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PIσ - PIσ Continuous Iterative Learning Control
for Nonlinear Systems with Arbitrary Relative Degree

Lorenzo Cenceschi1, Franco Angelini1,2, Cosimo Della Santina3,4,5, and Antonio Bicchi1,2,6

Abstract— Online-Offline Iterative Learning Control pro-
vides an effective and robust solution to learn precise trajectory
tracking when dealing with repetitive tasks. Yet, these algo-
rithms were developed under the assumption that the relative
degree between input and output is one. This prevents applica-
tions in many practically meaningful situations - e.g. mechan-
ical systems control. To overcome this issue, this manuscript
proposes a PIσ - PIσ algorithm fusing information from the
whole visible dynamics. We provide sufficient convergence
conditions when the controlled system has a generic constant
relative degree, and it is possibly subject to measurement delay.
The controller is validated on several simulation scenarios,
including learning to swing-up a soft pendulum.

I. INTRODUCTION

Since its introduction [1], [2], Iterative Learning Control
(ILC) has imposed itself as an effective and simple way
of implementing precise repetitive motions. An in depth
overview on recent advancements in ILC literature is pro-
vided by the survey papers [3], [4]. In its classic offline form,
ILC iteratively learns an open-loop action by combining
error evolutions from previous iterations [5], [6].

Most of ILC algorithms are designed under the hypothesis
that the relative degree r is one. Yet, this condition is not
fulfilled in many practically meaningful application domains.
For example, relative degree is two for collocated control of
mechanical systems, and may get up to twice the number
of the degrees of freedoms for the underactuated case. A
solution is provided in [7], where the tracking error is
differentiated r times. Note that the first r−1 derivatives can
be obtained as combination of systems states (see [8] and
Sec. II-A). Therefore the algorithm is said to be of D-type,
since it requires to apply a further numerical derivation to the
system state - with well-known issues in terms of numerical
stability. P-type algorithms are those which use only com-
binations of the system state to produce the learning signal.
A P-type ILC algorithm for systems with arbitrary relative
degree is proposed in [9], where the derivative operator is
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replaced by a temporal shift. An alternative solution based
on sample data update law is proposed in [10]. A learning
rule for an underactuated robot with relative degree two is
proposed and experimentally validated in [11].

However, all these ILC algorithms are of the offline kind.
Due to purely open-loop nature, offline ILC is prone to
robustness issues, for example when subject to iteration
dependent disturbances [12] or to mismatches in the initial
condition [13]. Feedback loops have been introduced to
solve this issue, and several ways of combining the two
components proposed [14]–[16]. Among them, a relevant
trend goes under the names of “online-offline” or “current-
iteration” or “open-closed-loop” ILC algorithms [17]–[19].
Here, the feedback controller is directly incorporated in
the learning scheme, by adding the control action to the
learning signal. Several instances of these algorithms have
been proposed over the years, as for example including
integral actions [20], a time-variable forgetting factor [21],
or its extension to networked systems [22].

We are not aware of any offline-online ILC algorithm that
can deal with systems with relative degree r > 1. In this
paper, we propose a simple instance of such algorithm. A
number of other effects are also considered, namely: (i) it
is of type P, (ii) it can have a non-unitary forgetting factor,
(iii) it can incorporate a delay in the feedback loop, (iv)
it can include σ ∈ N integrators on both feedback action
and ILC offline update. Due to the latter characteristics,
and in accordance with the standard notation found in the
state of the art, we refer to this algorithm as of PIσ-PIσ-
type. This also serves to stress that all the signals used to
produce online feedback and learning the feedforward are
combination of state variables (and time integrations). No
derivative (or other not causal operator) is used in this work.

II. PRELIMINARIES AND NOTATION

A. Considered system

Let us consider a control-affine nonlinear single input
single output system with n states and a fixed relative degree
r. According to classic results in nonlinear control theory
[8], a set of coordinates can always be selected such that
the nonlinear system has the structure (called normal form)

ξ̇ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . . . . 1
0 0 . . . . . . 0

ξ+


0
0
...
0

f(ξ, η)

+


0
0
...
0

g(ξ, η)

u,
η̇ = q(ξ, η), y = (ξ)1,

(1)
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where u ∈ R and y ∈ R are the control input and output,
respectively. ξ ∈ Rr is the portion of the state vector visible
from the output y, and (ξ)i is the i−th element. Its dynamics
is described by a chain of r integrators. q : Rr × Rn−r →
Rn−r is the internal dynamics of the system with state vector
η ∈ Rn−r. Note that the time derivatives of the output fulfill
y(i) = (ξ)i+1 for all i ∈ {0, . . . , r−1}. Finally, for the sake
of conciseness of notation, we take x , [ηT, ξT]T ∈ Rn as
the state vector, and we re-write (1) in the compact form

ẋ(t) = F (x(t)) +G(x(t))u(t), y(t) = (x)n−r+1(t). (2)

where F : Rn → Rn is the drift vector and G =[
0 . . . 0 g

]T ∈ Rn is the control vector field, with
g : R→ R. The drift F is assumed to be globally uniformly
Lipschitz, i.e. a finite F̄ > 0 exists such that

‖F (ζ)− F (χ)‖ ≤ F̄ ‖ζ − χ‖ ∀ζ, χ ∈ Rn. (3)

Remark 1. System (4) could also be extended considering
a chain of σ ∈ N integrators of the output y on top of ξ,
still maintaining the same structure as in (1).

B. Iterations

In this work, we consider the improvement of tracking
performance that can be achieved by repeating multiple
times the same task. We therefore introduce the iteration
index k ∈ N/{0}, describing the trial-by-trial evolution. For
each trial we focus on the system evolution in t ∈ [0, tf ].
The system (2) can be rewritten as

ẋk(t) = F (xk(t))+G(xk(t))uk(t), yk(t) = (xk)n−r+1(t). (4)

C. Problem statement

We call yd : [0, tf ] → R the desired output evo-
lution. This univocally defines a desired evolution of
the augmented (i.e. including the σ integrators) ξ as[
y
(−σ)
d . . . y

(−1)
d yd y

(1)
d . . . y

(r−1)
d

]T
(t), where

y
(−i)
d =

∫ t
0
· · ·
∫ ti−1

0
yd(ti)dti . . . dt1. Our goal is to find an

iterative rule in the form

uk+1 = L(uk, u0, ek) , (5)

such that
lim
k→∞

uk = ud , (6)

where u0 is an initial guess, and ud is the input producing the
output evolution yd, i.e such that ẋd = F (xd) + G(xd)ud,
and yd = (xd)n−r+1.

D. Further remarks on notation

It is instrumental for the derivation of the proposed
approach to define the lambda-norm ‖·‖λ , supt e

−λt ‖·‖

and the operator
b

C
a
(x) ,

[
tb−1

(b−1)! . . . ta−1

(a−1)!

]T
∈ Rb−a,

for b > a > 0 and t ∈ R. Note that no element in
b

C
a
(t) is

equal to zero if t 6= 0.

III. MAIN RESULTS

We proposed the following linear instance of (5) for
solving the problem

uk+1 = Quk + (1−Q)u0 + Kffεk︸ ︷︷ ︸
uff
k+1

+ Kfbεk+1︸ ︷︷ ︸
ufb
k+1

, (7)

where u0 is the initial guess, Q ∈ (0, 1] is the for-
getting factor. Note that Kff ,Kfb ∈ R1×p are feed-
forward and feedback gains, respectively. As highlighted
in Remark 1, we consider a system with σ integre-
tors. Thus, the error vector is defined as εk(t) =[
e(−σ) . . . e(−1) e e(1) . . . e(r−1)

]T
(t) ∈ Rp,

where p = σ+r, e(t) , yd(t)−yk(t) output error relative to
desired output yd, e(−i) =

∫ t
0
· · ·
∫ ti−1

0
e(ti)dti . . . dt1, and

e(i) = di

dti e(t). Finally, uff and ufb are the feedforward and
the feedback component of the control action, respectively.

A. Main theorem

Theorem 1. Consider the system (4) with g constant in Rn,
controlled by (7). If∥∥∥Q− (Kff +QKfb)B

∥∥∥ < 1 , (8)

then a λ > 0 and a a > 0 exist such that

lim
k→∞

‖yd − yk‖λ ≤ (1−Q)a ‖ud − u0‖λ , (9)

where B , ge−λt
∫ t
0
Cp+1
1 (t−s)ds.

Proof: For readability purpose, continuous-time vari-
able is omitted where implicit. Let us define the the initial
control error as ∆u0 , ud − u0 and the control error at the
k-th trial as ∆uk+1 , ud − uk+1. Then, we can write

∆uk+1 = Q∆uk + (1−Q)∆u0 −Kffεk −Kfbεk+1 (10)

= ∆uffk+1 −Kfbεk+1 , (11)

then pure feed-forward learning rule is

∆uffk+1 = Q∆uk + (1−Q)∆u0 −Kffεk

= Q∆uffk + (1−Q)∆u0 −Kεk ,

where K , Kff + QKfb. Adding and subtracting KB∆uffk
leads to

= (Q−KB)∆uffk + (1−Q)∆u0 −K(εk −B∆uffk) .
(12)

The error vector εk can be written as a function of the r-
th Lie-derivative of system output error ek, using Cauchy’s
formula for repeated integrals

εk =

∫ t

0

p+1

C
1

(t−s)
[
∆fk − gKfbεk + g∆uff

k

]
ds , (13)

where f and g are defined as in (1), and ∆fk(s) ,
f(xd(s))− f(xk(s)). Take norm of both sides

‖εk‖ ≤
∫ t

0

∥∥∥∥p+1

C
1

(t−s)
∥∥∥∥(|∆fk|+ |gKfb||εk|+ |g||uff

k |
)
. (14)

Note that f is continuous and Lipschitz in y, then exists
f̄ positive constant such that |f(yd)−f(yk)| ≤ f̄ |yd−yk| ≤
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f̄ ‖εk‖. Substituting it in (14) and using Grönwall-Bellman
theorem ( [23], Corollary 2) leads to

‖εk‖ ≤ |g|
∫ t

0

exp

(
(f̄ + |gKfb|)

∫ t

s

∥∥∥∥p+1

C
1

(t−h)

∥∥∥∥dh

)
·
∥∥∥∥p+1

C
1

(t−s)
∥∥∥∥ |∆uffk |ds . (15)

An upper bound of ‖C(t−s)‖ can be set using the ∞-
norm and the exponential series expansion: ‖C(t−s)‖ ≤
et−s. Furthermore, since t ∈ [0, tf ], s ∈ [0, t], and h ∈ [s, t],
we can set ‖C(t− h)‖ ≤ ‖C(tf)‖. Substituting in (15) leads
to

‖εk‖ ≤ |g|
∫ t

0

e(f̄+|gKfb|)‖Cp+1
1 (tf )‖(t−s)et−s|∆uff

k |ds . (16)

Let b , (f̄+|gKfb|)
∥∥∥Cp+1

1 (tf)
∥∥∥, and define the upper bound

|∆uffk(s)| = eλse−λs|∆uffk(s)| ≤ eλs
∥∥∆uffk(s)

∥∥
λ

, then

‖εk‖ ≤ |g|
∫ t

0

e(b+1)(t−s)eλsds
∥∥∆uffk

∥∥
λ

= |g|
∫ t

0

e(b+1)t+(λ−(b+1))sds
∥∥∆uffk

∥∥
λ

= |g|e
λt − e(b+1)t

λ− (b+ 1)

∥∥∆uffk
∥∥
λ
. (17)

Multiplying both sides by positive values e−λt and taking
the supremum we obtain

‖εk‖λ ≤ |g| sup
t

1− e((b+t)−λ)t

λ− (b+ 1)

∥∥∥∆uff
k

∥∥∥
λ
. (18)

Computing the norm of both sides of (12), and substituting
in (18) leads to

|∆uffk+1| ≤ |Q−KB||∆uffk |+ (1−Q)|∆u0|
+ ‖K‖ ‖εk‖+ ‖K‖ ‖B‖ |∆uffk |
≤ |Q−KB||∆uffk |+ (1−Q)|∆u0|

+ ‖K‖ |g|e
λt − e(b+1)t

λ− (b+ 1)

∥∥∆uffk
∥∥
λ

+ ‖K‖ ‖B‖ |∆uffk | . (19)

Multiplying both sides by positive values e−λt and taking
the supremum we obtain

|∆uffk+1|λ ≤ sup
t
|Q−KB|

∥∥∆uffk
∥∥
λ

+ (1−Q) ‖∆u0‖λ

+ ‖K‖ |g| sup
t

1− e((b+1)−λ)t

λ− (b+ 1)

∥∥∆uffk
∥∥
λ

+ ‖K‖ sup
t
‖B‖

∥∥∆uffk
∥∥
λ
. (20)

At this point, we evaluate an upper bound of supt ‖B‖

sup
t
‖B‖ ≤ |g| sup

t
e−λt

∫ t

0

p+1

C
1

(t− s)ds

≤ |g| sup
t
e−λt

p+2

C
2

(t) ≤ |g| 1

λe
. (21)

Substitute (21) in (20), and let us define

ρ , sup
t
|Q−KB|+ ‖K‖ |g|

(
1

λ− (b+ 1)
+

1

λe

)
, (22)

if λ > b+ 1, then (20) can be rewritten as

|∆uffk+1|λ ≤ ρ
∥∥∆uffk

∥∥
λ

+ (1−Q) ‖∆u0‖λ

≤ ρk+1
∥∥∆uff0

∥∥
λ

+ (1−Q) ‖∆u0‖λ
k∑
i=0

ρi .

(23)

If ρ < 1, for k →∞ we have

lim
k→∞

|∆uff
k+1|λ ≤

(1−Q)

1− ρ ‖∆u0‖λ . (24)

.
At this point, we find λ such that ρ < 1

ρ ≤ sup
t
|Q−KB|+ ‖K‖ |g|

(
1

λ− (b+ 1)
+

1

λe

)
< 1

1

λe(λ− (b+ 1)

[
sup
t
|Q−KB|λe(λ− (b+ 1))

+ ‖K‖ |g|
(
λ(e+ 1)− (b+ 1)

)]
< 1

sup
t
|Q−KB|λ+

(
1 +

1

e

)
‖K‖ |g| < λ− (b+ 1)(

1 +
1

e

)
‖K‖ |g|+ b+ 1 < λ(1− sup

t
|Q−KB|) . (25)

If (8) holds, also supt |Q−KB| < 1 holds true, then(
1 + 1

e

)
‖K‖ |g|+ b+ 1

1− supt |Q−KB|
< λ . (26)

An upper estimation Q̄ of supt |Q −KB| can be found
as

sup
t
|Q−KB| ≤ max

(
Q−K−,K+ −Q

)
, Q̄ , (27)

where

K− ,
g

(b+ 1)e

∑
Ki<0

Ki < inf
t
KB ,

K+ ,
g

(b+ 1)e

∑
Ki>0

Ki > sup
t
KB .

Therefore, in order to have ρ < 1, λ must be such that(
1 + 1

e

)
‖K‖ |g|+ b+ 1

1− Q̄
< λ .

At this point, we focus on the state error ∆xk , xd−xk.
Taking its norm leads to

‖∆xk‖ ≤
∫ t

0

‖∆Fk‖+
∥∥∥gKfb

∥∥∥ ‖εk‖+ |g||∆uff
k |ds , (28)

where ∆Fk , F (xd) − F (xk). From (3), F is Lipschitz,
furthermore since ek is continuous and derivable up to r−1
times, also εk (function of ek) is Lipschitz in x. Therfore,
a positive constant Ē exists such that ‖εk‖ ≤ Ē ‖xd − xk‖;
let c , F̄ +

∥∥gKfb
∥∥ Ē. Thus

‖∆xk‖ ≤
∫ t

0

c ‖∆xk‖+ |g||∆uff
k |ds . (29)
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Applying Grönwall-Bellman theorem

‖∆xk‖ ≤ |g|
∫ t

0

ec(t−s)|∆uffk |ds

≤ |g|
∫ t

0

ec(t−s)eλsds
∥∥∆uffk

∥∥
λ
.

An upper bound of the state error is

‖∆xk‖ ≤ |g|eλt
1− e(c−λ)t

λ− c
∥∥∆uffk

∥∥
λ
. (30)

Substituting (24) into (30) and taking the supremum

lim
k→∞

‖∆xk‖∞ ≤ |g| sup
t
eλt

1− e(c−λ)t

λ− c
1−Q
1− ρ

‖∆u0‖λ .

(31)

Given the expression of yk from (4) - i.e. extraction of
a single element from xk - we can affirm that |yd − yk| ≤
‖xd − xk‖. Therefore

lim
k→∞

‖yd − yk‖∞ ≤ ‖xd − xk‖∞

≤ |g| sup
t
eλt

1− e(c−λ)t

λ− c
1−Q
1− ρ

‖∆u0‖λ . (32)

Multiplying both sides of (30) by e−λt and taking the
supremum

‖∆xk‖λ ≤ |g| sup
t

1− e(c−λ)t

λ− c
∥∥∆uffk

∥∥
λ
. (33)

Substituting (24) into (33)

lim
k→∞

‖∆xk‖λ ≤ |g| sup
t

1− e(c−λ)t

λ− c
1−Q
1− ρ

‖∆u0‖λ ,

(34)

therefore

lim
k→∞

‖yd − yk‖λ ≤ ‖xd − xk‖λ

≤ |g| sup
t

1− e(c−λ)t

λ− c
1−Q
1− ρ

‖∆u0‖λ . (35)

Defining a , |g| supt
1−e(c−λ)t

(λ−c)(1−ρ(λ)) , then (9) follows.

Remark 2. The value a is such that limλ→∞ a = 0. This
comes directly from the definition of a.

B. Non constant input field

Assumption of g constant in Theorem 1 can be relaxed to
non constant input field thanks to the following Corollary.

Corollary 1. Suppose that all the hypothesis of Theorem
1 are verified, but the one on g being constant. Then, the
thesis of Theorem 1 is still valid when using the actions

uk = (ḡ/g(xk))vk , (36)

and with B , ḡe−λt
∫ t
0
Cp+1
1 (t−s)ds, where vk is evaluated

as in (7), and ḡ ∈ R.

Proof: The corollary follows directly by noticing
that (36) applied to (1) generates a system fulfilling the
hypotheses of Theorem 1. It is worth noticing here that since

we hypothesized constant relative degree in Sec. II-A, then
g(xk) 6= 0, and (36) is always well defined.

Remark 3. Contrary to (7) - which is model-free net
of having access to ξ - (36) introduces a model based
component which is funciton of the whole state.

C. Further remarks

If the forgetting factor is Q = 1, i.e. learning scheme
has perfect memory of the previous trial control, then if
condition (8) is satisfied, limit (9) becomes

lim
k→∞

‖yd − yk‖λ = 0 , (37)

and asymptotically convergent tracking is met.
Furthermore, (32) becomes

lim
k→∞

‖yd − yk‖∞ = 0 , (38)

ensuring convergence also in ∞-norm. However, there is no
proof about monotonicity, since the upper bound (30) may
initially grow, and together with it the tracking error [5]. An
example of this behavior is provided in Sec. V-B.

Note that condition (8) is satisfied for Q = 1, if 0 <
KB < 2, i.e.

0 < ge−λt(Kfb + Kff)
p+2

C
2

(t) < 2 , (39)

which decreases when λ increases. This equation can be
further reformulated as

0 < e−λt
p∑
i=1

(Kfb+Kff)i
tp+1−i

(p+ 1− i)! ≤ g
1

λe

p∑
i=1

(Kfb+Kff)i < 2.

(40)
Note that u0 is the initial control guess derived by a priori

information about the system. If no initial control guess is
provided, i.e. u0 ≡ 0 the control learning rule (7) becomes

∆uk+1 = Q∆uk + Kfbεk + Kffεk+1 , (41)

similar to ILC schemes in literature [24], where first trial
behavior is entirely guided by feedback control.

IV. DELAYED SYSTEM

Theorem 1 can be extended considering a constant delay
δ > 0 on the feedback component, which modifies (4) in

uk+1(t) = Quk(t)+(1−Q)u0(t)+Kffεk(t)+Kfbεk(t−δ), (42)

where we define the error vector to be zero for negative time
values, i.e. εk ≡ 0 ∀t < 0.

Remark 4. This rule is the generalization to generic n and
σ, of an auto-regressive mathematical model that has proven
to be a robust description of human motor adaptation during
object manipulation [25].

Corollary 2. Theorem 1 still holds, when considering (42)
instead of (7).

Proof: The idea is to follow the same steps of Theorem
1 proof except for some intermediate steps where we take
care of delay that affects the feedback error.
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Fig. 1: Diagram of the system (47) used in Simulations 1–4.

Since by definition uk(t) = 0 and εk = 0 for all t < 0,
the following upper bounds hold∫ t

0

‖εk(s−δ)‖ ds =

∫ t−δ

0

‖εk(s)‖ds ≤
∫ t

0

‖εk(s)‖ds , (43)∫ t

0

|∆uff
k(s−δ)|ds =

∫ t−δ

0

|∆uff
k(s)|ds ≤

∫ t

0

|∆uff
k(s)|ds . (44)

Then we can find an upper bound to (14) modified to take
into account delays

‖εk(t−φ)‖ ≤
∫ t−φ

0

∥∥∥∥p+1

C
1

(t−s)
∥∥∥∥ (|∆fk|

+
∥∥∥gKfb

∥∥∥ ‖εk(s−δ)‖+ |g||uff
k |
)
ds

≤
∫ t

0

∥∥∥∥p+1

C
1

(t−s)
∥∥∥∥ (f̄ ‖εk‖

+
∥∥∥gKfb

∥∥∥ ‖εk(s−δ)‖+ |g||uff
k |
)
ds , (45)

where φ ∈ {0, δ}. Note that∫ t

0

∥∥∥∥p+1

C
1

(t−s)
∥∥∥∥ ‖εk(s−δ)‖ ds

≤
∫ t

0

∥∥∥∥p+1

C
1

(t−s−δ)
∥∥∥∥ ‖εk(s)‖ds . (46)

Furthermore, since t−s−δ < t−s < tf , then
∥∥∥C(t−s−δ)∥∥∥ ≤∥∥∥C(tf)∥∥∥, and applying Grönwall-Bellman theorem to (45) we

obtain (16).
Taking into account previous upper bounds, the original

proof follows straight-forward.

V. SIMULATIONS AND RESULTS

To show the effectiveness of the proposed methods, we
simulate two different systems controlled by ILC schemes
(7) and (42). The two set of simulations are discussed in
two separate subsections. We choose the control gains Kfb

and Kff so to satisfy condition (8) in Theorem 1. Then, we
check if the output transient response shows a convergent
behavior trial after trial.

A. Mechanical system with r = 4

Simulation Setup. Consider the flexible mechanism [26]
depicted in Fig. 1. Three rotating masses coupled by springs
are controlled by an input u torque applied on the second
mass. α, β, γ ∈ R are the absolute rotation angles. Some
of the passive elements have nonlinear characteristics. We

want to control the mass on the left. The system state-space
representation is

α̈ = 10(β−α)− α̇ ,
β̈ = 10

[
(γ−β)3 + (γ−β)− (β−α)

]
− β̇ + u ,

γ̈ = −10
[
(γ−β)3 + (γ−β)

]
− 1

1 + exp(−γ̇)
,

y = α .

(47)

The normal form (1) is

(x)3 = (ξ)1 = y = α ,

(x)4 = (ξ)2 = y(1) = α̇ ,

(x)5 = (ξ)3 = y(2) = α̈ = 10(β− y)− y(1) ,
(x)6 = (ξ)4 = y(3) = 10(β̇− y(1))− y(2) ,

y(4) = 10(β̈− y(2))− y(3)

= 100
[
(γ−β)3 + (γ−β)− (β−α)

]
− 10(β̇ + y(2))− y(3) + 10u .

Therefore the relative degree is r = 4. It is worth noting that
a zero dynamics is also present: x1 = η1 = γ, x2 = η2 = γ̇.

The reference trajectory is

yd = e−4tt10 , (48)

with terminal time tf = 5s. The initial conditions are

α(0) = β(0) = γ(0) = α̇(0) = β̇(0) = γ̇(0) = 0 .

We employ the control law (47) with the ILC scheme (42)
where

e = yd − y ,

ε =
[
e e(1) e(2) e(3)

]T ∈ R4 ,

Kfb =
[
0 1 0 0

]
∈ R1×4 ,

Kff =
[
0 1 0 0.5

]
∈ R1×4 ,

δ = 0.01 .

(49)

Since there is a delay δ 6= 0, in the following we rely on
Corollary 2 to apply the results of Theorem 1. We test this
system with several choices of the forgetting factor Q and
the initial guess u0.

Simulation 1. Consider the parameters

Q = 0.95 ,

u0(t) = 0 , ∀t ∈ [0, tf ] .
(50)

Given (49) and (50), we have that∥∥Q− (Kff +QKfb)B
∥∥ =∼ 0.95. Therefore, the

convergence condition
∥∥Q− (Kff +QKfb)B

∥∥ < 1 in
Theorem 1 is satisfied. Thus, we expect this system to
converge but with non-zero steady state error, as described
by (9).

Fig.s 2a–2b show the output and input responses at 1–st,
4–th, and 30–th trials, respectively.

Simulation 2. Consider the parameters

Q = 0.95 ,

u0(t) = cos(2t) , ∀t ∈ [0, tf ] .
(51)
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 2: Output and input signals for 1-st, 4-th, and 30-th trials. (a)-(b) are relative to Sim. 1 (Q < 1, u0(t) ≡ 0), (c)-(d) to
Sim. 2 (Q < 1, u0(t) 6≡ 0), (e)-(f) to Sim. 3 (Q = 1, u0(t) ≡ 0), and finally (g)-(h) to Sim. 4 (Q = 1, u0(t) 6≡ 0).

Fig. 3: System states for Simulation 3, 30-th iteration. Fig. 4: Tracking rmse per trial.

As in Simulation 1, given (49) and (50), we have that∥∥Q− (Kff +QKfb)B
∥∥ =∼ 0.95. Therefore, the conver-

gence condition
∥∥Q− (Kff +QKfb)B

∥∥ < 1 in Theorem 1
is satisfied. Thus, we expect this system to converge but
with non-zero steady state error. However, in this case the
the choice of u0(t) is arbitrary, then we likely expect an
error greater than Simulation 1 error, as described by (9).

Fig.s 2c–2d show the output and input responses at 1–st,
4–th, and 30–th trials, respectively.

Simulation 3. We employ the parameters

Q = 1 ,

u0(t) = 0 , ∀t ∈ [0, tf ] .
(52)

Given (49) and (52), convergence condition (40) is sat-
isfied for λ > 813. Therefore, we expect this system to
converge with zero steady state error, as described by (38)).

Fig.s 2e–2f show the output and input responses at 1–st,
4–th, and 30–th trials, respectively. Fig. 3 shows internal
state behavior for the stable 30-th iteration.

Simulation 4. We employ the parameters

Q = 1 ,

u0(t) = cos(2t) , ∀t ∈ [0, tf ] .
(53)

Given (49) and (52), convergence condition (40) is sat-

isfied for λ > 813. Therefore, we expect this system to
converge with zero steady state error, as described by (38)).

Fig.s 2g–2h show the output and input responses at 1–st,
4–th, and 30–th trials, respectively.

B. 2D soft inverted pendulum

Simulation Setup. We consider the 2D soft inverted
pendulum in Fig. 5 as introduced in [27]. This is a mechan-

Fig. 5: Diagram of soft inverted pendulum, z ∈ [0, 1] is the
curvilinear coordinate along the axis. {S0} is the base frame,
and ψ(z, t) measures the orientation of each point along the
robot w.r.t. that frame.
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(a) (b) (c)

Fig. 6: State and control signals for 1-st, 4-th, and 30-th trials of Simulation 5. (a)-(b) show the two configuration variables,
(c) shows the input torque u.

Fig. 7: Tracking root mean square error for Sim. 5.

(a) (b)

Fig. 8: Pendulum behavior for 1-st (a) and 30-th (b) iterations.

ical system made of continuously deformable soft material,
which is described with just two degrees of freedom thanks
to an affine curvature hypothesis (please refer to the paper
for more details). Therefore n = 4. The system is under
actuated through a single torque applied at the tip, as in
figure. Consider ψ : [0, 1] × R → R as the function
associating to all points along the pendulum (parametrized
in [0, 1]) their relative orientation w.r.t. the base, at any given
time t. In [27] it is shown that the following can be taken
as state vector for the robot.

(x)1 = (η)1 =

∫ 1

0

ψ(z, t)dz ,

(x)2 = (η)2 =

(∫ 1

0

ψ(z, t)

)(1)

(1, t) ,

(x)3 = (ξ)1 = ψ(1, t) ,

(x)4 = (ξ)2 = (ψ(1, t))(1) .

(54)

Note that this is in normal form (1), when y = ψ(1, t). We
will consider this output function in the rest of the section.

To perform simulations, we use the same mechanical
characteristics as the simulations in [27]. Among all the
stiffnesses considered there, we choose κ = 1. Thus the
pendulum has three equilibrium points - vertical, bottom-
left, bottom-right. The first being unstable, and the other
two stable. We want to improve the swing up task, e.g.
moving the pendulum from a stable equilibrium (bottom-
left here w.l.o.g.) to a neighborhood of the unstable vertical
configuration x = 0.

We apply Corollary 1 with ḡ = g(0) so to scale the input
field around the vertical unstable equilibrium to one. We
want the tip orientation y to track the following swing up

behavior

yd = (x)3(0)

[
1− 10

(
t

tf

)3

+ 15

(
t

tf

)4

− 6

(
t

tf

)5
]
,

(55)
where the initial state of the system is on bottom-left equi-
librium x(0) = (0.8031, 0, 2.7513, 0). The other parameters
are

ε =
[
e(−3) e(−2) e(−1) e e(1)

]T ∈ R5 ,

Kfb =
[
0 0 0.5 1 2

]
∈ R1×5 ,

Kff =
[
0.1 0 1 2 0

]
∈ R1×5 ,

Q = 1 ,

δ = 0 ,

u0(t) = 0 , ∀t ∈ [0, tf ] .

(56)

Note that we use up to three integrals, i.e., σ = 3.

Simulation 5. We show in Fig. 6 the states and control
signals, in Fig. 7 the behavior of the Root Mean Square Error
(RMSE) per trial for the output y, in Fig. 8 the pendulum
behavior for the first and last iterations, respectively.

C. Discussion
Fig.s 2a–2b show trials progression of Sim. 1. We can see

how the output converges to desired output but with an error.
The remaining gap between the signals does not improve
significantly from 30-th iteration forward, this behavior was
predicted by Theorem 1, since the tracking error upper
bound is not zero, as described by (9) and (32). The input
signal displays oscillations since early 4-th iteration.

Fig.s 2c–2d show trials progression of Sim. 2. We can see
how the system converges even if we choose a detrimental
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initial guess (51) that affects input in every iteration. The
final outcome does not improve significantly from 30-th
iteration forward, and the tracking is worse than Sim. 1;
steady state tracking error was predicted by (9) where we
changed |∆u0|. Note that we can also improve steady state
tracking error with a wiser choice of u0(t), when Q < 1.

Fig.s 2e–2h show trials progression of Sim.s 3 and 4.
In these cases the forgetting factor Q = 1 lets the system
converge with negligible tracking error in only 30 iterations,
getting closer to zero as predicted by (38). This holds
true even in Sim. 4, where the choice of u0 lowers the
performance. In Sim. 3, the input at early 4-th trial displays
an oscillatory behavior that is lost when the system reaches
the 30-th iteration. Furthermore, Fig. 3 show internal state
for the last iteration of Sim. 3. All the three masses have
similar behaviors, since their movements are coupled by
springs.

Fig. 4 summarizes the trial-by-trial performances of Sim.s
1-4. The performance index is the RMSE.

Fig.s 6a-6c show trials progression of Sim. 5. We can
see how ψ(1, t) tracks yd (55) with negligible error starting
at least from the 10-th iteration (Fig. 7), moving the tip in
a vertical position after 5 seconds. Zero error behavior is
expected since forgetting factor is unitary (Q = 1). Finally,
Fig. 8 depicts the motion of the pendulum during 1-st and
30-th iteration. Fig. 8a shows that the feedback alone is
not capable to complete the swing up movement in only
5 seconds.

VI. CONCLUSIONS

This paper introduced an online-offline ILC scheme of
PIσ-PIσ-type. This learning rule can include an arbitrary
number σ of integrators on feedback action and offline up-
date. Its convergence is proven for a large class of nonlinear
systems - including arbitrary relative degree r ≥ 1 (e.g.
mechanical systems relying on position output), delayed
feedback loop, non-unitary forgetting factor. Future work
will be devoted to experimental validation of the theory, with
specific attention to the soft robotic application [28].
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