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Abstract - When designing driving simulation experiments with motion cueing, it is often necessary to make
choices between Motion Cueing Algorithms (MCAs) without being fully able to know how well an MCA will perform
during the experiment. Choices between MCAs can therefore be greatly supported by previous measurements
or predictions of motion cueing quality. This paper describes a data collection experiment on a nine degree-of-
freedom motion-base simulator, in which participants are asked to continuously rate the motion cueing quality
during a pre-recorded drive through an urban environment. Three benchmark MCAs are compared: a Model-
Predictive Control (MPC) algorithm with infinite prediction horizon, a Classical Washout Algorithm (CWA) tuned
for the use-case, and the same algorithm (CWA), but with the tilt-coordination channels turned off. By comparing
ratings for the whole scenario, as well as ratings for each maneuver individually, the results show a preference
of the presence of tilt-coordination, as well as a preference for the optimization-based MPC algorithm over the
CWA condition. The collected data will be used directly for modeling and predicting motion cueing quality for future
experiments at BMW, such that the best-suited MCA and parameter setting can be selected before experiments.

Keywords: Motion cueing; quality comparison; urban simulations

1. Introduction
By 2050, 68% of the global population will be living
in urban areas (United Nations, Department of Eco-
nomic and Social Affairs, Population Division, 2018).
This is likely to impact the design and use of road
vehicles. Driving simulation offers a unique possibil-
ity in guiding the development of new technologies in
such environments by providing safe, emission-free
and controllable alternatives to real vehicle testing.

A motion-base driving simulator is controlled by a
Motion Cueing Algorithm (MCA), which maps the
specific forces and rotational rates a driver would
perceive in the measured or simulated vehicle onto
the motion of the simulator. Several approaches for
MCAs exist, such as the so-called Classical Washout
Algorithm (CWA) (Conrad, Douvillier, and Schmidt,
1973; Reid and Nahon, 1985) and the more re-
cently developed Model-Predictive Control (MPC) al-
gorithms (first implemented for driving simulation
by Dagdelen, et al., 2009). With growing computa-
tional power, the latter is becoming a suitable op-
tion for real-time applications (Beghi, Bruschetta,
and Maran, 2012; Bruschetta, Cenedese, and Beghi,
2019). In order to be able to select and tune the best-
suited MCA for each experiment, it would be ideal
to be able to predict their motion cueing quality. This
is also paramount to be able to justify the costs of
other MCA quality factors, such as algorithm com-
plexity, computational load and energy consumption
(Kolff, et al., 2020).

In literature, recent developments have focused on
the development of empirical models to predict mo-

tion cueing quality (such as Cleij, 2020), even with-
out fully understanding the complete details of hu-
man perception. Such models have some predictive
power to evaluate the subjective rating as given by
humans based on a linear combination of the er-
rors in the specific forces and rotational rates, or
non-linear models to detect different types of cue-
ing errors. Even though the models of Cleij show a
high quality-of-fit, important questions are 1) whether
these models still apply for combined, compound ma-
neuvers of more realistic use-cases (as these were
only tested for isolated maneuvers), 2) what the va-
lidity of the prediction is when applying different use-
cases, such as urban scenarios, and 3) how such a
model-based evaluation of human perceptual ratings
can be used to perform a trade-off between MCAs,
as well as their various configurations.

Currently, no continuously measured rating data are
available for urban driving scenarios that can be used
to answer these questions. Therefore, a data collec-
tion experiment is performed in the Driver-in-Motion
simulator at BMW Group. The experiment makes use
of the same paradigm followed by Cleij, 2020, by let-
ting participants experience driving a pre-recorded
route in an urban scenario, which resembles a real-
istic city driving environment. In the experiment, par-
ticipants are asked to give continuous ratings on how
well they think the motion of the simulator matches
with what they expect from a real vehicle.

The paper is structured as follows. First, an intro-
duction to measuring and modeling motion cueing
quality, including an overview of the three compared
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MCAs, is given. Then the experiment set-up is dis-
cussed in Section 3. Results and discussion are
given in Section 4, followed by the conclusions.

2. Assessment of motion
cueing quality

2.1. Design of experiments with
motion cueing

When designing experiments with motion cueing for
a given simulator, the best-suited Motion Cueing Al-
gorithm (MCA) and its parameter settings must be
selected, ideally based on the various advantages
and disadvantages of the complete solution. In the
design stage, however, many of these properties
are often inherently unknown, such as which MCA
approach is best suited for a use-case and how
these MCAs would be perceived and rated by human
drivers, which can only be evaluated after performing
an evaluation study. This makes it difficult to system-
atically test MCA configurations for a given use-case.

For this reason, it is useful to make predictions of
motion cueing quality on a perceptual level. This re-
quires models of subjective ratings that are able to
predict how well different MCAs are evaluated by
humans, as subjective rating data are likely to be
unavailable for experiments that are still to be per-
formed. Such models can be either based on knowl-
edge of the human-perceptual system, or empirical
modeling based on the collection of rating data.

2.2. Measuring motion cueing quality

The work of Cleij, 2020; Cleij, et al., 2018 pro-
posed a continuous rating method, in which par-
ticipants give continuous motion incongruence rat-
ings (MIRs) based on the perceived motion incon-
gruences (PMIs). These ratings are indications of
how accurately participants think the motion they per-
ceive matches that of the real vehicle. Participants
are driven through an environment passively, rather
than driving themselves, such that they can fully fo-
cus on the rating method. The rating is measured
on a scale from 0 to 10 and can be changed at
any point in time, such that a continuous rating sig-
nal is obtained. A value of 0 indicates no mismatch
at all, whereas the highest score of 10 indicates the
worst motion cueing encountered in the experiment.
The recorded continuous rating signals, having a high
temporal resolution, can be used for modeling human
quality measurements based on the errors in the mo-
tion cueing that are perceived by the subject.

P̃S R̃S
S̃(t) P̃ (t) R̃(t)

Figure 1: Block diagram of the human rating model,
adapted from Cleij, 2020.

A block diagram of a human rating model as pro-
posed in Cleij, 2020 is shown in Figure 1. Here,

motion incongruences S̃(t) are perceived by the hu-

man operator through a sensory system P̃S, which
describes how humans perceive the motion, domi-
nated by the vestibular and proprioceptive systems.
The internal perceived motion incongruences P̃ (t)
are used by the human as inputs for their rating dy-

namics R̃S. These rating dynamics include a time de-
lay τ , but also elements such as the rating strategy,
such as how actively participants rate. The rating dy-
namics result in a motion incongruence rating (MIR)

signal R̃(t) that can be directly measured through a
rating interface, although ideally one would want to

measure the signal P̃ (t).

This subjective rating method has since then been
implemented in various studies (Cleij, et al., 2019;
Cleij, et al., 2018; Ellensohn, et al., 2019; Ellensohn,
et al., 2018; Van der Ploeg, et al., 2020). A benefit
of this method is that it results in a continuous rating
signal over time. Such a signal allows for detail-rich
analysis of specific time periods or over larger time
periods. Furthermore, the continuous rating data can
be used for model fitting. Nevertheless, there are sev-
eral limitations when working with continuous ratings.

First of all, it is assumed that any non-zero rat-
ings given by the participants are caused by a per-
ceived motion mismatch. This means that if partic-
ipants would be asked to perform the same exper-
iment while being driven around in a real vehicle,
they should give perfect (zero) ratings all the time.
However, participants are asked to actively rate the
motion cueing quality, meaning that they might be in-
clined to more actively focus on incongruences than
they would during real driving or any other driving ex-
periment, as well as be more inclined to give out non-
zero ratings, as they are specifically asked to rate.
Measuring a quantity therefore has an effect on the
measurement of the quantity itself, which is difficult
or even impossible to completely mitigate, but can be
reduced by proper instructions.

Furthermore, it is assumed that the continuous rat-
ing given by the humans at each point in time is also
an accurate representation of what the human is per-
ceiving at that point in time. Next to an inherent hu-
man time delay, as included in the models of Cleij,
2020, humans might anticipate for expected cueing
errors of upcoming maneuvers based on expectation
and scenario experience. The perception of incon-
gruences of a past maneuver might also affect the
given rating at the current time.

Nevertheless, with the drawbacks in mind, the con-
tinuous rating method still provides unique and use-
ful information and is arguably currently the most
detail-rich information source on motion cueing qual-
ity. Follow-up experiments in Ellensohn, et al., 2019;
Ellensohn, et al., 2018; 2020 have extended the
work of Cleij, 2020 towards more realistic, rural use-
cases. The experiment described in this paper aims
to bridge the gap in data collection by performing an
urban driving data collection experiment, which is to
be used for modeling in future research.

2.3. Motion Cueing Algorithms

Three MCAs were chosen for comparison in an ur-
ban driving scenario. The first algorithm is a Classi-
cal Washout Algorithm (CWA). The same MCA was
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also used in Ellensohn, et al., 2020, although with
a different tuning configuration. Second, the same
CWA without tilt-coordination is tested. Finally, a
Model-Predictive Control (MPC) algorithm with per-
fect knowledge of the future states is used.

2.3.1. Classical Washout Algorithm
(CWA)

The first MCA used in the experiment is a Clas-
sical Washout Algorithm (CWA). The algorithm is
capable of real-time simulations, but limited in its
use of the simulator’s workspace, as it does not uti-
lize optimization of the simulator’s motion. This tra-
ditional approach (Conrad, Douvillier, and Schmidt,
1973; Reid and Nahon, 1985) uses high-pass filters
in the inertial frame for the translational as well as
the rotational channels, to wash out the simulator
motion and ensure that the simulator remains in its
workspace. The low-frequency translational acceler-
ations are typically reproduced by tilt-coordination,
by letting the gravity vector generate a sustained ac-
celeration in longitudinal and lateral direction due to
rotations in pitch and roll, respectively. The signal
for tilt-coordination is low-pass filtered in the body
frame, typically complementary to the high-pass fil-
tered simulator translational accelerations. As the ex-
periment described in this paper is performed on the
nine degree-of-freedom (DoF) Driver-in-Motion sim-
ulator, with an additional tripod structure below its
hexapod, additional filtering is applied to the acceler-
ation channels, where a band-pass signal (with com-
plementary filters to the hexapod translations and the
tilt-coordination) is sent to the tripod. Tuning of the
CWA was based on expert evaluations.

2.3.2. Classical Washout Algorithm
without tilt-coordination (NTC)

The second algorithm under investigation is the same
algorithm as the CWA discussed above, but with
the tilt-coordination channel turned off, denoted as
NTC. This was achieved by setting the gains of the
tilt-coordination to zero. This creates large errors in
the reproduced specific forces, which is expected to
create less realistic motion cueing (Stratulat, et al.,
2011). This allows for the comparison of the same
algorithm with and without tilt-coordination, such that
its effects can be explicitly quantified for urban sce-
narios. It also induces major cueing errors that are
useful for understanding what exactly humans rate
as bad, which are required for model fitting purposes.
Furthermore, it provides a benchmark of (expected)
”poor” motion cueing quality.

2.3.3. Oracle Model-Predictive Control
(ORC)

The final MCA under investigation is an Model-
Predictive Control (MPC) algorithm with infinite pre-
diction horizon, therefore denoted as the ’oracle’
(ORC). First implemented in driving simulation by
Dagdelen, et al., 2009, MPC algorithms use predic-
tions or knowledge of future states to optimize the
simulator movement, by reducing cueing errors in the
three specific force and three rotational rate signals
through the minimization of a cost function:

J =

p
∑

i=1

wee2
k+i

︸ ︷︷ ︸

Minimizes cueing errors

+

p−1
∑

i=0

w∆u∆u2
k+i

︸ ︷︷ ︸

Minimizes control inputs

+

p−1
∑

i=0

wxxk+i
2

︸ ︷︷ ︸

Minimizes state excitations

,

(1)

where ek+i is the difference between the reference
motion and motion of the simulator, which is used
to minimize cueing errors. ∆uk+i is the control in-
put vector and xk+1 the state vector. These state
excitation and control input minimization terms pre-
vent overshooting of the workspace and guarantee
unique solutions for multiple DoF systems (Katliar,
2020). The weights of the errors in the six motion
channels were set to we = [1 1 1 10 10 10]T , similar
as in Van der Ploeg, et al., 2020 and Katliar, 2020. In
this case, the algorithm had perfect knowledge of the
future states and is therefore able to calculate opti-
mized simulator movement for the whole run. The al-
gorithm is therefore expected to define the upper limit
for motion cueing quality achievable on the simulator.
More information regarding the optimization process
is described in Ellensohn, et al., 2018.

3. Experiment set-up

3.1. Apparatus

The experiment was performed on the Driver-in-
Motion simulator (Figure 2a), which is a nine degree-
of-freedom structure, consisting of a traditional hexa-
pod placed on a tripod. This simulator was chosen,
as its additional lateral and yaw movement of the
tripod are beneficial for urban environments, where
these movements are required for cueing driving
through sharp corners.

Participants were seated in the driver seat of the sim-
ulator. Four projectors presented the visuals on a
240◦ field-of-view screen. The velocity was visible on
the traditional tachometer on the dashboard, as well
as on the bottom of the main visuals, together with
the driving direction and the current continuous rat-
ing given by the participant, for their own feedback.

3.2. Scenario
Driving data were collected in a virtual city scenario.
The route consisted of multiple maneuvers that are
typical for such environments. A top-down represen-
tation of the driven route is shown in Figure 3. The run
started with an initial acceleration maneuver (’ACC’)
and was selected to have a balanced number of
left- and right corners, indicated by ’CR’. Further-
more, it contained a roundabout (’RBT’) and five lane
changes (’LC’). ’DEC1’ was a braking maneuver be-
fore a red traffic light, bringing the vehicle to a full stop
and standing still for five seconds. After this, the ve-
hicle performed a combined acceleration and corner
maneuver (’ACR1’). ’DEC2’ corresponds to the final
deceleration of the run.
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ACC

CR1

CR2

LC1

RBT

DEC1

ACR1

LC2

CR3

LC3

CR4

LC4

CR5CR6

DEC2

Figure 3: Top-down view of the driven route through
the city, with the maneuvers indicated by their abbre-
viations.

Traffic was present to create a more realistic environ-
ment, but was configured to never come close to the
direct surroundings of the simulated vehicle, such as
by driving on the opposite lane, or passing by in front
of the vehicle while it was standing still before the
traffic light.

3.3. Independent variables
The experiment had a within-subject design with a
single independent variable, which was the MCA.
Three MCAs were tested, as described in Subsec-
tion 2.3. The resulting specific forces and rotational
rates for all three MCAs are shown, together with the
vehicle data, in Figure 4.

3.4. Dependent measures

By varying the MCA, the effect on the subjective rat-
ings was measured through two mechanisms:

Continuous MIR The continuous MIR was given by
the participants by rotating the BMW iDrive knob
located on the central console of the vehicle (see
Figure 2b). Participants were instructed to rate how
well they thought the motion matched what they
would expect from the real vehicle. Rotating the
knob resulted in a step increase or decrease of
the rating, meaning that only integer rating values
could be given. The rating was on a scale from 0
to 10 and was visible on the screen.

Post-hoc rating Complementary to the continuous
rating, participants were verbally asked to give a
post-hoc rating at the end of each run, to rate the
overall motion cueing quality. Although this is in-
tended as a single rating for the whole run, it is
possible that participants are more inclined to base
their post-hoc rating on the worst motion cueing
that was encountered during that run, or empha-
size more on the initial and later segments of a run
(serial-position effect).

3.5. Hypotheses

To analyze the quality of the three MCAs, the ratings
are analyzed in two different ways. First, based on
both the continuous MIRs and the post-hoc ratings,
the scenario-based ratings are analyzed, which re-
fer to how subjects rate the complete scenario. Sec-
ondly, the maneuver-based rating refers to analysing
the ratings of each maneuver separately and is based
on the continuous MIRs. For this purpose, the ratings
corresponding to distinct maneuvers (as defined in
Subsection 3.2) are analyzed.

By looking at the magnitude of the produced cues,
the oracle algorithm (ORC) is best able to reproduce
the specific forces and the yaw rate, as shown in Fig-
ure 4, followed by the Classical Washout Algorithm
(CWA) and finally the CWA without tilt-coordination
(NTC). Based on these observations, the following
hypotheses are defined for the experiment:

(a) The Driver-in-Motion simulator while moving during

the experiment.

(b) A participant using the rating knob inside the

simulator to rate the Perceived Motion Incongru-

ences (PMIs), resulting in the Motion Incongruence

Rating (MIR), adapted from Ellensohn, et al., 2018.

Figure 2: The experiment set-up.
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Figure 4: Specific forces (a-c) and rotational rates (d-f) for the measured vehicle data and the three MCA outputs.

H1: The scenario-based rating of the oracle (ORC)
algorithm is lower than that of the Classical
Washout Algorithm (CWA).

H2: The scenario-based rating of the Classical
Washout Algorithm (CWA) is lower than that
of the Classical Washout Algorithm without tilt-
coordination (NTC).

H3: The scenario-based rating of the oracle (ORC)
algorithm is lower than that of the Classical
Washout Algorithm without tilt-coordination (NTC).

H4: The maneuver-based ratings of the oracle
(ORC) algorithm are lower than those of the Clas-
sical Washout Algorithm (CWA).

H5: The maneuver-based ratings of the Classical
Washout Algorithm (CWA) are lower than those
of the Classical Washout Algorithm without tilt-
coordination (NTC).

H6: The maneuver-based ratings of the oracle
(ORC) algorithm are lower than those of the Clas-
sical Washout Algorithm without tilt-coordination
(NTC).

3.6. Experiment procedure

A total of 60 participants performed the experiment,
of which 50 were male and 10 female. All of them
were employees of BMW Group with a European car
driver’s license B (µ = 22.38 years, σ = 10.16 years)
and an average yearly driven distance of µ = 18833

km (σ = 13207 km). The average age was µ = 40.08
years with a standard deviation of σ = 10.12 years.
33 of the participants had previous experience with
driving simulation. All participants provided informed
consent before the experiment.

3.6.1. Training run

The experiment started with a training task, in which
participants could familiarize with the experiment set-
up, such as the city environment, the sensation of
simulator motion and the rating method. The sim-
ulator motion of the training run was controlled by
the CWA algorithm, which used the same parame-
ter setting as used in the measurement runs, includ-
ing tilt-coordination. The training contained two lane
changes and four corners, of which one contained
lateral and yaw motion in the wrong direction, as a
false cue, to present an example of ’bad’ motion to
the participants, of which they were informed before
the corner. This cue was used as an anchoring for
the maximum (10) rating. Furthermore, the braking
cue before the last corner was inverted to create an
acceleration cue, without informing the participants
beforehand. This intentional false cue was used to
check if they understood the rating task. The training
run lasted four minutes and was repeated if it was ob-
served that participants required some more time to
get acquainted with the rating method.
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3.6.2. Measurement runs

After the training, the measurement runs started. Par-
ticipants performed a total of nine runs, with three
repetitions of the same condition. The condition or-
der was randomized by selecting one of the three se-
quences of runs (See Table 1), such that the condi-
tion sequence was balanced over all subjects. Par-
ticipants were unaware that three repetitions of the
same MCA were tested. Each run lasted four min-
utes, after which they were asked for the overall rat-
ing. Participants were required to take a break after
runs 3 and 6. The experiment, including briefing and
training, lasted approximately 90 minutes.

Table 1: The randomized order of the conditions as
used in the experiment. Individual participants tested
either the S1, S2 or S3 condition sequence for their
nine runs.

Run 1 2 3 4 5 6 7 8 9

S1 CWA NTC ORC NTC ORC CWA ORC CWA NTC

S2 NTC ORC CWA ORC CWA NTC CWA NTC ORC

S3 ORC CWA NTC CWA NTC ORC NTC ORC CWA

3.6.3. Motion sickness

Due to the relative high visual and motion intensity
of the use-case of urban driving, it was expected that
motion sickness would be prevalent during the ex-
periment, similar as in Hogerbrug, et al., 2020. The
misery score (MISC), as introduced by Bos, MacKin-
non, and Patterson, 2005, was used to keep track of
motion sickness during the experiment. The MISC is
a single-score evaluation method on a Likert scale,
in which numbers ranging from zero to ten indicate
increasing levels of discomfort.

The evaluation of the MISC served as a safety mech-
anism to protect the well-being of the participants.
Participants were asked for a MISC-score after each
run. Similar as in Hogerbrug, et al., 2020, the ex-
periment was stopped if a MISC-score of 7 (medium
nausea) or higher was reached for a single run, or if
a MISC-score of 6 (some nausea) was attained two
runs in a row. Participants were always free to abort
the experiment themselves without specifying a rea-
son, for example if they felt uncomfortable.

3.7. Data collection
For the participants who suffered from motion sick-
ness and could not finish the experiment, the data
sets were not used for analysis, as these were in-
complete. One data set was excluded from further
analysis, as upon visual inspection it was found that
this participant did not respond to the maneuvers at
all and kept the continuous rating at a high value con-
stantly. The three ratings as given by the participants
per condition were averaged, resulting in a total of
three data sets per participant.

4. Results and Discussion
Out of the total of 60 participants, five participants
(8.33%) were not able to finish the experiment due
to too high MISC-scores. Three additional partici-
pants (5.00%) indicated they felt uncomfortable and
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Figure 5: Box plots and data point distributions of the
post-hoc ratings, per condition.

therefore quit the experiment on their initiative. In two
cases the experiment could not be finished due to
technical issues. This leaves a total of 50 complete
data sets that are used for data analysis.

4.1. Scenario-based ratings

The scenario-based ratings (related to H1, H2 and
H3) are calculated in two different ways. First, the
overall post-hoc ratings for each MCA are analysed.
Figure 5 shows the box plot distributions of the post-
hoc ratings. Lilliefors tests (p≤0.01) showed that the
data were normally distributed. When analyzing the
means of the ratings, ORC (µ = 2.44, σ = 1.04) is
rated better than CWA (µ = 3.89, σ = 1.79). The
classical washout condition without tilt-coordination,
NTC, is rated the worst with µ = 5.18 and σ = 2.17.

Furthermore, it was checked whether there were
significant differences between the three MCA
pairs (CWA-NTC, CWA-ORC and NTC-ORC). Within
these pairs of independent variable settings, a re-
peated measures one-way ANOVA was performed.
A post-hoc analysis with Bonferroni correction was
used to correct for multiple comparisons. This shows
very significant differences (p≤0.01) between the
CWA-NTC pair and highly significant differences for
the other two pairs (p≤0.001), indicated in Figure 5.

Complementary to the overall ratings, the average
continuous ratings were calculated per condition. The
continuous rating time signals are shown in Figure 6.
The time-varying lines indicate the continuous MIR

R̃(t), averaged over all participants. The shaded ar-
eas indicate the standard deviation, and the horizon-
tal lines indicate the averages of the continuous rat-
ings for each MCA. Here, it is clear that the NTC al-
gorithm performs the worst overall (highest rating),
whereas ORC is the lowest rated. As the continuous
rating includes segments where ratings are typically
zero for all MCAs (such as standing still or driving
perfectly straight), the average continuous ratings are
lower than the post-hoc rating, as is visible in Fig-
ure 7. Nevertheless, CWA-NTC and NTC-ORC show
highly significant differences, for CWA-ORC the dif-
ference is very significant. The means and standard
deviations of the algorithms are for ORC: µ = 0.44, σ
= 0.44, for CWA: µ = 0.72, σ = 0.67 and for NTC: µ
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Figure 6: Continuous rating signals for the three MCAs, with the standard deviation displayed as shaded areas.
The vertical lines indicate the distinct maneuvers, the horizontal lines show the means of the overall ratings.
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Figure 7: Box plots and data point distributions of the
average MIRs, per condition.

= 1.35, σ = 1.14, which are in line with the post-hoc
ratings. Based on both of these findings, hypotheses
H1, H2 and H3 are confirmed.

4.2. Maneuver-based ratings

Figure 6 also shows the division of the maneuvers.
The maneuver-based ratings are calculated by aver-
aging the rating in that section. As these data were
not normally distributed for any of the maneuvers ex-
cept for ’Corner 4’, the Friedman’s test was used for
all maneuvers to check for significance. Similar to the
scenario-based ratings, the mean values are com-
plemented with the three MCA pairs to look for sig-
nificance, where a Bonferroni correction is applied.
These results are shown in Table 2.

These results show that when analyzing the pair
’CWA-NTC’, the condition NTC is the worst rated of
the two, as all other mean values are higher than
those of the CWA conditions. Only for the initial ac-
celeration the NTC has a slightly lower mean value,
but this is not a significant difference. Furthermore,
it was found that only the maneuvers at the start of
the run (ACC, CR1, CR2 and LC1), which are rela-
tively weak compared to the rest of the run, do not

have significant differences between the two condi-
tions, whereas all other maneuvers do. This indicates
that participants generally do prefer the addition of
tilt-coordination, therefore (partially) confirming hy-
pothesis H5. Especially the roundabout, where con-
stant tilt-coordination is the only method to produce
the sustained lateral acceleration, sees a strong ben-
eficial effect of adding tilt-coordination.

Furthermore, when comparing CWA with ORC, the
latter results in lower average ratings compared to
the classical washout strategy. In all maneuvers
that contained major longitudinal cues (ACC, DEC1,
ACR1 and DEC2), no significant differences were
found. However, all cornering maneuvers are rated
significantly better for ORC than for CWA, partially
confirming hypothesis H4. This indicates that for the
highly dynamic 90◦ corners, typical for urban en-
vironments, there is an advantage when using an
optimization-based algorithm. Even though the latter
is not possible in real-time, human-in-the-loop driv-
ing, optimization-based algorithms, also those that
are capable of supporting human-in-the-loop driving,
might significantly improve cueing quality in urban
simulations compared to washout algorithms.

It is clear from the average values that NTC and ORC
are the worst- and best-rated conditions, respectively,
meaning that their respective differences compared
to the CWA algorithm are most interesting. Neverthe-
less, Table 2 also includes this pair for completeness.
Significant differences for almost all maneuvers are
found, confirming hypothesis H6.

When considering the three conditions, the findings
indicate a benefit of tilt-coordination in urban envi-
ronments, as well as a benefit of using optimization-
based strategies, mainly for lateral maneuvers. The
deterministic nature of lateral maneuvers, based on
the road geometry, can ensure that real-time capa-
ble optimization-based algorithms are able to reach a
similar performance for lateral maneuvers compared
to oracle algorithms. These findings can be used
as general guidelines for MCA selection, as well as
serve as the basis for predictive models for choosing
the best-suited MCA settings for an urban simulation.
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Table 2: Average MIR per MCA and significance levels per maneuver between each MCA pair. A * is significant
(p<0.05), ** is very significant (p<0.01) and *** is highly significant (p<0.001).

Average R̃(t) Significance pairs

Maneuver Abbreviation CWA NTC ORC CWA-NTC CWA-ORC NTC-ORC

Acceleration ACC 0.31 0.24 0.25 - - -

Corner 1 CR1 0.95 1.22 0.56 - *** ***

Corner 2 CR2 1.02 1.48 0.63 - * ***

Lane change 1 LC1 0.44 0.54 0.32 - - *

Roundabout RBT 1.05 2.85 0.79 *** - ***

Deceleration 1 DEC1 0.40 0.89 0.22 *** * ***

Acceleration + Corner ACR1 0.94 1.58 0.49 ** - ***

Lane change 2 LC2 0.57 1.04 0.26 ** *** ***

Corner 3 CR3 1.08 1.76 0.62 *** * ***

Lane change 3 LC3 0.60 0.87 0.32 ** - ***

Corner 4 CR4 1.30 2.32 0.71 *** *** ***

Lane change 4 LC4 0.48 0.91 0.34 * - ***

Corner 5 CR5 1.09 1.86 0.60 ** ** ***

Corner 6 CR6 1.01 1.85 0.60 ** ** ***

Deceleration 2 DEC2 0.46 0.91 0.26 ** - ***

5. Conclusion
For the purpose of motion cueing quality model-
ing, an experiment was performed where partici-
pants were driven through an urban environment. By
letting the participants continuously rate their per-
ceived motion incongruence, the quality of motion
cueing for urban driving with three MCAs was com-
pared: an optimization-based Model-Predictive Con-
trol algorithm with infinite prediction horizon, a Clas-
sical Washout Algorithm (CWA) and the same al-
gorithm without tilt-coordination active. Both overall
(scenario-based) and maneuver-based rating data
show that participants prefer the optimization-based
strategy over the CWA, and that the presence of tilt-
coordination has a positive effect on the motion cue-
ing quality. These data will be essential for modeling
and predicting human rating behavior in urban driving
scenario’s, required for motion cueing quality predic-
tions of untested MCA configurations.
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