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This paper proposes a novel control framework that combines the recently reformulated incremental nonlinear

dynamic inversion with (higher-order) sliding-mode controllers/observers, for generic multi-input/multi-output

nonlinear systems, named incremental sliding-mode control. As compared to the widely used approach that designs

(higher-order) sliding-mode controllers/observers based on nonlinear dynamic inversion, the proposed incremental

framework can further reduce the uncertainties while requiring less model knowledge. Because the uncertainties are

reduced in the incremental framework, theoretical analyses demonstrate that the incremental sliding-mode control

can passively resist a wider range of perturbations with reduced minimum possible control/observer gains. These

merits are validated via numerical simulations for aircraft command tracking problems, in the presence of sudden

actuator faults and structural damage.

I. Introduction

S AFETY is of paramount importance to aerospace systems.
Although air transport remains the safest means of trans-

portation, it inevitably suffers from sudden actuator faults, sensor
faults, and even structural damage. These faults and damage can lead
to a nonequilibrium flight accompanied with varied aerodynamic
properties, changed inertia properties, new sources of uncertainties,
and reduced flight control authority. Therefore, fault-tolerant control
[1], which is capable of automatically tolerating faults and damage
while maintaining stability and desirable performance, is highly
demanded.
Fault-tolerant control systems can be classified into passive fault-

tolerant control systems and active fault-tolerant control systems [1,2].
Active fault-tolerant control systems use fault detection and isolation
processes to obtain the most up-to-date information of the faulty
system.Thisknowledge is then supplied to reconfigurablemechanisms
to redesign the onboard controller. By contrast, passive fault-tolerant
control systems are robust enough to cope with considered faults/
damage without any detection nor reconfiguration [1]. Being invariant
(better than just robust) to matched uncertainties [3,4], sliding-mode
control methods are widely used in passive fault-tolerant control
systems [1,2,5–11]. A recent flight evaluation demonstrated the
effectiveness of a model-based sliding-mode controller on solving
active actuator fault-tolerant control problems [12].
Awell-known obstacle for sliding-mode control applications is the

chattering phenomenon, caused by high-frequency switching of the
control input [13,14]. Although higher-order sliding-mode control
techniques offer a continuous control signal by artificially increasing
the input–output relative degree, chattering is only mitigated instead
of being totally eliminated [14]. Another popular approach to
alleviate chattering is using approximations of the signum function,

such as saturation and sigmoid functions. However, these
approximations (and hence compromises) result in partial loss of
robustness [15,16].On account of the fact that the chattering amplitude
is proportional to themagnitude of the discontinuous control, a current
research focus is on adaption mechanisms for achieving the minimum
possible value of the control gain [13–15,17]. In spite of the variations
of gain adaption methods, the sufficient condition for enforcing a
sliding motion still requires the switching gain to be larger than the
uncertainty bound (for first-order sliding-mode control) or the
corresponding bound for uncertainty derivatives (for higher-order
sliding-mode control) [13–15,17].
Many (higher-order) sliding-mode disturbance observer designs

are based on sliding-mode control techniques [18–21]. For these
methods, the required switching gain for guaranteeing convergence
is a monotonically increasing function of the uncertainty bound
or the corresponding bound for uncertainty derivatives [18–21].
Although the observations provided by disturbance observers are
always continuous, the filtering process in first-order sliding-mode
disturbance observer and the integration process in super-twisting
disturbance observer can only attenuate instead of totally rejecting
chattering in the observations [19]. Therefore, a method that could
reduce the uncertainty is fundamentally beneficial for reducing
the minimum possible gains of both (higher-order) sliding-mode
controllers and observers.
An intuitive approach to reduce the uncertainty is using a

preliminarymodel-based feedback control term to roughly cancel the
nonlinearities and couplings. For a nonlinear system control problem,
this goal is normally fulfilled by feedback linearization, also known
as nonlinear dynamic inversion (NDI) in the aerospace community
[22–24]. Examples that useNDI as the baseline control are first-order
sliding-mode control [4–6,10,11,16,19,25–29], higher-order sliding-
mode control [30–32], sliding-mode control driven by a first-order
sliding-mode disturbance observer [18–20], and sliding-mode
control driven by higher-order sliding-mode disturbance observers
[14,15,18–21,31–33]. However, side effects of the model-based
approach are also well known. For instance, pursuing decent models
for complex aerospace systems is costly and time-consuming.Model
identifications and updates, which are challenging and require
sufficient excitations, are also necessary in the presence of faults [24].
In view of the preceding analyses, an interesting research question

emerges: is there a baseline control method that could reduce the
uncertainty whilst requiring less model knowledge?
Incremental nonlinear dynamic inversion (INDI) is a sensor-based

control approach, which requires less model knowledge than NDI but
has enhanced robustness compared to both NDI [22,23] and NDI with
model identifications [24]. Numerical simulations [22–24,34,35],
quadrotor flight tests [36], and passenger aircraft flight tests [37] have
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consistently demonstrated the robustness and easy implementation of
this method, which makes it promising as a baseline control for
inducing sliding modes. This paper follows the recently reformulated
INDI in [38],which ismoregeneral andmore rigorous than INDI in the
previous literature [22–24,34–37]. Research questions still exist for
this reformulated INDI. First of all, the property of the remaining
uncertainty term after INDI feedback is unclear from the literature.
Moreover, there is no explicit model and analysis for the influences of
sudden (discontinuous in time) faults on INDI.What ismore important
is that a compensation method for further improving the robustness of
INDI in perturbed circumstances is desired.
The main contribution of this paper is the hybridization of (higher-

order) sliding-mode controllers/observers with the reformulated
INDI for generic multi-input/multi-output nonlinear systems, named
incremental sliding-mode control (INDI-SMC), which inherits the
advantages and remedies the drawbacks of both methods.

A. Contributions to the Reformulated Incremental Nonlinear
Dynamic Inversion

In this paper, the properties (especially the boundedness) of the
remaining uncertainty term after INDI feedback will be analyzed.
The influences of sudden actuator faults and structural damage on
INDI will also be explicitly modeled and analyzed. The robustness
enhancement that sliding modes bring to INDI will be proved and
numerically verified.

B. Contributions to (Higher-Order) Sliding-Mode Control

The present paper introduces an incremental sliding-mode control
framework, which reduces uncertainty while requiring less model
knowledge. By virtue of the uncertainty reduction, the minimum
possible control/observer gains can be reduced, which is beneficial
for chattering alleviation. The advantages of inducing sliding modes
based on INDI instead of NDI will be analyzed and numerically
validated by aircraft fault-tolerant control problems.
This paper is organized as follows. The derivations and robustness

comparisons between NDI and the reformulated INDI are presented
in Sec. II. The INDI-SMC framework is proposed in Sec. III,
considering the hybridizations of the reformulated INDI with
(higher-order) sliding-mode controllers/observers. This INDI-SMC
framework is then applied to aircraft flight-tolerant control problems
in Sec. IVand comparedwithNDI, reformulated INDI, andNDI based
slidingmode control in Sec. V.Main conclusions are drawn in Sec.VI.

II. Comparisons Between Nonlinear Dynamic Inversion
and the Reformulated Incremental Nonlinear

Dynamic Inversion

A. Problem Formulation

Consider a multi-input/multi-output nonlinear control-affine
system described by

_x � f�x� � G�x�u; y � h�x� (1)

where f :Rn → Rn and h:Rn → Rm are smooth vector fields. G is a
smooth function mapping Rn → Rn×m, whose columns are smooth
vector fields.Define thevector relative degree ofywith respect tou as
ρ � �ρ1; ρ2; : : : ; ρm�T . Assume

ρ �
Xm
i�1

ρi � n

then by differentiating the output, the input–output mapping of the
system is given by

y�ρ� � α�x� � B�x�u (2)

where yρ � �yρ11 ; yρ22 ; : : : ; yρmm �T , α�x� � �Lρ1
f h1;L

ρ2
f h2; : : : ;L

ρm
f hm�T ,

B�x� ∈ Rm×m, Bij � LgjL
ρi−1
f hi, and Lρi

f hi, LgjL
ρi−1
f hi are the

corresponding Lie derivatives [16]. Assume detfB�x�g ≠ 0 (before

and after faults), which yields a controllable system without control

redundancy. Sensor faults are not considered in the present paper, and

the reader is recommended to Ref. [39] for sensor fault detection and

fault-tolerant controlmethods. Define ξi � �hi;Lfhi; : : : ;L
ρi−1
f hi�T ,

ξ � �ξ1; ξ2; : : : ; ξm�, i � 1; 2; : : : ; m; the nonlinear system

described by Eq. (1) can be transformed into a canonical form as

_ξ � Acξ�Bc�α�x� � B�x�u�; y � Ccξ (3)

whereAc�diagfAi
0g,Bc�diagfBi

0g,Cc�diagfCi
0g, i�1;2; :::;m,

and (Ai
0, B

i
0, C

i
0) is a canonical form representation of a chain of ρi

integrators. The control object is to make the output y asymptotically

track a reference signal yr�t� � �yr1�t�; yr2�t�; : : : ; yrm�t��T . Assume

yri�t�, i � 1; 2; : : : ; m, and its derivatives up to y�ρi�ri �t� are bounded
for all t, and each y�ρi�ri �t� is continuous. Denote the reference and the
tracking error vectors as

R �
h
R1;R2; : : : ;Rm

i
; Ri � �yri ; y�1�ri ; : : : ; y

�ρi−1�
ri

i
T
;

i � 1; 2; : : : ; m; e � ξ −R (4)

Using Eq. (3), the error dynamics are given by

_e � Ac�R� e� � Bc�α�x� � B�x�u� − _R

� Ace� Bc

h
α�x� � B�x�u − y�ρ�r

i
(5)

where y�ρ�r � �y�ρ1�r1 ; y�ρ2�r2 ; : : : ; y�ρm�rm �T .

B. Nonlinear Dynamic Inversion and the Reformulated Incremental
Nonlinear Dynamic Inversion

The standard NDI control law for stabilizing e in Eq. (5) is

designed as

undi � �B−1�x��νc − �α�x��; νc � y�ρ�r −Ke (6)

with the gain matrix K � diagfKig, i � 1; 2; : : : ; m, and Ki �
�Ki;0; Ki;1; : : : ; Ki;ρi−1� is designed such that Ac −BcK is Hurwitz.

νc ∈ Rm is called the virtual control. The nominal models �B and �α are
used by NDI, which results in the closed-loop dynamics as

_e � �Ac −BcK�e� Bcεndi (7)

where

εndi � �α − �α� � �B �B−1 − I��νc − �α� � �α − �α� � �B − �B�undi
(8)

εndi is the residual cancellation error of NDI caused model

uncertainties, external disturbances, faults, and damage.
Following the recently reformulated INDI [38], the incremental

dynamic equation is derived by taking the first-order Taylor series

expansion of Eq. (2) around the current (denoted by the subscript 0)

states x0 and control input u0 as

y�ρ� � α�x� � B�x�u

� y�ρ�0 � B�x0�Δu� ∂�α�x� � B�x�u�
∂x

����
0

Δx�O�Δx2�

≜ y�ρ�0 � B�x0�Δu� δ�x;Δt� (9)

inwhichΔx andΔu represent the states and control increments in one

sampling time stepΔt. The incremental control law for stabilizing the

error dynamics in Eq. (5) is then designed as

Δuindi � �B−1�x0�
�
νc − y�ρ�0

�
; νc � y�ρ�r −Ke (10)
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where K is kept identical to the gain matrix in Eq. (6) for fair
comparisons. y�ρ�0 is measured or estimated. The total control
command for actuator is hence uindi � uindi;0 � Δuindi [38].
Substituting Eq. (10) into Eqs. (5) and (9) results in the closed-loop
dynamics as

_e�Ace�Bc

h
y�ρ�0 �B�x0�

�
�B−1�x0�

�
νc−y�ρ�0

��
�δ�x;Δt�−y�ρ�r

i
��Ac−BcK�e�Bcεindi (11)

with

εindi � δ�x;Δt� � �B �B−1 − I�
�
νc − y�ρ�0

�
� δ�x;Δt� � �B − �B�Δuindi (12)

As compared to NDI control, this INDI control is less sensitive to
model mismatches because themodel information ofα�x� is not used
in Eq. (10). On the other hand, the INDI control law needs the
measurement or estimation of y�ρ�0 and u0; this is why INDI control is
referred to as a sensor-based approach [36,38].

C. Comparisons Between εndi and εindi
Referring to the stability analyses in [38], if εndi∕indi is bounded by

�εndi∕indi, then the tracking error in Eqs. (7) and (11) is ultimately

bounded by a class K function of �εndi∕indi. Even so, the control

performance is inevitable impaired by εndi∕indi.
The formulations for εndi and εindi are presented by Eqs. (8) and

(12). For the reason that INDI is a sensor-based approach, in the sense
that the model information of α is obtained by measuring or

estimating y�ρ�0 and u0, themismatch errorα − �α in εndi is accordingly
replaced by δ�x;Δt� in εindi. Assume that the partial derivatives of
α�x� andB�x�with respect to x of any order are bounded. Because of
the continuity of x, limΔt→0kΔxk � 0. Therefore, recall Eq. (9), the
δ�x;Δt� term in εindi satisfies

lim
Δt→0

kδ�x;Δt�k � 0; ∀ x ∈ Rn (13)

which means that the norm value of δ�x;Δt� becomes negligible for
sufficiently high sampling frequency. Equation (13) also indicates

that ∀ �δε > 0, ∃Δt > 0, s.t. for all 0 < Δt ≤ Δt, ∀ x ∈ Rn,

kδ�x;Δt�k ≤ �δε. In other words, there exists aΔt that guarantees the
boundedness of δ�x;Δt�. Also, this bound can be further diminished
by increasing the sampling frequency. The insensitivity of INDI to
δ�x;Δt� has been numerically verified in [22–24,34–36] and flight

tested in [37]. The other terms in Eqs. (8) and (12), i.e., �B − �B�undi
and �B − �B�Δuindi, are caused by the multiplicative uncertainties in
the B�x� matrix.
Theorem 1: If kI − B �B−1k ≤ �b < 1, for sufficiently high sampling

frequency fs, the residual error εindi of INDI given by Eq. (12) is
ultimately bounded.
Proof: Recall Eqs. (9), (10), and (12); the output dynamics under

INDI control can also be written as y�ρ� � νc � εindi. Also, at the
previous time step, y�ρ�0 � νc0 � εindi0 . Therefore, usingEq. (12), εindi
can be rewritten as

εindi � �B �B−1 − I�
�
νc − y�ρ�0

�
� δ

� �I − B �B−1�εindi0 − �I − B �B−1��νc − νc0� � δ

≜ Eεindi0 −EΔνc � δ (14)

which can be written in an recursive way as

εindi�k� � E�k�εindi�k − 1� −E�k�Δνc�k� � δ�k� (15)

νc is designed to be continuous in time; thus, the following equation
holds:

lim
Δt→0

kνc − νc0k � 0; ∀ x ∈ Rn (16)

Recall Eq. (13) and the subsequent discussions; for sufficiently
high sampling frequency, bothΔνc and δ�x;Δt� are bounded.Denote
their bounds as Δνc and �δ, then Eq. (15) satisfies

kεindi�k�k ≤ � �b�kkεindi�0�k �
Xk
j�1

� �b�k−j�1kΔνc�j�k

�
Xk−1
j�1

� �b�k−jkδ�j�k � kδ�k�k

≤ � �b�kkεindi�0�k � Δνc
Xk
j�1

� �b�k−j�1 � �δ
Xk−1
j�1

� �b�k−j � �δ

� � �b�kkεindi�0�k � Δνc
�b − �bk�1

1 − �b
� �δ

1 − �bk

1 − �b
(17)

Because �b < 1, Eq. (17) satisfies

kεindik ≤
Δνc �b� �δ

1 − �b
; as k → ∞ (18)

In conclusion, εindi is bounded for all k and is ultimately bounded by

Δνc �b� �δ

1 − �b

This completes the proof. □

The boundedness of perturbations is the precondition of many
robust control techniques [4]. Theorem 1 demonstrates that a

sufficiently high sampling frequency fs and kI − B �B−1k ≤ �b < 1
guarantee a bounded εindi. fs � 100 Hz is a reasonable choice for
flight control, as has beenverified by both simulations [22–24,34,35]

and passenger aircraft flight tests [37]. Moreover, kI − B �B−1k ≤
�b < 1 requires a diagonally dominant structure of B �B−1, which
excludes unacceptable estimations of B (e.g., The signs of B and its

estimation �B are opposite). Similar requirements can be found in
[5,6,19,26,30].
By contrast, as a function of both x, undi, and being independent of

Δt, the residual error of NDI is undetermined under the same
conditions. The boundedness of εndi is normally assumed for the
feasibility of sliding-mode control designs [5,6,19,26]. However, it

will be shown in Sec. V that, even if kI − B �B−1k ≤ �b < 1, εndi has the
possibility to become unbounded in severe damage caseswith limited
control authority. As a consequence, the NDI based sliding-mode
controllers can only deal with situations where both the boundedness

of εndi and kI − B �B−1k ≤ �b < 1 are satisfied.
One may argue that, for some moderate fault and damage cases,

εndi is normally bounded. Even if this is true, by comparing εndi with
εindi under the same fault/damage circumstances, εindi typically has
smaller bound, which can be further diminished by increasing fs.
This can be demonstrated by comparing Eq. (8) with Eq. (12), where
kδ�x;Δt�k becomes negligible for sufficiently high fs [Eq. (13)],
whereas kα − �αk is normally large in the presence of faults and
disturbances, especially for aerospace systems. Moreover, when
undi ≠ 0, there exists an fs such that kΔuindik < kundik. Denote
�εndi � kα− �αk� kB− �Bkkundik ≥ kεndik, and �εindi � kδ�x;Δt�k�
kB − �BkkΔuindik ≥ kεindik, then consequently, in the perturbed

conditions that kα − �αk ≠ 0, kB − �Bk ≠ 0, and kundik ≠ 0, there
exists an fs such that �εindi < �εndi.
The smaller bound of εindi is a useful feature because, for many

(higher-order) sliding-mode controllers/observers, the required gains
for inducing slidingmodes aremonotonically increasing functions of
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the perturbation bounds. High control/observer gains are undesirable
in practice because they amplify the measurement noise, excite
the unmodeled parasitic dynamics, induce chattering, threaten the
actuator rate and/or position limits, and potentially lead to
divergence. The advantages of the incremental framework will be
further demonstrated in Sec. III.

III. Proposal of the Incremental Sliding-Mode
Control Framework

This section proposes a new control approach that hybridizes the
reformulated INDI with (higher-order) sliding-mode controllers/
observers, defined as incremental sliding-mode control (INDI-
SMC). First, the control frameworks for INDI-SMC and NDI-SMC
are presented. Then it will be shown in the following subsections that
a wide variety of (higher-order) sliding-mode control designs in the
literature belong to the NDI-SMC framework and redesigning them
in the new incremental framework is beneficial for chattering
reduction and robustness enhancement.
The INDI-SMC framework is proposed as

Δuindi-s � �B−1�x0�
�
νc � νs − y�ρ�0

�
(19)

where νc is designed for stabilizing the unperturbed system, whereas
νs can be designed using (higher-order) sliding-mode control/
observer techniques for perturbation compensations. By contrast,
control methods in the literature that are in the form of

undi-s � �B−1�x��νc � νs − �α�x�� (20)

are classified as NDI-SMC.
Design the sliding variable as σ�x�:Rn → Rm, and define the

vector relative degree of σ with respect to u as r � �r1; r2; : : : ; rm�T ,
then the dynamics of the sliding variable σ are given by

σ�r� � ασ�x� � Bσ�x�u; ασi � Lri
f σi;

Bσij � LgjL
ri−1
f σi; i; j � 1; 2; : : : ; m (21)

In the context of sliding-mode control, σ is designed such that,
when the sliding surface σ � 0 is reached, the system obtains
the desirable dynamics, in spite of uncertainties. The following
subsections will show how the incremental framework can be used to
enforce (higher-order) slidingmodes, and its advantages as compared
to the NDI-SMC framework.

A. First-Order Incremental Sliding-Mode Control

In Eq. (21), if ri � 1, i � 1; 2; : : : ; m, control methods that
achieve σ � 0 are referred to as first-order (or conventional) sliding-
mode control [30,40]. To reduce the switching magnitude, many
sliding-mode controllers introduce a continuous preliminary
feedback component based on the equivalent control method [41].
The equivalent control is defined as the control effort needed to
maintain the sliding motion on the surface and is calculated by
requiring σ � _σ � 0 [4,41]. Recalling Eq. (21), for first-order
slidingmode, _σ � ασ�x� � Bσ�x�ueq � 0. By dynamically inverting
this nonlinear algebraic equation, the equivalent control ueq is
calculated by

ueq � −B−1
σ �x�ασ�x� (22)

Because ueq contains uncertainties and disturbances, only the
model-based nominal equivalent control �ueq � − �B−1

σ �x� �ασ�x� is
available for feedback control. The most widespread first-order
sliding-mode control structure is

u � �ueq � us � �B−1
σ �x��νs − �ασ�x�� (23)

Remark 1: Equation (23) is widely used in sliding-mode control
techniques regardless of the choice of sliding surface and reaching
law. For example, this control structure is adopted using integral-type
sliding surfaces [6,11,19,25], linear sliding surfaces [4,10,16],

dynamic sliding manifolds [26], terminal sliding surfaces [27–29],
finite reaching time continuous sliding-mode designs [5], etc.
It will be shown by an example that sliding-mode control laws

designed in the form of Eq. (23) are essentially NDI-based. Because
INDI is able to preserve the benefits of NDI (e.g., decoupling,
linearization) while requiring reduced model knowledge, it can also
be used in sliding-mode control designs. The integral sliding surface
is taken as an example because of its simplicity, robustness, and
design flexibility.
Design the matrix D � diagfDig, Di � �Ki;1; : : : ; Ki;ρi−1; 1�,

K0 � diagfKi;0g, Ki;0 � �Ki;0; 0; : : : ; 0�, i � 1; 2; : : : ; m, and then

design the integral-type sliding variable as

σ � De −De�t0� −
Z

t

0

D�Ac − BcK�e dτ

� De −De�t0� �
Z

t

0

K0e dτ (24)

where the K matrix is the same as used in Eqs. (6) and (10).
D�Ac −BcK� � −K0 can be proved by substituting the expressions

forD,K0 into Eq. (24) and using the condition that (A
i
0,B

i
0, C

i
0) is a

canonical form representation of a chain of ρi integrators.
Equivalently, Eq. (24) can be written as

σi � e�ρi−1�i � Ki;ρi−1e
�ρi−2� � Ki;ρi−2e

�ρi−3� � : : : � Ki;1e
�0�

�
Z

t

0

Ki;0ei dτ −
�
e�ρi−1�i �t0� � Ki;ρi−1e

�ρi−2��t0�

� Ki;ρi−2e
�ρi−3��t0� � : : : � Ki;1e

�0��t0�
�

(25)

It can be seen fromEq. (25) that σ�t0� � 0, whichmeans that if the
initial conditions are known, system dynamics initiate on the sliding
surface without a reaching phase. Furthermore, _σ � 0 is equal to the
desired closed-loop error dynamics as shown by

_σi � e�ρi�i �Ki;ρi−1e
�ρi−1�
i �Ki;ρi−2e

�ρi−2�
i � : : : �Ki;1e

�1�
i �Ki;0ei

� 0; i� 1;2; : : : ;m;

_σ � y�ρ� − y�ρ�r �Ke� 0 (26)

In the preceding equation, y�ρ� contains system dynamics, and y�ρ�r

and Ke are known or measurable. Substituting Eq. (2) into Eq. (26),
the control law designed in the form of Eq. (23) is

_σ � �α�x� � B�x�u� − y�ρ�r � Ke � 0

undi-s � �ueq � us � �B−1�x�
�
νs − �α�x� − Ke� y�ρ�r

�
(27)

which belongs to NDI-SMC [Eq. (20)] with νc � y�ρ�r −Ke.
By contrast, if the incremental output dynamics [Eq. (9)] are

substituted into Eq. (26), then INDI-SMC [Eq. (19)] is designed as

_σ � �y�ρ�0 � B�x0�Δu� δ�x;Δt�� − y�ρ�r � Ke � 0

Δuindi-s � �B−1�x0�
�
νs − y�ρ�0 −Ke� y�ρ�r

�
(28)

As an example, νs is designed in the classical way as

νs � −Kssign�σ�
� −�Ks;1sign�σ1�; Ks;2sign�σ2�; : : : ; Ks;msign�σm�

i
T

(29)

where sign represents the signum function, and the switching gains
Ks;i > 0, i � 1; 2; : : : ; m. If the conditions in Theorem 1 are
satisfied, using Eq. (12), then the time derivative of the candidate
Lyapunov functionV � �1∕2�σTσ under the control of Eqs. (28) and
(29) is calculated by
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_V � σT _σ

� σT
h
y�ρ�0 � B�x0� �B−1�x0�

�
νs − y�ρ�0 � νc

�
� δ�x;Δt� − νc

i
� σT

h
δ�x;Δt� � �B �B−1 − I�

�
νc − y�ρ�0

�
� B �B−1νs

i
� σT �εindi − B �B−1Kssign�σ��

≤
Xm
i�1

�
jσijjεindi;ij � �bKs;ijσij − Ks;ijσij

�

≤ −η
Xm
i�1

jσij � −ησTsign�σ�; ∀ Ks;i ≥
η� jεindi;ij

1 − �b
(30)

where η is a small positive constant. _V ≤ −ησTsign�σ� is referred to
as the η reaching law and guarantees that the sliding surface σ � 0 is
reached in finite time [6–8]. On the sliding surface, the desired error
dynamics are achieved, which ensure that e converges to zero.
Reviewing the discussions in Sec. II.C, the boundedness of εndi

is undetermined even if the conditions in Theorem 1 are satisfied.
For the feasibility of sliding-mode control design, assume that εndi
is bounded, then similar to the derivations in Eq. (30), NDI-SMC
given by Eq. (27) guarantees the convergence of σ, when νs �
−Kssign�σ�, ∀ Ks;i ≥ �η� jεndi;ij�∕�1 − �b�.
Remark 2: First-order sliding-mode control that contains a model-

based nominal equivalent control term is essentially NDI-based and
can be correspondingly designed in the proposed incremental
framework. Recall the gain requirement in Eq. (30) and the analyses
in Sec. II.C; this incremental framework is able to passively resist a
wider range of perturbations with reduced control gains because the
boundedness condition of εindi is easier to fulfill, and there exists an
fs that makes the bound of εindi smaller than the bound of εndi under
the same perturbation circumstances.

B. Higher-Order Incremental Sliding-Mode Control

The problem of higher-order sliding-mode control is equivalent to
the finite time stabilization of higher-order integrator chains with
bounded nonlinear perturbations [30,42]. Because NDI is able to
reduce the dynamic couplings and nonlinearities by providing a
preliminary feedback term based on the nominal model, it is widely
used in higher-order sliding-mode controllers [30–32].
Consider an output tracking problem for the system described by

Eq. (1), and choose the sliding variable as σ � y − yr. Assume that
the time derivatives of σi, _σi; : : : ; σi

�ri−1� are continuous functions
for all i � 1; 2; : : : ; m, and the manifold, defined as

Sr � fxjσi�x� � _σi�x� � : : : � σ�ri−1�i �x� � 0; i� 1;2; : : : ;mg
(31)

and called the “rth-order sliding set” [30,43], is nonempty and locally
an integral set in the Filippov sense [44], then the motion on Sr is
called the “rth-order sliding mode” with respect to the sliding
variable σ. It is noteworthy that a rth-order sliding mode can also be
established for a systemwith relative degree ρ less than r bymanually
increasing the length of the integrator chains [40]. For clarity, only
ρ � r will be considered in the following derivations.
Recall Eqs. (2) and (5), and define z � �z1; z2; : : : ; zm�,

zi � �σi�x�;Lfσi�x�; : : : ;Lri−1
f σi�x��T , i � 1; 2; : : : ; m, then the

dynamics of the sliding variable σ are given by

_z � Acz� Bc

h
α�x� � B�x�u − y�ρ�r

i
; σ�r� � y�ρ� − y�ρ�r (32)

To achieve the rth-order sliding mode, Defoort et al. [30] design a
higher-order sliding-mode controller in the form of Eq. (20) as

undi-s � �B−1�x�
�
νs � νn − �α�x� � y�ρ�r

�
(33)

where νn is a continuous virtual control to achieve the finite time

stabilization of the integrator chains [30,45]. νc � νn � y�ρ�r in
Eq. (33), which is able to stabilize the unperturbed system. It is

noteworthy that the formulations for εndi∕indi [Eqs. (8) and (12)] and
Theorem1 are not constrained by the specific νc design; they are valid
as long as νc is continuous in time.
By contrast, using the incremental output dynamics [Eq. (9)], the

incremental higher-order sliding-mode control law is designed in the
form of Eq. (19) as

Δuindi-s � �B−1�x0�
�
νs � νn − y�ρ�0 � y�ρ�r

�
(34)

The rth-order sliding mode can then be established by properly
designing νn and νs. As an example, design the augmented sliding

variable as s � σ�r−1� � sau, _sau � −νn, and design νs in the classical
way as νs � −Khsign�s� � −�Kh;1sign�s1�; Kh;2sign�s2�; : : : ;
Kh;msign�sm��T , Kh;i > 0, i � 1; 2; : : : ; m. When the conditions in

Theorem 1 are satisfied, using Eq. (12), the time derivative of the

candidate Lyapunov function Vs � �1∕2�sTs is
_Vs � sT _s � sT

h
y�ρ�0 � B�x0� �B−1�x0�

�
νs � νn − y�ρ�0 � y�ρ�r

�
� δ�x;Δt� − y�ρ�r − νn

i
� sT

h
δ�x;Δt� � �B �B−1 − I�

�
νc − y�ρ�0

�
� B �B−1νs

i
� sT

h
εindi − B �B−1Khsign�s�

i

≤
Xm
i�1

�
jsijjεindi;ij � �bKh;ijsij − Kh;ijsij

�

≤ −η
Xm
i�1

jsij � −ηsTsign�s�; ∀ Kh;i ≥
η� jεindi;ij

1 − �b
(35)

Equation (35) proves that, whenKh;i ≥ �η� jεindi;ij�∕�1 − �b�, the
sliding surface s � 0 will be reached in finite time. On the sliding

surface, using the equivalent control method [41], σ�r� � −_sau � νn,
which means that the system dynamics are integrator chains with νn
as an input. Design νn using the geometric homogeneity-based
method introduced in [45], then the rth-order sliding mode is
established in finite time.

Analogously, assume that kI − B �B−1k ≤ �b < 1 and εndi is
bounded, then Eq. (33) guarantees the establishment of the rth-
order sliding mode in finite time when νn ensures finite time
convergence of integrator chains, and νs � −Khsign�s�, ∀ Kh;i ≥
�η� jεndi;ij�∕�1 − �b�.
Remark 3: In view of the gain requirement in Eq. (35), similar to

theRemark 2, designing a higher-order sliding-mode controller in the
incremental form enables it to passively resist a wider range of
perturbations using lower control gains.
Remark 4: For simplicity, the classical νs design using the signum

function is adopted in the preceding derivations. To migrate the
chattering effects, continuous approximations of the signum function
are widely used in the literature [2,4,6–9,12,16]. Other continuous νs
designs such as the fast terminal sliding-mode-type reaching law [29]
can also be used. In spite of the variations of νs designs, the relation
that larger perturbation bounds require higher control gains
consistently holds.
Remark 5: The sliding-mode control gains can also be adaptive,

which removes the knowledge requirement on the uncertainty bound.
Many advanced adaptive sliding-mode control methods are aiming
for the “as small as possible” gain to migrate the chattering effects
[13–15,17]. Theoretically, the smallest gain that can enforce sliding
motion is a monotonically increasing function of the perturbation
bound. Because there exists an fs such that the bound
of εindi is smaller as compared to the bound of εndi, the chattering
reduction benefit of the incremental framework still holds in the
context of adaptive sliding-mode control.

C. First-Order Incremental Sliding-Mode Control Driven by Sliding-
Mode Disturbance Observers

An increasingly popular approach is designing sliding-mode
control in conjunction with sliding-mode disturbance observers,
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[14,15,18–21,31–33]. The main idea is using the uncertainty

observations in νs such that the uncertainties are directly

compensated in the framework of Eq. (20). This subsection will

show the merits of the incremental framework, when a first-order

disturbance observer is incorporated. Higher-order sliding-mode

controllers/observers will be discussed in the next subsection.
Considering the first-order sliding variable Eq. (24) with dynamics

given by Eq. (26) as an example. Massey and Shtessel [18], Hall and

Shtessel [19], Besnard et al. [20], and Orr and Shtessel [21] design

sliding-mode controllers driven by sliding-mode disturbance

observers in the form of Eq. (20), which leads to the closed-loop

dynamics as

_σ � y�ρ� − νc � �α�x� � B�x�undi-s� − νc

� νs � ��α − �α� � �B − �B�undi-s� ≜ νs � εndi-s (36)

in which νs contains the perturbation observations and will be

designed later. It is worth noting that the uncertainties in the control

effectiveness matrix B�x� are not considered in [18–21], whereas

they are included in the present paper.
By contrast, using the incremental framework given by Eq. (19)

leads to

_σ � y�ρ� − νc �
�
y�ρ�0 � B�x0�Δuindi-s � δ�x;Δt�

�
− νc

� νs �
�
δ�x;Δt� � �B − �B�Δuindi-s

�
≜ νs � εindi-s (37)

Proposition 1: If kI − B �B−1k ≤ �b < 1, and if νs is continuous in
time, for sufficiently high sampling frequency fs, the residual error
term εindi-s in Eq. (37) is ultimately bounded.
Proof: The only difference between εindi-s [Eq. (37)] and εindi

[Eq. (12)] is the incorporation of νs. In the context of sliding-mode

observer designs, νs is always continuous in time. Therefore,

analogous to Eq. (16) and the subsequent discussions, for sufficiently

high fs, Δνs � νs − νs0 is bounded. Denote the bound as Δνs, then
analogous to the proof of Theorem 1, εindi-s is bounded for all k, and is
ultimately bounded by

kεindi-sk ≤
Δνc �b� Δνs �b� �δ

1 − �b
(38)

This completes the proof. □

Moreover, because νs is continuous in time, similar to the

discussions in Sec. II.C, under the same perturbation circumstances,

there exists an fs such that εindi-s has a smaller bound as compared to

εndi-s [Eq. (36)]. This feature is beneficial for disturbance

observations, which will be shown as follows.
Using the first-order sliding-mode disturbance observer proposed

in [18–21], the auxiliary sliding variable s is designed as

s � σ � zo; _zo � −νs − νo, with dynamics _s � εndi-s∕indi-s − νo
under the control of Eqs. (20) and (19). If s is stabilized by

νo � Kobsign�s�, then the equivalent control exactly equals

εndi-s∕indi-s. This equivalent control can be estimated by low-pass

filtering νo; consequently, the estimated equivalent control ν̂eq
reconstructs εndi-s∕indi-s with a small error proportional to the time

constant of the low-pass filter. Finally, designing νs � −Kσσ − ν̂eq
with positive-definite Kσ ensures that σ is bounded by an arbitrarily

small bound.
Remark 6: The sufficient condition for stabilizing s is the observer

gainsKob;i > jεndi-s∕indi-s;ij � η, with a small positive η. Even though
the observation term νs is continuous, the chattering effects are only
attenuated instead of being rejected by the filtering process [19].

Therefore, aiming for the “as small as possible” observer gains is still

meaningful. Because there exists an fs such that εindi-s has a smaller

bound as compared to εndi-s, the incremental framework is beneficial

for chattering reduction.

D. Higher-Order Incremental Sliding-Mode Control Driven by
Sliding-Mode Disturbance Observers

This subsection will show how to design a higher-order sliding-

mode control driven by a higher-order sliding-mode disturbance

observer in the incremental framework. Following the derivations in

Sec. III.B, design the sliding variable as σ � y − yr and design

νc � νn � y�ρ�r , then the dynamics of σ under the control of Eq. (20) is

σ�r� � y�ρ� − y�ρ�r � �α�x� � �B�x�undi-s � εndi-s − y�ρ�r

� νn � νs � εndi-s (39)

By contrast, using Eqs. (9) and (37), the dynamics of σ under the

control of Eq. (19) equals

σ�r� � y�ρ� − y�ρ�r � y�ρ�0 � �B�x0�Δuindi-s � εindi-s − y�ρ�r

� νn � νs � εindi-s (40)

The only difference between Eqs. (39) and (40) is the value of the

perturbation terms. Because εindi-s has better properties than εndi-s,
higher-order sliding-mode disturbance observers, such as the

(adaptive) super-twisting disturbance observer, designed for Eq. (39)

[14,15,18–21,31–33] can be straightforwardly applied to Eq. (40).

Design the augmented sliding variable as s � σ�r−1� � sau, _sau �
−νn, then _s � νs � εndi-s∕indi-s for dynamics given by Eqs. (39) and

(40). If s is stabilized by the (adaptive) supertwisting control, then νs
observes −εndi-s∕indi-s in finite time. Consequently, the closed-loop

systems described by Eqs. (39) and (40) behave like unperturbed

systems in finite time. It is noteworthy that the observation term νs
provided by (adaptive) super-twisting observer is continuous because

of the integration of the signum function.
Remark 7: Theoretically, an (adaptive) super-twisting control/

observer may be less suitable for resisting sudden (discontinuous in

time) onboard faults or damage because the classical supertwisting

control/observer requires bounded _εndi-s∕indi-s, and the adaptive

supertwisting requires bounded �εndi-s∕indi-s [14,15,19]. Nevertheless,
many physical processes in reality are at least twice differentiable,

which makes the incorporation of (adaptive) supertwisting control/

observer possible.

E. Advantages of the Incremental Sliding-Mode Control Framework

In this subsection, the NDI [Eq. (6)], INDI [Eq. (10)], NDI-SMC

[Eq. (20)], and INDI-SMC [Eq. (19)] methods will be compared. The

main focus of this paper is demonstrating the properties of the

incremental framework, instead of specific νc and νs designs.

Therefore, the following comparisons are also independent of νc, νs,
as long as they are kept consistent in the four different control

frameworks for fair comparisons.
Figure 1 illustrates the relations of the four control frameworks.

When the sliding-mode module for calculating νs is deactivated,

Fig. 1 shows the control structure of NDI and INDI. To be specific,

when the two switches are connected with the blue dashed lines,

Fig. 1 shows the control structure of NDI, where the nominal model
�α�x� is needed. By contrast, when the two switches are connected

with the back solid lines, Fig. 1 shows the control structure of INDI.

As can be seen from Fig. 1, INDI does not need the model �α�x� but
requires the measurements/estimations of y�ρ�0 and uindi;0. Activating
the sliding-mode module inserts the νs virtual control for resisting
perturbations, which results in the NDI-SMC and INDI-SMC

frameworks. Moreover, INDI and INDI-SMC design the control

increments, whereas NDI and NDI-SMC directly design the total

control commands.
By virtue of the incorporation of νs, the advantage of INDI-SMC

over INDI is straightforward (i.e., robustness enhancement). On

the other hand, the advantages of the INDI-SMC framework over

NDI-SMC are 1) less model dependency and lower computational

burden, 2) lower sliding-mode control/observer gains required,

3) improved robustness because INDI is more robust than NDI, and

4) capability to solve problems that are nonaffine in the control.
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�α�x� contains the aerodynamics for aerospace systems, which are
difficult to be modeled accurately. Because the incremental
framework is independent of �α�x�, the implementation process
is simplified, and the computational burden can also be reduced.
INDI-SMC also requires lower control and observer gains, mainly
because of the better properties of εindi�-s�. As proved by Theorem 1
and Proposition 1, sufficiently high fs and a diagonally dominant
structure of B �B−1 ensure the boundedness of εindi�-s�, whereas the
boundedness of εndi�-s� is not guaranteed under the same conditions.
Moreover, in the same fault scenario, there exists an fs such that
εindi�-s� has a smaller bound as compared to εndi�-s�. These properties
enable INDI-SMC to passively resist a wider range of perturbations
using lower control and observer gains, as compared to NDI-SMC in
the literature. In addition, the incremental framework can also deal
with nonaffine in the control problems because the incremental
dynamic equation [Eq. (9)] is derived by taking partial derivativewith
respect to u. The merits of the incremental sliding-mode control
framework will be numerically verified in Sec. V.

IV. Fault-Tolerant Flight Control Design

In this section, the nominal six-degree-of-freedom nonlinear
equations of motion of aircraft are given first. Then the actuator faults
and structural damage are modeled. After that, the control methods
derived in Sec. III are applied to aircraft fault-tolerant control problems.

A. Nominal Equations of Motion

In the nominal case, the origin of the body-fixed frame is assumed
to coincide with the aircraft center of mass (c.m.), and the equations
of motion for a rigid aircraft are given by"

_V

_ω

#
�

"
mI 0

0 J

#−1"−m ~ωV � F

− ~ωJω�M

#

_θ � T�θ�ω (41)

whereV � �u; v;w�T andω � �p; q; r�T represent the translation and
rotational velocities of the body-fixed frame relative to the inertial
frame. θ � �ϕ; θ;ψ �T contains the Euler angles. m is the total mass,
and J represents the inertia matrix. F and M are the total force and
moment vectors. The T�θ� matrix links angular velocities ω to
Eulerian velocities _θ. Bold mark indicates vectors and matrices. � ⋅∼�
denotes the skew-symmetric matrix of the corresponding vector. F
and M contain aerodynamic, gravitational, and thrust forces and
moments. Furthermore, the aerodynamic forces and moments are
normally given as functions of the aerodynamic coefficients as

Ma � q∞Sdiag��b; �c; b��

0
BB@
2
664

Cl�β; r; p�
Cm�α; _α; q�
Cn�β; r; p�

3
775

�

2
664
Clδa

�α; β� 0 Clδr
�α; β�

0 Cmδe
�α� 0

Cnδa
�α; β� 0 Cnδr

�α; β�

3
775
2
664
δa

δe

δr

3
775
1
CCA

Fa � q∞S
h
Cx�α; β; q; δe�; Cy�α; β; p; r; δa; δr�; Cz�α; β; q; δe�

i
T

(42)

In the preceding equation, α, β represent the angle of attack and the
sideslip angle.V is the airspeed, and the dynamic pressure is given by
q∞ � 0.5ρV2 (ρ is the air density). S, b, �c are the wing area, wing
span, and mean aerodynamic chord, respectively.

B. Actuator Faults

The actuator faults considered in this paper are the loss of control
surface area and control surface jamming problems. The inertia
effects of loss of control surface area are assumed to be negligible,
and the aerodynamic effects can be modeled by multiplying the
control derivatives with an effectiveness scaling factor, namely,
C 0
ij
� μjCij , i � l, m, n, j � δa, δe, δr, μj ∈ �0; 1�, with the prime

symbol indicating the postfailure condition.
There are two main effects of actuator jamming. One is the

influence on control effectiveness, and the other is the induced extra
forces and moments. If one side of the ailerons or elevators is stuck,
the corresponding control derivatives are halved (i.e., μj � 0.5,
j � δa, δe). Jamming faults also introduce new control derivatives
such that the decoupling between longitudinal and lateral controls no
longer holds. Specifically, aileron jamming would introduce Cmδa

,
and elevator jamming would introduce Clδe

and Cnδe
.

Furthermore, extra forces and moments will be induced if control
surfaces are jammed at nonneutral positions. If one of the ailerons is
jammed at δaΔ, the induced force and moment coefficients can be
given by

ΔCl �
1

2
Clδa

δaΔ; ΔCn � 1

2
Cnδa

δaΔ; ΔCy �
1

2
Cyδa

δaΔ;

ΔCz �
ΔClb

ray
; ΔCm � −

ΔClbrax
�cray

(43)

where ra � �rax ; ray ; raz �T is the position vector from the c.m. to the
aerodynamic center of the jammed aileron. Analogously, the induced
force and moment coefficients of one-side elevator jamming is
calculated by

ΔCz � −
Cmδe

δeΔ �c

2rex
; ΔCm � 1

2
Cmδe

δeΔ; ΔCl �
ΔCzrey

b
(44)

where re � �rex ; rey ; rez �T indicates the position vector from the c.m.
to the aerodynamic center of the jammed elevator.

C. Structural Damage

There are three main effects of structural damage: the changes of
aerodynamic properties, inertia properties, and the control
effectiveness [46,47].
Structural damage may reduce the control effectiveness and

introduce new control derivatives if asymmetric damage is
encountered. The methods for modeling these effects have been
discussed in the previous subsection.
Structural damage is normally accompanied with mass loss. As a

consequence, the center of mass instantaneously shifts to a new
location. Because Eq. (41) uses the c.m. as the reference frame origin
O, it should be modified for postdamage cases.
A conventional way to model the dynamics of postdamage aircraft

is setting up the equations of motion (EoM) on the new c.m. location
O 0, which is referred to as the c.m.-centricmethod in [47]. Denote the

undi (-s)

Δ

Fig. 1 Control structures of NDI, INDI, NDI-SMC, and INDI-SMC.
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distance vector fromO toO 0 as rOO 0 � �rΔx; rΔy; rΔz�T . When using
the c.m.-centric method, Eq. (41) can still be used for postdamage
conditions. Consequently, the reference point of moments due to
external forces should be transferred to the new c.m. location O 0.
Furthermore, the inertia tensor needs to be modified with respect to
the new point O 0 using the parallel axis theorem. Last but not least,
the translational velocity V in Eq. (41) actually refers to the velocity
of a new pointO 0, with the relationshipVO 0 � VO � ω × rOO 0 . As a
result, there is a discontinuity in V if ω is nonzero at the damage
instant, and so a trigger logic to reset the integrator of V is required.
This discontinuity and trigger logic are totally avoided by using the
non-c.m. approach [47], which means that the frame origin is still
fixed on O after damage. The reference frames for moments and
inertia tensor are also kept invariant. Additionally, themoment due to
gravityMG � rOO 0 × G needs to be added. The equations of motion
using the non-c.m. approach are given by [35,47]�

_V
_ω

�
�

�
m 0I ~ST

~S J 0

�−1� −m 0 ~ωV − ~ω ~STω� F 0

− ~V ~STω − ~ω ~SV − ~ωJ 0ω�M 0

�
(45)

The tilde symbol in Eq. (45) denotes the corresponding skew-
symmetric matrix of the vector. S � �m 0rΔx; m 0rΔy;m 0rΔz�T is
nonzero when using the non-c.m. approach, which leads to coupled
translational and rotational motions.
The aerodynamic characteristics of partially damaged aircraft have

been investigated in [46,48]. It has been found that damage of
horizontal stabilizers leads to significant loss in both static and
dynamic longitudinal stability. The static derivative Cmα

and

damping derivative Cmq
are approximately linear to the scale of tip

loss. An additional rolling moment coefficient due to pitch rateΔClq

is induced if geometric asymmetrical damage is imposed on
horizontal stabilizers.
Similarly, damage of the vertical tail causes reductions in static and

dynamic stability on the directional axis with an approximately linear
relationship with the damage scale. These effects are reflected by
reductions of Cnβ and Cnr .

The tip loss of the wing directly leads to the reduction of the lift
slope CLα

. The unequal lift on left and right wings also induces an
additional rolling moment coefficient ΔCl�α�. For aircraft with
positive dihedral angle, Clβ reduces as the wing area decreases. The
rolling damping coefficientClp is also expected to reduce because the
wing is the major source of rolling damping. Similar to the effects of
asymmetric horizontal stabilizer damage, the asymmetric wing
damage would also generate a rolling moment coefficient during
pitch motions indicated by ΔClq.
The influences of wing, horizontal stabilizer, and vertical tail

damage on aerodynamic coefficients are summarized in Table 1.

D. Aircraft Attitude Fault-Tolerant Control Design

Recall Eqs. (41) and (42). The aircraft attitude dynamics can be
written in a more compact form as

_x1 � f1�x1�x2
_x2 � f2�x1; x2� � G2u (46)

where x1 � �ϕ; θ;ψ �T , x2 � �p; q; r�T , and u � �δa; δe; δr�T . The
plant is perturbed by model uncertainties, damage, and failures:

f2 � �f2 � �ff2 − �f2�κ � Δf2; G2 � �G2 � �Gf2 − �G2�κ � ΔG2

(47)

In Eq. (47), �f2 and �G2 represent the nominal dynamics given by
Eq. (41). ff2 andGf2 denote the new dynamics after sudden actuator

faults or structural damage. Δf2 and ΔG2 indicate the model
uncertainty terms as continuous functions of x. κ�t� ∈ �0; 1� is a
failure indicator, where κ � 1 denotes postfault condition, and κ � 0
denotes the fault-free case. κ�t� is designed as a unit step function to
indicate the sudden structure breaks and actuator faults during flight.
Because the first equation of Eq. (46) represents the kinematics of

the aircraft attitude, there is no model uncertainty (f1 � �f1). V, α, β
in Eq. (42) are viewed as measurable inputs. Choosing y � x1, the
vector relative degree is then ρ� �2; 2; 2�T . With knowledge only
about the nominal model, the controller aims at passively tolerating
these faults/damage and model uncertainties. This paper chooses the
attitude control as a demonstrative case for testing the decoupling
performance of the controllers. The output and x1 can also be chosen
as y � x1 � �μ; α; β�T or y � x1 � �ϕ; θ; β�T. Using the kinematic
equations for μ, α, β [24], the vector relative degree for these two

choices still equals ρ� �2; 2; 2�T . Therefore, the control methods
designed in this paper can be applied straightforwardly.
Using Eqs. (8) and (46), the NDI control input is undi �

�B−1�νc − �α� [Eq. (6)] with residual error

εndi ��α− �α���B �B−1−I��νc− �α�

� f1�f2− �f2���f1G2
�G−1
2 f1−I�

�
νc−

∂f1x2
∂x1

�f1x2�−f1
�f2

�
(48)

where f1 � �f1 is used in the preceding equation. The INDI
controller is designed by Eq. (10), but because a new variable κ as a
discontinuous function of time is incorporated to indicate the sudden
faults/damage onboard, δ�x;Δt� in Eq. (9) needs to be augmented by
a Δκ related term as

δ 0�x;Δκ;Δt� ≜ δ�x;Δt� � ηκ

�
�
∂�α� Bu�

∂x

����
0

Δx�O�Δx2�
�
� ∂�α� Bu�

∂κ

����
0

Δκ

(49)

Using Eqs. (46) and (47), ηκ is calculated as

ηκ �
∂��∂f1x2∕∂x1��f1x2� � f1f2 � f1G2u�

∂κ

����
0

Δκ

� f1

h
�ff2 − �f2� � �Gf2 − �G2�u

i���
0
Δκ (50)

Because κ�t� is a unit step function, Δκ�t� is a single square pulse
with magnitude of 1 and width of Δt. Consequently, this ηκ term is
only nonzero at the failure instant, and at the next time step, the faults/
damage have already been reflected in the measurements. This
remarkable feature makes the sensor-based INDI a promising
approach for fault-tolerant control problems.
Recalling Eq. (50), ηκ is bounded if, at the fault instant tf,

��ff2 − �f2� � �Gf2 − �G2�u�jt�tf
is bounded. This is a reasonable

assumption because more strict requirements on the boundedness of

f2 − �f2 � �ff2 − �f2�κ�Δf2 and G2 − �G2 � �Gf2 − �G2�κ�ΔG2

for all t are often made in the literature [2,5–10]. Denote the bound of
ηκ as �ηκ; recalling Eq. (49), kδ 0�x;Δκ;Δt�k ≤ kδ�x;Δt�k � �ηκ . As a
result, Theorem 1 and Proposition 1 are valid when κ is involved.
Furthermore, because ηκ converges to zero after the fault occurs, the
ultimate bound of εindi�-s� is not influenced by �ηκ. Even though this ηκ
term only appears at the fault/damage instant, it inevitably degrades
the tracking performance of INDI. Therefore, it is meaningful to
incorporate νs into INDI for robustness enhancement.

V. Numerical Validation

In this section, the NDI, INDI, NDI-SMC, and INDI-SMC
designed for an aircraft command tracking problemwill be compared

Table 1 The main influences of structural damage on
aerodynamic coefficients

Damaged component Changed coefficients New coefficients

Horizontal stabilizer Cmα
, Cmq

ΔClq
Vertical tail Cnβ , Cnr ——

Wing CLα
, Clβ , Clp ΔClq , ΔCl�α�
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numerically. The nominal aerodynamic model, thrust model, and

inertia model are set up adopting the public data of F-16 [49]. The

nonlinear dynamic equations of motion before and after failures are
given by Eqs. (41) and (45), respectively. The aerodynamic model

and control effectiveness after faults/damage are modeled using the

methods in Secs. IV.B and IV.C. Only the rudder, ailerons, and
stabilator are considered as inner-loop control variables, and they are

all modeled as first-order systems with rate and position limits. The

bandwidth and limits for the actuators are listed in Table 2. A simple
proportional–integral thrust control to maintain the airspeed is

designed in a separate control loop. This aircraft is initially trimmed

at a steady-level flight condition with airspeed V � 500 ft∕s and
altitude h � 10;000 ft. The sampling frequency used by the

controllers is fs � 100 Hz.

A. Flight Control in the Nominal Case

The properties of actuators influence the performance of INDI and

(higher-order) sliding-mode control because both methods need

“fast” actuator dynamics. The actuator dynamics are included in

some (higher-order) sliding-mode controllers [6,26], which would
however increase the relative degree of the overall system. This

increase would require higher-order derivatives of the outputs, as

mentioned in [9]. When the bandwidth of the actuators is sufficiently
higher than the system dynamics, the controller can be designed

without considering the actuator dynamics, which is a common

practice in the literature. This approach is adopted in the present
paper, and the control performance is expected to be improved if

faster actuators are used.
The successive tracking references for ϕ, θ, ψ are illustrated in

Fig. 2, which are smoothly combined sigmoid functions. The

sigmoid function fr�t� � 1∕�1� e−t� is chosen because of its

differentiable property up to any order.
Remark 8: As discussed in Sec. III.E, NDI-SMC or INDI-SMC

actually indicates a branch of sliding-mode controlmethods designed

using the structure of NDI or INDI, regardless of the sliding
order, sliding surface, and reaching law designs. Therefore, the

comparisons are also independent of these factors. Equations (27)

and (28) with first-order integral-type sliding variable [Eq. (24)] are

implemented as an example.
The reference tracking controllers using NDI and INDI methods

are givens by Eqs. (6) and (10). For fair comparisons, νc �

−Ke� y�ρ�r for all the four controllers, with the desired error
dynamics consistently given by

�ei � KD;i _ei � KP;iei � 0; i � 1; 2; 3 (51)

The gains are designed as KD;i � 5.6, KP;i � 16, i � 1, 2, 3 to
achieve desired second-order error dynamics with natural frequency
4 rad∕s and damping ratio 0.7. νs is designed in the classical way as
νs � −Kssign�σ� with Ks � diag��1; 0.5; 0.3��. The widely used
boundary-layer method [2,4,6,9,16,25] that replaces the signum
functions by saturation functions are also adopted to reduce
chattering. The thickness of the boundary layers is ζi � 0.01,
i � 1, 2, 3.
In the nominal condition, namely f � �f, G � �G, the aircraft

responses, tracking errors, and control inputs using the proposed four
controllers are illustrated in Fig. 3.
As can be seen from Fig. 3, all the four controllers are able to make

the system track the commands. Owing to the singular perturbations
from the actuator dynamics [16,38], the closed-loop dynamics no
long behave like second-order systems underNDI and INDI controls.
The aircraft using INDI control has slightly better performance
compared to that using NDI, as can be seen from the tracking error
responses. Furthermore, by using both NDI and INDI based sliding-
mode controllers, the tracking performance is improved without
requiring additional control efforts.

B. Flight Control in the Presence of Actuator Faults

In this subsection, the performance of aircraft command tracking
in the presence of actuator faults is simulated. The first actuator fault
scenario considered is that the rudder suddenly lost 50% of its
effectiveness during flight at t � 7 s. As can be seen from Fig. 4, the
rotational and directional tracking performance get noticeably worse
from t � 7 s under the control of NDI, INDI, and NDI-SMC. The
tracking errors under NDI control have the largest rms value.
Although the aircraft using NDI-SMC is able to recover from the
fault, it presents distinct tracking errors during t ∈ �7; 13� s. On
the other hand, INDI-SMC is able to rapidly recover from the rudder
fault with much smaller transition tracking errors.
The second actuator fault scenario considered is t � 3 s; the right

aileron runs away with its maximum rate and gets jammed at
δaΔ � 15.05°. The positive deflections are defined in the
conventional way, namely, a positive δa indicates that the right
aileron deflects downward and the left aileron deflects upward. As
discussed in Sec. IV.B, one side of ailerons stuck at a nonneutral
position leads to halved control effectiveness, newly introduced
Cmδa

, and aerodynamic coefficient increments given by Eq. (43). As
shown in Fig. 5, the aileron jamming induced rolling coefficientΔCl

makes the aircraft roll to the left from t � 3 s under NDI and NDI-
SMC control. The coupling effects also make the aircraft yaw to the
left under NDI control. ΔCm makes the aircraft slightly pitch down.
NDI control itself shows poor robust performance in this scenario.
When combinedwith sliding-mode control, NDI-SMChas improved
robustness, especially on pitch and yaw channels. However, after
fault occurs, the aircraft usingNDI-SMC is unable to track the rolling
command anymore, and the rudder has a potential to get saturated.
On the contrary, aircraft using both INDI and INDI-SMC are able

to recover from the aileron fault and continue to track the commands.
In view of Fig. 5, the left aileron deflects downward at −14 deg, and
the rudder deflects at−2.6 deg after the commands vanish to re-trim
the aircraft. Although the aircraft under INDI control can recover,
its ϕ tracking performance degrades. When using the INDI control,
the rms value of eϕ is 0.17 deg in the nominal case, but it degrades
to 0.57 deg in the presence of fault. By using INDI-SMC, the
rms value of eϕ is reduced to 0.07 deg. The aircraft under INDI-SMC
also shows better tracking performance in pitch and yaw control
channels.
The third actuator fault scenario considered in this paper is the

elevator/stabilator jamming problem. At t � 5 s, the left stabilator is
jammed downward at δeΔ � −12.5°. Consequently, the stabilator
control effectiveness is halved, Clδe

, Cnδe
are introduced, and the

Table 2 Limits and bandwidths of actuators

Actuators Bandwidth, rad∕s Rate limit, deg ∕s Position limit, deg

Ailerons δa 20.2 80 �21.5
Elevators δe 20.2 90 �25
Rudder δr 20.2 120 �30

t [s]
0 5 10 15

[°
]

-5

0

5

10

Fig. 2 Tracking commands.
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aerodynamic coefficient increments are given by Eq. (44). Theses
coefficient increments cause a positive rollingmoment and a negative
pitching moment, as can be seen from the responses under NDI
control in Fig. 6.
Because of the coupling effects, the yaw angle track performance

also deteriorates under NDI control. Even though this deterioration is
compensated by NDI-SMC, the roll and pitch angles are still unable
to recover from the fault under NDI-SMC control. An aircraft using
INDI or INDI-SMC is able to recover from the fault and continue to
track the commands. Moreover, the rms of eθ is diminished from
0.29 deg under INDI control to 0.02 deg under INDI-SMC control.
The fourth actuator fault scenario is the combination of the

preceding three scenarios with responses shown in Fig. 7. Similar
phenomena can be observed that NDI and NDI-SMC are unable to
recover from the actuator faults, with the yaw angle showing a trend
of divergence. Aircraft using INDI or INDI-SMC can recover and
continue to track the commands. However, using INDI control, the

stabilator gets saturated when t ∈ �7.1; 7.4� s. By contrast, INDI-
SMC shows the highest tracking accuracy before and after faults
without actuator saturation.
As analyzed in Sec. II.C, the sensor-based INDI control has

reduced residual error in the presence of faults/damage as compared
to NDI control. Moreover, εindi is guaranteed to be bounded using
sufficiently high sampling frequency and if kI − B �B−1k ≤ �b < 1. On
the other hand, the boundedness of εndi is undetermined even if
kI − B �B−1k ≤ �b < 1. These phenomena are verified via simulations
under the fourth actuator fault scenario as shown in Fig. 8.
As can be observed from Fig. 8, the value of kI − B �B−1k for both

NDI and INDI show jumps at t � 3, 5, 7 s due to successive actuator
faults. The variations of kI − B �B−1k are becauseB�x� is a function of
states. kI − B �B−1k ≤ �b < 1 are satisfied for both NDI and INDI
during the entire time history. The residual errors of INDI remain
bounded for all the three control channels, whereas εndi;r under NDI
control shows a trend of divergence. Furthermore, kεindik is smaller
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Fig. 4 Aircraft responses and control inputs under a rudder fault condition (t � 7 s).
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Fig. 3 Aircraft responses and control inputs under the nominal condition.
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than kεndik in this scenario. It is noteworthy that kεindik can be further
diminished by decreasing Δt in practice, whereas kεndik is
independent of Δt.
For the reason that the switching gains ofmost sliding-mode control

methods are monotonically increasing functions of perturbation
bounds, the smaller andbounded εindi also requires lower control gains.
When the same control gains are used for INDI-SMC and NDI-SMC,
which is the situation for all the preceding simulations, INDI-SMC
shows better performance. One may suppose that improved
performance for NDI-SMC can be achieved if the switching gains
are increased. This guess is tested by gradually increasing the
switching gains of NDI-SMC as Ks � c ⋅ diag��1; 0.5; 0.3�� under
the fourth actuator fault scenario, with the simulation results shown
in Fig. 9.
In view of Fig. 9, when the switching gains for NDI-SMC

increased from c � 1 to c � 5, the tracking performance of NDI-
SMC is indeed improved. However, the roll angle still has about

10 deg of transition error when c � 5. Further increasing the gains to
c � 7 induces a divergence, owing to the rate and position constrains
and limited bandwidth of the actuators. The increased switching
gains after faults/damage would also amplify the measurement noise
in practice. By contrast, the INDI-SMC is able to handle all the
considered four actuator fault cases with fixed and lower gains.

C. Flight Control in the Presence of Structural Damage

The aircraft attitude tracking using the proposed four control
methods subject to structural damage is simulated in this subsection.
The dynamic equations after damage are given by Eq. (45). The
aerodynamic effects of damage are given in Sec. IV.C. The inertia
properties of this aircraft after damage are calculated by using a
Dassault CATIA model of an F-16. Along with the specific
component breaks, the corresponding control surface is also
damaged. Only the nominal model is known by the controllers, and
the faults/damage are intended to be tolerated by the controllers.

0 5 10 15 0 5 10 15 0 5 10 15

0 5 10 150 5 10 150 5 10 15

0 5 10 15 0 5 10 15 0 5 10 15

-40

-20

0

20

-10

0

10

20

30

-20

-10

0

10
NDI
INDI
NDI-SMC
INDI-SMC

-5

0

5

10

-1

0

1

2

-10

-5

0

5

t [s]

-4

-2

0

2

4

t [s]

0

-0.5

-0.5

1

1.5

t [s]

-30

-20

-10

0

10

Fig. 5 Aircraft responses and control inputs under an aileron jamming condition (t � 3 s).
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Fig. 6 Aircraft responses and control inputs under a stabilator jamming condition (t � 5 s).
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Fig. 7 Aircraft responses and inputs with aileron, stabilator, and rudder faults occur at t � 3, 5, 7 s.
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The first structural damage scenario considered here is the vertical

tail damage case. To be specific, half of the vertical tail area is lost

at t � 7 s. At the same time, 50% of the rudder effectiveness is

also lost. The system responses and control inputs are presented

in Fig. 10.

Figure 10 seems to be similar to Fig. 4 at first glance, but the

influences of the forward c.m. shift caused by the vertical tail loss can

be seen from the pitch angle tracking error in Fig. 10. Under NDI

control, the pitch tracking has a steady-state error of 0.21 deg. The

yaw and roll channels also show obvious transition errors under NDI

control. NDI-SMC is able to compensate for the errors in roll and

pitch channel but still shows noticeable eψ . INDI-SMC has improved

performance as compared to both INDI and NDI-SMC.

The second structural damage scenario simulated here is that at

t � 5 s; the entire left stabilator is lost, whereas the right stabilator is

still working normally. Accompanying the left stabilator being lost,

the c.m. shifts forward and to the right. The effects of the rolling and

pitching moment increments can be seen from the responses under

NDI control in Fig. 11. The reduced longitudinal damping and

stability margin are also influencing the closed-loop system

responses. Using NDI control is not enough to make the system

recover from this failure. Although NDI-SMC shows improved

performance, its convergence speed is slow and still presents small eθ
at t � 15 s. Owing to the asymmetrical c.m. shift and the newly

induced coefficient ΔClq , the rms value of eϕ increased to 0.18 deg

under INDI control and is reduced by 96% using INDI-SMC.

The third structural damage scenario modeled here is at t � 3 s;
the right wing lost 25% of its area. At themeanwhile, the right aileron

is also lost. The unequal lift on the left and right wing immediately

causes a positive rolling moment, as can be seen from Fig. 12. The
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coupling effects also cause performance degradations on pitch and

yaw channels underNDI andNDI-SMCcontrols. UsingNDI orNDI-

SMC, the aircraft is unable to recover from the damage, and the

rudder has the potential to get saturated. Both INDI and INDI-SMC

are able to make the aircraft recover and continue the tracking

missions. The rms value of eϕ degrades to 0.51 deg under INDI

control in this scenario and can be improved into 0.24 deg using

INDI-SMC.

-20

0

0 5 10 15

0 5 10 15

0 5 10 15 0 5 10 15

0 5 10 15

0 5 10 15 0 5 10 15

0 5 10 15

0 5 10 15

20

40

-30

-20

-10

0

10

-10

0

10

20

NDI
INDI
NDI-SMC
INDI-SMC

-5

0

5

10

-2

0

2

4

6

-30

-20

-10

0

10

t [s]

-5

0

5

10

t [s]

-6

-4

-2

0

2

t [s]

-40

-20

0

20

40

Fig. 13 Aircraft responses and inputs with wing, stabilator, and vertical tail damaged at t � 3, 5, 7 s.

-20

0

0 5 10 15 0 5 10 15 0 5 10 15

0 5 10 150 5 10 150 5 10 15

0 5 10 15 0 5 10 15 0 5 10 15

20

40

-30

-20

-10

0

10

-10

0

10

20

NDI
INDI
NDI-SMC
INDI-SMC

-5

0

5

10

-1

0

1

2

-10

-5

0

5

10

t [s]

-4

-2

0

2

4

t [s]

-1

-0.5

0

0.5

t [s]

-10

0

10

20

30

Fig. 12 Aircraft responses and control inputs under a wing damage condition (t � 3 s).

t [s]
0 10 155 0 10 155 0 10 155 0 10 155

I −
 B

B
−

1

0

0.2

0.4

0.6

0.8

1

NDI
INDI

t [s]

-2

0

2

4

6

8

t [s]

-1.5

-1

-0.5

0

0.5

1

t [s]

-0.5

0

0.5

1

1.5

2

 [r
ad

/s
2 ]

 [r
ad

/s
2 ]

 [r
ad

/s
2 ]

−

Fig. 14 Value of kI −B �B−1k and the residual errors in the fourth structural damage scenario.

WANG ETAL. 257

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
34

97
 



The fourth structural damage scenario is a combination of the
preceding three structural damage cases. Specifically, 25% of the
right wing breaks at t � 3 s, the entire left stabilator is lost at t � 5 s,
and at t � 7 s half of the area of the vertical tail is lost. The
corresponding control surfaces are also lost along with the structural
damage. The simulation results are shown in Fig. 13, from which it
can be seen that both NDI and NDI-SMC controls are unable to help
the aircraft recover from the damage, and the rudder get saturated
from t � 9.6 s. INDI aswell as INDI-SMCcan complete the tracking
missions in the presence of structural damage. Furthermore, INDI-
SMC has the best tracking accuracy.
Sufficiently high sampling frequency and kI − B �B−1k ≤ �b < 1

guarantee a bounded εindi, whereas the boundedness of εndi is
undetermined under the same conditions (analyses in Sec. II.C). This
is also verified when the aircraft is subjected to the fourth damage
scenario, as illustrated in Fig. 14, where εndi;r shows a trend of
divergence. Furthermore, kεindik is smaller than kεndik in Fig. 14,
which leads to smallerminimumpossible gainvalues for INDI-SMC.

VI. Conclusions

The incremental sliding-mode control (INDI-SMC) framework is
proposed in this paper by hybridizing (higher-order) sliding-mode
controllers/observers with the reformulated incremental nonlinear
dynamic inversion (INDI). The incorporations of the sliding mode
robustification terms into INDI compensate for the residual errors of
INDI, whereas the incremental framework simultaneously reduces
the minimum possible control/observer gains and the model
dependency.
It is verified theoretically and numerically that a diagonally

dominant structure ofB �B−1 and sufficiently high sampling frequency
ensure the boundedness of the INDI residual error (εindi). By contrast,
even if these conditions are satisfied, the nonlinear dynamic inversion
(NDI) residual error (εndi) can become unbounded in severe damage
cases. Moreover, in the same faults/damage scenario, there exists a
sampling frequency that makes the bound of εindi smaller than the
bound of εndi. These beneficial properties of INDI enable the INDI-
SMC framework to passively resist a wider range of perturbations
with lower sliding-mode control/observer gains, as compared to the
widely used way of designing sliding-mode control based on NDI.
When applied to passive fault-tolerant flight control problems, the

proposed INDI-SMC framework shows better robust performance
over NDI, INDI, and the NDI-based sliding-mode control, in the
presence of sudden actuator faults and structural damage, which
makes it a promising approach to enhance aircraft survivability in
real life.
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