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Abstract
The growing polarization of our societies and economies has been extensively studied 
in various disciplines and is subject to public controversy. Yet, measuring polarization is 
hampered by the discrepancy between how polarization is conceptualized and measured. 
For instance, the notion of group, especially groups that are identified based on similarities 
between individuals, is key to conceptualizing polarization but is usually neglected when 
measuring polarization. To address the issue, this paper presents a new polarization meas-
urement based on a grouping method called “Equal Size Binary Grouping” (ESBG) for 
both uni- and multi-dimensional discrete data, which satisfies a range of desired properties. 
Inspired by techniques of clustering, ESBG divides the population into two groups of equal 
sizes based on similarities between individuals, while overcoming certain theoretical and 
practical problems afflicting other grouping methods, such as discontinuity and contradic-
tion of reasoning. Our new polarization measurement and the grouping method are illus-
trated by applying them to a two-dimensional synthetic data set. By means of a so-called 
“squeezing-and-moving” framework, we show that our measurement is closely related to 
bipolarization and could help stimulate further empirical research.

Keywords  Polarization measurement · Clustering · Bipolarization · Multi-dimensional 
polarization

1  Introduction

The vast and growing gap between liberals and conservatives, the prevalence of ideologi-
cal extremes in public debate on social media, and the increasing income disparities within 
and across countries are shaking societies across the world. Researchers are required to 
conceptualize, define, and formally measure these various forms of polarization in a com-
prehensive manner. In the past few decades, polarization research has led to seminal con-
tributions in a wide variety of sub-disciplines of social science, such as economics (e.g., 
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Esteban and Ray 1994; Alichi et al. 2016), political sciences (e.g., Abramowitz and Saun-
ders 2008; Hare and Poole 2014) and sociology (e.g., Flache and Macy 2011; Flache et al. 
2017).

One insightful way to classify polarization is to distinguish whether there is a pre-
defined group structure. For instance, the statement “the society is highly polarized in 
terms of political views” differs from the statement “the society is highly polarized in 
terms of political views across ethnic groups”. Indeed, the latter requires a predefined 
group structure—in this case, based on ethnicity—whereas the former does not. This is 
a far-from-trivial issue because these two types of polarization reflect different social 
processes as well as different interpretations regarding all the possible cleavages cross-
cutting our societies. A detailed explanation can be found in Sect. 2.

Like many other polarization studies (e.g., Duclos et al. 2004; Flache and Mäs 2008; 
Anderson 2011), here we are interested to measure the former type of polarization, 
which is more difficult and controversial because of the absence of a predefined group 
structure. We argue that even if there is no group structure that can be predetermined 
via theoretical hypotheses, the notion of group is still crucial to achieve a more rigorous 
measurement of polarization. While pre-existing theories about social cleavages could 
be used to hypothesize the existence of precise group structures in our complex socie-
ties, developing consistent measurements of polarization that might help scholars dis-
cover group structures while scanning empirical data is still key to conceptualizing and 
understanding polarization.

Indeed, scholars have traditionally used groups to conceptualize and define polariza-
tion (e.g., Esteban and Ray 2012; Danzell et al. 2019; Bauer 2019). For example, to return 
to the above-mentioned example of a society being highly polarized in terms of political 
views, referring to groups is important: intuitively, a highly polarized society would con-
sist of a small number of groups whose political views are very similar within the group, 
but very different between groups. The division of these groups would solely reflect each 
individual’s political views without any reference to other factors, such as ethnicity or reli-
gion. In other words, instead of being imposed by “exogenous” factors, these groups would 
emerge endogenously from the variable(s) of interest (here: political views).

Unfortunately, little attention has been paid to such “endogenously emerging” group 
structures in polarization measurements, with the notion of group usually omitted (e.g., 
Flache and Mäs 2008; Aleskerov and Oleynik 2016) or penalized by various theoretical 
and practical problems (e.g., Esteban and Ray 1994; Duclos et al. 2004). The usual difficul-
ties of segmenting the social space of complex societies into group structures across vari-
ous polarization dimensions would undermine the reliability of polarization measurements 
and so our understanding of the degree and extent of social polarization.

This paper aims to contribute to this field of research by proposing a novel way to gen-
erate groups as the basis of a generic class of polarization measurements without prede-
fined group structures. The method, called “Equal Size Binary Grouping” (ESBG), uses 
clustering techniques to assign people (data points) to two groups of equal sizes according 
to the variable(s) of interest. On the one hand, this method can help researchers to iden-
tify “endogenously emerging” group structures starting from data. On the other hand, this 
permits to link the concept of groups to the variable(s) of interest without losing relevant 
information, which is often involved in theory-driven, ex-ante group conceptualization. 
The group structure generated by ESBG overcomes various problems, such as disconti-
nuity and contradiction of reasoning, leading to polarization measurements that satisfy a 
range of important properties that have long been deemed desired in the field (Esteban and 
Schneider 2008; Gigliarano and Mosler 2009). Furthermore, ESBG-based measurements 
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are designed to measure both uni- and multi-dimensional polarization for discrete distri-
butions. Although less frequently considered in literature, the latter has a great empirical 
value (see Sect. 4.1 for a more detailed discussion on this distinction).

The remainder of this paper is structured as follows: in Sect. 2, we provide a review of 
relevant literature concerning past attempts to conceptualize and measure polarization with 
or without predefined groups. We then propose a list of desired properties that an ideal 
polarization measurement without predefined groups should satisfy. In Sect. 3, we show 
that Equal Size Binary Grouping (ESBG) is a possible and promising approach to derive 
the ideal polarization measurement (of a particular form) adhering to these properties while 
being free from the problems mentioned above. Inspired by clustering algorithms, Sect. 4 
presents the procedure for implementing ESBG and constructing corresponding polariza-
tion measurements. An illustrative example using synthetic data is given in Sect.  5, fol-
lowed by a series of discussions in Sect. 6 about the relation between the proposed polari-
zation measurements and bipolarization measurements. The relation is further explained 
by the so-called “squeezing-and-moving” framework. Section 7 summarizes the study and 
draws conclusions.

2 � Background

2.1 � Polarization and groups

For decades, the concept of polarization has received ample attention in various fields, yet, 
without a consensual definition. For instance, in the field of international relations, polari-
zation usually refers to “the degree of which antipathetic, non-overlapping subgroups are 
formed” (Hart 1974), where these subgroups are defined according to the amity within 
each subgroup and the enmity between them. For example, the Allies and the Central Pow-
ers were two subgroups of nations during World War I. In economics, polarization is char-
acterized as the “separation or distance across clustered groups in a distribution” (Esteban 
and Ray 2012). Given their particular interest in income polarization, economists con-
sider a society to be polarized when the population can be grouped into significantly sized 
groups of individuals having similar incomes within each group, which differ across groups 
(Esteban and Ray 2012). In sociology, polarization in public opinion is conceptualized as 
“the degree to which the group can be separated into a small set of factions who are mutu-
ally antagonistic in opinion space and have maximal internal agreement” (Flache and Mäs 
2008), which mirrors the definitions in international relations and economics.

These examples show that almost all definitions of polarization emphasize the notion 
of group, in the sense that members of the same group should be similar, and members of 
different groups should be dissimilar (in terms of the variable(s) of interest, such as income 
and opinion). Instead of the word “group”, studies have used similar terms such as “clus-
ters”, “camps”, “factions”, or “subgroups”. Regardless of the exact term being used, in all 
disciplines, groups, instead of individuals, are considered to be the crucial actor in concep-
tualizing polarization (Danzell et al. 2019).

In accordance with the development of polarization concepts, a growing number of 
polarization measurements have been formally proposed. A considerable portion of these 
measurements calculate polarization between groups that have been defined a priori1 based 

1  I.e., the predefined groups as described in Sect. 1.
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on an external variable (hereafter referred to as grouping variable), a variable that is differ-
ent from the variable of interest.

To clarify this: when one says “our society is polarized in terms of X across (or between) 
Y” then X is the variable of interest, and Y is the grouping variable. For instance, when 
using Gigliarano-Mosler (GM) index to measure the income and education polarization 
between East and West Germany, the grouping variable is the location of each individual 
(East or West Germany), while the variables of interest are income and education (Gigli-
arano and Mosler 2009). Similar examples can be found in the  measurement proposed 
by Zhang and Kanbur (ZK index) (2001), as well as Fusco and Silber (2014). These are 
sometimes called “social polarization measurements” (Fusco and Silber 2014) or “socio-
economic polarization measurements” (Duclos and Taptué 2015), as groups are usually 
defined by social characteristics such as race and religion. For the sake of clarity and sim-
plicity, here we call “polarization with exogenously imposed groups” the one between 
groups that are explicitly defined by grouping variable(s) instead of variable(s) of interest 
, because in these cases the grouping variables are exogenous to the variables of interest. 
Note that this type of measurements and relevant studies have focused on the congruency 
between opinion and demographic attributes - a crucial factor affecting team performance - 
and thus gaining interest in organization and management literature (Phillips 2003; Homan 
et al. 2007; Mäs et al. 2013).

However, in many other cases, it is more relevant to discuss polarization without exog-
enously imposed groups. Theoretically, polarization across particular socio-demographic 
strata (e.g., race, religion, ethnicity) is different from the polarization of the whole society. 
For instance, the opinion polarization of a society can be viewed as a result of opinion 
polarization across genders, races, locations, and countless other factors. Therefore, even if 
the degree of opinion polarization across one of these factors would be low, the society as 
a whole could still be highly polarized. Furthermore, there may also be practical objections 
in measuring polarization across exogenously imposed groups. Indeed, data of the group-
ing variables are not always available and in many cases, the only observation is the distri-
bution of the variable(s) of interest. These arguments underline the importance of measur-
ing polarization by defining groups in terms of the variable(s) of interest only.

Correspondingly, we call “polarization  with endogenously emerging groups” the 
one where groups emerge based on the variable(s) of interest. Previous research has sug-
gested two distinct lines of measurements of this type of polarization. The first line, started 
by Wolfson (1994), measures polarization in terms of “the decline of the middle class (i.e., 
the group with moderate value of the variable of interest)” (Foster and Wolfson 2010). 
Therefore, the polarization measurement would be large whenever the middle class is neg-
ligible. The second line, founded by Esteban and Ray (1994), has the basic idea that a 
system is considered polarized if (i) the degree of heterogeneity within each group is low, 
(ii) the degree of heterogeneity across groups is high, and (iii) there is a small number of 
significantly sized groups (Esteban and Schneider 2008).

Both lines are very popular, each with a large number of followers. The Wolfson’s 
line is sometimes considered as the measurement of “bipolarization”, which is conceptu-
ally different from the “polarization” measured by the Esteban and Ray’s line (Deutsch 
et  al. 2013). Furthermore, according to different sources of literature, bipolarization can 
be regarded as a category of polarization (Duclos and Taptué 2015) or a concept that is 
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distinct from polarization (Deutsch et  al. 2013). We will interchangeably use the term 
“measurements in the Wolfson’s line” and “bipolarization measurements”. In this study, we 
primarily focus on the line originated by Esteban and Ray (1994). The relation between the 
two lines as well as our measurement will be further discussed in Sect. 6.

A common problem of the measurements in the Esteban-Ray’s line concerns disconti-
nuity. In the Esteban-Ray (ER) index (Esteban and Ray 1994), polarization is measured by 
the effective antagonism, which is a function of identification within groups and alienation 
between groups. Here, groups are defined in a particularly sharp form whereby members 
of the same group must have exactly the same value of the variable of interest. To give an 
extreme example, people with an income of 1000 euro and 1000.01 euro are in two distinct 
groups. Esteban and Ray (1994) themselves have acknowledged the risk of sharp groups, 
namely the “discontinuity problem”: there will be a jump in the polarization measurement 
if two close groups merge. It is difficult to justify such a jump, making these sharp groups 
theoretically implausible. The DER index (Duclos et al. 2004) and the Anderson’s index 
(Anderson 2011) can be viewed as the ER index of continuous variables and multi-varia-
bles respectively, and finding any group structure in these measurements is hardly feasible.

It is worth noting that a number of measurements are not covered by these two lines. 
The uncovered measurements may not involve the notion of endogenously emerging 
groups. For instance, in opinion dynamics literature, the FM index calculates the vari-
ance of the pairwise distance for all pairs of individuals (Flache and Mäs 2008; Flache and 
Macy 2011). Therefore, the notion of group is not included. A more recent example is the 
Schweighofer-Schweitzer-Garcia (SSG) index (Schweighofer et al. 2019), which is a func-
tion of the sum of squared pairwise difference. For multidimensional polarization (where 
there is more than one variable of interest), Aleskerov and Oleynik (2016) consider a mul-
tidimensional variable as a vector, and define “center of mass” as the weighted average of 
all vectors. Polarization is then measured by the weighted sum of the distances between 
each vector and the center of mass.

Table 1 provides an overview of the polarization concepts and measurements mentioned 
above.2 It suggests that although the notion of group is crucial in defining and conceptu-
alizing polarization, there has been no rigorous way to formalize it in order to measure 
polarization with endogenously emerging groups. We acknowledge that all measurements 
mentioned here were developed for particular research questions, and hence the absence of 
group structures would be acceptableto achieve simplest polarization measurements. How-
ever, we believe that with the intention to better understand and measure polarization, there 
should be an appropriate polarization measurement that clearly tells us what the group 
structure is, and how to measure polarization based on it.

Table 1   Summary of the concepts and measurements of polarization
Types of polarization Corresponding measurements

with exogenously imposed groups ZK index, GM index

with endogenously emerging groups
ER’s line ER index, DER index

Wolfson’s line Wolfson’s index, WT index
Others FM index, SSG index

2  The measurement in the Wolfson’s line will be introduced in Sect. 6.
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2.2 � Properties of polarization measurement

In order to tackle this problem, we propose a generic class of polarization measure-
ments based on a novel method to define groups according to the variable(s) of interest. 
The method, called “Equal Size Binary Grouping” (ESBG), divides the population into 
two groups of equal sizes on the basis of similarities within each group and between dif-
ferent groups. We will show that a polarization measurement generated by this method, 
subject to certain requirements in the constructing procedure, satisfies various proper-
ties that have long been deemed desired in the field, including:

–	 Continuity: the measurement is a continuous function.
–	 Dimensionality: the measurement can be applied to both uni- or multi-dimensional 

discrete data.
–	 Monotonicity: the measurement decreases with within-group heterogeneity and 

increases with between-group heterogeneity
–	 Maximum and Minimum: the measurement is maximized when the population is 

equally divided into two maximally dissimilar groups, and members in the same 
group have the same value of the variable of interest. The measurement is minimized 
when everyone has the same value of the variable of interest.

–	 Normalization: The measurement should be in the range of 0 to 1.

The properties of continuity and normalization are important not only because of their 
omnipresence in literature (e.g., Esteban and Ray 1994; Chakravarty and Majumder 
2001; Gigliarano and Mosler 2009), but also because a continuous and normalized 
polarization measurement is much easier to analyze than a discontinuous and non-nor-
malized one.

The property of dimensionality echoes the growing interest in multidimensional 
polarization (Aleskerov and Oleynik 2016). We will further discuss this in Sect. 4.1.

The importance of the monotonicity property is widely acknowledged in polariza-
tion studies with exogenously imposed (Zhang and Kanbur 2001; Gigliarano and Mosler 
2009) as well as endogenously emerging groups (Esteban and Ray 1994). Herein, while 
within-group heterogeneity refers to the heterogeneity or dissimilarity of members in 
the same group, between-group heterogeneity refers to the heterogeneity or dissimilar-
ity between members of different groups. Different polarization measurements may use 
different expressions for these two variables. In many measurements of polarization 
with exogenously imposed groups, heterogeneity is represented by inequality (Zhang 
and Kanbur 2001; Gigliarano and Mosler 2009). In the ER index, given that each group 
only contains people with the same value of the variable of interest, the within-group 
heterogeneity is always zero and the between-group heterogeneity is simply the absolute 
difference between groups.

It is worth noting that in studies of polarization with endogenously emerging groups, 
while polarization level typically decreases with within-group heterogeneity (Esteban 
and Schneider 2008), there is no clear conclusion about the relation between polari-
zation level and between-group heterogeneity. The only thing that has been confirmed 
is that the degree of between-group heterogeneity must be high in a highly polarized 
system (Esteban and Ray 1994; Esteban and Schneider 2008). Such a relatively vague 
description, which may be due to the lack of properly defined groups (see Sect.  3), 
breaks the symmetry and brings difficulty in polarization analysis. Ideally, we would 
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like to propose polarization measurements that not only decrease with within-group het-
erogeneity but also increase with between-group heterogeneity.

The importance of the maximum and minimum property has been highlighted in pre-
vious research (Gigliarano and Mosler 2009; Flache and Macy 2011; Fusco and Silber 
2014; Bauer 2019). Particularly, there is hardly any polarization measurement that violates 
the maximum property regardless of how polarization is conceptualized. The minimum 
property indicates that a polarization measurement should be minimized at perfect equal-
ity, and originates from the so-called “normalization axiom” (Chakravarty and Majumder 
2001). For instance, in studies of opinion polarization, the minimum condition refers to the 
state of consensus where everyone has the same opinion (Flache and Mäs 2008; Flache and 
Macy 2011; Schweighofer et al. 2020).

In addition, we emphasize that an ideal polarization measurement should also satisfy 
a number of axioms that have been used in constructing measurements (Esteban and Ray 
1994), and are subject to some practical constraints, which will be further discussed in 
Sect. 3.4.

2.3 � An alternative approach to measuring polarization

While all measurements previously discussed have tried to capture the overall picture of 
polarization by one single expression, there are alternative approaches that measure polari-
zation in different aspects with respective indices, especially in sociological research. For 
instance, DiMaggio et  al. (1996) suggest four distinct dimensions—dispersion measured 
by variance, bimodality measured by kurtosis, constraint (association between different 
dimensions of the variable of interest) measured by Cronbach’s alpha, and consolidation 
(association between variable of interest and exogenously imposed groups) measured by 
“differences in groups’ means over time” (McCright and Dunlap 2011). Bramson et  al. 
(2016, 2017) decompose polarization into nine “senses”, namely spread, dispersion, cover-
age, regionalization, community fracturing, (endogenously emerging) group distinctness, 
group divergence, group consensus, and group size parity. These dimensions and senses 
are largely overlapping and highly correlated.

As regards political polarization in the United States, Boxell et al. (2017) consider eight 
indices, each capturing a particular part of political polarization, such as: partisan affect 
polarization, ideological affect polarization, and partisan sorting. While these indices are 
mostly related to DiMaggio’s dimensions and Bramson’s senses, there are specificities that 
reflect the particular case of American politics. The point here is that each individual index 
alone is unable to reflect the whole picture, and this may lead to conflicting assessments. 
To fill this gap, Boxell et al. (2017) not only applied all eight indices to the data set, but 
also constructed an overall index of polarization based on the average of all indices. The 
advantage of this approach is twofold. First, as most aspects already have their own pre-
existing measurements, scholars can easily apply them to their data sets, saving the effort 
of constructing a new measurement. Second, this approach displays more information than 
the single-expression approach, allowing scholars to discover trends or draw conclusions 
for each aspect.

However, there are drawbacks in this approach (DiMaggio et al. 1996; Bramson et al. 2016, 
2017; Boxell et al. 2017). First, knowing how many aspects and which aspects are sufficient 
to capture polarization is hard. Therefore, choosing the optimal set of aspects can be difficult. 
Moreover, depending on different scenarios, certain aspects could be particularly salient while 
others would not. For instance, among DiMaggio’s four dimensions, Baldassarri and Bearman 
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(2007) only use dispersion and bimodality, deciding to ignore others. Second, different aspects 
can be correlated and overlapping, thus making it difficult to design the overall index espe-
cially for quantitative research that aims at comparability, replication and cumulativeness.

Finally, it is worth noting that even in these alternative approaches, the concept of group, 
whether exogenously imposed or endogenously emerging, is still key to measuring polari-
zation. For endogenously emerging groups, Bramson et al. (2017) define groups “directly 
from the histogram” of the distribution plot. Further analysis of this type of grouping meth-
ods (in the context of bimodality) and its comparison with our method (i.e., ESBG) can be 
found in Sect. 4.5.

3 � Derivation of Equal Size Binary Grouping

When you have eliminated the impossible, whatever remains, however improbable, must be 
the truth. (Sherlock Holmes)

The aim of this section is to justify ESBG as an appropriate grouping method for con-
structing ideal polarization measurements. To achieve this aim, after clarifying the nota-
tions (Sect. 3.1), we will show that ESBG is a possible solution to the problems afflicting 
other grouping methods (Sect. 3.2.3): the grouping method without any constraints suffers 
from the discontinuity problem (Sect. 3.2.1), and the grouping method only constrained by 
a fixed number of groups contradicts Esteban and Ray’s reasoning (Esteban and Ray 1994) 
(Sect.  3.2.2). Furthermore, in Sect.  3.3, we will explain how ESBG takes into account 
the roles of the missing variables, namely the number and size of groups, by providing 
some examples. Finally, in Sect. 3.4, we will test if the ESBG-based polarization measure-
ment satisfies the axioms proposed by Esteban and Ray (1994).

3.1 � Notations

We first present the following notations that will be used throughout the rest of the paper. 
Suppose we are interested in a discrete system (i.e. data set) X ≡ {x1, ..., xN} consisting of 
N data points. A data point xi = (xi,1, ..., xi,D) (i = 1, ...,N) is described by its variables xi,d 
(d = 1, ...,D) , where D is the dimension of the system. A grouping method G ∶ X → C par-
titions the system X into K non-overlapping groups C = {C1, ...,CK} . The size of a group 
Ck is denoted by sk , representing the number of data points in Ck . The within-group hetero-
geneity of a group Ck is denoted by wk , and the between-group heterogeneity of a pair of 
groups Ci and Cj ( i ≠ j , i, j = 1, 2, , ,K ) is denoted by bi,j . In Sect. 4, we will further discuss 
how to calculate wk and bi,j.

At the end of Sect. 2, we have listed a range of desired properties that an ideal polari-
zation measurement should adhere to. Assume now that we already have completed the 
task of partitioning the data set into groups, then the polarization measurement should be 
a function of at least the following two factors: within-group heterogeneity and between-
group heterogeneity. Intuitively, the number of groups (K) and the size of each group 
( S = {s1, ..., sK} ∈ IRK ) may also affect the polarization level. Therefore, such a polariza-
tion measurement should have the following form:

where W ∈ IR
+ and B ∈ IR

+ are indices for within-group heterogeneity and between-group 
heterogeneity of the entire data set respectively. As the desired properties suggest, P should 

(1)P(X) = f (W,B,K, S)
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be decreasing with W and increasing with B. Following Gigliarano and Mosler (2009) 
where choices of W and B are mostly related to the weighted sum of each group’s charac-
teristics, we further assume that the two variables should take the following forms:

where � and � should be strictly increasing and continuous. 𝛼k > 0 and 𝛽i,j > 0 are real 
number coefficients, representing the weights or importance of corresponding variables. 
There are good reasons for using such linear expressions ( 

∑K

k=1
�kwk and 

∑
i<j 𝛽i,jbi,j ) as 

inputs of � and � . As we will see in Sects. 3.2, 3.3, and 3.4, the linearity will significantly 
simplify our analysis about the properties of P, by making it possible to directly obtain the 
changes in W and B during certain dynamical processes. These changes may be intuitive 
and are not of our main interest here, but not giving specific forms or using other expres-
sions of W and B might make the formal derivation of the outcome tedious and difficult, 
if still possible. For example, in Fig. 1 of Sect. 3.2.1, there are three groups at I1,I2 , and I3 
( I1 < I2 < I3 ). If I1 and I2 move to each other for the same distance, we intuitively antici-
pate that B = �(b1,2, b2,3, b1,3) should decrease, but it is not easy to prove: it is unclear if 
B will decrease as b1,3 decreases but b2,3 increases. Nonlinear forms of � , such as product, 
may require extensive efforts to confirm the result, while expression (3) can solve it easily 
through simple calculation (see Sect. 3.2.1). This will become clearer in the rest of the sec-
tion thanks to some further examples. Given the benefit of linearity, and the lack of advan-
tage of nonlinear expressions, we choose Eqs. (2) and (3) for the rest of the paper.

Following the linearity in W and B, in this section we further take the following assump-
tion: bi,j should be the squared distance between the centers (or mean values) of Ci and 
Cj . Similarly, wk should be the average squared distance between members of Ck and 
the center (mean value) of C_k. We do not aim to rule out other forms of bi,j and wk , but 
this assumption will significantly simplify our analysis in the Sect.  3.2. For example, in 

(2)W =�

(
K∑

k=1

�kwk

)

(3)B =𝜓

(
∑

i<j

𝛽i,jbi,j

)

Fig. 1   Diagram to illustrate the 
failure of G0
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Fig. 2 of Sect. 3.2.2, there are two groups: C1 that contains people at 1 and 5, and C2 that 
contains people at 11. If people at 1 and 5 move towards each other with a same distance, 
we can easily show that b1,2 stays fixed with this assumption.

3.2 � Searching for grouping methods

The lack of a proper grouping method is the root for the absence of well-defined “endog-
enously emerging” groups in polarization measurements. In general, a grouping method is 
a series of steps that separate the data set into a finite number of (non-overlapping) groups, 
where members of the same group should be similar and members from different groups 
should be dissimilar according to some criteria. Additionally, multiple constraints—includ-
ing the number and size of groups—can be applied to a grouping method based on prior 
knowledge or specific requirements. In this subsection, we consider three types of group-
ing methods: method without any constraint, method with a fixed number of groups, and 
method with both fixed number and size of groups. Conceptually, the three types represent 
all possible grouping methods. We will show that a particular grouping method of the last 
type, called “Equal Size Binary Grouping” (ESBG), which divides the data set into two 
equally sized groups, should be a possible solution to problems such as discontinuity and 
contradiction of reasoning if we want to construct an ideal polarization measurement that 
(i) is in the form of Eqs. (1), (2), and (3), and (ii) adheres to the desired properties.

A common requirement for endogenously emerging groups is that they should be 
formed on the basis of (dis)similarities between individuals (i.e. data points), so that each 
group is homogeneous internally but different from other groups. Let us assume that all the 
grouping methods discussed in this subsection satisfy this requirement. This implies that 
each of them is able to classify data points that are sufficiently similar into the same group 
and classify the data points that are sufficiently dissimilar into different groups. We will 
leave the question “how to perform these grouping methods to ensure that they satisfy this 
requirement” to Sect. 4, where more technical details will be provided.

Fig. 2   Diagram to illustrate the 
failure of G1
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3.2.1 � Grouping method without any constraint

Suppose there is a grouping method G0 whose only task is to divide the system into groups. 
Therefore, there is no constraint on G0 besides the requirement mentioned above, and the 
number and size of the groups are determined to make the members of the same group 
similar and members of different groups dissimilar.

To understand why G0 is not a proper grouping method for the polarization measure-
ment P(X), consider the uni-dimensional example given in Fig. 1, modified from Esteban 
and Ray (1994). In Fig. 1, initially (at t = 0 ), half of the population is equally distributed 
between level I = I1 and I = I2 (I is the variable of interest), and the other half of the pop-
ulation is at level I = I3 . Suppose 0 < I1 < I2 < I3 , I3 − I2 ≥ I2 − I1 , and the three levels 
are sufficiently different such that G0 will produce three non-overlapping groups C1,C2 , 
and C3 , containing data points at I1 , I2 and I3 respectively. Therefore, wk = 0 ( k = 1, 2, 3 ). 
Now, consider that both C1 and C2 move towards each other synchronously with the same 
speed until merging. X(t) is the system at time t. During the process, there must be a 
moment t = t∗ when C1 moves to I∗

1
 ( I1 < I∗

1
< I2 ) and C2 moves to I∗

2
 ( I∗

1
< I∗

2
< I2),3 and 

G0 starts to recognize C1 and C2 as one group, denoted by C4 . The transition moment t∗ 
fully depends on G0 if the moving speed is given. When t < t∗ , the between-group hetero-
geneity B = �(�1,2b1,2 + �2,3b2,3 + �1,3b1,3) is decreasing (with an intuitive condition that 
�1,3 = �2,3).4 Due to the fact that W, K, and S are constant, the decrease in B implies that 
P(X) decreases with t when t < t∗ . When t > t∗ , there will be only two groups C4 and C3 , 
and W = �(�4w4 + �3w3 ) decreases with t as w4 is decreasing, while other factors stay con-
stant, therefore P(X) is increasing. To conclude, P(X(t)), as a function of t, is decreasing 
when t < t∗ and is increasing when t > t∗.

Assume now that we have a new grouping method GII
0

 , which is slightly different 
from G0 in the sense that the transition moment for GII

0
 is t∗∗ > t∗ . Denote the polariza-

tion measurement of X using G0 as P(X|G0) and using GII
0

 as P(X|GII
0
) . When t < t∗ or 

t > t∗∗ , G0 and GII
0

 are of no difference and hence P(X|G0) = P(X|GII
0
) . P(X|G0) = P(X|GII

0
) 

when t < t∗ implies that limt↑t∗∗ P(X(t)|GII
0
) < P(X(t = t∗∗)|G0)  if we assume both 

P(X|G0)  and P(X|G0
II)  are continous in t, as P(X|G0) is increasing during t∗ < t < t∗∗ , 

and P(X|GII
0
) is decreasing during the same period. Meanwhile, P(X|G0) = P(X|GII

0
) 

when t > t∗∗ implies that limt↓t∗∗ P(X(t)|GII
0
) = P(X(t = t∗∗)|G0) , therefore 

limt↑t∗∗ P(X(t)|GII
0
) < limt↓t∗∗ P(X(t)|GII

0
) , which directly proves that the P(X(t)|GII

0
) is 

discontinuous at t = t∗∗ . Given that there are countless transition moments generated by 
countless grouping methods without any constraint, we can conclude that P(X(t)) is a dis-
continuous function of t. Note that not only does such discontinuity exist in our example; it 
is likely to occur whenever two (or even more than two) groups merge.

Indeed, this problem of G0 is the same as the discontinuity problem observed in the ER 
index (see Sect. 2.1). Besides being counter-intuitive, this discontinuity will cause various 
problems. For example, the sudden jump of the polarization level at the transition moment 

3  If I∗
1
= I∗

2
 , G0 is the same as the ER index. See Sect. 2.1.

4  It is clear that the difference between C1 and C2 (i.e., b1,2 ) shrinks, so we only need to 
prove that �2,3b2,3 + �1,3b1,3 is not increasing, As it is intuitive to have �1,3 = �2,3 , the task is 
reduced to prove b1,3 + b2,3 is not increasing. Suppose C1 or C2 has traveled a distance of � 
( 0 < 𝛥 < (I∗

1
− I1) ) at time t’ ( t < t� < t∗)  since t ( C1 and C2 always travel the same distance), then 

[b1,3(t
�) + b2,3(t

�)] − [b1,3(t) + b2,3(t)] = [(d1,3(t) − �)2 + (d2,3(t) + �)2] − [(d1,3(t))
2 + (d2,3(t))

2] = 2(d2,3(t)+
𝛥 − d1,3(t))𝛥 < 0 , where di,j(t) is the distance between Ii and Ij at t. Therefore b1,3 + b2,3 is indeed decreas-
ing. See Sect. 3.1 for the reason of choosing bi,j = (di,j)

2.
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is hardly justifiable. If such discontinuity is accepted, one can dramatically increase or 
decrease the polarization level of the same data set by simply constructing a slightly differ-
ent transition moment.

3.2.2 � Grouping method with fixed number of groups

To solve the discontinuity problem mentioned in Sect. 3.2.1, we impose a constraint on G0 : 
the number of groups is fixed to K = 2 . We denote this grouping method as G1 . The task 
of G1 is to divide the systems into two groups such that the two groups are maximally dif-
ferent, but members in the same group are maximally similar. To show that G1 overcomes 
the discontinuity problem, we also apply G1 to X(t = 0) in Fig. 1. Since I3 − I2 > I2 − I1 , 
individuals at I1 and I2 are classified into one group, say, C4 , and individuals at I3 , as before, 
constitute the other group C3 . Now the dynamic process described in Sect.  3.2.1 only 
decreases w4 , while w3 , B, and S are not affected. Therefore P(X(t)|G1) increases continu-
ously throughout the process, that is, it does not suffer from discontinuity.

When I2 is closer to I3 than to I1 , is the method still discontinuity-free? Again, consider 
that both individuals at I1 and I2 move towards each other with the same speed simultane-
ously. Initially, G1 will define two groups: C1 containing everyone at I1 and C5 containing 
everyone at I2 or I3 . There will also be a transition moment t = t∗ when G1 starts to con-
sider individuals at I∗

1
 and I∗

2
 as one group C4 . The question is if P(X|G1) is discontinuous. 

Through simple analysis, we know that P(X|G1) , again, decreases with t when t < t∗ and 
increases with t when t > t∗ . However, it is intuitive to see that no matter which G1 we 
choose, the transition moment t∗ is always the moment when I3 − I2 = I2 − I1 . Otherwise, 
the group structure will violate the basic requirement mentioned in the beginning of this 
section. Therefore, the method is free from discontinuity.

Although providing a solution to discontinuity, G1 has its own problem. Consider 
another example modified from Esteban and Ray (1994). As shown in Fig. 2, almost all 
individuals are placed equally at I = 1 and I = 5 , while only a sufficiently small number 
of individuals are at I = 11 . G1 will put individuals at 1 and 5 in the same group, say C1 , 
leaving those at 11 in another group C2 . Now, consider all individuals in C1 merge at I = 3 . 
The merge reduces w1 to 0, while all other factors remain unchanged. Consequently, the 
polarization level should go up. However, according to Esteban and Ray (1994), due to 
the relatively small size of C2 , the initial polarization mostly comes from the dissimilarity 
between the individuals at 1 and 5, which is eliminated after the merge, so the polarization 
level should go down. This contradiction discourages using G1 for constructing P(X). Note 
that choosing another value for K not only lacks a strong theoretical justification but also is 
unable to solve the discontinuity problem in Fig. 1.

3.2.3 � Grouping method with fixed number and size of groups

From Sect. 3.2.2, we know that the problem in G1 is due to group size. To solve this prob-
lem, we impose another constraint on G1 : the size of each group must be the same. We call 
it Equal Size Binary Grouping (ESBG), whose task is to split the system into two equally 
sized groups, while maximizing between-group heterogeneity and/or minimizing within-
group heterogeneity. For the sake of simplicity, we only discuss systems whose size is an 
even number. We will discuss how to implement this method in Sect. 4.
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First, the discontinuity problem in Fig. 1 can be completely solved by replacing G0 
with ESBG as there will be no transition moment during the process. For a more general 
case, consider the dynamic process described in Fig. 3, in which ESBG initially divides 
the uni-dimensional system into two groups: C1 in red and C2 in blue (Fig. 3(a)). With-
out loss of generality, we suppose that a portion of C1 move towards C2 , and will stop 
after passing the closest member of C2 (Fig. 3(c)). Note that the colors in the figure only 
indicate the initial group memberships.

We can see that compared to G0 , moving sufficiently close to individuals of another 
group can no longer trigger a transition of group membership under ESBG (Fig. 3(a)). 
Only when the moving red individuals pass the blue individuals near the group bound-
ary, there will be a transition of group membership as the moving individuals, previ-
ously members of C1 , will be now identified as members of C2 (Fig.  3(c)). However, 
we can take an alternative look at this situation. The identity of an individual is purely 
determined by its value of the variable of interest, therefore among the individuals 
in the middle in Fig.  3(b), ESBG cannot tell which individual just moved here from 
the left (red), and which individual is native (blue). Therefore, the dynamics from 
Fig. 3(b)  to  (c) can be equivalently interpreted as the dynamics from Fig. 3(b)  to  (d), 
that is, a portion of native blue individuals move to the right, and no membership transi-
tion happens during the whole process. Due to the arbitrariness of this example, we can 

(a) Beginning of the process (b) Fusion

(c) End of the process (d) An alternative view of (c)

Fig. 3   Illustration of the continuity of ESBG. Colors indicate the initial membership of each individual; 
arrows represent the moving direction; and the dashed line is the current group boundary
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conclude that the discontinuity problem caused by group membership transition can be 
solved by ESBG.

Finally, we show that ESBG has the potential to solve the problem found in G1 . In the 
example given in Fig. 2, ESBG will define groups differently from G1 : all individuals at 
1 and a small number of individuals at 5 will form C1 , and the rest of the population will 
form C2 . During the merging process in Fig.  2, we can confirm that B decreases given 
a sufficiently small population at 11.5 Meanwhile, w1 decreases and w2 increases, so it is 
unclear whether W increases or not. However, it gives us room to design expressions for W, 
B, and f(W, B) in order to solve the problem, which is much better than G1 where polariza-
tion will definitely increase (see Sect.  3.2.2). For example, Sect.  5.3 shows a particular 
implementation of f which should be able to solve the problem of G1 (see Table 2).

To summarize, both G0 and G1 are not qualified as grouping methods for constructing 
the ideal polarization measurement because of discontinuity and contradiction of reason-
ing, while ESBG should be a possible solution.

Fig. 4   Applying G0 and ESBG to data set X1 and X2 respectively. In (a), (c), and (d), points of the same 
color are not only in the same group but also identical, while in (b), color only represents group member-
ship. To avoid overlap and improve readability, positions of the data points have been adjusted

5  Note that this confirmation needs sufficiently small size of individuals at 11. Denote the members of C1 
at 1 as C1

1
 , the members of C1 at 5 as C5

1
 , the members of C2 at 5 as C5

2
 , and the members of C2 at 11 as C11

2
 . 

During the merging process, the heterogeneity between C1

1
 and both C5

2
 and C11

2
 decreases, while the hetero-

geneity between C5

1
 and C5

2
 is fixed at 0. Meanwhile, the heterogeneity between C11

2
 and C5

1
 increases. How-

ever, if the size of C11

2
 is small enough (the size of C5

1
 is smaller than C11

2
 ), we can conclude that B decreases.
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3.3 � ESBG and the missing variables

By using ESBG, the expression P = f (W,B,K, S) reduces to P = f (W,B) . However, 
removing K and S does not mean the measurement fails to include the effects of these two 
variables. Indeed, the role of K and S are inherited by W and B. In practice, S = {s1, ..., sK} 
is represented by the relative group sizes (RS), which measures “how equally populated 
the groups are” (Gigliarano and Mosler 2009). Large RS implies that the group sizes are 
similar, and small RS implies unequal distribution of group sizes.

Figures 4 and 5 provide vivid examples in a two-dimensional space. In Fig. 4(a), a con-
straint-free grouping method (i.e. G0 ) divides the data set X1 into three groups, each con-
taining two identical individuals. The distance (i.e., heterogeneity) between each group is 
assumed to be the same. Given the same data set, ESBG will divide X1 into two groups, 
which means one of the three groups defined by G0 (in Fig. 4(a), the green group) will be 
equally separated and taken by the remaining groups (Fig.  4(b)). Now, consider another 
data set X2 where G0 divides it into two groups (i.e., the blue and the red groups), each 
containing three identical individuals (Fig.  4(c)). ESBG will make the same division 
(Fig. 4(d)) as G0 . It is not difficult to find out that (a) and (c) have the same W, B and RS.6 

Fig. 5   Applying G0 and ESBG to data set X3 and X4  respectively. In (a), (c), and (d), points of the same 
color are not only in the same group but also identical, and the distance between points with the same color 
does not represent the difference between them but is introduced to improve readability. In (b), color only 
represents group membership

6  Both (a) and (c) have reached the maximum of RS (see Gigliarano and Mosler (2009) for details). A con-
dition for (a) and (c) to have the same B is 

∑K

i<j
𝛽i,j = C , ∀K > 0 , where C is a constant.
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Therefore, the only difference between X1 and X2 under G0 (i.e., (a) and (c)) is the num-
ber of groups, K. However, when using ESBG to measure polarization (i.e., (b) and (d)), 
both data sets have the same K = 2 . Comparing (b) and (d), we find that the data set with 
a larger K (i.e., X1 ) under G0 will have a larger W but a smaller B under ESBG, indicat-
ing that X1 is less polarized than X2 not only under G0 but also under ESBG (intuitively a 
polarization measurement is negatively related to K when K ≥ 2 ). To conclude, the effect 
of K under G0 is replaced by the effect of W and B under ESBG.

Figure  5 shows how ESBG converts the effect of RS to the effect of W and B. In 
Fig. 5(a), G0 divides the data set X3 into two groups, each containing two or four identical 
individuals (i.e., the blue and red group). Meanwhile, ESBG will divide X3 into two groups 
each containing three members as shown in (b). Figure 5(c) and (d) show that both G0 and 
ESBG divide another data set X4 into two groups each containing 2 identical individuals. 
Assume the distances between the two groups in (a) and (c) are the same, then the only dif-
ference between X3 and X4 under G0 is RS. Without any calculation, it is clear that X3 has a 
smaller RS than X4 , indicating that X4 is more polarized (because intuitively a polarization 
measurement is positively related to RS). Comparing (b) and (d) (where RS no longer mat-
ters), X3 has a larger W and a smaller B, indicating that X3 is less polarized than X4 under 
ESBG, in line with the prediction by G0 . Therefore, the effect of S (via RS) under G0 is 
replaced by W and B under ESBG.

3.4 � Polarization axioms by Esteban and Ray

In this subsection, we test whether an ESBG-based polarization measurement, even with-
out a particular expression, satisfies the axioms proposed by Esteban and Ray (1994). For 
the sake of simplicity, we reduce Eqs.  (2) and (3) to W = �(w1 + w2 ), and B = �(b1,2) , 
which will be further justified in Sect. 4.3.

Axiom 1 (Fig. 6) 
To justify this statement, assume that � is small enough such that 2q < p (i.e. 𝜇 < 1∕2 ). 

Therefore, under ESBG, the two q masses are always in the same group, say, C2 . A part of 
the p mass will also be in C2 , and the rest of the p mass will be in the other group C1 . Given 

Fig. 6   Esteban-Ray’s Axiom 1: 
Data: p, q ≫ 0 , p > q , 0 < x < y . 
Statement: Fix p > 0 and x > 0 . 
There exist 𝜖 > 0 and 𝜇 > 0 
such that if d(x, y) < 𝜖 (d is the 
distance function) and q < 𝜇p , 
the joining of the two q masses 
at their mid-point, (x + y)∕2 , 
increases polarization. (Note: 
This statement, as well as Axiom 
2 and 3, are directly taken and 
modified from Esteban and Ray 
(1994))
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that the merge does not affect the center of C2, B is not affected. Meanwhile w1 is obviously 
not affected, but w2 decreases, which will increase f(W, B).

The condition d(x, y) < 𝜖 , in the original paper (Esteban and Ray 1994), was proposed 
to ensure that the two q masses were sufficiently close. Under ESBG, this condition is no 
longer needed.

Axiom 2 (Fig. 7)
If p > (p + q + r)∕2 , q mass, r mass, and a part of the p mass will be in the same group 

C2 , while the rest of the p mass will be the other group C1 . After the move, w1 is not affected 
and B goes up. If w2 decreases, we have P increasing as the axiom requires. If w2 increases, 
it does not increase as much as B does (given that B and W are on the same scale): on the 
one hand, the move of the q mass will decrease the heterogeneity between the q and r mass, 
which deteriorates w2 ; on the other hand, the move increases the heterogeneity between the 
q mass and everyone in the p mass. However, there are more members of C1 than members 
of C2 in the p mass, implying that this move should affect B much more than w2 . Therefore, 
polarization should go up after the move given a properly designed measurement. Here we 
provide a simple intuition rather than a formal proof.

Fig. 7   Esteban-Ray’s Axiom 
2: Data: (p, q, r) ≫ 0 , p > r , 
x > |y − x| . Statement: There 
exists 𝜖 > 0 such that if the popu-
lation mass q is moved to the 
right (towards r) by an amount 
not exceeding � , polarization 
goes up

Fig. 8   Esteban-Ray’s Axiom 3: 
Data: (p, q) ≫ 0 , x = y − x ≡ d . 
Statement: Any new distribution 
formed by shifting population 
mass from the central mass q 
equally to the two lateral masses 
p, each d units of distance away, 
must increase polarization
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If p = (p + q + r)∕2 , the move will decrease w2 and increase B, thus f(W,  B) will 
increase.

If r < p < (p + q + r)∕2 , more than half of the q mass will be in C2 , while the rest 
of the q mass will be in the other group C1 . The move of the q mass increases w1 but 
reduces w2 , which should lead to a decrease in w1 + w2 because more than half of the q 
mass is in C2 . Due to the same reason, the move will increase B. As a result, f(W, B) will 
go up.

Axiom 3 (Fig. 8)
Before the split, W = B = 0 . After the split, W = 0 and B > 0 , and hence the polariza-

tion measurement goes up.

4 � Implementing grouping method and constructing polarization 
measurement

As argued above, the task of ESBG is to split the data set into two equally sized groups 
in such a way that members from different groups are very different, and members 
within each group are very similar. In Sect. 3, we did not discuss how ESBG achieves 
this task or how to implement ESBG, but took it for granted. In this section, using ideas 
of clustering techniques, we propose an implementation protocol for ESBG, especially 
in a multi-dimensional space, based on which the ESBG-based polarization measure-
ment will be constructed. In addition, we compare the ESBG-based measurement with 
bimodality measurements as they share similar expressions.

4.1 � Dimensionality

If we are only interested in polarization of a uni-dimensional data set, implementing 
ESBG is as simple as dividing the data set by the median value. In this subsection, we 
will stress on the importance of multi-dimensional polarization, justifying the necessity 
of implementing ESBG in multi-dimensional spaces.

Multi-dimensional polarization is not the simple aggregation of uni-dimensional 
polarization from different dimensions. Therefore, measuring multiple uni-dimensional 
polarization cannot tell how polarized the whole system is. Following the example given 
by Ross (1920), consider a society with half white men and half black men. Therefore, 
the society is ethically polarized; meanwhile, the society consists of half employees and 
half employers, so it is also polarized in social classes. If all white men are employed 
by black men, the society is polarized as a whole with half white employees and half 
black employers. However, if half white/black men are employers and half white/black 
men are employees, the society is actually split into four groups: white employer, white 
employee, black employer, and black employee. Therefore, the society is polarized in 
all dimensions, but is less polarized as a whole. This also creates problems of micro 
vs. macro level measurements, as suggested by research on group segregation in labour 
markets (e.g., Takács et al. 2018).

The majority of polarization measurements are designed to measure uni-dimensional 
data only. Given the necessity of measuring multi-dimensional polarization, implement-
ing ESBG for both uni- and multi-dimensional data sets is of paramount importance.
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4.2 � Clustering

Clustering is one of the most important topics in data analysis and machine learning, which 
has been extensively studied due to its broad functionality (Jain et al. 1999; Xu and Wun-
sch 2009). In short, clustering is “the task of partitioning the data set into groups” (Müller 
and Guido 2016), and members in the same group “should display similar properties based 
on some criteria” (Xu and Wunsch 2009). A twin concept of clustering is called supervised 
classification that depends on a set of pre-classified/pre-labeled data. From the pre-classi-
fied data (also called “training data”), a supervised classification technique learns how to 
define groups, and then divides unlabeled data into groups (Jain et al. 1999). Unlike super-
vised classification, clustering deals with unlabeled data only, which means groups “are 
obtained solely from the (unlabeled) data” (Jain et al. 1999). This feature naturally reminds 
us of the “endogenously emerging groups” that are solely derived from the variable(s) of 
interest, indicating that clustering is fundamentally similar to the task of defining endog-
enously emerging groups. Thanks to the development in the field, there is a vast collection 
of efficient and reliable clustering algorithms (see Jain et al. (1999), Baraldi and Blonda 
(1999a, 1999b), Xu and Wunsch (2009) for reviews), which will pave the way for the 
implementation of ESBG.

A typical clustering process usually consists of the following steps (Jain and Dubes 
1988; Jain et al. 1999; Xu and Wunsch 2009):

Feature selection and/or extraction: It is a necessary preprocessing step for clustering. 
Because not all features (in our context, dimensions) are “equally relevant” for clustering 
(Aggarwal 2014), for the sake of efficiency, feature selection chooses the most relevant and 
effective set of features for defining groups (Jain et al. 1999). In addition, feature extraction 
transforms original features into new forms that are more salient.

Definition of a proximity measurement: As argued above, data points are clustered 
into groups according to how “close” they are to each other. To implement clustering, we 
need to formally define a proximity measurement. The term “proximity” is the counterpart 
of “homogeneity” in the context of polarization. Therefore, measuring proximity in cluster-
ing echoes measuring within- and between-group homogeneity/ heterogeneity in EBSG.

Grouping/optimization: This is the main step of clustering. Given the proximity meas-
urement, the grouping step is “an optimization problem with a specific criterion function” 
(Xu and Wunsch 2009), and the criterion is closely related to the proximity measurement.

Validation: This step assesses the output produced by previous steps depending on 
some optimal criteria (Jain et al. 1999).

4.3 � Implementing ESBG

Based on the steps of a clustering process, a formal ESBG process should include the fol-
lowing steps:

Preprocessing: This step mirrors the feature selection and/or extraction step in cluster-
ing. A common concern about multi-dimensional polarization is the incommensurability of 
dimensions. For instance, when measuring the two-dimensional polarization of education 
and income, it is difficult to defend why an x year difference in education and a y euro dif-
ference in income are equally important (x and y are arbitrary positive numbers). Further-
more, some less relevant dimensions might harm the efficiency of ESBG. The preprocess-
ing step should help to solve these issues by techniques such as dimension reduction and 
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rescaling (for details, see Aaberge and Brandolini (2015)). After the preprocessing, these 
dimension-related problems should no longer exist in the processed data.

Definition of a heterogeneity measurement: In this step, we need to design a hetero-
geneity measurement appropriate to our data. Just like proximity (Jain et al. 1999), hetero-
geneity can be measured by a distance function—for example, the Euclidean distance—of 
pairs of data points. Once the heterogeneity measurement is chosen, by denoting the two 
groups as C1 and C2 , the expressions of heterogeneity within each group ( w1 and w2 ) and 
between groups ( b1,2 ) can be determined. The within-group heterogeneity W and between-
group heterogeneity B should be calculated according to the following equations:

and

Equations (4) and (5) are the reduced forms of Eqs. (2) and (3) respectively. The omission 
of the parameters �1 and �2 in Eq. (4) is due to the equity of group sizes. At the same time, 
we take the simplest possible expression of � : �(w1 + w2) = w1 + w2 . For the expression 
of B, since there are now only two groups, the overall between-group heterogeneity B is the 
same as the heterogeneity between C1 and C2 , i.e., b1,2.

Grouping: Given the expression of W and B, ESBG is translated to an optimization 
problem with the aim of maximizing B and/or minimizing W, subject to the constraint that 
the group number must be 2, and the sizes of the two groups must be the same.

Validation: The validation process in ESBG is almost the same as in clustering, but 
with an additional exam on the number and size of groups.

In practice, it is easy to choose a well developed clustering algorithm as the basis of 
ESBG. In Sect.  5, we will develop the implementation of ESBG based on the famous 
K-means clustering algorithm.

4.4 � Constructing a polarization measurement

Given the endogenously emerging groups C1 and C2 defined by ESBG, a polarization meas-
urement should take the following form:

since we have used W = w1 + w2 and B = b1,2 (see Sect. 4.3).
When designing the expression for the measurement, it is important to ensure that all 

the desired properties for P(X) = f (W,B) listed in Sect. 2.2 have been taken into account. 
These properties are formally summarized as follows:

Continuity: P = f (W,B) is a continuous function of both W and B.
Dimensionality: P ∶ IRD → IR . D = 1 or D ≥ 2.
Monotonicity: P = f (W,B) is strictly decreasing with W and strictly increasing with B.
Maximum: P is maximized when W = 0 and B is maximized.
Minimum: P is minimized when W = B = 0.
Normalization: For all X ∈ IRD ( D ≥ 1 ), 0 ≤ P(X) ≤ 1.
Combining the maximum property and the normalization property, we have 

f (W = 0,B = Bmax) = 1 , where Bmax is the maximum between-group heterogeneity. How-
ever, in practice, determining the value of Bmax can be troublesome. Suppose we define Bmax 

(4)W = w1 + w2

(5)B = b1,2

(6)P(X) = f (W,B) = f (w1 + w2, b1,2)
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as the maximal pairwise distance in a data set X1 , and then we design an expression of f(W, B), 
say f1 , such that f1(W(X1) = 0,B(X1) = Bmax) = 1 . Then for another data set X2 whose 
between-group heterogeneity B(X2) is larger than Bmax , we will obtain 
f1(W(X2) = 0,B(X2)) > 1 , violating the normalization property. To solve the issue, we intro-
duce the normalizing parameter 𝛿 > 0 , which should be greater than or equal to the maximum 
possible heterogeneity in all the data sets of interest. Formally, if we want to compare the 
polarization level of X1,X2,..., and XM , then � ≥ maxm maxxi ,xj∈Xm

h(xi, xj) for all m = 1, ...,M , 
and h is the heterogeneity function. Note that in the rare case when all h(xi, xj) are zero, δ can 
take an arbitrary positive value as it no longer matters. The normalizing parameter should then 
replace Bmax , that is, f (W = 0,B = �) = 1 . Once the value of � is determined, it should stay 
constant for all data sets that are going to be compared. There is a variety of ways to determine 
the parameter. For example, in a recent opinion dynamics study where the data points are all in 
the range of −1 and +1 , Schweighofer et  al. (2020) use the “maximally possible distance” 
between two points in the opinion space as the normalizing parameter. This means in a D 
dimensional Euclidean space, their normalizing parameter is 

√
4D.

Finally, we provide a particular form of P = f (W,B ) that exhibits the desired properties. 
It is worth noting that Eq. (7) is by no means the only possible form of f(W, B).

where g is a continuous and strictly increasing function with g(0) = 0 and g(1) = 1 . It is 
easy to prove that this form satisfies the property of continuity, dimensionality, monotonic-
ity, maximum, and normalization. It is also obvious that when W = B = 0 , f(W, B) defined 
in Eq. (7) is minimized to 0. One may argue that B = 0 and W ≠ 0 can also lead to P = 0 . 
However, our definition of groups implies that when B = 0 , W must also be 0, therefore 
W = B = 0 is a sufficient and necessary minimization condition.

Figure 9 summarizes the procedure of implementing ESBG and constructing polariza-
tion measurement based on ESBG. After preprocessing, the raw data are transformed to the 
“trouble-free” processed data. Subsequently, by defining the heterogeneity measurement, 

(7)f (W,B) =
1

�
g
(

B

W + 1

)

Preprocessing

Grouping and
validation

P=f(W,B)

Define the
heterogeneity
measurement

Design the epression of
f(W,B)

Choose δ

Define the expression of
W and B

Raw Data

Processed Data

Two equal-size
groups

Polarization level
of the data

Implementing
ESBG

Constructing
Polarization

Measurement

Fig. 9   Procedure of implementing ESBG and constructing polarization measurement
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as well as the expressions of within-group heterogeneity W and between-group heteroge-
neity B, we divide the processed data into two groups of equal sizes. The grouping result 
needs to be validated. This concludes the procedure of implementing ESBG. To construct 
the polarization measurement, besides W and B, we further need to design the expression 
of f(W, B) and choose an appropriate normalizing parameter � . By applying the measure-
ment to the groups, we can finally obtain the polarization level of the data.

4.5 � Relation with bimodality measurements

The expression given by Eq. (7) resembles a number of bimodality measurements such as 
Ashman’s D (Ashman et  al. 1994; Forchheimer et  al. 2015) and the bimodal separation 
(Zhang et al. 2003), whose main ideas lie in the assumption that the data set X is generated 
or can be described by some bimodal Gaussian mixture. The density of such a mixture 
is (Ashman et al. 1994):

where �g , �g , and �2
g
 (not to be confused with the normalizing parameter � ) are the fraction, 

mean, and variance of a Gaussian distribution g ( g = 1, 2 ). Given these parameters, Ash-
man’s D is expressed as (Forchheimer et al. 2015):

and the bimodal separation is (Zhang et al. 2003):

The polarization measurement in Eq.  (7) and the above-mentioned bimodality measure-
ments both rely on the ratio of between-group heterogeneity to within-group heterogeneity 
if we consider each Gaussian distribution as a group. To use D and BS, one usually needs 
to fit two Gaussian distributions to the data set by some technique (e.g., the KMM algo-
rithm (Ashman et al. 1994)), which is in analogy with ESBG. With all these commonali-
ties, it is fair to conclude that the ESBG-based polarization measurements systematically 
echo the bimodality measurements as they all require a bi-division of the data set and use 
the heterogeneity between and within the divisions.

These similarities reflect the conceptual closeness between polarization and bimodality. 
DiMaggio et al. (1996) regarded bimodality as one of the four key dimensions of polariza-
tion. Bramson et al. (2017) argued that bimodality takes into account at least three “senses” 
of polarization, including community fragmentation (“the degree to which the population 
can be broken into sub populations” (Bramson et  al. 2016, 2017)), distinctness between 
groups, and distance between groups (see Sect. 2.3). Bimodality is also claimed to be an 
indicator (Knapp 2007) or a feature (Bramson et al. 2017) of polarization. In fact, bimodal-
ity (not necessarily D and BS introduced here) has been used as a (partial) measurement 
of political polarization (e.g., Baldassarri and Bearman 2007; Kim and Baek 2021) and 
polarization has been used as an interchangeable (yet problematic)7 term for bimodality 
(e.g., Hegselmann and Krause 2002).

(8)p(X) = �1p(X,�1, �
2

1
) + �2p(X,�2, �

2

2
)

(9)D ∝
|�1 − �2|√
�2
1
+ �2

2

(10)BS ∝
|�1 − �2|
�1 + �2

7  According to Bramson et al. (2017).
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Despite these similarities, these two types of measurements are fundamentally different. 
Polarization and bimodality are distinct concepts. A bimodal distribution is usually polar-
ized, but a distribution with zero bimodality (e.g., a unimodal distribution) may not be of 
zero polarization. As pointed out by Fiorina and Abrams (2008), bimodality is a necessary 
but hardly sufficient condition for large degree of polarization. According to Bramson et al. 
(2017), bimodality does not implicitly invoke the sense of group size parity, which refers 
to the idea that a system is more polarized if groups are of equal sizes. This is reflected by 
the KMM algorithm where the size of each distribution is not relevant. Meanwhile, the 
ESBG-based measurement, as argued in Sect. 3.3, includes the effect of group size parity 
by imposing the equal size constraint.

5 � An illustrative example: Equal Size Binary Grouping based 
on K‑means clustering and corresponding polarization 
measurement

In this section, we provide an illustrative example of applying ESBG to a synthetic multi-
dimensional data set and then constructing a polarization measurement based on the groups 
defined by ESBG.

5.1 � K‑means clustering

The implementation of ESBG in this example will utilize one of the most well-known and 
widely-used clustering algorithms called k-means clustering (Forgy 1965; MacQueen 
1967; Xu and Wunsch 2009). Despite its ease of implementation, k-means clustering is an 
ideal choice for ESBG because the number of groups K needs to be determined a priori. To 
produce two groups, we simply set K = 2 , and the only remaining problem is to ensure the 
sizes of the groups are equal.

In short, k-means clustering attempts to find a number (K) of centroids (sometimes 
called group/cluster centers), each representing a group containing the data points around 
the centroid (Müller and Guido 2016). Formally, the algorithm divides the system by mini-
mizing the following distortion function (Bishop 2006):

where rik ∈ {0, 1} is a binary indicator: rik = 1 if xi is classified in Ck , and rik = 0 otherwise. 
The distortion function J in Eq.  (11) is the sum of squared distances between each data 
point xi and its centroid �k . The k-means algorithm chooses the optimal {rik} and {�k} to 
minimize J by using an iterative procedure based on the EM algorithm: given randomly 
chosen initial conditions, during each iteration, first we fix � and minimize J with respect 
to rik (step E); we then fix � and minimize J with respect to rik (step M). The iteration is 
repeated until convergence (Bishop 2006).

From Eq.  (11), we can see the proximity measurement used in k-means clustering is 
the (squared) Euclidean distance. Meanwhile, the distortion function J is closely related to 

(11)J =

N∑

i=1

K∑

k=1

rik||xi − �k||2
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within-group heterogeneity (see Sect. 5.2). Therefore, from the view of grouping method, 
we can say that the k-means clustering algorithm defines groups by minimizing the within-
group heterogeneity of the data set.

5.2 � ESBG based on k‑means clustering

In this subsection, we show how to implement ESBG step by step on the basis of the 
k-means clustering algorithm.

Preprocessing: We use a synthetic two-dimensional data set X∗ containing two blobs of 
100 and 200 data points respectively.8 Assuming none of the dimension-related problems 
(see Sect. 4.3) exists, no preprocessing is needed for this particular case.

Definition of heterogeneity measurement: Following the k-means clustering algo-
rithm, we use the squared Euclidean distance as the heterogeneity measurement. Within-
group heterogeneity W can thus be defined as:

which is the average squared Euclidean distance between each data point and its corre-
sponding centroid, that is, W = J∕N with a predefined value of K = 2 . Between-group het-
erogeneity B, following the same fashion, is defined as the squared distance between the 
centroids:

The motivation for choosing J/N instead of J as the measurement of W is to make W and B 
on the same scale. Otherwise, we could expect W ≫ B in most cases, making P extremely 
small. In addition, if W and B are not on the same scale, for example W = J , it will be dif-
ficult to defend the second axiom of Esteban and Ray (1994) (see Sect. 3.4).

Grouping: Now the task of implementing ESBG is turned into an optimization 
problem:

Following Bishop (2006), we use the EM iteration to solve this optimization problem. The 
M step is the same as that in k-means, and the E step aims to minimize W with fixed �1 and 
�2 , while constrained by the condition of equal group sizes. The basic idea is to calculate 
the squared distance between each data point and both centroids, respectively. For data 
point xi , denote the absolute difference between its squared distances to both centroids as 
�i . First we assign each data point to the closer centroid to generate “temporary” groups. 
Then, until both groups have the same size, we select a member repeatedly to move it from 

(12)W =
1

N

N∑

i=1

2∑

k=1

rik||xi − �k||2 =
1

N

2∑

k=1

∑

xi∈Ck

||xi − �k||2

(13)B = ||�1 − �2||2

(14)
min

{rik},{�k}
W =

1

N

N∑
i=1

∑
k=1,2 rik��xi − �k��2

s.t.
N∑
i=1

rik = N∕2, ∀k = 1, 2

8  The data set X∗ is generated using the make_blobs function from sklearn Python module: X,y=make_
blobs(n_samples=[100,200], cluster_std=[.4,.8], centers=[[4,0],[0,-4]]). Then apply the MinMaxScaler 
from the same module and we obtain X∗.
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the larger group to the smaller group. The selected member should be the one with the 
smallest �i . A similar idea can be found from the elki project.9 The process is illustrated 
in Fig. 10. The outcome is two equally sized groups with members distributed around two 

(a) Iteration 0: Initialization (b) Iteration 1: E Step (c) Iteration 1: M Step

(d) Iteration 2: E Step (e) Iteration 2: M Step (f) Iteration 3: E Step

Fig. 10   Illustration of the k-means-based ESBG using X∗ . The centroids are shown by the triangles of simi-
lar colors of their corresponding groups. The triangles of lighter colors represent the centroids in the previ-
ous iteration. (a): Initially, the data set is randomly and equally divided into two groups C1 and C2 , and the 
centroids of both groups are computed as the average of their group members. (b): In the E step of Iteration 
1, each data point is assigned to the group whose centroid is nearer, while keeping the size of each group 
equal. (c): In the M step of Iteration 1, the centroid of each group is re-computed according to the new 
group structure updated in the last E step. (d)–(f): Successive iterations. The change in the positions of 
centroids from (d) to (e) is relatively small and can be observed when taking a closer look. The system has 
reached convergence since (f).

(a) ESBG (b) K-means

Fig. 11   The results of applying (a) ESBG or (b) K-means clustering (K = 2 ) to X∗ . Each centroid is shown 
by the triangle of the similar colour of its corresponding group. Note: (a) is the same as Fig. 10(f).

9  https://​elki-​proje​ct.​github.​io/​tutor​ial/​same-​size_k_​means.

https://elki-project.github.io/tutorial/same-size_k_means
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centroids (Fig.  11(a)). To make a comparison, we apply k-means clustering to the same 
data set in Fig. 11(b). 

Validation: We first check if the outcome of the grouping step contains two groups, and 
if their sizes are the same. Then, we check whether the outcome is optimal, in other words, 
if W is minimized. A primary step may include checking if swapping memberships of data 
points can decrease W, and if each centroid is the mean of its members. In addition, a num-
ber of validation methods, criteria, and indices are available to formally justify the cluster-
ing result (Xu and Wunsch 2009).

5.3 � Corresponding polarization measurement

According to Eq.  (7), we choose f ∗(W,B) =
1

�
(

B

W+1
) as our polarization measurement 

(i.e., we choose g(x) = x ). Given this expression, we have W = 0.05784060054 , and 
B = 0.367362082 for our synthetic data set X∗ . Setting � = 2 (given that the maximum pos-
sible squared Euclidean distance in X∗ is smaller than 

√
2 ), the polarization level of X∗ is 

then f ∗ = 0.173637731.
As suggested in Sect. 3.2.3, we use f ∗ to examine whether ESBG can solve the problem 

of G1 . In Table 2, we have summarized the within-group heterogeneity before (W) and after 
( Wm ) the merge, the between-group heterogeneity before (B) and after ( Bm ) the merge, 
and the polarization level before ( f ∗ = f ∗(W,B) ) and after ( f ∗m = f ∗(Wm,Bm) ) the merge, 
under different initial population distributions at 1, 5, and 11. By setting � = 100 , we can 
see that as long as the population at 11 is no larger than 8 (recall that in the original exam-
ple, it is required that the population at 11 is sufficiently small), the merge will reduce the 
polarization level due to the significant decrease in B and relatively small increase in W.

6 � Relation with bipolarization measurements

As argued in Sect.  2, there are two notable lines of polarization measurements: the 
Wolfson’s line (i.e. bipolarization measurement), which captures the decline of the mid-
dle class, and the Esteban & Ray’s line, which focuses on how individuals are clustered 
in groups. It is clear that our ESBG-based measurement is in the Esteban & Ray’s line 
as its derivation relies on the concepts, axioms, and properties proposed by Esteban and 

Table 2   Measuring polarization in the system described in Fig. 2

Pop at 1 Pop at 5 Pop at 11 W∕Wm
B∕Bm

f
∗∕f ∗m

9 9 2 3.6000/5.1200 23.0400/2.5600 0.0501/0.0042
8 8 4 5.6000/7.6800 31.3600/10.2400 0.0475/0.0118
7 7 6 6.0000/7.6800 40.9600/23.0400 0.0585/0.0265
6 6 8 4.8000/5.1200 51.8400/40.9600 0.0894/0.0669
5 5 10 2.0000/0.0000 64.0000/64.0000 0.2133/0.6400
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Ray (1994). In this section, we will show that our measurement can be partly viewed as 
a (multidimensional) polarization measurement in the Wolfson’s line.

6.1 � Increased spread and increased bipolarity

The construction of a bipolarization measurement relies on two critical properties: 
increased spread and increased bipolarity (Wang and Tsui 2000; Chakravarty and 
Majumder 2001; Gigliarano and Mosler 2009). Increased spread states that given the 
median level fixed, polarization increases when any individual moves in the opposite 
direction from the median level (Wang and Tsui 2000), and increased bipolarity states 
that after a Pigou–Dalton transfer within the same group, polarization level should 
increase (Wang and Tsui 2000; Gigliarano and Mosler 2009). A Pigou-Dalton transfer 
is defined as a transfer from a rich individual to a poor individual, and after the transfer, 
the poor should not be richer than the rich before the transfer and the rich should not be 
poorer than the poor before the transfer (Wang and Tsui 2000).

To see its relation with bipolarization measurements, we need to check if our ESBG-
based measurement satisfies increased spread and increased bipolarity. From the defini-
tion of Pigou-Dalton transfer, it follows that W will be reduced after a transfer. However, 
estimating the effect of a Pigou-Dalton transfer on B without knowing the exact expres-
sion of B is not easy. For B defined in Eq. (13), a Pigou-Dalton transfer has no impact on 
it as the locations of the centroids are not affected. Therefore, at least the k-means-based 
polarization measurement proposed in Sect. 5.3 satisfies increased bipolarity.

Whether an ESBG-based measurement satisfies increased spread is a more compli-
cated question. A data point’s moving away from the median value (hereafter referred 
to as increased-spread-move) will definitely increase B. Meanwhile, depending on the 
location of the data point, the move may either increase or decrease W. Therefore, we 
do not know if P goes up or not. Some counter-examples can be found. For f ∗ given in 
Sect. 5.3, if we move the leftmost data point in X∗ whose Variable 1 equals 0 to a more 
left location where Variable 1 is −10 , by setting � = 101 , the polarization measurement 
of the system drops from 0.003438371 to 0.003024571, mainly due to the significant 
increase in W. Although we are not sure if other expressions of f(W, B) would satisfy 
increased spread, we could claim that this property is not generally desired by ESBG-
based measurements.

6.2 � Is the ESBG‑based measurement a bipolarization measurement?

Even if our measurement may not satisfy increased spread, one cannot deny that it is simi-
lar to a bipolarization measurement in many aspects. First, ESBG itself is the same as the 
grouping method of a bipolarization measurement when D = 1 (see Sect. 4.1). This find-
ing is interesting: we were looking for an appropriate grouping method for the Esteban & 
Ray’s line, but after exploration, we end up with a grouping method similar to the one used 
in the Wolfson’s line.

Secondly, the Wolfson’s index (Wolfson 1994)—the representative of the Wolfson’s 
line—can also be written in the form of a function of W and B. The index is originally writ-
ten in the following form (Wolfson 1994; Wang and Tsui 2000):
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where T = 0.5 − L(0.5) , and L(0.5) is the share of variable of interest of the lower half 
of the population. Gini refers to the Gini index of the whole population, m is the median 
value, and � is the mean value  (Wolfson 1994). According to Gigliarano and Mosler 
(2009), the Wolfson’s index can also be written as:

where W and B are represented by the Gini index between and within groups respec-
tively (Gigliarano and Mosler 2009). In this sense, both the ESBG-based measurement and 
the Wolfson’s index are in the form of P = f (W,B) (note that the Wolfson’s index also 
depends on � and m), and both of them are increasing with B and decreasing with W.

Finally, as shown in Sect.  6.1, an ESBG-based measurement—at least a particular 
form of it—satisfies increased bipolarity, one of the two basic properties of bipolarization 
measurements.

Since the ESBG-based measurement is not expected to satisfy increased spread, it 
should not be considered as a bipolarization measurement. Given the similarities between 
them, we can roughly view the EBSG-based measurement as a (multi-dimensional) bipo-
larization measurement without the property of increased spread.

6.3 � Squeezing‑and‑moving framework

Polarization is a slippery, context-dependent concept whenever applied to social systems. 
Although we could understand in principle what a maximum or a minimum polarization 
is, the whole range of in-between states remains poorly understood. This explains why 
polarization is often described as the distance to the situation of maximum polarization. 
For instance, Flache and Mäs (2008) stated that “polarization captures the degree to which 
the group can be separated into a small set of factions who are mutually antagonistic in 
the opinion space and have maximal internal agreement”. Indeed, the general interest in 
polarization, whether from the public or from scholars, mainly comes from the fear of its 

(15)PW = 2
(2T − Gini)

(m∕�)

(16)PW =
2�

m
(B −W)

Fig. 12   Illustration of (a) the squeezing step and (b) the moving step. In each sub-figure, the configuration 
at the top will transfer to the configuration at the bottom after the step. The up-pointing triangles represent 
group centers (centroids) and the down-pointing triangles represent extremes
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destructive effect on social harmony and stability (e.g., Layman and Carsey 2002; Mon-
talvo and Reynal-Querol 2005; Fisher and Mattson 2009). Such a fear-based interest natu-
rally leads us to consider more carefully “how far are we from the most polarized situa-
tion?” rather than “what on earth is polarization?”.

At a first glance, ESBG seems too simple to be correct. However, if we interpret polari-
zation level as a measurement of “how far we are from the most polarized situation”, it 
becomes clear why ESBG works. Consider that we want to transform a not-very-polarized 
data set into the maximum polarized situation. Therefore, the priority is to identify which 
data point should be relocated to which extreme. This is exactly what ESBG does.

Fig. 13   Illustration of (a) the moving-squeezing procedure and (b) the squeezing-moving procedure. In 
each sub-figure, the configuration at the top will transfer to the configuration at the bottom via the inter-
mediate configuration in the middle. The up-pointing triangles represent group centers (centroids) and the 
down-pointing triangles represent extremes

Fig. 14   Illustration of the increased-spread-move in (a) the moving-squeezing procedure and (b) the 
squeezing-moving procedure. The yellow saltire marks the data point that was moved here from the con-
figuration at the top of Fig. 13 (whether (a) or (b)) by an increased-spread-move. In each sub-figure, the 
configuration at the top will transfer to the configuration at the bottom via the intermediate configuration in 
the middle. The up-pointing triangles represent group centers (centroids) and the down-pointing triangles 
represent extremes
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To achieve maximum polarization, data points in each group should be later relocated 
to the nearer extreme. This task can be done via the following two steps: the squeezing 
step that “squeezes” the data points in the same group to the group center (Fig.  12(a)), 
and the moving step that moves10 each group to its corresponding extreme (Fig. 12(b)). 
Given a group structure, within-group heterogeneity W measures how difficult the squeez-
ing step is, and between-group heterogeneity B measures how easy the moving step is. This 
also explains why polarization should increase with B and decrease with W, if we con-
sider polarization measurement as an index of the overall difficulty of achieving maximum 
polarization.

The concepts of squeezing and moving can help us to understand why the ESBG-based 
measurement and bipolarization measurement both satisfy increased bipolarity, but only 
the latter satisfies increased spread. A Pigou-Dalton transfer, by definition, will make the 
squeezing process easier (i.e. reducing W) without affecting the moving process (at least 
for f ∗ as the centroids are not affected by the transfer). Therefore, it facilitates the task 
and hence increases polarization. Therefore, both types of measurements satisfy increased 
spread.

When considering increased spread, the picture is different. If the moving step is exe-
cuted before the squeezing step (i.e., the moving-squeezing procedure, see Fig. 13(a)), an 
increased-spread-move makes the moving process easier (i.e., increasing B) without affect-
ing the squeezing process (see Fig. 14(a)). It will therefore increase polarization. However, 
if the moving step is executed after the squeezing step (i.e., squeezing-moving procedure, 
see Fig. 13(b)), an increased-spread-move makes the squeezing process more difficult (i.e., 
increasing W), while (maybe slightly) facilitating the moving process (i.e., increasing B) 
because the relevant centroid will be closer to its extreme due to the move (see Fig. 14(b)). 
This implies that we cannot determine if the move will decrease polarization or not with-
out knowing the exact expression of f(W, B). From a result-oriented point of view, we can 
then conceptualize the bipolarization measurement as a realization of the moving-squeez-
ing procedure, and the ESBG-based measurement as a realization of the squeezing-moving 
procedure, explaining why our measurement satisfies increased bipolarity but not increased 
spread.

7 � Conclusion

In the vast literature on polarization, the notion of group, especially groups based on simi-
larities between individuals, is the elephant in the room: everyone considers groups when 
defining or conceptualizing polarization, but it is difficult to understand what exactly such 
groups are. The only recurrent argument is that members of the same group should be sim-
ilar, whereas members from different groups should be dissimilar. This is neither sufficient 
to capture the nuances of the various group structures, which are caused by various social 
cleavages that characterize our complex societies, nor it contributes to a consistent meas-
urement of polarization. The mismatch between how we understand and how we measure 
polarization undermines the reliability of measurements, thus hampering our understand-
ing of society in its complex and multifaceted aspects.

10  Strictly speaking, the “move” is a space translation that moves every point in the same group by the 
same distance and in the same direction.
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In this study, we have proposed a grouping method for constructing polarization meas-
urements called “Equal Size Binary Grouping” (ESBG) that divides a data set into two 
groups of equal sizes according to similarities between data points. We showed that ESBG 
can be a suitable solution to certain theoretical and practical problems that trouble other 
grouping methods, such as discontinuity and contradiction of reasoning. While alternative 
approaches exist that over-impose pre-existing group structures or explore various dimen-
sions of polarization, we believe that significant advances in polarization studies in com-
plex societies can be made if measurements are consistent and possibly capable of discov-
ering endogenous structures from data that are coherent with the variable(s) of interest.

Following clustering algorithms, we presented a procedure containing four steps to 
implement ESBG. Based on ESBG, a novel class of polarization measurements can be 
constructed to measure both uni- and multi-dimensional polarization. The measurements 
increase with between-group heterogeneity and decrease with within-group heterogene-
ity, and are not affected by other variables such as the number or size of groups. We also 
showed that the measurements satisfy a range of properties that have long been deemed 
desired in the field, such as continuity, normalization, maximization and minimization. 
Subsequently an illustrative example of applying ESBG and the related measurement to a 
synthetic data set was demonstrated.

As a final remark, we investigated the relation between the ESBG-based measurement 
and bipolarization measurement. The ESBG-based measurement can be roughly viewed as 
a multidimensional bipolarization measurement without the property of increased spread. 
This is because both types of measurements use the same grouping method when D = 1 , 
and satisfy the same property of increased bipolarity. Furthermore, we developed a so-
called “squeezing-and-moving” framework to help explain the relation between them.

With all due caveats due to our general approach and the lack of appropriate data on 
which to test these measurements, we believe that future research will help to improve the 
design of the measurement, while contributing to the debate on the key role of group defi-
nition in current measurements. Although useful to explore group structures within data 
starting from the variable(s) of interest, our method drastically simplifies the possible vari-
ety of groups co-existing in the same society, due to the varying cleavages that characterize 
the complex fabric of our social systems. However, we hope that our measurement could 
also stimulate new empirical research on polarization that improves comparability, repli-
cability, and cumulativeness. As an avenue for future research, we suggest comparing the 
ESBG-based measurement with existing polarization measurements in the context of vari-
ous attribute distributions such as distributions with two or more peaks.
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