 1̄)X̄H (: − 1) + X̄I (: − 1) in the simulation. Two
performance metrics are used to evaluate the control performance. One is the root mean square (RMS) value of the
tracking error. The other one is the integral of control cost (IAU): IAU =

∑3
8=1

∫ C 5
0 |D8 (C) |3C .

Table 2 shows the RMS value of the tracking error, IAU, and the maximum steady-state error in different simulation
cases. As can be seen from Table 2 that the inclusion of sensing error (i.e., ỹ (2) ≠ 0) increases the maximum tracking
error and the IAU. Nevertheless, the RMS values of the tracking errors are still comparable to the cases when ỹ (2) = 0.
This indicates that the INDI-SMC method has certain robustness against sensing error. As presented in the preceding
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text, Scenario 2 is more severe than Scenario 1. Correspondingly, the RMS and maximum values of the tracking errors,
as well as the IAU value are all higher in Scenario 2. Furthermore, because the control effectiveness of elevator changes
its sign in Scenario 3, which violates the safety boundary of INDI-SMC, the closed-loop system becomes unstable. By
contrast, the newly proposed D-INDI-SMC has boarder applicability, as the closed-loop system can tolerate the faults in
Scenario 3 with reasonable tracking errors and control effort.

Table 2 Statistics for command tracking performance.

Scenario 1 1 2 2 3 3
Method INDI-SMC INDI-SMC INDI-SMC INDI-SMC INDI-SMC D-INDI-SMC

ỹ (2) ỹ (2) = 0 ỹ (2) ≠ 0 ỹ (2) = 0 ỹ (2) ≠ 0 ỹ (2) ≠ 0 ỹ (2) ≠ 0
yA Type1 Type 1 Type 2 Type 2 Type 2 Type 2
q 0.7904 0.7686 1.6592 1.5506 ∞ 0.2852
\ 0.2370 0.2209 0.016 0.0142 ∞ 0.2934RMS
V 8.08e-04 0.001 0.0066 0.0068 ∞ 0.0019

IAU 124.2463 125.1224 323.6775 324.9343 – 230.9250
q 0.00075 0.0048 0.0475 0.0728 ∞ 0.3496
\ 0.00054 0.0025 0.0358 0.0447 ∞ 0.5345max(48)
V 0.0032 0.0035 0.0358 0.0383 ∞ 0.0018

Scenario 1: Robustness to sensing error, actuator faults, and structural damage (‖�0 (G)‖ < 1) The results for
the first scenario are illustrated in Fig. 1 - Fig. 4. The attitude tracking responses are given in Fig. 1. It can be observed
that the bounded sensing error can be tolerated by the INDI control method. The sensing error can be seen in Fig. 2.
When the sensing errors are included, larger control efforts are required, which can be seen from Fig. 3a and Table. 2.
The responses of the sliding variables (Eq. (23)) are shown in Fig. 3b, in which all the variables converge into small
bounds.

Figure 2 shows that the considered sensing errors result in a larger residual cancellation error of INDI-SMC as
compared to the ideal case (with perfect estimate of y (2)0 ). The first and third subplots of Fig. 4 show that the variations
of X̄H , X̄I , and X̄E2 are mainly induced by the command variations, faults, and damage in the system. Comparing the
relative magnitudes of the uncertainties, the third subplot of Fig. 4 shows that X̄I has the highest magnitude throughout
the time history, which is followed by X̄H . As explained in Sec. II, under high sampling frequency, the variations of
virtual control has limited impacts on the closed-loop behaviour, which is verified by the small magnitude of X̄E2 . After
faults occur, all the three uncertainty terms gradually converge to a small bound around zero. The forth subplot of Fig. 4
verifies that the real ‖9indi‖ is indeed always smaller than its estimated bound given in Eq. (14). Furthermore, ‖9indi (:)‖
is ultimately bounded which verifies Eq. (15).

Scenario 2: Robustness to sensing error as well as severe faults and damage (‖�0 (G)‖ > 1 in short time intervals)
The simulation results are showed in Fig. 5 - Fig. 8. Even through ‖�0 (x)‖ > 1 happens in short time intervals
C ∈ [3, 3.96] s and [5.35, 7] s (Fig. 8), the tracking performance is still acceptable (Fig. 5 and Table 2). According to
the investigation in [23], a system under FTC is stable if the activating period of stable modes is long enough compared
with that of the unstable mode. It can be seen from Fig. 6, although ‖�0 (x)‖ > 1 occurs, the residual cancellation error
9INDI remains bounded. This leads to a conclusion that the INDI-SMC control still has some robustness even in the
transient period where the estimation error of B0 (x) exceeds the uncertain limits and shortly violates the restriction of
‖�0 (x)‖ < 1.

As compared to the Scenario 1, both the tracking tasks and fault cases in Scenario 2 are more challenging. Even so,
Fig. 6 shows the residual cancellation error of INDI-SMC remain bounded. Also, Fig. 7b shows that the sliding mode
variables are also bounded. In view of Fig. 6 and Fig. 8, the spikes of X̄8 and 9INDI are mainly caused by reference
command variations and fault injections.
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Fig. 1 Scenario 1: attitude tracking performance of INDI-SMC.
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Fig. 2 Scenario 1: sensing error and the residual cancellation error of INDI-SMC.

Scenario 3: Robustness to sensing error and control reversal The aircraft responses in Scenario 3 are shown in
Figs. 9-12. Figure 9 shows that INDI-SMC is unstable to stabilize the aircraft with sensing error and control reversal
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Fig. 3 Scenario 1: control inputs and sliding mode variable responses.
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Fig. 4 Scenario 1 : responses of �0 (x) and the bounds of uncertainties (S.E. represents sensing error).

while the newly proposed D-INDI-SMC is able to tolerate the faults and execute the tracking commands. The control
reversal happens in every 5 s during simulation, which can be seen from the second subplot of Fig. 12. It can be observed
from Fig. 10 that INDI-SMC presents loss of control since control reversal breaks its stable condition ‖�0 (x)‖ < 1
(show in Fig. 12); its resulting residual error and sliding variables (Fig. 11b) also become unbounded. By contrast,
D-INDI-SMC does not presents actuator saturation (Fig. 10); its tracking performance is also comparable to that in
Scenario 1 (see Table. 2). Furthermore, the residual cancellation error and sliding variables using D-INDI-SMC remain
bounded as shown in Fig. 10 and Fig. 11b. The simulation results of Scenario 3 conclude that the D-INDI-SMC method
proposed in this paper has higher robustness against control reversal as compared to INDI-SMC in the literature.
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Fig. 5 Scenario 2: attitude tracking performance of INDI-SMC.
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Fig. 6 Scenario 2: sensing error and the residual cancellation error of INDI-SMC.
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Fig. 7 Scenario 2: control inputs and sliding mode variable responses.
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Fig. 8 Scenario 2 : responses of �0 (x) and the bounds of uncertainties (S.E. represents sensing error).

VI. Conclusions
By virtue of its sensor-based structure, the incremental control shows promising robustness against aircraft model

uncertainties, sudden actuator faults, and structural damage. This paper has shown that the performance of INDI is
influenced by sensing errors and control effectiveness estimation errors. It has been proved that the sensitivity of INDI
to sensing error, incremental dynamic approximation error, faults, and damage decreases as the sampling frequency
increases. Numerical simulations show that critical loss of actuator effectiveness can result in significant performance
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Fig. 9 Scenario 3: attitude tracking performance of INDI-SMC and D-INDI-SMC.
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Fig. 10 Scenario 3: sensing error and the residual error of INDI-SMC and D-INDI-SMC.

degradation and even loss of control. One special severe actuator fault case is the control reversal, which leads to the
instability of the incremental sliding mode control (INDI-SMC) method in the literature. In view of this, this paper
proposes a discrete-time control direction-based incremental sliding mode control, denoted as D-INDI-SMC with
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Fig. 11 Scenario 3: control inputs and sliding mode variable responses.
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Fig. 12 Scenario 3: responses of �0 (x) and the bounds of uncertainties.

guaranteed stability in the Lyapunov sense. The effectiveness of this method is verified by simulations on an attitude
tracking problem of an aircraft subjects to control reversal, sensing errors, actuator faults, and structural damage. Future
work will seek the possibility to relax the assumptions and stability criteria in the proposed method.
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