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Case Study

Using Alternatives to Determine the Shallowest Depth
for Bathymetric Charting: Case Study

Tannaz H. Mohammadloo1; Mirjam Snellen, Ph.D.2; Dick G. Simons, Ph.D.3;

Ben Dierikx, M.Sc.4; and Simon Bicknese5

Abstract: Methods for gridding multibeam echo sounder (MBES) measurements to equidistant grids are proposed as alternatives to the
shallowest measured depth, which is affected by outliers. The approaches considered use a combination of mean and standard deviation of
soundings and the regression coefficient from the best fitted plane. These methods along with mean and shallowest depths were applied to two
surveyed areas. Two issues were found to be of importance, that is, a proper distribution of soundings and low uncertainties in the depth
measurements. Improper sampling excludes using the method employing regression coefficients. For flat areas, the shallowest measured depth
was found to be highly influenced by measurement uncertainties, counteracted when using the mean depth. However, the mean depth un-
derestimates the shallowest depth for areas with slopes. When correcting the mean depth for standard deviation, the effect of slopes is ac-
counted for while the influence of measurement uncertainties is decreased compared to shallowest measured depth. Since the uncertainties are
dependent on beam angle, depth, and measurement equipment, these issues need to be accounted for in survey planning. DOI: 10.1061/
(ASCE)SU.1943-5428.0000278. � 2019 American Society of Civil Engineers.

Author keywords: Bathymetry gridding; Standard deviation of depth measurements; Regression coefficients; Mean depth; Shallowest
depth.

Introduction

Reliable information about sea- and riverbed bathymetry is of great
interest for a large number of applications, such as maintaining safe
navigation, building off-shore constructions, and making nautical
charts. Nowadays, multibeam echo sounders (MBESs) provide high
spatial coverage at relatively limited costs, and hence have been
extensively used for bathymetric measurements. The amount of
data generated by an MBES depends on the ping rate and the
number of beams in the across-track direction. As an example, for a
Kongsberg EM 3002 MBES (Kongsberg, Norway), the maximum
ping rate is 40 Hz and the number of beams in the single-head mode
is 254, which results in an incoming data flow of approximately
36.5 million data points per hour (Kannan et al. 2015). Therefore,
reduction of the data is necessary for computationally effective
processing.

A number of scholars studied approaches for producing a ba-
thymetry map from the soundings collected in an MBES survey,
which will be discussed in the subsequent paragraphs. This paper
presents and compares a number of methods for producing such
maps (without the need for a priori knowledge of the measurement
uncertainties) and investigates their feasibility.

Triangulation or equidistant grids are often used for data re-
duction (Brouns et al. 2001, 2003). Triangular-based gridding is
appropriate when measurements are at discrete points. It is flexible
with respect to the different levels of detail, that is, a denser triangle
pattern is an indication of more detailed relief information. How-
ever, this method has large memory requirements and long pro-
cessing time, and requires sophisticated geometric computations
(DeWulf et al. 2012b). The advantages of equidistant grids are their
simplicity and low memory requirements. The use of equidistant
points enables storing only the depth values (De Wulf et al. 2012a).
Since the surveyed areas used in this study were homogeneously
surveyed, only equidistant grids were considered.

A commonly used method for assigning depths to the grid of
high-density bathymetry data is to use the shallowest (minimum)
measured depth within a cell (De Wulf et al. 2012b). The advantage
of this approach is that the method preserves the shallowest depth,
which is of high importance for safe navigation. The disadvantage,
however, is that these shallowest depths can correspond to outliers,
and consequently the resulting charted soundings can be (signifi-
cantly) shallower than the true depth in the area. It is sometimes
seen that measurements from the less reliable outer beams, sub-
jected to the largest uncertainties, are selected as the depths to be
charted. They are thus more frequently shallower than other mea-
surements in the area (Calder and Mayer 2003). In order to mitigate
the effect of measurement errors on the charted depths, it is possible
to use other statistics derived from the data. A straightforward ap-
proach is to use the mean value (De Wulf et al. 2012b). However, a
problem associated with assigning the mean depth is that hazard-
ous objects might be left undetected, and hence safe navigation is
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prohibited (Mohammadloo et al. 2018). A more advanced approach
for assigning a depth to a set of predefined nodes is to use the
Combined Uncertainty and Bathymetry Estimator (CUBE) algo-
rithm developed by Calder and Mayer (2001, 2003). This approach
constructs a grid over a surveyed area and assigns to each grid node
an estimate of depth and its uncertainty. Use is made of a priori
standard deviation for the soundings based on the uncertainty model
of Hare (1995). At a node, soundings are integrated to obtain an
estimate of the depth and uncertainty using an optimal Kalman
filter. In the present paper, the main focus is on more straightfor-
ward approaches that do not need a priori estimates of the standard
deviation of the soundings and use the statistics derived from the
measurements. However, the comparison between the approaches
presented and CUBE was made to assess their agreement and pos-
sible discrepancies. Moreover, the bathymetric uncertainties derived
from the measurements were compared to those modeled using Hare
(1995), which is also used in CUBE to define a priori estimate of the
sounding uncertainties. This provides one with insight into how
realistic the modeling is, and it can also give direction for future
improvements of the modeling.

The surveyed areas considered in this contribution are located
in the Netherlands. The Netherlands is the home of international
river basins, such as Scheldt and Ems, which run through the
country toward the North Sea and the Wadden Sea. These rivers
and the estuaries connecting them to the sea are used for inland
waterway transport within the Netherlands and also between the
Netherlands and neighboring countries. A shallowest depth has
to be guaranteed to keep the rivers navigable and also to ensure
that the ships can carry maximum cargo. Currently, for the pro-
duction of the charts, the Dutch Ministry of Infrastructure and
Water Management [Rijkswaterstaat (RWS)] uses the shallow-
est depth at its measured position from the point cloud of the
MBES measurements. The resulting unequal spacing between
the points results in high memory requirements. In addition,
assigning the shallowest depth can result in an artificially shallow
grid as described previously. In this study, the use of alternative
techniques for mitigating these two drawbacks was investigated.
While the first issue can be easily solved by considering the cell
center instead of the location of the shallowest depth, the second
issue requires more careful consideration. This second issue,
that is, to assign to each cell a depth value that optimally rep-
resents the actual shallowest depth, was investigated by consid-
ering a number of methods for shallowest depth determination
and applying them to two different surveyed areas located in the
Westerschelde estuary connecting the Scheldt River to the North
Sea, an important shipping route to the port of Antwerp, Bel-
gium. The resulting grids were compared to their shallowest and
mean counterparts. This work is part of an effort to investigate
future data management for bathymetric measurements in the
Netherlands.

Description of Methods for Determining
the Shallowest Depth

In general, when using an MBES system, the density of the mea-
surements acquired is high. Table 1 gives the data sets considered in
this paper. Consequently, several soundings will be located within a
single cell, provided that a large enough cell size is considered.
Here, a cell size G was considered in both easting and northing
directions, that is, the resolution of the grid in both directions was
equal. The number of soundings in each cell is indicated by Nhits.
The shallowest measured depth corresponds to the measurement out
of the Nhits soundings that provides the shallowest depth.

Shallowest Depth Based on the Mean
and Standard Deviation

As mentioned, the problem associated with the shallowest depth is
that it is not necessarily a good observable because no averaging is
carried out to mitigate the effect of measurement errors. However,
using the mean depth, d , neglects the presence of slopes. There-
fore, dmincr is proposed where the standard deviation is subtracted
from the mean to account for the measured depth variations within
a cell as

dmincr ¼ d � cr ð1Þ

where c ¼ number of times the standard deviation is subtracted. For
example, dmin1r denotes the shallowest depth in the 1�r confi-
dence level (68.3% confidence interval), where r is the standard
deviation of the raw soundings within a cell. Within this research,
only c ¼ 0 and c ¼ 1 (where c ¼ 0 indicates that the mean depth is
used) were considered.

Shallowest Depth Based on the Regression Coefficients

As a second approach, where the potential presence of slopes along
the cell surface is explicitly accounted for, a linear plane is fitted
through the depth measurements as

f ¼ CXX þ CYY þ b� d ¼ 0 ð2Þ

where X, Y, and d ¼ easting, northing, and depth of a sounding in
a cell, respectively; CX and CY ¼ regression coefficients, repre-
senting slopes in easting and northing directions, respectively; and
b ¼ constant parameter.

Now we define d ¼ ½d1; d2; . . . ; dNhits �T as the vector containing
the depth measurements in a cell. Vector â ¼ ½b;CX ;CY �T contains
the unknown parameters. The model for the observations can be
written as

Efdg ¼ Aâ ð3Þ

where E is the expectation operator; and A is the design matrix of
size Nhits�3, of which the ith row is Ai¼ ½1;Xi; Yi�. The unknown
parameters can be derived by minimizing the quadratic error
(k e k2, where k�k denotes the norm of a vector) between the linear
regression and the real depth measurements [i.e., k e k2 ¼
ðd � AâÞTðd � AâÞ]. The estimate of the vector â, assuming in-
dependent identically distributed measurements, is (Teunissen
et al. 2006)

â ¼ ðATAÞ�1ATd ð4Þ

Substituting easting and northing of the measurements in the matrix
A leads to rank deficiency of the normal matrix ðN ¼ ATAÞ, also
referred to as numerical instability, due to the difference in the

Table 1. Covered area, number of soundings, number of cells, and the
MBES employed for areas A and B

Parameter

Surveyed area

A B

Area (m2) 4,758,203 4,492,155
Soundings 58,777,805 114,934,172
Cells 4,758,203 4,492,155
MBES Norbit WBMS Kongsberg EM 3002D

Note: WBMS ¼ wideband multibeam sonar (Norbit, Trondheim, Norway).

© ASCE 05019004-2 J. Surv. Eng.
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magnitude of the columns of the design matrix. To solve this
problem, the equation of the plane can be alternatively defined as

f ¼ CXðX�XÞ þCYðY � Y Þ � dþ ðbþCXX þCYY Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b0

¼ 0 ð5Þ

where X and Y ¼ mean (expected) values of the easting and
northing in a cell, respectively. Thus, the unknown parameters are
now of the form â ¼ ½b0;CX ;CY �T .

Using Eq. (4) with Ai¼ ½1;Xi � X ; Yi � Y � as the design matrix,
one can determine the unknown parameters. The least-squares es-
timator of observables (d̂) and of residuals (ê) follows from

d̂ ¼ Aâ

ê ¼ d � Aâ ð6Þ

where d̂ and ê represent the depth measurements projected onto the
range space of matrix A (the plane) and the deviation of the bottom
topography from the best-fitted plane, respectively. The depth re-
siduals are normally distributed with zero mean and standard de-
viation rcorr. This standard deviation along with the least-squares
estimator of the observable is used to construct a confidence limit
for the identification and rejection of the outliers (Artilheiro 1998).

The depths at the four corners of a cell are derived using CX and
CY and the intercept, determined from substituting Eq. (4) in Eq. (2).
The easting and northing of these corners are

XLU¼ XLL¼ Xc � G

2

YRL¼ YLL¼ Yc � G

2

XRU¼ XRL¼ Xc þ G

2

XRL¼ XLU¼ Yc þ G

2
ð7Þ

where the subscripts LU, LL, RL, and RU ¼ upper-left, lower-left,
lower-right, and upper-right corners, respectively; and Xc and
Yc ¼ position of the cell center. The shallowest depth based on the
regression coefficients (dminReg ) reads as

dminReg ¼ minðdLU; dLL; dRL; dRUÞ ð8Þ

whereminðdLU; dLL; dRL; dRUÞ indicates the shallowest depth among
the four depths at the corners of the cell. Theoretically, dminReg is a
more realistic representative of the true shallowest depth in a cell
compared to the one based on the standard deviation and mean depth
because it explicitly takes the effect of potential slopes into account.
One can subtract the standard deviation of the depth residuals (which
is an indication of the deviation of the bottom topography from the
best fitted plane), rcorr from Eq. (8), to ensure a safety margin.

Description of the Data Sets

To assess the effect of using the different methods for shallowest
depth determination as introduced in the previous section, two areas
in the Westerschelde estuary were considered. The data sets were
provided by RWS. These data sets were chosen because they
contain regions with significant importance for navigation, related
to very shallow depths. Fig. 1 shows the bathymetry of the areas.
For the sake of convenience, the areas Honte (omgeving Put van

Borssele) and Pas van Terneuzen (Springergeul ankergebied) are
referred to as A and B, respectively. The depth varies from 2.5 to
66.20 m in Area A and from 5.10 to 17.70 m in Area B. In Area A, a
dredged navigational channel exists (Fig. 1) where the relatively
deep area inside the trenches is maintained by constant dredging
and maintaining the slopes. Hence, it is interesting to assess the
bathymetry in this region using the different approaches for ob-
taining the shallowest depth. Regarding Area B, it is seen from
Fig. 1 that two sets of sand dunes exist, one in the deepest part of the
surveyed area and the other in the shallower part. It is important to
investigate the impact of using the different measures for shallowest
depth on the mapping of sand dunes. Table 1 presents the size of the
areas, number of soundings, number of cells, and the MBESs used.

A brief discussion of the systems used for data acquisition and
bathymetry processing is needed (vertical positioning in particular).
A critical element in the accurate estimation of the depth below the
transducer is the sound speed profile (SSP) in the water column,
which varies both spatially and temporally. Therefore, sufficient
and accurate measurements of this parameter are required. To en-
sure the former, the surveyors were asked to acquire a new SSP if
there was a difference of more than 2 m=s between the surface
sound speed value and the surface sound speed from the latest full
sound speed profile, as specified by the National Oceanic and At-
mospheric Administration (NOAA 2017). The sound velocity
profilers employed in Areas A and B were manufactured by Vale-
port (Totnes, UK) and AML Oceanographic (Sidney, BC, Canada),
respectively, and they measure the sound velocity either directly or
as a function of conductivity, temperature, and depth. The depth
below the transducer was then calculated using ray tracing in the
processing software. The accuracy of the sound velocity profiler
indicated by the manufacturer is around 0.02 m=s (Valeport 2018;
AML Oceanographic 2017). However, from measurements in dif-
ferent locations (inland waterways and the North Sea), the uncer-
tainty was found to be 0.2 m=s, and hence this value was chosen as a
more realistic description of the systems’ accuracy and was sub-
sequently used to quantify the depth uncertainty induced by the
uncertainty in the sound speed profile. A discussion on the effect of
using erroneous SSP is provided subsequently.

Both data sets were acquired using QINSy, which was devel-
oped by Quality Positioning Service (QPS). Both global navigation
satellite system (GNSS) sensors on board received the correction
signal from real-time kinematic (RTK) services from the Nether-
lands Positioning Service (NETPOS). The GNSS antenna position
was thus determined with an accuracy of a few centimeters inWorld
Geodetic System 1984 (WGS84). Using RTK for the vertical
footprint positioning in QINSy means that the depth relative to the
chart or vertical datum was directly measured from accurate GNSS
observations. [For more information on different depth processing
algorithms available in QINSy, an interested reader may refer to
QINSy (2018).] Therefore, the water surface level is of no relevance
anymore and accounting for height offsets, such as tide, draft, and
height above draft reference, are not necessary for this method, and
thus do not affect the quality of the derived depths. Heave mea-
surements (short-term variations in the transducer’s depth) are,
however, used within the processing software to calculate the height
of the vessel’s center of gravity between two position updates
[because the update rate of the inertial navigation sensor (INS) is
higher than that of the GNSS system]. Therefore, the accuracy of
heave measurement acquired by the INS contributes to the uncer-
tainty in the estimate of the depth. In addition, potential systematic
heave errors result in depth errors through a systematic rise and
fall of all the beams (Godin 1998; Hughes Clarke 2003). A careful
assessment of the surveyed areas shows that such a systematic
behavior does not exist. There are also other contributors affecting

© ASCE 05019004-3 J. Surv. Eng.
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the quality of depth measurements that will be discussed in detail in
the following.

Results

In this section, the results of determining the shallowest depth in a
cell based on the methods described are presented. Before pro-
ceeding, a discussion of the cell size is put forward because it
affects the grids derived. NOAA (2017) specifies the so-called grid
resolution (cell size) as a function of depth. Based on the specifi-
cation (for full seafloor coverage), for depths ranging from 0 to
20 m, a cell size of 1 m in both directions is required. For depths
ranging from 18 to 40 m and from 36 to 80 m, the specified cell
sizes are 2 and 4 m, respectively. For Area B, a cell size of 1 m was
chosen (see the depth range in Fig. 1). For Area A, based on the
specification, the three aforementioned cell sizes can be used de-
pending on the depth. However, the smallest cell sizes have been
chosen to minimize the possibility of not mapping the bathymetric
features (although this requires higher computing power and larger
memory space); a detailed discussion can be found in Maleika
(2015).

For the data sets considered here with the specifications pre-
sented in Table 2, the across-track distances between the two
soundings (in one ping) were around 0.7 and 0.48 m in Areas A and
B, respectively; that is, smaller than the cell size. For the along-track
resolution of the MBES, the operational ping rate should be con-
sidered, which depends on the water depth and the angular sector
and can be lower than the theoretical maximum ping rate specified
by the manufacturer (Table 2). For the deepest parts of Areas A and
B and the outermost beam, the two-way travel times equal 0.192
and 0.073 s, respectively (i.e., ping rates of 5 and 13 Hz). The along-
track spacings between the two consecutive pings with the survey
speed of nearly 5 m=s are thus equal to 0.96 and 0.36 m, respec-
tively. Based on the preceding discussion, it can be concluded that
in general multiple measurements will be within 1�1 m2, allowing
for extraction of the required statistics.

As a first step toward comparing the depths derived from the
approaches discussed previously, however, the validity of using the
mean was investigated. The shallowest depth using the standard
deviation and mean is based on the characteristics of the normal
distribution for which it is assumed that an a percentage of depths
appear within the range d 6 cr (as an example, 68.3% of the data
assuming c ¼ 1). However, if the distribution of the data is not

Fig. 1. (Color) Bathymetric maps of the two areas considered: Area A, Honte (omgeving Put van Borssele); and Area B, Pas van Terneuzen
(Springergeul ankergebied). The depth is considered positive downward. The black rectangle and black dashed areas in Area B consist of 150 and 30
pings and represent flat and nonflat areas, respectively. (Maps courtesy of Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors.)
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normal, the mean and standard deviation cannot automatically
be considered as indicators representing the central tendency and
variation of the data, respectively. Moreover, the mean and standard
deviation are negatively influenced by the outliers (Rousseeuw and
Hubert 2011). A measure for the central tendency of the data that
can be used instead is the median, with the advantage of being
insensitive to the presence of the outliers. In contrast to the mean,
which is affected by the presence of even one aberrant value (0%
breakdown point), the median can resist up to 50% of outliers (50%
breakdown point) (Maronna et al. 2006). As for an indicator of the
variability of the data in case of having a skewed (asymmetrical)
distribution, one can use the median absolute deviation (MAD),
with 50% breakdown point, in contrast to the standard deviation,

with 0% breakdown point. MAD is also a more robust estimate of
the data variability than the interquartile range (IQR). The latter is
defined as the difference between the third and first quartiles of the
data and has 25% breakdown point (Rousseeuw and Hubert 2011),
as an example. Considering the higher breakdown point of MAD
than IQR, the former was investigated as a potential alternative for
the standard deviation.

Fig. 2 shows the depth distribution within four cells with dif-
ferent numbers of soundings. It is seen that for these cells, the dis-
tribution of the depthmeasurements is skewed and it varies from one
cell to another due to varying bottom characteristics. Shown in Fig. 3
is the map of the differences between the median and mean depths
for Area A. Varying colors are used to represent the differences.
Each color represents a certain percentage (25% in this case) of all
data points. It is seen that for 50% of the data, the difference between
the depth based on the median and mean varies between�0.007 and
0.005 m. For 25% of the cells, the differences vary between 3.254
and �0.007 m; however, for 97% of these cells the differences are
less than 0.05 m. The same situation also holds for the upper bounds
of the data, that is, for 98% of the cells between the 75th percentile
and maximum difference, the differences are less than 0.05 m. The
color green in Fig. 3, which is not present in the color bar, is due to
the fact that in some areas the cells with differences between�0.007
and 0 m and the ones with differences between 0 and 0.005 m are
located in close vicinity of each other. Hence, for these areas the
colors yellow and light blue are mixed and appear green.

The importance of these differences is to be assessed from a
statistical point of view, that is, whether the difference between the
median and mean is statistically significant (meaningful), and hence
null and alternative hypotheses are considered

Fig. 2. (Color) Distribution of the depth measurements within four cells with (a) 198; (b) 101; (c) 56; and (d) 30 soundings. The vertical solid line
indicates the median, whereas the dotted line indicates the mean depth. Symbol c1 indicates the skewness.

Table 2. Characteristics of Norbit WBMS and Kongsberg EM 3002D in
the dual-head configuration used in Areas A and B, respectively

Parameter

MBES

Kongsberg EM
3002D

Norbit
WBMS

Maximum number of soundings
per ping

508 512

Beam spacing mode Equidistant Equidistant
Maximum swath width (degrees) 200 160
Along-track opening angle
(degrees)

1.5 1.9

Across-track opening angle
(degrees)

1.5 0.9

Maximum ping rate (Hz) 40 60

Sources: Data from Norbit (2010); Kongsberg (2006).

© ASCE 05019004-5 J. Surv. Eng.
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H0 : EðxÞ ¼ 0

H1 : EðxÞs0

(
ð9Þ

where x ¼ variable (difference between mean and median). If H0 is
rejected, it means that the expected value of the variable is statis-
tically significant. Hypothesis testing is usually carried out using the
probability density function (PDF) of a random variable. However,
here the PDF of the variable is not theoretically known (it varies
from cell to cell), and hence one may use Chebyshev’s inequality
(Teunissen et al. 2006), which avoids distributional assumptions for

the random variable. However, the bounds provided are quite con-
servative. Chebyshev’s inequality states that for a random variable
(x) with x and rx being its mean and standard deviation, respec-
tively, the following holds for every m:

Pðj x � x j< mrxÞ> 1� 1
m2

ð10Þ

Thus, the probability masses outside the interval ðx � mrx; xþ mrxÞ
are smaller than 1=m2 for everym regardless of the form of the PDF of
x. Therefore, under the null hypothesis, the 95% confidence interval is
obtained for m ¼ 4.47, indicating that �4:47rx < x< 4:47rx. The
bounds provided by Chebyshev’s inequality are quite conservative; as
an example, the 95% confidence interval is larger than the case with a
normal distribution. This means that if the null hypothesis is rejected
usingChebyshev’s inequality, it will indeed be rejected for an arbitrary
distribution. However, the reverse situation does not necessarily hold,
that is, if x is within the bounds of Chebyshev’s inequality, one cannot
state that the difference between themean andmedian is not significant
for an arbitrary distribution. For the case under consideration, with the
mean and standard deviation of the difference between the mean and
median equaling �0.001 and 0.015 m (the null hypothesis is not
rejected), one can only state that there is no evidence of the mean and
median being different from a statistical point of view. Finally, from
Fig. 3 it is seen that the differences tend to show a stripy behavior. This
will be discussed in more detail in the following section. A similar
study was carried out, comparing the differences between standard
deviation andMAD, indicating that the standard deviation can be used
as a measure for the data variability. A similar conclusion was drawn
from the comparison between mean and median and standard devia-
tion and median absolute deviation of the surveyed Area B.

Use of the Mean Instead of the Shallowest
Measured Water Depth

Figs. 4(a and b) show the difference between the mean depth and
the shallowest depth per cell for Areas A and B, respectively. The

Fig. 3. (Color) Map of the difference between the median and mean
depths for Area A. The range of values represented by each color is such
that each range represents an equal percentage of the data.

Fig. 4. (Color) Maps of the difference between the mean and shallowest depth (a) for Area A; and (b) for Area B. The range of values represented by
each color is such that each color represents an equal percentage of the data.
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maximum absolute difference between the mean and shallowest
depth in Fig. 4(a) (6 m) is significantly larger than that of Fig. 4(b)
(0.6 m). Fig. 4(a) clearly demonstrates the need for improved map-
ping compared to using the shallowest measured depth per cell be-
cause it is considered impossible to have a 6-m difference between
the shallowest and mean depth in a 1�1 m2 cell. In addition, the
results show a dependency along the sailing direction. This depen-
dency, which was not observed in the bathymetry, exists irrespective
of the topography and type of the MBES employed and the difference
between the two depths gradually increases from nadir to the outer
beams. To closely examine the origin of this dependency, the seafloor
profiles for both a flat area and a nonflat area were considered.

Shown in Figs. 5(a and b) are the mean and shallowest depths,
obtained as an average over nearly 150 pings, and the difference
(solid lines) between these two for a relatively flat area [indicated by
the black rectangle in the bathymetry map Area B (Fig. 1)]. It is seen
that this difference increases toward the outer parts of the swath
[Fig. 5(b)], resulting in the dependency observed. It is hypothesized
that this increase is due to the fact that the uncertainties inherent to
the MBES, due to uncertainties in, for example, roll and steering
angle, increase toward the outer parts of the swaths (i.e., with an
increase in the beam angle) (Lucieer et al. 2016; Maleika 2013). The
shallowest depth measured per grid cell is more affected by these
uncertainties than is the mean depth. This is due to the fact that no
averaging is used for the first. The value of 0.01 m, corresponding to
measurements directly underneath the MBES, can thus be consid-
ered to represent, at least for the considered part of Area B, the
minimum value of the expected change in estimated water depth
(getting deeper) when instead of the shallowest depths, mean depths
are presented for flat areas.

An interesting point to address here is the effect of an increase in
the cell size. Shown in Fig. 6 are the same parameters as shown
in Fig. 5(b) with the cell size of 4�4 m (instead of 1�1 m). As
shown, the coarser grid does not hamper observing the increase in
the differences toward the outer part of the swaths (larger beam
angles). However, as expected, the level of detail that was observed
in Fig. 5(b) has decreased. As for the effect of cell size on the shal-
lowest and mean depth representatives, the former gets shallower
when the cell size increases because the shallowest depth is as-
signed to a larger area. While having a smaller cell size theoretically
increases the depth estimate based on the shallowest measured

depth, it does not change the depth estimate derived from the mean
to a noticeable extent. However, one should take the MBES along-
and across-track resolutions into account when choosing a cell size.
A more advanced alternative to the fixed-resolution gridding is the
multiresolution grid. This leads to data compression depending on
the bottom morphology and enables one to capture the variability of
the beam footprint and the data density; see as an example Maleika
et al. (2018) and Debese (2007). One can also relate the patches
together, leading to a smooth surface approximation. This can be
done using the theory of polynomial spline approximation. A spline
function is a piecewise polynomial interpolation such that these
polynomials are joined together under some continuity conditions;
see as an example Amiri-Simkooei et al. (2018) and Zangeneh-
Nejad et al. (2017). However, because this is susceptible to intro-
ducing unwanted depth variations, this approach is more suitable
for morphological studies (where focus is on specific bathymetric
features) and not for charting purposes (where the safe navigation is
of importance) as considered in this paper.

Generally speaking, the degradation in quality of the MBES
bathymetric measurements is not solely due to the uncertainties

Fig. 5. (Color) (a) Mean (solid) and shallowest (dotted) depths for a small area within Area B indicated by the black rectangle in Fig. 1 consisting of
three track lines; and (b) the difference between the mean and shallowest depths (solid) and the difference between the mean, corrected for standard
deviation, and shallowest depths (dashed).

Fig. 6. (Color) Difference between the mean and shallowest depths for
the same area shown in Fig. 5 with four times larger cell size than that of
Fig. 5(b).
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inherent to the MBES; various other error sources can be consid-
ered. One of the contributors is the systematic error sources, which
can be categorized as static and dynamic. The former includes (but
is not limited to) the relative heading, pitch, and roll misalign-
ments between the MBES and the INS and the relative time mis-
synchronization between the positioning sensor and theMBES clock
[see Godin (1998) for a detailed discussion on the various systematic
error sources]. As an example, the roll offset induces a depth error
that increases with the beam angle, and hence its signature is similar
to the one observed. Therefore, it is important to properly take them
into consideration to avoid any misinterpretation. The correction of
the previously mentioned static systematic sources is done using the
patch test, which examines the repeatability of the system over a
predefined patch of the seafloor. For both surveyed areas, the patch
test was carried out, and therefore these systematic errors (if present)
have been excluded. The other type of systematic errors are dynamic
and produce errors that vary either with periods in the ocean wave
spectrum or with a long period acceleration of the vessel (Hughes
Clarke 2003). These errors can be identified using the correlation
analysis between the motion time series and depth derivatives. Both
data sets have been examined carefully and the signatures of the
dynamic systematic errors have not been found. Another error source
with a signature similar to that observed (increase toward the outer
parts of the swath) is the SSP. Using an erroneous SSP induces errors
in the estimate of both the depth and beam steering, resulting in the
under- or overestimation of the depth for the outer beams, and hence
depth artifacts referred to as smile or frown are observed in the
bathymetry map (Dinn et al. 1995). This error can be identified using
the overlap between the adjacent swaths. Considering the fact that
the time interval between the measurements of the adjacent lines for
both surveyed areas is maximally up to several hours, the bottom
features such as megaripples and sand dunes do not vary within this
relatively short period. Therefore, the depths as determined from the
measured travel times along two overlapping swaths should be the
same at equal points on the seafloor. Using an erroneous sound speed
profile results in discrepancies between these measurements (Snellen
et al. 2009). A careful assessment of the footprints’ depth at the

overlapping parts for both surveyed areas over different parts (flat
and nonflat) confirmed that the correct sound speed profiles were
used. Therefore, it was concluded that the observed increase in the
differences toward the outer parts of the swath were not caused by
systematic error sources.

To further investigate the validity of the hypothesis that for the
flat area the difference between shallowest andmean depth is caused
by the MBESmeasurement uncertainties, a model for predicting the
measurement uncertainties was used. Fig. 7 shows the predictions
for the vertical uncertainties induced by different error sources in-
herent to the MBES for the water depth of around 18 m. This pre-
diction was obtained from the model A priori Multibeam echo
sounder Uncertainty Simulation Tool (AMUST). The equations
used were based on Hare (1995) and the uncertainty sources con-
sidered were the range measurements, roll and steering angle, pitch
angle, along-track opening angle, sound speed profile, and heave.
The term describing the error in the range measurements is often
considered to result in predicting too-high uncertainties (Hare 2001).
Therefore, this term was scaled by 0.707 compared to Hare (1995).
The total uncertainty was derived as the square root of the sum of the
square of individual sources (assuming they are independent) (solid
cyan curve in Fig. 7). Also shown in Fig. 7 is the standard deviation
of the depth measurements (blue dashed curve with triangles). A
total of 150 pings were used to calculate this standard deviation. The
comparison between the modeled andmeasured uncertainties shows
good agreement in both the order of magnitude as well as in the
behavior of the uncertainties with beam angle. Both the model and
the measurements indicate increasing uncertainties with increasing
beam angle, reflected in the stripes as observed in Figs. 4(a and b).
Discrepancies between AMUST predictions and measurements can
at least partly be explained by the presence of some bottom features.
Although the approaches presented in this contribution are not based
on a priori estimates of the depth uncertainties, there are approaches
that do need this estimate as an input, such as CUBE, and hence a
realistic estimate of this parameter is required. The agreement be-
tween the modeled and measured uncertainties indicates that indeed
the model can capture the measured standard deviation.

Fig. 7. (Color) Total random vertical uncertainty predicted (cyan curve) due to the contribution of individual error sources inherent to the MBES
along with the measured uncertainty from the bathymetry measurement (blue dashed curve with triangle markers) for Track Line 3 in Fig. 5.
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It can be concluded that for flat areas, using the shallowest
measured depths results in mapping depths that are affected by
measurement uncertainties. It is known that these uncertainties in
the measurements change with beam angle, water depth, and mea-
surement equipment (Maleika 2013), as an example. Thus, the
magnitude with which the uncertainties affect the mapped depths
will be location and survey dependent.

Regarding the nonflat regions, a small area consisting of five
track lines and 30 pings was considered (black dashed area in
Fig. 1). A small number of pings were chosen to ensure that the
topography does not change. For each ping, the measurements were
averaged over five beams and the profile for mean depth [Fig. 8(a)]
was derived by averaging over the 30 pings for each track. From
Fig. 8(c) it is seen that now, in contrast to the flat area, the larger
differences between mean and shallowest depth do not occur at the
outer parts of the swaths. In this case the largest differences are
found at the locations of morphological features. Specifically, it is
seen that the maximum differences occur at regions with larger
slopes [Fig. 8(b)], as expected for a sloping plane. To further assess
the correlation between the differences and the slopes, these two
parameters along with their linear fit are shown in Fig. 9, indicating
increasing differences between the mean and shallowest depths with
an increase in the slope (correlation coefficient between the two
parameters is 0.624, which is significant at the 95% confidence
level). As discussed, an increase in the cell size leads to a less-
detailed seafloor representation. This affects the nonflat regions to a
larger extent than that of the flat regions because larger depth var-
iations are expected in a small area [see Figs. 10(a and b), where the
same parameters as shown in Figs. 8(b and c), respectively, are
presented for a four times larger cell size]. Take Line 3 (red) as an

example, from Fig. 8(b) (1-m cell size): the slope at the beginning of
the swath is not very steep; however, if the cell size decreases, one
might interpret it as a steep slope. Similar to the flat areas, having a
coarser grid for the nonflat regions results in a shallower grid
compared to that of the fine grid; however, the magnitude of the
change is larger than that of the flat areas.

Based on the preceding, it is concluded that for flat areas, the
differences between mean and shallowest measured depths are dom-
inated by the MBES measurement uncertainties. These result in
depths that are shallower than the actual shallowest depths, with the
magnitude of the offset varying along the MBES swath. For nonflat
areas, an additional contribution is due to the presence of slopes that

Fig. 8. (Color) (a) Mean depth; (b) mean slope; and (c) mean difference between mean and shallowest depths (solid) and mean difference between
mean and standard deviation and shallowest depths (dashed) for the black area indicated by the black dashed line shown in Area B in Fig. 1. This area
consists of five track lines and nearly 30 pings. The blue dashed vertical lines indicate the location of the shallowest depth for each swath.

Fig. 9. (Color) Mean slope versus mean differences for the black
dashed area shown in Area B in Fig. 1 (points) and its linear fit (line).
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inherently results in a difference between the mean and shallowest
depth in a cell. While the effect of measurement uncertainties can be
counteracted by using the mean instead of shallowest depth, this
will result in an overestimation of the depth in nonflat areas, that
is, it gets deeper. Considering the importance of guaranteeing safe
navigation, this can be considered as an undesirable situation. In-
deed, assigning a realistic depth value in nonflat regions where steep
slopes exist is an issue of great interest and has been discussed by
various scholars. Vásquez (2007) found that for areas with extreme
seafloor morphology and steep slopes, even the advanced surface
estimation approaches, such as CUBE, might fail to provide a re-
alistic and robust estimate of the depth. Modification of the different
CUBE parameters resulted in a more realistic surface representa-
tion. The irregular and nonflat bottom can also complicate the iden-

tification and rejection of the outliers and automatic data cleaning
approaches might not be applicable [see Artilheiro (1998) for a
detailed discussion]. These steep slopes, however, are not encoun-
tered on the Dutch continental shelf, the focus area of this study.

Shallowest Depth Based on the Mean
and Standard Deviation

To account for the overestimation of the depth in nonflat areas,
Eq. (1) was used. Shown in Figs. 11(a and b) are the maps of the
differences between the shallowest depth based on the mean and
standard deviation and the shallowest measured depth per cell for
Areas A and B, respectively.

Different color bars are used for the two areas for representing

Fig. 10. (Color) (a) Mean slope; and (b) mean difference between mean and shallowest depths for the same area shown in Fig. 8 with four times larger
cell size than that of Figs. 8(b and c).

Fig. 11. (Color) Maps of the difference between the shallowest depth based on the mean plus standard deviation and the shallowest depth measured
(a) for Area A; and (b) for Area B. The positive range of values represented by each color is such that each color represents an equal percentage of the
data for which the derived depths are deeper than the shallowest measured depths. Dark red indicates those data points where the derived depths are
shallower than the shallowest measured depths.
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the difference between the shallowest depth derived (i.e., using the
standard deviation) and the one measured. For decreasing difference
between the mathematical shallowest depth and the shallowest
measured depth while being positive, the color gets lighter. The
range of values for each color was selected such that each color
represents a certain percentage of all data points (33% here). Dark
red in Fig. 11 indicates that the resulting depth is shallower than that
actually measured. For 17% of the cells in Area A, the shallowest
depth based on the mean and standard deviation is up to 1 m
shallower than the shallowest depth measured (only for 0.002% of
the cells does the difference exceed 1 m). Regarding Area B, the
range of the differences is considerably smaller and for a smaller
percentage (around 4%) of the cells the shallowest depth derived is
shallower than the one measured. Obtaining a shallower represen-
tative than the shallowest measured depth indicates that the standard

deviation within a cell is larger than the difference between the
shallowest and mean depths [Eq. (1)]. This phenomenon, which is
somewhat unexpected, can be explained by the fact that the distri-
bution of depth values within a cell does not necessarily need to be
symmetrical (Figs. 2 and 3) and can be skewed. The standard de-
viation does not reflect this asymmetry in the distribution, resulting
in derived depths that are shallower than the actual shallowest depth.

To investigate in more detail the effect of using this measure in a
flat area, the dashed lines in Fig. 5 show the difference between the
shallowest measured depth and the approach considered in this
section. For the tracks considered, it is seen that the estimated depths
are larger than those obtained when taking the shallowest depth.
Also, the standard deviation is affected by the MBES measurement
uncertainties, as is the shallowest measured depth. However, since
the effect is smaller for the standard deviation than for the minimum,
Fig. 5 shows a less pronounced dependency along the swath com-
pared to Fig. 4. More interesting is the effect of using the measure
for depth as considered in this section for an area with slopes. The
results are shown in Fig. 8(c) as the dashed lines. From this figure it
is seen that now the slopes no longer significantly contribute to the
difference. The difference at the locations of the slopes is now
comparable to those found for the remaining locations.

Based on the preceding discussion, it can be concluded that
although using the combination of mean and standard deviation
results in estimates for the water depth for flat areas that are close to
those corresponding to the shallowest measured depth, that is, un-
derestimating the actual depth, the standard deviation seems an ap-
propriate way to account for the presence of slopes.

Mathematical Shallowest Depth Based
on the Regression Coefficients

The shallowest depth based on the regression coefficients was de-
rived using Eq. (8). Theoretically, this measure is a highly realistic
representation of the shallowest depth in a cell because the effect
of potential slopes is fully taken into account by calculating the
shallowest depth at the corner. It was, however, found that when
applying this method to the MBES point cloud data, unrealistic
depth values were obtained for some cells, in agreement with Mo-
hammadloo et al. (2018). As an example, consider the four depths
derived for the corners of a cell in Area A (Table 3). Considering the

Table 3. Depth values at four corners of the cell in Area A with
parameters as presented in Table 4

Corner Depth (m)

Upper left 10.78
Lower left 46.78
Lower right 78.12
Upper right 42.12

Note: Depth is considered positive downward.

Table 4. Easting and northing of the cell center along with mean depth,
number of soundings, slope angles, and regression coefficients for a cell in
surveyed Area A with unrealistic depth values at the corners

Parameter Value

Easting (m) 38,846.5
Northing (m) 382,065.5
Mean depth (m) 44.45
Nhits 7
Slope angle (degrees) 88.8
Slope direction (degrees) 318.96
CX �31.34
CY 36.00

Note: Depth is considered positive downward.

Fig. 12. (Color) Distribution of the points in the cell (red) with the center (blue) coordinates presented in Table 4 (Area A) along with the fitted plane.
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mean for this cell (44.45m, Table 4) and the cell size 1m2, it is almost
impossible to obtain a depth of 10.78 m as the shallowest depth at the
upper-left corner. To understand the reason behind obtaining the
unrealistic depth values at the cell corners, the distribution of the
soundings within a cell having this issue was assessed.

Table 4 presents the coordinates of the cell center, mean depth,
number of soundings, regression coefficients, and slope angles for a
cell in Area A with depth values at the corners as shown in Table 3.
Fig. 12 illustrates the distribution of the soundings in this cell. It is
seen that the points are not well distributed within the cell under
consideration, and hence the design matrix (A) is badly invertible.

As a result, the coefficients should only be used to determine the
depth in the vicinity of the points rather than at the corners of the
cell (Mohammadloo et al. 2018). The problem can be addressed by
computing the condition number of the normal matrix ðATAÞ of size
3�3 (Press et al. 1992) as done by Biagi and Carcano (2015). The
eigenvalue decomposition of the positive definite normal matrix is

ATA ¼ ULUT ð11Þ

where L ¼ diagðk11; k22; k33Þ is a diagonal matrix with diagonal
entries the eigenvalues of ATA; and U is a 3�3 matrix of eigen-

Fig. 13. (Color) Maps of the difference between the shallowest depth at the corner of the cell (based on regression coefficients) and shallowest depth
measured for (a) Area A; and (b) Area B. The positive range of values represented by each color is such that each range represents an equal percentage
of the data for which the derived depths are deeper than the shallowest measured depths. Dark red indicates those data points where the derived depths
are shallower than the shallowest measured depths.

Fig. 14. (Color) Depths using mean (solid black), mean and standard deviation (dotted green with circle), and shallowest measured (dashed black)
along with the linear regressions (magenta). The rectangles indicate two cells with large and small condition numbers.
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vectors where each column corresponds to one of the eigenvalues,
kii; i ¼ 1; 2; 3, of the normal matrix. If the matrix ATA is singular or
ill conditioned, some of the eigenvalues are (almost) zero. The
condition number, which is defined as the ratio of the largest
(in magnitude) eigenvalue to the smallest eigenvalue, will thus take
large values. For Areas A and B, the condition number exceeds 102,
103, and 105 in 5%, 3%, and 2%, and 0.1%, 0.07%, and 0.02% of
the cells, respectively. For the research presented here, cells with the
condition number larger than 102 were excluded from the analysis
and their eight neighboring cells have been used to assign the re-
quired parameters (such as regression coefficients) for these cells.

Shown in Figs. 13(a and b) are the differences between the
shallowest depth based on Eq. (8) after excluding the badly con-
ditioned cells and the measured shallowest depth in a cell for Areas
A and B, respectively. It is seen that for around 55% and 40% of the
cells in Areas A and B, respectively, the depth derived is shallower
than its measured counterparts. For nearly 95% of the cells in Area
A for which the depth derived is shallower than the one measured,
the differences are less than 0.2 m. As for Area B, for around 99% of
these cells the differences are less than 0.1 m. This means that the
largest differences shown in the color bars (7.516 and 0.917 m for
Areas A and B, respectively) occur for a negligible portion of the
cells.

To further investigate the performance of the approach based on
the regression coefficients, an area consisting of one track line (on a
slope) and six consecutive pings was considered (covering 1 m
along the sailing direction). For each ping, the measurements were

averaged over five beams. Shown in Fig. 14 are the linear regres-
sions along with the estimate of depth based on the mean, mean and
standard deviation, and shallowest measured. For a large number
of cells, the best fitted planes show a discontinuous and unrealistic
representation of the seafloor. As explained, the unrealistic esti-
mate of the regression coefficients is due to the distribution of the
soundings within the cells (Fig. 12), resulting in a relatively large
condition number (such as the condition number of 81 shown for
the cell in Fig. 14). In a small region, right of the peak, a more
continuous representation of the bathymetry as derived from the
regression coefficients per cell is found. For this area, lower
values of the condition number are found. This result indicates
that the applicability of the approach based on the regression is
highly sensitive to the distribution of the measurements. Conse-
quently, employing it is not encouraged. One approach to mini-
mize the negative effect of outliers and to decrease the sensitivity
of the this method to the distribution of the points is to calculate
the regression coefficients for a local N�N window of the cells
instead of a single cell; however, this will result in a grid with
varying cell size (i.e., multiresolution), which was not considered
in the present contribution.

The average values of the depth based on the mean and stan-
dard deviation, regression coefficients, mean, and the shallowest
measured depth for both surveyed areas are shown in Table 5. The
deepest and shallowest representatives are based on the mean and
the regression coefficients, respectively. The averaged value of the
depth based on the mean and standard deviation is between those
based on the shallowest measured and mean depths.

The different approaches presented in this paper for the estimate
of the depth are not to be viewed as a replacement for the more
sophisticated methods, such as CUBE [developed by Calder and
Mayer (2001)]. However, the fact that they do not require a priori
estimate of the depth uncertainties (i.e., they are based on the sta-
tistics from the soundings) and are simple to implement (particularly
the depth estimate based on the mean, shallowest, and mean plus
the standard deviation) make them appropriate alternatives in case
detailed information of the soundings uncertainty is not available.
Nevertheless, the depth estimates derived using the shallowest,
mean, mean and standard deviation, and regression coefficients were
compared to that of the CUBE implemented in Qimera processing
software (developed by QPS) to give an insight into their agreement

Table 5. Average value of the shallowest measured, mean, and
mathematical shallowest depths for surveyed areas A and B

Surveyed area

Various depth representatives A B

Shallowest measured depth (m) 24.87 14.92
Shallowest depth based on mean
and standard deviation (m)

24.89 14.95

Shallowest depth using regression
coefficients (at the corner) (m)

24.85 14.91

Mean depth (m) 24.94 14.99

Note: Depth is considered positive downward.

Fig. 15. (Color) Depths using mean (dashed red), mean and standard deviation (solid green with circles), and shallowest measured (dashed blue),
regression coefficients (magenta) along with the CUBE (dotted cyan) estimate for (a) nonflat; and (b) flat parts.

© ASCE 05019004-13 J. Surv. Eng.

 J. Surv. Eng., 2019, 145(4): 05019004 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
01

/1
1/

22
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



and possible discrepancies. For CUBE processing, the default Qi-
mera configuration for shallow water was chosen, which contained
the parameters suitable for areas where small-scale features are im-
portant. Information on the parameters used in Qimera can be found
in Penney (2018), and an interested reader might also refer to Calder
and Wells (2007) for a detailed description of CUBE. The com-
parison was carried out for two parts of the seafloor, in nonflat and
flat areas. Both parts were chosen such that they correspond to the
data for small beam angles. Regarding the nonflat part, an across-
track profile of length 35 m in the area indicated by a dashed line in
Fig. 1 was chosen. Fig. 15(a) illustrates the depths obtained using
different approaches. The estimate of CUBE is in a good agreement
with that of the mean. This indicates that using CUBE for the slopes
with the default settings in Qimera results in an overestimation of the
depth (getting deeper) and therefore the method based on the mean
and standard deviation seems to give a more realistic estimate. Re-
garding the seafloor profile for a flat part [Fig. 15(b)], the CUBE
estimates again closely follow the mean depth. This is somewhat
expected because for a flat seafloor with randomly distributed
soundings with comparable uncertainties (as the inner part of the
swath is considered), themean depth is close to output of the Kalman
filter.

Conclusion

The MBES provides a nondestructive and cost-effective way to
produce qualitative and quantitative bathymetry maps. The result-
ing MBES point cloud data contain millions of soundings and are,
in general, not directly used for charting. A straightforward ap-
proach for equidistance gridding, often adopted, is to consider the
shallowest depth at the center of the cell. The grids derived can be
artificially shallow due to the presence of erroneous soundings. An
approach to address this issue is to use the mean depth instead.
However, this may lead to not charting hazardous objects impera-
tive for safe navigation. In this paper, approaches to derive depths
from the point cloud (in addition to mean and shallowest depths)
using the statistical properties of the point cloud are proposed and
applied to two different surveyed areas within the Netherlands that
are important because they contain critical locations important for
shipping. Based on the results, the following conclusions are drawn.

Two issues were found to be of importance for the quality of
the resulting estimates for shallowest depth: the distribution of
the soundings over a cell and the MBES measurement uncertainty.
While a proper distribution of the measurement points within a cell
is crucial for the approach based on the regression coefficients, the
approach using the mean depth together with the standard deviation
requires minimum uncertainties in the depth measurements. For the
surveys considered, the distribution of MBES measurements ham-
pered a proper estimation of the slopes and thus negatively affected
the estimates for shallowest depths based on the regression coeffi-
cients. Using the mean was found to counteract the measurement
uncertainties, but overestimated the depth for areas with slopes.
Using a combination of the mean and standard deviation was found
to capture the presence of slopes while decreasing the influence of
measurement uncertainties compared to using the shallowest mea-
sured depths. These measurement uncertainties vary with beam
angle, depth, and survey equipment, and can be predicted using
proper modeling. This modeling can be used to select the survey
strategy and potentially a subset of the full point cloud, such that
there is minimum variation in the uncertainties over the area.

Another important issue to consider is the effect of the cell size
on the grid derived. It has been shown that for the flat areas, in-
creasing the cell size results in a shallower depth estimate when

using the shallowest measured depth (and consequently a shallower
grid is derived). The coarser grid affects the nonflat areas to a larger
extent than the flat areas. This can hamper the identification of the
morphological features, and hence a realistic cell size based on the
depth, angular sector, number of soundings with a ping, and the ves-
sel speed is to be chosen.

In addition, it can be concluded that the differences were found to
be useful tools for identifying artifacts, but also morphological
features, which are not directly observed in the bathymetry map. The
morphological features can especially be of interest, for example, for
seafloor sediment classification purposes. For this, often a combi-
nation of parameters derived from depth measurements and back-
scatter values are used for discriminating between different sediment
types (e.g., Eleftherakis et al. 2012, 2014; Preston et al. 2001).
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