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Buckling of Composite Cylindrical Shells 

with Circular Cutouts 

Arne Schiller1 and Chiara Bisagni2 
Delft University of Technology, Delft, 2629 HS, Netherlands 

Cylindrical shells are common structural elements in the aerospace sector due to their high 

load-carrying capacity per unit weight. Cutouts may, however, significantly reduce this load-

carrying capacity, especially when cylindrical shells buckle under axial compression. Since the 

buckling load is often a crucial design parameter, it is important to predict this value 

efficiently. Hence, a procedure to rapidly calculate the linear buckling load of axially 

compressed quasi-isotropic composite cylindrical shells with circular cutouts was derived. 

After minimizing the total potential energy of the structure with the Ritz method, the buckling 

loads were obtained as the solutions to an eigenvalue problem. Comparing these predictions 

with the results from linear and nonlinear finite element analyses shows that the analytical 

buckling loads follow the general trends of the numerical solutions and are calculated orders 

of magnitude faster. This makes the approach suitable for preliminary design where many 

design permutations must be evaluated in a short period of time. 

Nomenclature 

𝐴𝑖 , 𝐶𝑖 = Ritz coefficients 

𝐴𝑖𝑗 = extensional stiffness matrix components 

𝑨 = extensional stiffness matrix 

𝑎 = cutout radius 

𝐵 = decay parameter 

𝐷𝑖𝑗  = bending stiffness matrix components 

𝐷𝑖𝑗
′  = rotated bending stiffness matrix components 

𝑫′ = rotated bending stiffness matrix 

𝐹𝑐𝑙 = buckling load of a composite cylindrical shell 

𝐹𝑐𝑟 = buckling load of a composite cylindrical shell with a circular cutout 

𝑔𝑚 = perturbation function 

ℎ𝑚 = solution term of Φ𝑝 

𝑲𝑀, 𝑲𝐺   = matrices of the generalized eigenvalue problem 

𝐿 = shell length 

𝑁𝑖𝑗 = stress resultants at buckling 

𝑁𝑖𝑗
0  = stress resultants prior to buckling 

𝑁𝑥 = shell edge load 

𝑅 = shell radius 

𝑟, 𝜃, 𝑧 = semi-geodesic polar coordinates 

𝑡 = shell thickness 

𝑈 = strain energy 

𝑈𝑏 = bending strain energy 

𝑈𝑚 = membrane strain energy 

𝑢, 𝑣, 𝑤 = displacement components in the directions 𝑥, 𝑦, 𝑧 

 
1 Ph.D. Student, Faculty of Aerospace Engineering, AIAA Student Member. 
2 Professor, Faculty of Aerospace Engineering, AIAA Fellow. 
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𝑢𝑐𝑙 = axial shortening of a composite cylindrical shell at buckling 

𝑉 = volume 

𝑉𝑒𝑥𝑡  = energy due to external forces 

𝑥, 𝑦, 𝑧 = curvilinear coordinates 

𝛼 = curvature parameter 

𝜀𝑖𝑗 = strain tensor components 

𝜅𝑖𝑗 = curvature tensor components 

𝜇 = stiffness-weighted curvature parameter 

Π = total potential energy 

𝜎𝑐𝑟  = buckling stress of a cylindrical shell with a circular cutout 

𝜎𝑖𝑗 = stress tensor components 

Φ = Airy stress function 

Φc = complementary solution of the Airy stress function 

Φ𝑝 = particular solution of the Airy stress function 

∇4 = biharmonic operator 

I. Introduction 

Thin cylindrical shells are frequently encountered in the aerospace industry due to their ability to carry loads 

efficiently. The performance of these shells can be further enhanced by manufacturing them from composite materials 

because they allow for designs with tailored strength and stiffness properties. However, cylindrical shells often contain 

cutouts, for example in the form of doors or windows. Since shells are susceptible to buckling and because cutouts 

alter the shell geometry, they can influence the buckling load. In addition, the load-carrying capacity of cylindrical 

shells is greatly reduced after buckling which means that shells with cutouts must be designed against this structural 

response. Consequently, the buckling load of such shells must be estimated. This is especially important during the 

preliminary design phase where fast and reasonably accurate analyses help to evaluate the design space. 

 Cylindrical shells with circular cutouts have been studied analytically since 1947 [1]. Solutions for the stress field 

around circular cutouts in orthotropic shells under axial compression were derived by Ashmarin [2] and Guz et al. [3]. 

Unlike plates with cutouts that are loaded in pure tension or compression, shells with cutouts exhibit prebuckling 

bending stresses. Van Tooren et al. [4] investigated the stress field around circular openings in sandwich shells. A 

semi-analytical procedure for composite cylindrical shells with elliptic cutouts was proposed by Oterkus et al. [5]. 

 Only a few attempts have been made to analytically predict the buckling load of cylindrical shells with cutouts. 

Starnes [6] was probably the first to develop such an approach for isotropic shells with circular cutouts. Composite 

cylindrical shells with rectangular cutouts were treated by Hilburger [7], who set up the governing differential 

equations and subsequently solved them numerically. Madenci et al. [8] derived a semi-analytical procedure to predict 

the linear buckling load of composite cylindrical shells with elliptic cutouts. 

 On the other hand, many investigations have been conducted numerically and experimentally. Starnes [6] noticed 

that the nondimensional curvature parameter 𝛼 appears to be a good indicator of the type of buckling behavior that 

can be expected for isotropic cylindrical shells. 

 

𝛼 =
𝑎

√𝑅𝑡
 (1) 

 

Here, 𝑎 is the cutout radius, 𝑅 the shell radius, and 𝑡 its thickness. For values of 𝛼 < 0.5, the buckling mode is global, 

independent of the cutout, and approaches that of the pristine shell. For 0.5 ≤ 𝛼 ≤ 2, the buckling load decreases 

rapidly with increasing 𝛼. In this range, the shell buckles due to an unstable local buckling event around the cutout. 

For larger values of 𝛼, the prebuckling response is nonlinear, the local buckling mode becomes stable, and the buckling 

load remains at a reduced, but approximately constant, level. 

 Bisagni [9], Shirkavand et al. [10], and Khakimova et al. [11] observed a similar response for composite cylindrical 

shells with cutouts during experiments. For large cutouts, Hilburger, Starnes, and Nemeth [12-14] argued that the 

buckling event is caused by the “nonlinear coupling between localized destabilizing compressive axial and 

circumferential stress resultants and the radial deformations that occur in the shell near the cutout”. 

 The influence of initial geometric imperfections on the buckling load of composite cylindrical shells were 

investigated extensively by Starnes et al. [15]. They determined that the sensitivity of shells with large cutouts to mid-

surface imperfections is less pronounced than for pristine cylindrical shells. In contrast, nonuniform loading can have 
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a significant impact on the sustainable buckling load. Taheri et al. [16] studied mid-surface imperfections and reported 

that the sensitivity to this type of imperfection was related to the observed buckling behavior. In other words, shells 

with small cutouts that buckled globally were more sensitive to mid-surface imperfections than shells with larger 

cutouts where local buckling occurred. Khakimova et al. [11], who investigated the phenomenon numerically with 

experimentally measured mid-surface variations, came to similar conclusions. Orifici et al. [17] and Alfano et al. [18] 

further verified this. 

 Naturally, axial compression is only one of many possible load cases. More recently, composite cylindrical shells 

with cutouts under bending have received attention [19] because this is one of the load cases of a typical aircraft 

fuselage. 

 This paper introduces an analytical solution to predict the buckling load of quasi-isotropic composite cylindrical 

shells with circular cutouts subjected to axial compression. After minimizing the total potential energy of the shell 

with the Ritz method, a generalized eigenvalue problem is solved numerically to compute the buckling load of the 

structure. The predictions are verified with linear buckling and nonlinear dynamic simulations in Abaqus. The 

developed procedure can be used during preliminary design to survey the design space quickly and with reasonable 

accuracy. 

II. Buckling Analysis 

 The buckling analysis of the composite cylindrical shell with a circular cutout is divided into three main steps. 

First, the shell structure is described mathematically. This includes the definition of the shell geometry and its 

mechanical response in a suitable reference frame. Additionally, the assumptions employed during the analysis 

procedure are highlighted. Next, the total potential energy of the cylindrical shell is formulated and subsequently 

minimized. Hence, its strain energy and the energy due to external forces are quantified by prescribing a shape function 

and integrating over the domain. Finally, the expression obtained from minimizing the total potential energy is 

transformed to a generalized eigenvalue problem which is solved with a numerical algorithm. 

A. Shell Geometry and Assumptions 

 Fig. 1 shows the mid-surface of a cylindrical shell with length 𝐿, radius 𝑅, and thickness 𝑡. The shell is described 

with the curvilinear coordinate system 𝑥, 𝑦, 𝑧 where the corresponding displacements are denoted as 𝑢, 𝑣, and 𝑤. 

When the cylindrical shell contains a circular cutout with radius 𝑎 as in Fig. 2, the origin of the curvilinear reference 

frame is conveniently chosen at the center of the cutout. Then, a semi-geodesic polar coordinate system 𝑟, 𝜃, 𝑧 with 

the same origin as the curvilinear reference frame can be introduced which allows for a simple mathematical 

description of the cutout boundary. As illustrated in Fig. 2, the cylindrical shell is loaded with a uniform axial 

compressive shell edge load 𝑁𝑥. Furthermore, the 𝑧-coordinate of both reference frames points towards the shell axis 

i.e., inside, even though it is not explicitly indicated in the figure. 

 

 

 

Fig. 1 Curvilinear coordinate system for a 

cylindrical shell. 

Fig. 2 Cylindrical shell with a circular cutout 

subjected to axial compression. 
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 Of course, the buckling analysis is concerned with an idealized version of a cylindrical shell. Therefore, the 

assumptions used during the development of the solution procedure are specified in the following. 

• The composite layup of the shell is quasi-isotropic and symmetric. 
• The shell is considered to be shallow such that the nonlinear Donnell-Mushtari-Vlasov strain-displacement 

relations apply. 
• The shell does not feature any imperfections, nor does it not contain any stiffeners. 
• The prebuckling displacements are small so that a linear buckling analysis can be performed. 
• Buckling occurs while the material behavior is linear elastic. 
• The buckling event is local and restricted to the area around the cutout. 
• Displacements, strains, and stresses far away from the cutout are negligible. 
• The prebuckling stress field can be approximated with the solution for the infinite isotropic flat plate with a 

central circular cutout. 
 Since a linear elastic structural response in the prebuckling domain is required to perform a linear buckling 

analysis, large deformations prior to buckling invalidate the procedure. The magnitude of the prebuckling 

displacements depends on the curvature parameter 𝛼 defined in Eq. (1). Consequently, the buckling analysis is, in 

principle, only valid for cylindrical shells with 𝛼 < 2 i.e., for shells with small cutouts, large radii, or large wall 

thicknesses. 

B. Minimization of the Total Potential Energy 

 The total potential energy Π of the cylindrical shell in Fig. 2 is given by 

 

𝛱 = 𝑈 + 𝑉𝑒𝑥𝑡  (2) 

 

where 𝑈 refers to the strain energy and 𝑉𝑒𝑥𝑡  to the energy due to external forces. By finding explicit expressions for 

each of these terms, the structural response of the cylindrical shell can be determined when the Ritz method is applied 

to minimize the total potential energy. 

 

1. Strain Energy 

 A general formulation of the strain energy is  

 

𝑈 =
1

2
∫[𝜎𝑖𝑗𝜀𝑖𝑗] 𝑑𝑉

𝑉

 (3) 

 

where the stress and strain tensor components 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are integrated over the volume 𝑉 of the shell. Substituting 

the strain-displacement relations for shallow shells according to the assumptions and immediately afterwards the 

constitutive equations for a quasi-isotropic, symmetric layup yields 

 

𝑈𝑚 =
1

2
∬ {[

𝐴11

𝐴11
2 − 𝐴12

2
(𝑁𝑟

2 + 𝑁𝜃
2 + 𝑁𝑟𝜃

2 ) − 2
𝐴12

𝐴11
2 − 𝐴12

2
(𝑁𝑟𝑁𝜃 − 𝑁𝑟𝜃

2 )] 𝑟}  𝑑𝑟 𝑑𝜃 (4) 

 

𝑈𝑏 =
1

2
∬[(𝐷11

′ 𝜅𝑟𝑟
2 + 2𝐷12

′ 𝜅𝑟𝑟𝜅𝜃𝜃 + 4𝐷16
′ 𝜅𝑟𝑟𝜅𝑟𝜃 + 𝐷22

′ 𝜅𝜃𝜃
2 + 4𝐷26

′ 𝜅𝜃𝜃𝜅𝑟𝜃 + 4𝐷66
′ 𝜅𝑟𝜃

2 )𝑟] 𝑑𝑟 𝑑𝜃 (5) 

 

The strain energy is split up into two parts, namely the membrane strain energy 𝑈𝑚 and the bending strain energy 𝑈𝑏 

which are investigated separately. 𝐴𝑖𝑗 refer to the components of the extensional stiffness matrix 𝑨, 𝑁𝑖𝑗 to the stress 

resultants at buckling, 𝐷𝑖𝑗
′  to the components of the bending stiffness matrix 𝑫′, and 𝜅𝑖𝑗 to the curvature components. 

While 𝐴𝑖𝑗 and 𝑨 are defined in the curvilinear reference frame, 𝑁𝑖𝑗, 𝐷𝑖𝑗
′ , 𝑫′, and 𝜅𝑖𝑗 are expressed in semi-geodesic 

polar coordinates. 
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2. Bending Strain Energy 

 To integrate 𝑈𝑏 over the domain, a shape function for the out-of-plane displacement 𝑤 that represents the expected 

buckling mode must be prescribed. The shape function in Eq. (6) was first proposed by Starnes [6] and is based on the 

displacement patterns observed during an extensive experimental campaign on the buckling of isotropic cylindrical 

shells with circular cutouts. 

 

𝑤(𝑟, 𝜃) = 𝑒−𝐵𝑟[(𝐴0 + 𝑟𝐶0) + (𝐴2 + 𝑟𝐶2) 𝑐𝑜𝑠 2𝜃] (6) 

 

Here, 𝐵 is a decay parameter that ensures that displacements, strains, and stresses are negligible far away from the 

cutout. Hence, the chosen shape function guarantees that the buckling mode is local and restricted to the vicinity of 

the cutout. 𝐴0, 𝐴2, 𝐶0, and 𝐶2 denote the undetermined Ritz coefficients. Eq. (6) is integrated after performing a 

coordinate transformation to write 𝐷𝑖𝑗
′  and 𝜅𝑖𝑗 as functions of the known bending stiffness and curvature components 

in the curvilinear reference frame. The integration limits in Eq. (6) are [𝑎, ∞]and [0,2𝜋] for 𝑟 and 𝜃, respectively. 

 

3. Membrane Strain Energy 

 The definition of 𝑈𝑚 according to Eq. (4) requires determining expressions for 𝑁𝑖𝑗. These may be calculated from 

the yet unknown Airy stress function Φ as 

 

𝑁𝑟 =
1

𝑟

𝜕Φ

𝜕𝑟
      𝑁𝜃 =

𝜕2Φ

𝜕𝑟2
     𝑁𝑟𝜃 = −

𝜕

𝜕𝑟
(

1

𝑟

𝜕Φ

𝜕𝜃
) (7) 

 

 Φ is found by solving the linear shell compatibility equation. Using the linear version of the compatibility equation 

is consistent with the assumption that buckling occurs in the linear elastic domain. For a quasi-isotropic laminated 

cylindrical shell described in semi-geodesic polar coordinates, the linear compatibility equation is a fourth-order 

inhomogeneous partial differential equation with constant coefficients. 

 

∇4Φ = −
1

𝑅

𝐴11
2 − 𝐴12

2

𝐴11

[sin2 𝜃  
𝜕2𝑤

𝜕𝑟2
+ cos2 𝜃 (

1

𝑟

𝜕𝑤

𝜕𝑟
+

1

𝑟2

𝜕2𝑤

𝜕𝜃2
) − sin 2𝜃 (

1

𝑟2

𝜕𝑤

𝜕𝜃
−

1

𝑟

𝜕2𝑤

𝜕𝑟𝜕𝜃
)] (8) 

 

The shape function for 𝑤 from Eq. (6) is substituted on the right-hand side of the compatibility equation. Consequently, 

Eq. (8) becomes 

 

∇4Φ = 𝑔𝑚(𝑟) cos 𝑚𝜃 (9) 

 

where 𝑔𝑚 are perturbation function terms. The complementary solution Φ𝑐 of Eq. (9) can be found in [20]. A particular 

solution Φ𝑝 is calculated by separating the variables and assuming that a solution is of the type 

 

Φp = ℎ𝑚(𝑟) cos 𝑚𝜃 (10) 

 

where the solution terms ℎ𝑚 only depend on 𝑟. 

 When Eqs. (9) and (10) are combined, the resulting equation may be divided by cos 𝑚𝜃 because the cosine terms 

are linearly independent. Thus, the problem reduces to the ordinary differential equation 

 

d4ℎ𝑚

𝑑𝑟4
+

2

𝑟

𝑑3ℎ𝑚

𝑑𝑟3
−

2𝑚2 + 1

𝑟2

𝑑2ℎ𝑚

𝑑𝑟2
+

2𝑚2 + 1

𝑟3

𝑑ℎ𝑚

𝑑𝑟
+

𝑚4 − 4𝑚2

𝑟4
ℎ𝑚 = 𝑔𝑚 (11) 

 

The complementary solution of Eq. (11) is a subset of Φ𝑐 for the full problem in Eq. (9). These can then be used to 

calculate ℎ𝑚 by applying the method of variation of parameters. As soon as Eq. (11) is solved, so is Eq. (10). Therefore, 

both of Φ𝑐 and Φ𝑝 are known. The complete solution of the Airy stress function is simply 

 

Φ = Φc + Φ𝑝 (12) 
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 The constants in Φ are determined from the boundary conditions of the problem. At the edge of the unloaded 

cutout, the stress resultants 𝑁𝑟 and 𝑁𝑟𝜃 must be zero. The same is true for 𝑁𝑟, 𝑁𝜃, and 𝑁𝑟𝜃 at 𝑟 = ∞ because one of 

the assumptions requires negligible stresses far away from the cutout. Furthermore, the strain energy must be bounded 

i.e., it cannot tend to infinity. Thus, an expression for Φ is available from which 𝑁𝑖𝑗 can be calculated with Eq. (7). 

 In a last step, Eq. (4) may be integrated with the same limits as 𝑈𝑏. The computational efficiency of the solution 

procedure drastically increases when the exponential integral Ei1(𝑥) is replaced with the alternative definition Ei(𝑥) 

according to Eq. (13) because it allows integrating Eq. (4) in closed form. Therefore, 𝑈𝑚 can be evaluated without 

computing integrals numerically. The substitution is permissible because 𝐵 and 𝑟 are, by design, positive numbers. 

 

Ei1(𝐵𝑟) = −Ei(−𝐵𝑟) (13) 

 

4. Energy due to External Forces 

 The last component of the total potential energy is the energy due to external forces 𝑉𝑒𝑥𝑡 . It depends on the 

prebuckling stress resultants and the out-of-plane displacement 𝑤. While 𝑤 is prescribed in Eq. (6), no closed-form 

solution is available for the stress distribution in either composite or isotropic cylindrical shells with circular cutouts. 

Hence, it is assumed that the prebuckling stress field in the shell around the cutout can be approximated with that 

around a circular cutout in an isotropic flat plate. If the curvature parameter 𝛼 is small, this is a valid assumption [21]. 

However, it also implies that bending stresses are neglected and that membrane stresses are underestimated. Anyhow, 

𝑉𝑒𝑥𝑡  due to 𝑁𝑥 can be written as 

 

V𝑒𝑥𝑡 =
1

2
∬ {[𝑁𝑟

0 (
𝜕𝑤

𝜕𝑟
)

2

+
1

𝑟2
𝑁𝜃

0 (
𝜕𝑤

𝜕𝜃
)

2

+
2

𝑟
𝑁𝑟𝜃

0 (
𝜕𝑤

𝜕𝑟

𝜕𝑤

𝜕𝜃
)] 𝑟}  𝑑𝑟 𝑑𝜃 (14) 

 

where the superscript 0 indicates prebuckling stress resultants 

 𝑉𝑒𝑥𝑡  is integrated with the same limits as 𝑈𝑚 and 𝑈𝑏. 

 

5. Energy Minimization with the Ritz Method 

 Since 𝑈𝑚, 𝑈𝑏, and 𝑉𝑒𝑥𝑡  are known, an explicit expression for Π can be calculated according to Eq. (2). The Ritz 

method requires setting 

 

𝜕Π

𝜕𝐴0

= 0    
𝜕Π

𝜕𝐴2

= 0    
𝜕Π

𝜕𝐶0

= 0    
𝜕Π

𝜕𝐶2

= 0 (15) 

 

to minimize the total potential energy of the system. After the partial derivatives are calculated, four equations with 

the four undetermined Ritz coefficients are obtained. Each equation is a function of 𝐵, 𝑎, 𝑅, 𝑡, 𝐴𝑖𝑗, and 𝐷𝑖𝑗 where the 

bending stiffness matrix components are now expressed in the curvilinear reference frame. 

C. Generalized Eigenvalue Problem 

 In addition to the geometric and stiffness parameters, the partial derivatives of Π with respect to the Ritz 

coefficients also contain terms that depend on the applied load if they originate from 𝑉𝑒𝑥𝑡 . Hence, grouping like terms 

yields the system of equations 

 

𝑲𝑀 {

𝐴0

𝐴2

𝐶0

𝐶2

} = 𝜎𝑐𝑟𝑲𝐺 {

𝐴0

𝐴2

𝐶0

𝐶2

} (16) 

 

where 𝑲𝑀 is the material stiffness matrix based on 𝑈 and 𝑲𝐺 is the geometric stiffness matrix based on 𝑉𝑒𝑥𝑡 . Eq. (16) 

is recognized as the generalized eigenvalue problem that must be solved to obtain the linear buckling load. If the 

equivalent applied axial compressive stress is assumed to be equal to 1 MPa, the eigenvalues 𝜎𝑐𝑟  represent the buckling 

stress of the quasi-isotropic composite cylindrical shell with a circular cutout. 

 MATLAB is used to evaluate the eigenvalue problem with the function “eig” and solves it through Cholesky 

factorization of the matrix on the right-hand side of Eq. (16). Since 𝜎𝑐𝑟  still depends on 𝐵, it must be minimized with 

respect to this parameter which is achieved through a brute force approach. 

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

14
92

 



7 

 

III. Finite Element Models 

 Nonlinear dynamic implicit (NLD) and linear buckling analyses (LBA) were run in Abaqus to verify the accuracy 

of the analytical solution for the buckling load. Cylindrical shells with cutouts of various sizes were created by 

intersecting a solid cylinder of a given radius with the pristine shell. Additional partitions were generated around the 

cutout to facilitate a higher mesh density in order to capture the large expected stress gradients in this region. The 

resulting structure was meshed with S4R elements. A visualization of the discretized shell is shown in Fig. 3 where 

the mesh bias towards the cutout boundaries is clearly visible. 

 Since the assumed shape function 𝑤 from Eq. (6) implies clamped shell ends, all degrees of freedom were restricted 

at the shell edges except for the axial displacements on the loaded shell boundary. Both force- and displacement-

controlled simulations were considered but yielded similar results in terms of the buckling load. Hence, it was decided 

to subject the cylindrical shell to a uniform shell end shortening, illustrated in Fig. 3, to also allow an investigation of 

the postbuckling response. 

 

  

Fig. 3 Discretized shell geometry (left). Boundary conditions and load application (right). 

 Composite cylindrical shells with three different layups, namely [0, ±45,90]𝑆, [±45,0,90]𝑆, and [90, ±45,0]𝑆, 

made from Hexcel IM7-8552 were modelled in Abaqus based on the material properties reported in Table 1. 

Table 1 Elastic properties of Hexcel IM7-8552 [22]. 

Young’s modulus in 1-direction 𝐸1 171 GPa 

Young’s modulus in 2-direction 𝐸2 9.08 GPa 

Shear modulus in 12-plane 𝐺12 5.3 GPa 

Poisson ratio in 12-plane 𝜈12 0.32 

 

 While the length and the radius of the cylindrical shells were kept constant at 200 mm and 100 mm, the cutout 

radius and the shell thickness were varied to verify the analytical buckling loads for various values of the curvature 

parameter. Specifically, the cutout radius could take values between 1 mm and 20 mm, whereas the shell thickness 

was changed to create shells with 𝑅/𝑡 equal to 100, 200, 400, and 800. Overall, 43 different shell configurations were 

evaluated per layup. Pre- and post-processing were automated with Python scripts. 

IV. Results 

 The buckling loads of quasi-isotropic composite cylindrical shells with circular cutouts predicted by the analytical 

solution are verified with linear and nonlinear numerical simulations in Abaqus. However, since vastly different shell 

configurations and cutout sizes are considered, an adequate comparison is only possible after both are 

nondimensionalized. Therefore, a normalization procedure is introduced first. Furthermore, the nondimensional 

curvature parameter 𝛼 is extended to composite cylindrical shells. Afterwards, the analytical predictions for the 

buckling loads are presented. These are then verified with the results from linear buckling analyses and nonlinear 

dynamic implicit simulations. In addition, the buckling mode shape evolution of composite cylindrical shells with 

circular cutouts is discussed based on the nonlinear simulations. Finally, the computational cost of the analytical and 

numerical procedures is evaluated. 
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A. Nondimensionalization Procedure 

 The variation of buckling loads due to changes to the shell geometry, but not due to changes to the cutout size, 

must be compensated with a normalization procedure to ensure comparability. Therefore, the corresponding output of 

each analysis is converted to a force. For the case of the analytical solution, the buckling load is given in terms of the 

buckling stress as 

 

𝐹𝑐𝑟 = 2𝜋𝑅𝑡𝜎𝑐𝑟  (17) 

 

Here, 𝐹𝑐𝑟 is the buckling load of the cylindrical shell with a cutout. 𝐹𝑐𝑟 is then normalized with the buckling load of a 

pristine composite cylindrical shell 𝐹𝑐𝑙 where the latter is calculated according to the formulae provided in [23]. 

Consequently, the nondimensional buckling load becomes 𝐹𝑐𝑟/𝐹𝑐𝑙. 

 Earlier, the nondimensional curvature parameter 𝛼 has been introduced to describe the buckling behavior of 

isotropic cylindrical shells with circular cutouts for different shell geometries. Naturally, the investigation of quasi-

isotropic cylindrical shells necessitates a corresponding curvature parameter. Following its original derivation by 

Lekkerkerker [21], a new nondimensional stiffness-weighted curvature parameter 𝜇 is developed such that it simplifies 

to the isotropic one when the equivalent stiffness matrix elements are substituted. 

 

𝜇 =
1

2
√

𝐴11𝐴22 − 𝐴12
2

𝐴11√𝐷11𝐷22

4 𝑎

√𝑅
 (18) 

B. Analytical Results 

 Analytical buckling load predictions are compared for the three layups [0, ±45,90]𝑆, [±45,0,90]𝑆, and 

[90, ±45,0]𝑆. Rather than plotting the nondimensional analytical buckling load 𝐹𝑐𝑟/𝐹𝑐𝑙 for all investigated radius-to-

thickness ratios, key insights are deduced from Fig. 4 where only the specific case of 𝑅/𝑡 = 400 is illustrated. The 

curves indicate that the [0, ±45,90]𝑆 laminate shows the highest sensitivity to an increase of the cutout size, followed 

by the [±45,0,90]𝑆 stacking sequence, and finally by the [90, ±45,0]𝑆 layup. 

 

 

Fig. 4 Nondimensional analytical buckling loads for 𝑹/𝒕 = 𝟒𝟎𝟎. 

 Even though the [90, ±45,0]𝑆 laminate initially provides the lowest buckling resistance, it deals with larger cutout 

sizes more effectively. The graph suggests that the normalized buckling load decreases rapidly for small 𝜇 regardless 

of the stacking sequence but stabilizes at approximately 𝜇 = 2. For larger values of 𝜇, a small increase of the 

nondimensional buckling load is predicted. When 𝜇 is small, the nondimensional buckling loads of the layups 

[±45,0,90]𝑆 and [90, ±45,0]𝑆 are approximately equal. However, the analytical results also indicate that the buckling 

load of the [0, ±45,90]𝑆 laminate is significantly higher for these values. Since the curves for each of the analyzed 

stacking sequences intersect an imaginary horizontal line 𝐹𝑐𝑟/𝐹𝑐𝑙 = 1 at different values of 𝜇, this implies that local 
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buckling constitutes a higher order buckling mode that does not occur until the cutout is sufficiently large. Moreover, 

the transition point depends on the selected layup. 

 If the curves for the remaining 𝑅/𝑡 ratios were included in Fig. 4, they would be spaced closely around the already 

existing graphs. While all of these curves fall onto a single line for isotropic cylindrical shells with circular cutouts 

and arbitrary 𝑅/𝑡, this is not the case for a particular stacking sequence and quasi-isotropic composite cylindrical 

shells. However, the reason for this is not an incorrect derivation of 𝜇, but rather the fact that the normalizing buckling 

load 𝐹𝑐𝑙 does not scale in the same way as 𝐹𝑐𝑟 when treating quasi-isotropic composite shells instead of isotropic ones. 

In other words, when 𝑅/𝑡 is doubled, 𝐹𝑐𝑙 and 𝐹𝑐𝑟 increase by the same margin if isotropic shells are considered, but 

the same is not true for quasi-isotropic composite shells unless the buckling pattern is axisymmetric. 

C. Verification with Numerical Simulations 

 To evaluate the accuracy of the analytical solution, the corresponding buckling loads are compared with the 

numerical predictions for the stacking sequences [0, ±45,90]𝑆 and [±45,0,90]𝑆 in Fig. 5 and Fig. 6, respectively. The 

nondimensional buckling load 𝐹𝑐𝑟/𝐹𝑐𝑙 is plotted against the stiffness-weighted curvature parameter 𝜇. Clearly, the 

analytical solution follows the numerical trends reasonably well over the investigated range of 𝜇. 

 

 

Fig. 5 Nondimensional buckling load plotted against the curvature parameter 𝝁 for a [𝟎, ±𝟒𝟓, 𝟗𝟎]𝑺 layup 

with 𝑹/𝒕 = 𝟒𝟎𝟎 and different analysis procedures. 

 However, the buckling loads are generally overestimated which is especially noticeable for small values of 𝜇. 

Here, the numerical procedures predict global buckling, whereas the analytical approach is restricted to the local 

buckling mode that is implied by Eq. (6). Consequently, the results diverge in this region. 

 One reason for the overestimation of the buckling loads is the approximation of the prebuckling stress field with 

the flat plate solution which means that the modelled stress distribution is less severe than the one that is considered 

in the numerical simulations. This effect is more pronounced for the [0, ±45,90]𝑆 laminate in Fig. 5 than for the 
[±45,0,90]𝑆 stacking sequence in Fig. 6 because the beneficial influence of the high bending stiffness is accounted 

for in the strain energy 𝑈, but the downside of higher bending stress concentrations is not quantified in 𝑉𝑒𝑥𝑡 . 

 Naturally, the quality of the results also greatly depends on the assumed displacement function since the Ritz 

method overestimates the stiffness of the structure. A higher number of terms can resolve this issue and an appropriate 

choice for the shape function leads to faster convergence. Hence, transforming the shape function for 𝑤 from Eq. (6) 

to an infinite series in 𝑟 and 𝜃 generates more accurate results. Unfortunately, the problem formulation becomes 

significantly more complex when additional cosine terms are introduced and suffers from ill-conditioned matrices for 

powers of 𝑟 with large exponents. 
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Fig. 6 Nondimensional buckling load plotted against the curvature parameter 𝝁 for a [±𝟒𝟓, 𝟎, 𝟗𝟎]𝑺 layup 

with 𝑹/𝒕 = 𝟒𝟎𝟎 and different analysis procedures. 

D. Buckling Mode Shape Evolution 

 The nonlinear dynamic implicit analyses can also be used to investigate the buckling behavior of the composite 

cylindrical shells by analyzing load-displacement curves as well as the corresponding displacement fields. Again, 

results are provided for a selected number of quasi-isotropic shells with different radius-to-thickness ratios and cutout 

dimensions. These shell configurations are denoted with QIX.Y where QI stands for quasi-isotropic, larger X indicate 

higher 𝑅/𝑡, and larger Y represent bigger cutouts. 

 Nondimensional load-displacement curves are plotted in Fig. 7. Fig. 8 shows the lateral shell deflections that 

belong to the marked points on the respective load-displacement curves. As mentioned before, the numerical buckling 

load is normalized with 𝐹𝑐𝑙. A nondimensional shell end shortening is obtained by dividing the numerical axial 

displacement with the theoretical linear axial displacement at buckling 𝑢𝑐𝑙 which is given by 

 

𝑢𝑐𝑙 = 𝐹𝑐𝑙

𝐴11

𝐴11
2 − 𝐴12

2

𝐿

2𝜋𝑅
 (19) 

 

 

Fig. 7 Nondimensional load-displacement curves for various shell configurations with a [±𝟒𝟓, 𝟎, 𝟗𝟎]𝑺 layup 

obtained from a nonlinear dynamic implicit analysis. 
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 Each of the letters in Fig. 7 and Fig. 8 refers to a point of interest on the load-displacement curve. A represents the 

prebuckling configuration, B local buckling, C the shell just before, and D the structure just after global buckling. 

 For small values of the curvature parameter i.e., for shell QI1.3, the buckling behavior is practically independent 

of the cutout. The nondimensional buckling load in Fig. 7 is close to one and the global buckling mode in Fig. 8 is 

reminiscent of the buckling pattern of a cylindrical shell without cutouts. Since there is no local buckling event, there 

is also no configuration B in either of the figures. 

 When 𝜇 is increased for shell QI3.3, significant changes in the load-displacement curve and the displacement field 

are observed. An instability grows around the cutout and immediately leads to global buckling. Compared to QI1.3, 

the global buckling pattern is completely different. Furthermore, the nondimensional buckling load is considerably 

reduced. 

 As shells QI3.5 and QI4.8 with even larger 𝜇 are explored, stable local buckling configurations with new buckling 

mode shapes emerge. Due to the large deformations at the onset of local buckling, the structural response between 

local and global buckling becomes nonlinear. 

 

 

Fig. 8 Radial displacements of a [±𝟒𝟓, 𝟎, 𝟗𝟎]𝑺 layup for various cylinder configurations calculated with a 

NLD analysis. A: during loading, B: at local buckling, C: before global buckling, D: after global buckling. 

 When the evolution of the buckling mode shapes is linked back to Fig. 5 and Fig. 6, the buckling behavior of 

composite cylindrical shells with circular cutouts may be characterized with the curvature parameter 𝜇 similar to how 

the response of isotropic cylindrical shells was described with 𝛼. For small values of 𝜇, the buckling of composite 

shells is independent of the cutout. Slightly larger values cause an unstable local buckling mode as well as a reduction 

of the buckling load with increasing 𝜇. Even larger 𝜇 lead to stable local buckling configurations with large lateral 

deflections where the buckling load does not decrease any further. 
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E. Computational Cost 

 A major advantage of the analytical solution procedure is its high computational efficiency Table 2 lists the average 

CPU time required to complete the three considered buckling analyses. The computations were performed on an Intel 

Core i5-4460. 

Table 2 Computational efficiency of the analytical solution compared to the numerical simulations. 

Analysis procedure CPU time Relative cost 

Analytical solution 0.22 s 1 

Linear buckling analysis (LBA) 80 s 350 

Nonlinear dynamic analysis (NLD) 60 min 15900 

 

 Evidently, significant time savings are possible when the developed analytical solution is employed. Of course, 

this comes at the cost of the buckling load accuracy. However, when computational efficiency is preferred over 

precision, it is beneficial to make use of the analytical solution. An example for a potential application is the 

preliminary design phase where many design parameters can be evaluated in a significantly shorter time frame. 

V. Conclusions 

 An analytical solution for the linear buckling load of quasi-isotropic composite cylindrical shells with circular 

cutouts has been developed. The qualitative results of the analytical approach agree well with the corresponding 

predictions of linear and nonlinear numerical simulations. The major benefit of the analytical solution is that the 

calculation of buckling loads is orders of magnitude faster than that of the numerical buckling loads. One shortcoming 

of the analytical procedure is the neglection of prebuckling bending stresses which leads to the overestimation of 

buckling loads for laminates with high axial bending stiffness. Nonetheless, the derived analytical solution is well 

suited for applications where reasonably accurate results are required in a short period of time, for example during the 

preliminary design phase. 

 In addition, the buckling mode evolution of the quasi-isotropic composite cylindrical shells has been investigated. 

It shows that characteristic ranges of the nondimensional stiffness-weighted curvature parameter 𝜇 exist which predict 

the buckling behavior of composite cylindrical shells with circular cutouts. 
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