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Some mathematicians are birds, others are frogs. Birds fly high in the air
and survey broad vistas of mathematics out to the far horizon. They delight
in concepts that unify our thinking and bring together diverse problems from
different parts of the landscape. Frogs live in the mud below and see only

the flowers that grow nearby. They delight in the details of particular
objects, and they solve problems one at a time.

Freeman Dyson, Birds and Frogs
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Summary

A large number of modern learning problems involve working with highly interre-
lated and interconnected data. Graph-based learning is an emerging technique for
approaching such problems, by representing this data as a graph (a.k.a. a net-
work). That is, the points of data are represented by the vertices of the graph,
and then the edges linking these vertices represent the relationships between the
points of data. This provides a unified perspective for thinking about all sorts of
interrelated data: the vertices could represent pixels in an image or people in a
social network, and the underlying framework would be the same.

Graph-based learning is a very mathematically rich field, and so in this thesis we
shall be focusing on just one strand of this technique: the use of “PDEs on graphs”
to solve learning problems. The topic of what exactly that means will be addressed
in chapter 2, in which we will present our framework for analysis on graphs. The
contributions of this thesis to this strand of graph-based learning are fourfold, two
theoretical and two more applications-driven.

Our first, and foremost, contribution is the rigorous link we prove between
Allen–Cahn (AC) flow and the Merriman–Bence–Osher (MBO) diffusion-thresholding
scheme on graphs. These are two diffusion-based flows which have frequently been
used in applications, broadly interchangeably, motivated by their known link in the
continuum. Our key theorem is that for a specific choice of potential for the AC
flow, the MBO scheme is a special case of what we call a semi-discrete implicit
Euler (SDIE) scheme for AC flow. We furthermore show that this link is robust to
the inclusion of further constraints, namely mass conservation and fidelity forcing.
We also prove a number of other key results. First, we prove that the AC flow with
this potential (which is not a differentiable function) has existence, uniqueness, and
Lipschitz regularity of its solutions. Second, we solve the SDIE scheme, which in
the mass-conserving case involved extensive use of tools from convex optimisation.
We find that the SDIE scheme is in general a diffusion-thresholding scheme, but
with the “hard” step-function thresholding of the MBO scheme relaxed to a “soft”
piecewise linear thresholding as the time step gets smaller. Finally, we prove that
as the time step tends to zero the SDIE scheme sequence converges to a trajectory
of AC flow. This justifies thinking of it as a scheme for AC flow and also allows
us to prove further results about this flow. In particular, we prove that the flow
monotonically decreases the graph Ginzburg–Landau energy and we prove (in all
except the mass-conserving case, in which the question remains open) that the
flow is well-posed.

Our second contribution concerns the use of these methods for the task of im-
age segmentation, i.e. the task of splitting an image into its component features.
As indicated above, an image can be encoded as a finite graph defined on the set
of its pixels, with the edge weight between two pixels a function of their similar-

xi



xii Summary

ity. Given this graph, repeated iterations of the fidelity-forced MBO (or in general
SDIE) scheme produce a series of binary segmentations of the image. However, in
practice it is computationally unfeasible to compute such iterations exactly, due to
the large size of the matrices involved in the graph diffusion. Our key contribution
in this area is the investigation of two ideas to overcome this obstacle, which refine
previous techniques. The first idea is to use the Nyström decomposition alongside
a QR factorisation method to approximate the leading eigenvalues and eigenvec-
tors of the graph Laplacian. The second idea is to use a Strang formula method
to use this approximate eigendecomposition to compute the graph diffusion. We
perform numerical experiments on a toy image to quantify the accuracy, speed, and
reliability of these methods. Finally, we deploy this algorithm to segment a stan-
dard reference image from the literature. Our refinements lead to a substantially
improved segmentation of this image compared to previous work.

Our third contribution is the incorporation of these graph-based segmentation
methods into a technique for joint reconstruction-segmentation. Reconstruction-
segmentation is the task of segmenting an image given indirect, noisy, and/or
damaged observations of that image. Classically this task was performed sequen-
tially: first reconstructing the image from the observations, and then segmenting
the reconstructed image. A more recent technique in this area instead performs the
reconstruction and segmentation jointly, leading to better results. However, previ-
ous work on this has typically made use of relatively simple segmentation methods.
We devise a novel framework for joint reconstruction-segmentation on graphs, in-
corporating the graph segmentation technique described in the previous paragraph.
We then test this for a denoising-segmentation task on an artificially noised version
of the standard reference image. This work lays the foundation for an ongoing
project, for which we discuss future steps.

Finally, we will consider a third flow, mean curvature flow (MCF), which is well-
known to be related to AC flow and the MBO scheme in the continuum setting.
This raises an open question: in what manner is MCF also related to AC flow and
the MBO scheme on a graph? Before this question can be answered, we must first
ask an even more basic question: how can we define MCF on a graph? Our key
contribution is showing that a previous definition of graph MCF has a fatal flaw
which scuppers any chance of it being related to diffusion-based flows like AC flow
and the MBO scheme. We furthermore propose a new definition of graph MCF
which avoids the flaw, and show that this newly defined MCF perfectly resembles
the MBO scheme up to 𝒪(𝜏2) terms (for 𝜏 the time step in the MBO scheme/the
MCF).



Samenvatting

Voor vele moderne problemen in machinaal leren is het nodig om met onderling
sterk gerelateerde en hoog-dimensionale data te werken. Leren op grafen, waarbij
de data gemodelleerd wordt als een graaf (d.w.z. een netwerk), is een opkomende
techniek die voor zulke problemen gebruikt kan worden. De knopen van de graaf
stellen hierbij de datapunten voor en de bogen die deze knopen verbinden de onder-
linge verbanden tussen de datapunten. Dit geeft ons een verenigd perspectief om
over verschillende soorten data en hun verbanden na te denken: zo is het onderlig-
gende raamwerk hetzelfde, of de knopen nu pixels van een afbeelding voorstellen
of personen in een sociaal netwerk.

Leren op grafen is een discipline die rijk is aan wiskunde. Daarom ligt de fo-
cus in dit proefschrift op slechts één deelgebied ervan: het gebruik van “partiële
differentiaalvergelijkingen op grafen” om problemen in machinaal leren op te los-
sen. Wat dat precies betekent, komt aan bod als we in hoofdstuk 2 ons raamwerk
presenteren voor analyse op grafen. Dit proefschrift bevat vier bijdragen aan dit
deelgebied, twee theoretische en twee geïnspireerd door toepassingen.

Onze eerste en belangrijkste bijdrage is het rigoreuze verband dat we bewijzen
tussen de Allen–Cahn (AC) stroming en het Merriman–Bence–Osher (MBO) diffusie-
drempelwaardeproces op grafen. Dit zijn beide op diffusie gebaseerde stromingen
die regelmatig, min of meer uitwisselbaar, gebruikt zijn in toepassingen vanwege
het al bekende verband tussen beide stromingen in hun continuüm formulering.
Ons voornaamste resultaat stelt dat het MBO-proces een speciaal geval is van wat
wij een semi-discreet impliciet Euler (SDIE) proces voor AC-stroming noemen, mits
er in de AC-stroming een specifieke potentiaal gebruikt wordt. Verder tonen we
ook aan dat dit verband standhoudt, als er verdere beperkingen aan de stromingen
worden opgelegd, zoals massabehoud of getrouwheid aan vooraf gegeven infor-
matie. We bewijzen ook enkele andere belangrijke resultaten. Ten eerste bewij-
zen we dat de AC-stroming met de specifieke potentiaal (die niet differentieerbaar
is) een unieke, Lipschitz-continue oplossing heeft. Ten tweede geven we oplos-
singen voor het SDIE-proces, waarbij we in het massabehoudende geval inten-
sief gebruik maken van convexe optimalisatie. We ontdekken dat het algemene
SDIE-proces een diffusie-drempelwaardeproces is, waarbij de “harde” stapfunctie-
drempelwaarde van het MBO-proces afgezwakt wordt naar een “zachte” stuksgewijs
lineaire drempelwaarde als de tijdstap kleiner wordt. Tenslotte bewijzen we dat het
SDIE-proces convergeert naar een traject van de AC-stroming. Dit rechtvaardigt
de opvatting dat het SDIE-proces een proces voor AC-stroming is en staat ons ook
toe om nog meer resultaten te bewijzen voor de AC-stroming. Zo bewijzen we de
monotone afname van de Ginzburg–Landau-energie op grafen langs trajecten van
deze stroming en we bewijzen (behalve in het massabehoudende geval, waar dit
nog een open vraag is) dat de stroming een correct gesteld probleem is.

xiii



xiv Samenvatting

Onze tweede bijdrage heeft te maken met het gebruik van deze methodes voor
beeldsegmentatie, d.w.z. het opdelen van een afbeelding in verschillende delen
die relevante structuren bevatten. Zoals hierboven aangegeven, kan een afbeel-
ding voorgesteld worden door een eindige graaf gedefinieerd op de verzameling van
pixels, waarbij het gewicht van de bogen een functie is van de gelijkenis tussen de
corresponderende pixels. Gegeven deze graaf, produceren herhaalde iteraties van
het MBO- (of in het algemeen, het SDIE-) proces met getrouwheid aan vooraf gege-
ven informatie een reeks binaire segmentaties van de afbeelding. In de praktijk is
het, vanwege de grootte van de matrices die nodig zijn voor het diffusieproces op de
graaf, computationeel echter niet haalbaar om zulke iteraties exact te berekenen.
Onze hoofdbijdrage op dit gebied bestaat uit twee aanpassingen van bestaande
technieken om dit obstakel te overwinnen. De eerste aanpassing is het gebruik van
de Nyström-decompositie samen met een QR-decompositie om de eerste eigen-
waarden en bijbehorende eigenvectoren te berekenen van de Laplace-matrix van
de graaf. De tweede aanpassing is het gebruik van een formule van Strang om met
behulp van deze benaderende eigendecompositie de diffusie op de graaf te bereke-
nen. We voeren numerieke experimenten uit op een toy model (speelgoedmodel)
om de accuraatheid, snelheid en betrouwbaarheid van deze methodes to kunnen
kwantificeren. Tenslotte passen we dit algoritme toe om een standaard referentie-
afbeelding uit de literatuur te segmenteren. Vergeleken met eerder werk, geven
onze aanpassingen een aanzienlijk betere segmentatie van deze afbeelding.

Onze derde bijdrage is het inpassen van deze op grafen gebaseerde segmenta-
tiemethodes in een gezamenlijke reconstructie-segmentatietechniek. De reconstructie-
segmentatietaak bestaat uit het segmenteren van een afbeelding gegeven, mogelijk
indirecte, observaties van de afbeelding die ruis kunnen bevatten en/of beschadigd
kunnen zijn. Klassieke methodes voeren de twee onderdelen van deze taak na el-
kaar uit: eerst reconstructie, dan segmentatie van de gereconstrueerde afbeelding.
Een recentere techniek op dit gebied voert daarentegen de reconstructie en seg-
mentatie tegelijkertijd uit, wat tot betere resultaten leidt. Echter, eerder werk op dit
gebied maakte doorgaans gebruik van relatief eenvoudige segmentatiemethodes.
Wij bedenken een nieuw raamwerk voor gezamenlijke reconstructie-segmentatie
op grafen, dat gebruik maakt van de segmentatietechniek op grafen die we in de
vorige paragraaf beschreven. Dit testen wij dan op een kunstmatig van ruis voor-
ziene versie van de standaard referentie-afbeelding die zowel van ruis ontdaan als
gesegmenteerd dient te worden. Dit werk legt een fundament voor een lopend
project, waarvoor we toekomstige stappen bespreken.

Ten slotte besteden we aandacht aan een derde stroming, namelijk stroming vol-
gens de gemiddelde kromming (GK-stroming), waarvan het in de continuümcontext
bekend is, dat deze gerelateerd is aan AC-stroming en het MBO-proces. Dit roept
een nog altijd open vraag op: hoe is GK-stroming gerelateerd aan AC-stroming en
het MBO-proces op een graaf? Voordat deze vraag beantwoord kan worden, moe-
ten we eerst een fundamentelere vraag stellen: hoe kunnen we GK-stroming op
een graaf definiëren? Onze voornaamste bijdrage is het aantonen dat een eerdere
definitie van GK-stroming op een graaf een fatale fout bevat, die elke hoop dat
het verband heeft met op diffusie gebaseerde stromingen zoals AC-stroming en het
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MBO-proces torpedeert. Verder stellen we een nieuwe definitie van GK-stroming op
grafen voor die deze fout vermijdt en we laten zien dat deze nieuwe GK-stroming
op 𝒪(𝜏2)-termen na overeenkomt met het MBO-proces (waar 𝜏 de tijdstap is in het
MBO-process/de GK-stroming).





1
Introduction

The story so far: In the beginning the Universe was created.
This has made a lot of people very angry and been widely regarded as a

bad move.

Douglas Adams, The Restaurant at the End of the Universe

1
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2 1. Introduction

T o understand a piece of information, one needs to consider it in context, to
consider how it forms part of a larger web of interrelated information. A pixel

by itself tells you very little, but when multiple pixels come together they form an
image, and when multiple images come together they can tell a story. A natural
mathematical way to represent such information is as a graph, as a set of vertices
linked by edges, where the vertices encode individual pieces of information (e.g.,
pixels) and the edges encode the relationships between those pieces of information.
This idea is the starting point for the emerging technique of graph-based learning,
which uses such graphical representations to solve learning problems, such as clus-
tering and classification. One strand of this technique is to solve such problems by
putting a PDE-like flow onto the graph, which will induce a phase separation of the
signal from the background.

This thesis will investigate some of the theoretical underpinnings of this strand,
as well as exploring and developing its use in applications. We will consider a pair
of flows, (namely the Allen–Cahn (AC) flow and the Merriman–Bence–Osher (MBO)
scheme) which have been used interchangeably in graph-based learning, devel-
oping the theory of these flows and showing that they can be rigorously linked
together. Furthermore, we will show that this link is robust to the addition of
important application relevant constraints, namely mass conservation and fidelity
forcing. Next, incorporating ideas from this theory, we will consider the applica-
tion of these methods to the specific learning problem of image segmentation, in
which we shall improve upon past approaches. Taking this thread further, we will
consider the task of reconstruction-segmentation, for which a powerful technique
is joint reconstruction-segmentation, which performs the reconstruction and seg-
mentation simultaneously. We will develop a novel method which incorporates (to
the authors’ knowledge, for the first time) joint reconstruction-segmentation within
the framework of graph-based learning. Finally, we will consider how mean curva-
ture flow can be defined on a graph, and indicate how this definition appears to be
linked to the two flows which have been the focus of our work.

1.1. A bird’s eye view of graph-based learning
To motivate the technique of graph-based learning, let us describe a generic discrete
clustering/classification problem. Let 𝑉 be a set of individual entities (these could
be pixels in an image, or whole images, or words, or people, etc.) which bear some
relations to each other. We want to find some function 𝑢 on 𝑉 which sends each
𝑖 ∈ 𝑉 to an appropriate class. This function is often called a labelling function.
Examples of such problems include: Which pixels in an image belong to a cow (see
chapter 5)? Which images in a data set are pictures of dogs vs. pictures of cats
[31]? Which words in a set of texts belong to which topics [2]? Or, which people
in a social network belong to certain social groups [37]? To aid us, in classification
problems we will have a (potentially very small) subset 𝑍 of 𝑉, the elements of
which will have already been labelled by a labelling function 𝑓.

The perspective of graph-based learning is to encode 𝑉 as the vertex set of
a graph, and encode the relationships between elements of 𝑉 as edges of that
graph, weighted according to the strength of those relationships. Then to solve a
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classification task, the idea is to use this graph structure to propagate the labels
on the a priori labelled set 𝑍 to the entirety of 𝑉. We shall now describe three of
the major strands of graph-based learning approaches to such problems, in broadly
chronological order.

The earliest work in this area is the method of spectral clustering. This was
popularised as a method for machine learning by Shi and Malik [33] and Ng, Jordan,
and Weiss [30] in the early 2000s, but dates back much earlier, e.g. work by Donath
and Hoffmann [15] in the early 70s. Spectral clustering works by first constructing
the first 𝑘 eigenvectors (𝜉𝓁)𝑘𝓁=1 of the graph Laplacian Δ1 of the graph generated on
our data, and then for each 𝑖 ∈ 𝑉 associates to 𝑖 the vector (𝜉1𝑖 , ..., 𝜉𝑘𝑖 ) (i.e. the 𝑖th
component in each of the 𝑘 eigenvectors). Next, one deploys a standard clustering
method (e.g., 𝑘-means [25]) to cluster the vertices based on these vectors. In
effect, one uses the graph structure to perform a dimensionality reduction of the
data before performing a clustering. For an overview and analysis of this method,
see the “tutorial” by von Luxburg [27]. This technique of solving clustering problems
via graph-based embeddings has received considerable attention, for recent work
see e.g. García Trillos, Hoffmann, and Hosseini [36].

Next, some of the original pioneering work in graph-based learning for classifi-
cation problems was the Laplace learning technique of Zhu et al. [39], also from
the early 2000s. This is a label propagation method, which extends the labels
harmonically via the graph Laplacian. That is, it finds a labelling function 𝑢 solving:

Δ𝑢 = 0 on 𝑉 ⧵ 𝑍, 𝑢 = 𝑓 on 𝑍.

This technique has seen wide application, e.g. in [5, 38]. It has also proved to
be highly fertile, with attempts to solve an issue at very low label rates (see El
Alaoui et al. [3]) leading to the exploration of using graph 𝑝-Laplacians (e.g. [34]),
∞-Laplacians (e.g. [23]), weighted Laplacians (e.g. [10]), and most recently the
so-called Poisson learning [11].

Last, but by no means least, is the method of PDEs on graphs, which shall be
the focus of this thesis. Pioneering works in this strand were those of Ta, Elmoataz,
and Lézoray [35] in 2011, using morphological PDEs such as the Eikonal equation;
Bertozzi and Flenner [8] in 2012, using the AC flow; and Merkurjev, Kostić, and
Bertozzi [29] in 2013, using the MBO threshold dynamics scheme. These methods
were extended to multi-class classification in Desquesnes, Elmoataz, and Lézoray
[14] and Garcia-Cardona et al. [20], and also received extensive theoretical study
in e.g. [6, 18, 21, 26]. Applications of these methods can be found in e.g. [9, 22,
24, 32]. Our main interest will be the interchangeable use of AC flow and the MBO
scheme in the work by Bertozzi and co-authors. This was motivated heuristically
by the well-known links in the continuum between these flows via mean curvature
flow (MCF) (definitions of MCF on a graph were proposed in [17] and [21], see
chapter 7 for details), but was not rigorously supported. One of the key results of
this thesis is to provide that rigorous support.

Note 1. A further, more theoretical strand of research in this area concerns the
1We will define the graph Laplacian and other graph analysis concepts in chapter 2.



1

4 1. Introduction

continuum limits of these graphs, linking together the discrete and continuum per-
spectives. A major topic in this strand is the study of the consistency of the above
methods in the large-data limit. As this work lies outside of the scope and con-
sideration of this thesis, we shall here simply refer the reader to e.g. [13, 16, 19,
28].

1.2. Chapter outline
In chapter 2, we will introduce the framework for analysis on graphs within which
the rest of this work will reside. We will in this work restrict ourselves to a certain
subset of graphs (namely finite, undirected, simple, connected graphs with non-
negative edge weights), and we will briefly discuss in the chapter the significance
of these assumptions for our framework.

In chapter 3, we will define in a graph setting the PDE-like flows we shall be
considering, namely AC flow and the MBO scheme. In particular, we shall define
and investigate the properties of graph AC flow with the double-obstacle potential,
and for both AC flow and the MBO scheme we shall also consider either mass
conservation or fidelity forcing constraints. We will then introduce our key original
contribution, a semi-discrete implicit Euler (SDIE) scheme for AC flow. Finally, we
will investigate the properties of this double-obstacle AC flow. In particular, we shall
prove conditions under which the flow “freezes”, prove uniqueness of solutions, and
state a number of other key properties (including existence and Lipschitz regularity
of solutions) which we shall prove in chapter 4.

In chapter 4, we will present the key theoretical results of this thesis. Our key re-
sult will be that the SDIE scheme for double-obstacle AC flow, including under either
the mass conservation or fidelity forcing constraints, is equivalent to a variational
scheme which has the MBO scheme as a special case. We explicitly characterise
the solutions to this SDIE scheme, showing that in general they correspond to a
piecewise linear relaxation of the step-function thresholding in the MBO scheme.
We exhibit a Lyapunov functional for the SDIE scheme, and use this to investigate
the scheme’s long-time behaviour. Finally, we will show that as the time step tends
to zero, the SDIE trajectories converge to trajectories of AC flow. We then use this
convergence result to prove the properties of AC flow which were only stated in 3.

In chapter 5, we will consider the use of this SDIE scheme as a method for
image segmentation. We will begin by discussing how to represent an image as a
finite graph. Next, we describe the basic algorithm for image segmentation using
the SDIE scheme. However, this algorithm is computationally unfeasible, due to
the very large size of the matrices involved. We describe two ideas to get around
this obstacle, which refine previously used techniques: first, we use a Nyström-QR
method based on Bebendorf and Kunis [7] to approximate the leading eigenvalues
and eigenvectors of the graph Laplacian, and second we use a Strang formula
method to use this approximate decomposition to compute the graph diffusion. We
perform numerical experiments on a toy image to quantify the accuracy, speed,
and reliability of these methods. Finally, we deploy this algorithm to segment the
“two cows” image that was also segmented in [8] and [29], as well as two related
examples. We will discover that whilst for these examples the SDIE scheme had
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best performance in its MBO special case, our other refinements will lead to a
substantially improved segmentation compared to [8, 29].

In chapter 6, we will consider the task of reconstruction-segmentation, i.e. the
task of both reconstructing an image from indirect, noisy, and/or damaged observa-
tions, and also segmenting that image. Our interest will be focused on the powerful
technique of joint reconstruction-segmentation (which has recently seen increasing
attention [1, 12]), which performs this task by performing the reconstruction and
segmentation simultaneously. Previous work on this technique has made use of
relatively simple segmentation methods. We will devise a novel framework for in-
corporating the graph PDE-based segmentation method of chapter 5 within a joint
reconstruction-segmentation technique. We will then demonstrate this technique
for a denoising-segmentation task on an artificially noised version of the “two cows”
image. Finally, as this work lays the foundation for ongoing work, we will discuss a
number of directions for future research.

Finally, in chapter 7 we will consider a question raised by Van Gennip et al. [21],
namely that of the relationship between AC flow, the MBO scheme, and mean cur-
vature flow (MCF) on graphs. We will first review the relationship these flows have
in the continuum, and review (and slightly extend) the promising Γ-convergence
results which suggest such a link in the graph context. Next, we will show that the
definition of graph MCF offered by [21] has a key flaw, and that because of that
flaw the MCF cannot resemble diffusion-based flows on a general graph. Finally,
we will propose a new definition of graph MCF which avoids the flaw, and show that
this flow perfectly resembles the MBO scheme up to 𝒪(𝜏2) terms (for 𝜏 the time
step in the MCF and the MBO scheme).

1.3. Key contributions of this thesis
1. We defined a graph AC flow with the double-obstacle potential, including ei-
ther mass conservation or fidelity forcing constraints, and proved various de-
sirable properties of this flow, including existence and uniqueness of solutions,
and monotonic decrease of the Ginzburg–Landau energy. (Chapter 3)

2. We introduced the SDIE scheme for graph double-obstacle AC flow, proved
that this scheme has the MBO scheme as a special case, and proved that this
scheme in general has solutions corresponding to a diffusion for a time step
followed by a piecewise linear thresholding. We also show that as the time
step tends to zero the SDIE trajectories converge to trajectories of the AC
flow. Hence, this SDIE scheme “interpolates” between the double-obstacle
AC flow and the MBO scheme. (Chapter 4)

3. We investigated numerically the virtues of the Nyström-QR method recom-
mended by Alfke et al. [4] for approximately eigendecomposing the graph
Laplacian, and compared it to the previous Nyström method used by e.g. [8,
29]. (Chapter 5)

4. We introduced, and investigated numerically, a novel Strang formula method
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for using the eigendecomposition of the graph Laplacian to compute fidelity-
forced graph diffusion. (Chapter 5)

5. We incorporated contributions 3 and 4 into an image segmentation algorithm
using the SDIE scheme, which in the MBO special case outperformed ear-
lier graph-based segmentation algorithms on a standard test image from the
literature. (Chapter 5)

6. We introduced a novel graph-based framework for performing joint reconstruction-
segmentation using the graph SDIE-based segmentation algorithm from con-
tribution 5. (Chapter 6)

7. We refined the Van Gennip et al. [21] definition of graph mean curvature
flow to avoid a key flaw, and showed that this new graph mean curvature
flow formally resembles the graph MBO scheme. (Chapter 7)
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2
Groundwork

Groundwork chapters don’t get fancy quotes.

Jeremy Budd

In this chapter, we lay out the framework for analysis on graphs which we
shall use for the remainder of this thesis, following the one presented by Van
Gennip, Guillen, Osting, and Bertozzi in [8] (which in turn was synthesising
previous work, see the references within [8]). We will also briefly discuss the
impact of the assumptions we impose on our graphs.

Parts of this chapter have been published in SIAM J. Math. Anal. 52 (2020) [3], Eur. J. Appl. Math.
(2021) [4], and GAMM Mitteilungen 44 (2021) [5].
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2.1. Framework for analysis on graphs

T he framework for analysis on graphs is presented in Van Gennip et al. [8], we
reproduce here those aspects needed for our discussion. Let 𝐺 = (𝑉, 𝐸, 𝜔) be

a finite, undirected, weighted, and connected graph with no multi-edges or self-
loops. Let 𝐺 have vertex set 𝑉, edge set 𝐸 ⊆ 𝑉2 (with 𝑖𝑗 ∈ 𝐸 if and only if 𝑗𝑖 ∈ 𝐸
for all 𝑖, 𝑗 ∈ 𝑉), and weights {𝜔𝑖𝑗}𝑖,𝑗∈𝑉 with 𝜔𝑖𝑗 ≥ 0, 𝜔𝑖𝑗 = 𝜔𝑗𝑖, 𝜔𝑖𝑖 = 0, and 𝜔𝑖𝑗 > 0
if and only if 𝑖𝑗 ∈ 𝐸. On 𝐺 we define the spaces (𝑋 ⊆ ℝ):

𝒱 ∶= {𝑢 ∶ 𝑉 → ℝ} , 𝒱𝑋 ∶= {𝑢 ∶ 𝑉 → 𝑋}, ℰ ∶= {𝜑 ∶ 𝐸 → ℝ} .

Since 𝑉 is finite, we shall interchangeably view elements of 𝒱 and 𝒱𝑋 as functions
and as real vectors. Next, we define the spaces of time-dependent vertex functions
(where 𝑇 ⊆ ℝ an interval)

𝒱𝑡∈𝑇 ∶= {𝑢 ∶ 𝑇 → 𝒱} , 𝒱𝑋,𝑡∈𝑇 ∶= {𝑢 ∶ 𝑇 → 𝒱𝑋} .

For a parameter 𝑟 ∈ [0, 1], and denoting 𝑑𝑖 ∶= ∑𝑗 𝜔𝑖𝑗, which we refer to as the
degree of vertex 𝑖, we define the following inner products on 𝒱 and ℰ:

⟨𝑢, 𝑣⟩𝒱 ∶=∑
𝑖∈𝑉
𝑢𝑖𝑣𝑖𝑑𝑟𝑖 , ⟨𝜑, 𝜙⟩ℰ ∶=

1
2 ∑
𝑖,𝑗∈𝑉

𝜑𝑖𝑗𝜙𝑖𝑗𝜔𝑖𝑗 (2.1)

and define the inner product on 𝒱𝑡∈𝑇 (or 𝒱𝑋,𝑡∈𝑇):

(𝑢, 𝑣)𝑡∈𝑇 ∶= ∫
𝑇
⟨𝑢(𝑡), 𝑣(𝑡)⟩𝒱 𝑑𝑡 =∑

𝑖∈𝑉
𝑑𝑟𝑖 (𝑢𝑖 , 𝑣𝑖)𝐿2(𝑇;ℝ)

where (⋅, ⋅)𝐿2(𝑇;ℝ) is the standard continuum 𝐿2 inner product. These inner products
induce norms || ⋅ ||𝒱, || ⋅ ||ℰ, and || ⋅ ||𝑡∈𝑇 in the usual way. We also define for
𝑢 ∈ 𝒱 the norm ||𝑢||∞ ∶= max𝑖∈𝑉 |𝑢𝑖|, and for 𝑢 ∈ 𝒱𝑡∈𝑇 the norm ||𝑢||∞,𝑡∈𝑇 ∶=
ess sup𝑡∈𝑇 ||𝑢(𝑡)||∞ where ess sup denotes the essential supremum. We next
define the 𝐿2 and 𝐿∞ spaces:

𝐿2(𝑇; 𝒱) ∶= {𝑢 ∈ 𝒱𝑡∈𝑇 | ||𝑢||𝑡∈𝑇 < ∞} , 𝐿∞(𝑇; 𝒱) ∶= {𝑢 ∈ 𝒱𝑡∈𝑇 | ||𝑢||∞,𝑡∈𝑇 < ∞} ,

which we will consider as normed spaces with norms || ⋅ ||𝑡∈𝑇 and || ⋅ ||∞,𝑡∈𝑇 respec-
tively. Finally, for 𝑇 an open interval, we define the Sobolev space 𝐻1(𝑇; 𝒱) as the
set of 𝑢 ∈ 𝐿2(𝑇; 𝒱) with generalised time derivative 𝑑𝑢/𝑑𝑡 ∈ 𝐿2(𝑇; 𝒱) such that

∀𝜑 ∈ 𝐶∞𝑐 (𝑇; 𝒱) (𝑢,
𝑑𝜑
𝑑𝑡 )𝑡∈𝑇

= −(𝑑𝑢𝑑𝑡 , 𝜑)𝑡∈𝑇
where 𝐶∞𝑐 (𝑇; 𝒱) denotes the infinitely differentiable and compactly supported ele-
ments of 𝒱𝑡∈𝑇. We link this to the familiar continuum 𝐻1.

Proposition 2.1.1. 𝑢 ∈ 𝐻1(𝑇; 𝒱) if and only if 𝑢𝑖 ∈ 𝐻1(𝑇;ℝ) for each 𝑖 ∈ 𝑉.
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Proof. Note that (𝑑𝑢/𝑑𝑡)𝑖 = 𝑑𝑢𝑖/𝑑𝑡, so 𝑢 and 𝑑𝑢/𝑑𝑡 ∈ 𝐿2(𝑇; 𝒱) if and only if ∀𝑖 ∈ 𝑉,
𝑢𝑖 and 𝑑𝑢𝑖/𝑑𝑡 ∈ 𝐿2(𝑇;ℝ). Next, (𝑢, 𝑑𝜑/𝑑𝑡)𝑡∈𝑇 = −(𝑑𝑢/𝑑𝑡, 𝜑)𝑡∈𝑇 if and only if

∑
𝑖∈𝑉
𝑑𝑟𝑖 (𝑢𝑖 , 𝑑𝜑𝑖/𝑑𝑡)𝐿2(𝑇;ℝ) = −∑

𝑖∈𝑉
𝑑𝑟𝑖 (𝑑𝑢𝑖/𝑑𝑡, 𝜑𝑖)𝐿2(𝑇;ℝ).

It follows that ∀𝜑 ∈ 𝐶∞𝑐 (𝑇; 𝒱) (𝑢, 𝑑𝜑/𝑑𝑡)𝑡∈𝑇 = −(𝑑𝑢/𝑑𝑡, 𝜑)𝑡∈𝑇 if and only if

∀𝑖 ∈ 𝑉 ∀𝜙 ∈ 𝐶∞𝑐 (𝑇;ℝ) (𝑢𝑖 , 𝑑𝜙/𝑑𝑡)𝐿2(𝑇;ℝ) = −(𝑑𝑢𝑖/𝑑𝑡, 𝜙)𝐿2(𝑇;ℝ)
and therefore ∀𝑖 ∈ 𝑉 𝑢𝑖 ∈ 𝐻1(𝑇;ℝ).

We define the following inner product on 𝐻1(𝑇; 𝒱):

(𝑢, 𝑣)𝐻1(𝑇;𝒱) ∶= (𝑢, 𝑣)𝑡∈𝑇 + (
𝑑𝑢
𝑑𝑡 ,

𝑑𝑣
𝑑𝑡 )𝑡∈𝑇

=∑
𝑖∈𝑉
𝑑𝑟𝑖 (𝑢𝑖 , 𝑣𝑖)𝐻1(𝑇;ℝ).

We also define the local 𝐻1 space

𝐻1𝑙𝑜𝑐(𝑇; 𝒱) ∶= {𝑢 ∈ 𝒱𝑡∈𝑇 | ∀𝑎, 𝑏 ∈ 𝑇, 𝑢 ∈ 𝐻1((𝑎, 𝑏); 𝒱)}

and we likewise define 𝐿2𝑙𝑜𝑐(𝑇; 𝒱). Furthermore, we define the Hölder spaces
𝐶𝑘,𝛼(𝑇; 𝒱) by, for 𝑢 ∈ 𝒱𝑡∈𝑇, 𝑢 ∈ 𝐶𝑘,𝛼(𝑇; 𝒱) if and only if for all 𝑖 ∈ 𝑉, 𝑢𝑖 ∈ 𝐶𝑘,𝛼(𝑇;ℝ).

Next, we introduce the graph variants of the vector calculus gradient and Lapla-
cian operators:

(∇𝑢)𝑖𝑗 ∶= {
𝑢𝑗 − 𝑢𝑖 , 𝑖𝑗 ∈ 𝐸
0, otherwise

(Δ𝑢)𝑖 ∶= 𝑑−𝑟𝑖 ∑
𝑗∈𝑉
𝜔𝑖𝑗(𝑢𝑖 − 𝑢𝑗)

where the graph Laplacian Δ is positive semi-definite, unlike the negative semi-
definite continuum Laplacian, and is self-adjoint with respect to 𝒱. As shown in
[8], these operators are related via:

⟨𝑢, Δ𝑣⟩𝒱 = ⟨∇𝑢, ∇𝑣⟩ℰ .

We can interpret Δ as a matrix. Define 𝐷 ∶= diag(𝑑) (i.e. 𝐷𝑖𝑖 ∶= 𝑑𝑖, and 𝐷𝑖𝑗 ∶= 0
otherwise) to be the degree matrix. Then writing 𝜔 for the matrix of weights 𝜔𝑖𝑗
we get

Δ ∶= 𝐷−𝑟(𝐷 − 𝜔).
Our choice of 𝑟 dictates which graph Laplacian we use. For 𝑟 = 0we have Δ = 𝐷−𝜔,
which is the standard unnormalised Laplacian which we will sometimes denote Δ𝑢.
For 𝑟 = 1 we have Δ = 𝐼 − 𝐷−1𝜔, which is called the random walk Laplacian. Note
that the symmetric normalised Laplacian Δ𝑠 ∶= 𝐼 − 𝐷−1/2𝜔𝐷−1/2 used in [2, 12] is
not covered by our scheme. Finally, we note the following spectral properties of Δ
(for more details see [8, Lemma 2.5]):

a. The smallest eigenvalue 𝛾0 of Δ is zero.
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b. When 𝐺 is connected, this eigenvalue has multiplicity one and has corresponding
eigenvector 𝜉0 ∝ 1, the vector of ones.

c. Hence for any eigenvector 𝜉 of Δ, either 𝜉 ∝ 1 with Δ𝜉 = 0, or 𝜉⊥1 and 𝜉 has a
strictly positive eigenvalue.

d. The spectral radius 𝜌(Δ) of Δ is bounded above by 2max𝑖∈𝑉 𝑑1−𝑟𝑖 .

Given the graph Laplacian, we define the graph diffusion operator

𝑒−𝑡Δ𝑢 ∶= ∑
𝑛≥0

(−1)𝑛𝑡𝑛
𝑛! Δ𝑛𝑢

where 𝑣(𝑡) ∶= 𝑒−𝑡Δ𝑢 is the unique solution to the diffusion equation
𝑑𝑣
𝑑𝑡 = −Δ𝑣, 𝑣(0) = 𝑢.

Note that 𝑒−𝑡Δ commutes with Δ for all 𝑡 ∈ ℝ.
We recall the familiar functional analysis notation, for any linear operator 𝐹 ∶

𝒱 → 𝒱, of

𝜎(𝐹) ∶= {𝜆 ∶ 𝜆 an eigenvalue of 𝐹}
𝜌(𝐹) ∶=max{|𝜆| ∶ 𝜆 ∈ 𝜎(𝐹)}
||𝐹|| ∶= sup

||𝑢||𝒱=1
||𝐹𝑢||𝒱

and recall the standard result that if 𝐹 is self-adjoint then ||𝐹|| = 𝜌(𝐹).
Proposition 2.1.2. If 𝑢 ∈ 𝐻1(𝑇; 𝒱) and 𝑇 bounded below, then 𝑒−𝑡Δ𝑢 ∈ 𝐻1(𝑇; 𝒱)
with

𝑑
𝑑𝑡 (𝑒

−𝑡Δ𝑢) = 𝑒−𝑡Δ𝑑𝑢𝑑𝑡 − 𝑒
−𝑡ΔΔ𝑢.

Proof. Let 𝑇 = (𝑎, 𝑏) with 𝑎 > −∞. Now, 𝑒−𝑡Δ has eigenvalues 𝑒−𝜆𝑘𝑡, for 𝜆𝑘 ≥ 0 the
eigenvalues of Δ, and 𝑒−𝑡Δ is self-adjoint so ||𝑒−𝑡Δ|| = 𝜌(𝑒−𝑡Δ) ≤ max {1, 𝑒−𝑎||Δ||}
for 𝑡 ∈ 𝑇. So 𝑒−𝑡Δ is a uniformly bounded operator for 𝑡 ∈ 𝑇 and therefore
||𝑒−𝑡Δ𝑢||𝑡∈𝑇 < ∞ and (since Δ𝑢, 𝑑𝑢/𝑑𝑡 ∈ 𝐿2(𝑇; 𝒱)) ||𝑒−𝑡Δ 𝑑𝑢𝑑𝑡 − 𝑒

−𝑡ΔΔ𝑢||𝑡∈𝑇 < ∞.
Then for 𝜑 ∈ 𝐶∞𝑐 (𝑇; 𝒱)

(𝑒−𝑡Δ𝑑𝑢𝑑𝑡 − 𝑒
−𝑡ΔΔ𝑢, 𝜑)

𝑡∈𝑇
= (𝑑𝑢𝑑𝑡 , 𝑒

−𝑡Δ𝜑)
𝑡∈𝑇

− (𝑢, 𝑒−𝑡ΔΔ𝜑)𝑡∈𝑇

= −(𝑢, 𝑑𝑑𝑡 (𝑒
−𝑡Δ𝜑) + 𝑒−𝑡ΔΔ𝜑)

𝑡∈𝑇

= −(𝑢, 𝑒−𝑡Δ𝑑𝜑𝑑𝑡 )𝑡∈𝑇
= −(𝑒−𝑡Δ𝑢, 𝑑𝜑𝑑𝑡 )𝑡∈𝑇

so 𝑒−𝑡Δ𝑢 has the desired generalised derivative.
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Finally, when considering variational problems of the form

argmin
𝑥∈𝑋

𝑓(𝑥)

we will write 𝑓 ≃ 𝑔 and say the functionals are equivalent when 𝑔(𝑥) = 𝑎𝑓(𝑥) + 𝑏
for 𝑎, 𝑏 independent of 𝑥 (or constant in 𝑥 on 𝑋) and 𝑎 > 0. This ensures that 𝑓
and 𝑔 have the same minimisers.

2.2. A note on our assumptions on the graph
As stated above, in this thesis we will assume that our graph 𝐺 is finite, simple,
connected, undirected, and positively weighted. In this subsection, we will briefly
discuss the consequences of relaxing these conditions.

The case of 𝐺 an infinite graph is a substantial divergence from our framework,
affecting a large number of definitions and results. To detail these effects would
take us well beyond the scope of this thesis; as an example, see e.g. [10] for the
subtleties of defining Δ in the infinite case.

If 𝐺 is non-simple, it must have multi-edges or self-loops. Multi-edges are es-
sentially harmless for our framework, as they behave exactly like a single edge with
weight equal to the sum of the weights of the multi-edges. If 𝐺 has self-loops, then
let 𝐺′ be the simple subgraph of 𝐺 without those self-loops. Then, as shown in [1],
the unnormalised Laplacian Δu on 𝐺 (defined as in [1, (1)]) and the unnormalised
Laplacian Δ′u on 𝐺′ (defined as the 𝑟 = 0 case of (2.1)) are related by

Δu = Δ′u +𝑀

where 𝑀 is a diagonal matrix with diagonal entries 𝑀𝑖𝑖 ∶= 𝜔𝑖𝑖. Therefore, diffusion
on 𝐺 corresponds to the ODE

𝑑𝑣
𝑑𝑡 = −Δu𝑣 = −Δ

′
u𝑣 −𝑀𝑣.

This can be observed to be a special case of fidelity forced diffusion on 𝐺′, as will
be defined in chapter 3. Finally, the degree matrices 𝐷 and 𝐷′ on 𝐺 and 𝐺′ are
related by 𝐷 = 𝐷′+𝑀, so it follows that the normalised Laplacians Δ ∶= 𝐷−𝑟Δu and
Δ′ ∶= 𝐷′−𝑟Δ′u are related by

Δ = (𝐼 + 𝑀𝐷′−1)−𝑟Δ′ + (𝐷′ +𝑀)−𝑟𝑀 =∶ 𝑀1Δ′ +𝑀2

where 𝑀1 and 𝑀2 are diagonal matrices, so diffusion with a normalised Laplacian
on 𝐺 corresponds to a forced and rescaled diffusion on 𝐺′.

If 𝐺 is disconnected, it is a simple matter to apply our framework to each con-
nected component of 𝐺.

If 𝐺 is directed, then there are a number of different approaches to defining
the Laplacian on a directed graph. For example, in [13, p. 6] and [14], the un-
normalised Laplacian is defined by Δu = 𝐷 − 𝐴 where 𝐴 is the (directed) adjacency
matrix and 𝐷 is the diagonal matrix of out-degrees. An alternative approach, found
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in [15], is as follows: given a directed graph 𝐺 = (𝑉, 𝐸), define vertex setsℋ,𝒜 ⊆ 𝑉
whereℋ are the vertices with positive out-degrees 𝑑𝑜𝑢𝑡𝑖 and𝒜 are the vertices with
positive in-degrees 𝑑𝑖𝑛𝑖 (note that ℋ ∩ 𝒜 need not be empty). Then, define the
map 𝑇 ∶ 𝒱|𝒜 → 𝒱|ℋ given by, for all 𝑖 ∈ ℋ,

(𝑇𝑢)𝑖 = ∑
𝑗∈𝒜

𝜔𝑖𝑗

√𝑑𝑜𝑢𝑡𝑖 𝑑𝑖𝑛𝑗
𝑢𝑗

with adjoint 𝑇∗ ∶ 𝒱|ℋ → 𝒱|𝒜 given by, for all 𝑗 ∈ 𝒜,

(𝑇∗𝑢)𝑗 = ∑
𝑖∈ℋ

𝜔𝑖𝑗

√𝑑𝑜𝑢𝑡𝑖 𝑑𝑖𝑛𝑗
𝑢𝑖 .

Next, extend 𝑇 and 𝑇∗ to 𝒱 by setting (𝑇𝑢)𝑖 = 0 and (𝑇∗𝑢)𝑗 = 0 for 𝑖 ∉ ℋ and
𝑗 ∉ 𝒜, and then for 𝛾 ∈ [0, 1] define the Laplacian Δ𝛾 ∶= 𝐼 − 𝛾𝑇∗𝑇 − (1 − 𝛾)𝑇𝑇∗.
A third approach can be found in [11, §2]. It is beyond the scope of this work to
examine which of these definitions works best with our framework, and to what
extent our framework can be extended to directed graphs.

Finally, if 𝐺 is a signed graph (i.e., 𝐺 has negative weights) then define 𝐸+ ∶=
{𝑖𝑗 ∈ 𝐸 ∣ 𝜔𝑖𝑗 > 0} and 𝐸− ∶= {𝑖𝑗 ∈ 𝐸 ∣ 𝜔𝑖𝑗 < 0} and thus define the positively
weighted graphs 𝐺+ ∶= (𝑉, 𝐸+, 𝜔|𝐸+) and 𝐺− ∶= (𝑉, 𝐸−, −𝜔|𝐸−). It was shown in
[6, (39)] that the unnormalised Laplacian Δu on 𝐺 (defined as in [6, (36)]) can be
decomposed as

Δu = Δ+u + 𝑄−u
where Δ+u is the unnormalised Laplacian on 𝐺+ and 𝑄−u is the unnormalised signless
Laplacian (see [7, 9] for details) on 𝐺−, defined by

(𝑄−u 𝑣)𝑖 ∶= ∑
𝑗∈𝑉 s.t. 𝑖𝑗∈𝐸−

(−𝜔𝑖𝑗)(𝑣𝑖 + 𝑣𝑗).

The authors of [6] then go on to define an AC flow and MBO scheme on 𝐺 (see
chapter 3), and apply this to a number of clustering problems. It is a topic for
future research whether our framework can be extended to link AC flow and the
MBO scheme on signed graphs.
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3
Graph Allen–Cahn flow and

the graph MBO scheme

I know what [an analogy] is.
It’s like a thought with another thought’s hat on.

“Urban Matrimony and the Sandwich Arts”, Community

In the continuum setting, Allen–Cahn (AC) flow and the Merriman–Bence–
Osher (MBO) scheme are known to be linked via their mutual connection to
mean curvature flow (MCF) (see chapter 7 for a discussion of graph MCF)
and this link is known to be robust to the inclusion of mass conservation and
fidelity forcing constraints (see section 3.1 for details). In this chapter, we
develop important theory for the graph AC flow. First, we define the graph
AC flow and MBO scheme, and define mass-conserving and fidelity forced
variants. Next, we define our semi-discrete implicit Euler (SDIE) scheme
for AC flow, which will be the key ingredient of chapter 4’s proof of a rigor-
ous link between graph AC flow and the MBO scheme. We observe that the
variational forms of the MBO and SDIE schemes suggest using the double-
obstacle potential as the potential in AC flow. The bulk of this chapter then
examines the properties of this double-obstacle AC flow, including its two con-
strained variants. We shall exhibit weak forms and explicit integral forms,
prove conditions under which the flow “freezes”, and prove uniqueness of
solutions. Furthermore, we shall state the existence and Lipschitz regularity
of solutions, monotonic decrease of the Ginzburg–Landau energy along so-
lutions, and in the ordinary and fidelity forced cases, well-posedness of the

Parts of this chapter have been published in SIAM J. Math. Anal. 52 (2020) [12], Eur. J. Appl. Math.
(2021) [13], and GAMM Mitteilungen 44 (2021) [14].
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ODE. These properties will all be proved in chapter 4, using the properties of
the SDIE scheme.
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3.1. Background

I n the continuum, the links between AC flow and the MBO scheme have been well-studied. The key result is that both AC flow and the MBO scheme converge to
mean curvature flow as their respective parameters tend to zero (see e.g. Bronsard
and Kohn [11] for details on the convergence of AC flow to mean curvature flow,
and Evans [21] for details on the convergence of the MBO scheme). Furthermore,
this link is robust to the addition of additional constraints, in particular a mass
conservation (a.k.a. volume preservation) constraint. A mass-constrained MBO
scheme was first introduced in Ruuth and Wetton [31], and recently Laux and
Swartz [25] showed that this scheme converges (up to a subsequence) to the weak
formulation of mass-constrained mean curvature flow defined in Mugnai et al. [28].
Mass-conserving dynamics of the Ginzburg–Landau functional date back to [15, 16]
and the development of the Cahn–Hilliard equation. In the 1990s, Rubinstein and
Sternberg [30] devised a mass-conserving variant of the AC flow as an alternative
to the Cahn–Hilliard equation, which more recently Chen, Hilhorst, and Logak [18]
have rigorously proved has mass-conserving mean curvature flow as its phase field
limit. We will use Rubinstein and Sternberg’s equation as the basis for our mass-
conserving graph AC flow.

Turning to the graph context, graph AC flow and MBO schemes (with fidelity forc-
ing) have received much attention in the last decade as algorithms for image pro-
cessing and semi-supervised learning, stemming from pioneering work by Bertozzi
and Flenner [5] using graph AC flow, and Merkurjev, Kostić, and Bertozzi [27] using
a graph MBO scheme. Following this, Bae and Merkurjev [2] studied the effect of
mass conservation constraints on these algorithms. The use of these methods was
based on an implicit assumption that the continuum connections between these
processes extend to their graph counterparts. In chapter 4 we will demonstrate
rigorously that these graph flows are indeed linked, though our route will not go
via mean curvature flow.

On the theoretical side, Van Gennip, Guillen, Osting, and Bertozzi [22] defined
a framework for analysis on graphs, and defined a graph AC flow and MBO scheme
(and mean curvature flow, which we will consider in chapter 7) within that frame-
work. They then proved rigorous results about these flows individually, particularly
about the conditions under which these flows “pin” or “freeze”. More recently Van
Gennip [23] studied a graph analogue of the Ohta–Kawasaki functional for pat-
tern formation, and devised a mass-conserving modified graph MBO scheme as a
method for minimising this functional with a mass conservation constraint.

3.2. Definitions of AC flow and the MBO scheme
We shall begin by defining our two key processes, in three settings. First we shall
define them in their ordinary form. Then, we shall introduce two different types of
extra dynamics: mass-conservation, and fidelity forcing.
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3.2.1. The ordinary case
Definition 3.2.1 (Graph MBO scheme). The graph Merriman–Bence–Osher (MBO)
scheme is a scheme that creates a series of 𝑢𝑛 ∈ 𝒱{0,1} by the following two-step
iteration: for 𝑢𝑛 ∈ 𝒱{0,1}, and 𝜏 > 0 the time step, define 𝑢𝑛+1 via

1. 𝑣𝑛 ∶= 𝑒−𝜏Δ𝑢𝑛, i.e. the diffused state of 𝑢𝑛 after a time 𝜏.

2. 𝑢𝑛+1 ∶= Θ(𝑣𝑛) where Θ is defined by, for all 𝑖 ∈ 𝑉 and 𝑣 ∈ 𝒱,

(Θ(𝑣))𝑖 ∶= {
1, if 𝑣𝑖 ≥ 1/2,
0, if 𝑣𝑖 < 1/2.

(3.1)

In [22, Proposition 4.6] it was shown that this scheme can be expressed variation-
ally, where 𝑢𝑛 = 𝜒𝑆𝑛 , by

𝑢𝑛+1 ∈ argmin
𝑢∈𝒱[0,1]

⟨1− 2𝑒−𝜏Δ𝑢𝑛 , 𝑢⟩𝒱 (3.2)

which we can rewrite with the equivalent functional:1

𝑢𝑛+1 ∈ argmin
𝑢∈𝒱[0,1]

1
2𝜏 ⟨1− 𝑢, 𝑢⟩𝒱 +

||𝑢 − 𝑒−𝜏Δ𝑢𝑛||
2
𝒱

2𝜏 . (3.3)

Note 2. Note that (3.3) has a form resembling a discrete solution [1, Definition
2.0.2] (cf. the study of minimising movements) of a gradient flow. That is, it resem-
bles a sequence arising from an Euler scheme for a gradient flow. This motivates
our link to AC flow.

Definition 3.2.2 (Graph Allen–Cahn flow). Graph Allen–Cahn (AC) flow is the ⟨⋅, ⋅⟩𝒱
gradient flow of the graph Ginzburg–Landau functional, which we shall define as:

GL𝜀(𝑢) ∶=
1
2 ||∇𝑢||

2
ℰ +

1
𝜀 ⟨𝑊 ∘ 𝑢,1⟩𝒱 (3.4)

where 𝑊 is a double-well potential with wells at 0 and 1 (i.e. 𝑊 ∶ ℝ → [0,∞]
has 𝑊(0) = 𝑊(1) = 0 and is strictly positive at all other values) and 𝜀 > 0 is
a parameter. This definition slightly differs from that in Van Gennip et al. [22]:
we have replaced their ∑𝑖∈𝑉𝑊(𝑢𝑖) with ⟨𝑊 ∘ 𝑢,1⟩𝒱, which we have found plays
better with the Hilbert space structure and enables the link we derive with the MBO
scheme. The AC flow is then given, for 𝑊 ∶ ℝ → [0,∞) differentiable, by the ODE:

𝑑𝑢
𝑑𝑡 = −Δ𝑢 −

1
𝜀𝑊

′ ∘ 𝑢 = −∇𝒱GL𝜀(𝑢) (3.5)

where ∇𝒱 is the Hilbert space gradient on 𝒱.
1One can check that ⟨1 − 2𝑒−𝜏Δ𝑢𝑛 , 𝑢⟩𝒱 = ⟨𝑢,1−𝑢⟩𝒱+⟨𝑢−𝑒

−𝜏Δ𝑢𝑛 , 𝑢−𝑒−𝜏Δ𝑢𝑛⟩𝒱−⟨𝑒−𝜏Δ𝑢𝑛 , 𝑒−𝜏Δ𝑢𝑛⟩𝒱.
Then suppress the constant (in 𝑢) term ⟨𝑒−𝜏Δ𝑢𝑛 , 𝑒−𝜏Δ𝑢𝑛⟩𝒱 and divide by 2𝜏.
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3.2.2. The fidelity forced case
Following [20, 27], we first define fidelity forced diffusion.

Definition 3.2.3 (Fidelity forced graph diffusion). For 𝑢 ∈ 𝐻1𝑙𝑜𝑐([0,∞); 𝒱) and 𝑢0 ∈
𝒱 we define fidelity forced diffusion to be:

𝑑𝑢
𝑑𝑡 (𝑡) = −Δ𝑢(𝑡) − 𝑀(𝑢(𝑡) − 𝑓̃) =∶ −𝐴𝑢(𝑡) + 𝑀𝑓̃, 𝑢(0) = 𝑢0, (3.6)

where 𝑀 ∶= diag(𝜇) for 𝜇 ∈ 𝒱[0,∞) the fidelity parameter, 𝐴 ∶= Δ + 𝑀, and 𝑓̃ ∈
𝒱[0,1] is the reference. We define 𝑍 ∶= supp(𝜇), which we call the reference data.
The effect of these added terms is that they enforce fidelity to the reference on
the reference data. Note that 𝜇𝑖 paramaterises the strength of the fidelity to the
reference at vertex 𝑖. Since 𝑓̃ only ever appears in the presence of 𝑀, we define
𝑓 ∶= 𝑀𝑓̃ which is supported only on 𝑍. Note that 𝑓𝑖 ∶= 𝜇𝑖𝑓̃𝑖 ∈ [0, 𝜇𝑖].

Note 3. That 𝜇 can be non-constant on 𝑍 has practical relevance, for example if
the confidence in the accuracy of the reference were higher at some vertices of
the reference data versus others. This is due to the link between the value of the
fidelity parameter at a vertex and the statistical precision (i.e. the inverse of the
variance of the noise) of the reference at that vertex (see [4, § 3.3] for details).

Proposition 3.2.4. If 𝜇 ≠ 0, then 𝐴 is invertible with 𝜎(𝐴) ⊆ (0, ||Δ|| + ||𝜇||∞].

Proof. For the lower bound, we show that 𝐴 is strictly positive definite. Let 𝑢 ≠ 0
be written 𝑢 = 𝑣 + 𝛼1 for 𝑣⊥1. Then

⟨𝑢, 𝐴𝑢⟩𝒱 = ⟨𝑣, Δ𝑣⟩𝒱 + ⟨𝑢,𝑀𝑢⟩𝒱

and note that both terms on the right hand side are non-negative. Next, if 𝑣 ≠ 0
then

⟨𝑢, 𝐴𝑢⟩𝒱 ≥ ⟨𝑣, Δ𝑣⟩𝒱 = ||∇𝑣||2ℰ > 0
since 𝑣⊥1 and hence ∇𝑣 ≠ 0, since 𝐺 is connected. Else, 𝑣 = 0 so 𝛼 ≠ 0 and

⟨𝑢, 𝐴𝑢⟩𝒱 = 𝛼2⟨1, 𝜇⟩𝒱 > 0.

For the upper bound: 𝐴 is the sum of self-adjoint matrices, so is self-adjoint and
hence has largest eigenvalue equal to ||𝐴|| = ||Δ + 𝑀|| ≤ ||Δ|| + ||𝑀|| = ||Δ|| +
||𝜇||∞.

We define a useful map.

Definition 3.2.5. For 𝑡, 𝑥 ∈ ℝ, let 𝐹𝑡(𝑥) ∶= (1−𝑒−𝑡𝑥)/𝑥. Then 𝐹𝑡 has Taylor series

𝐹𝑡(𝑥) =
∞

∑
𝑛=0
(−1)𝑛 𝑡𝑛+1

(𝑛 + 1)!𝑥
𝑛 .
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We extend 𝐹𝑡 to (real) matrix input via

𝐹𝑡(𝑋) ∶=
∞

∑
𝑛=0
(−1)𝑛 𝑡𝑛+1

(𝑛 + 1)!𝑋
𝑛 .

Note that

𝑋𝐹𝑡(𝑋) = 𝐹𝑡(𝑋)𝑋 = −
∞

∑
𝑛=1
(−1)𝑛 𝑡

𝑛

𝑛! 𝑋
𝑛 = 𝐼 − 𝑒−𝑡𝑋

so if 𝑋 is invertible then 𝐹𝑡(𝑋) = 𝑋−1(𝐼 − 𝑒−𝑡𝑋) = (𝐼 − 𝑒−𝑡𝑋)𝑋−1.

Theorem 3.2.6. For given 𝑢0 ∈ 𝒱, (3.6) has a unique solution in 𝐻1𝑙𝑜𝑐([0,∞); 𝒱).
The solution 𝑢 to (3.6) is 𝐶1((0,∞); 𝒱) and is given by the map:

𝑢(𝑡) = 𝒮𝑡𝑢0 ∶= 𝑒−𝑡𝐴𝑢0 + 𝐹𝑡(𝐴)𝑓. (3.7)

This solution map has the following properties:

i. If 𝑢0 ≤ 𝑣0 vertexwise, then for all 𝑡 ≥ 0, 𝒮𝑡𝑢0 ≤ 𝒮𝑡𝑣0 vertexwise.

ii. 𝒮𝑡 ∶ 𝒱[0,1] → 𝒱[0,1] for all 𝑡 ≥ 0, i.e. if 𝑢0 ∈ 𝒱[0,1] then 𝑢(𝑡) ∈ 𝒱[0,1].

Proof. It is straightforward to check directly that (3.7) satisfies (3.6) and is 𝐶1 on
(0,∞). Uniqueness is given by a standard Picard–Lindelöf argument (see e.g. [32,
Corollary 2.6]).

i. By definition, 𝒮𝑡𝑣0 − 𝒮𝑡𝑢0 = 𝑒−𝑡𝐴(𝑣0 − 𝑢0). Thus it suffices to show that 𝑒−𝑡𝐴
is a non-negative matrix (i.e., a matrix with all entries non-negative) for 𝑡 ≥ 0.
Note that the off-diagonal elements of −𝑡𝐴 are non-negative: for 𝑖 ≠ 𝑗, −𝑡𝐴𝑖𝑗 =
−𝑡Δ𝑖𝑗 = 𝑡𝑑𝑟𝑖 𝜔𝑖𝑗 ≥ 0. Thus for some 𝑎 > 0, 𝑄 ∶= 𝑎𝐼 − 𝑡𝐴 is a non-negative
matrix and thus 𝑒𝑄 is a non-negative matrix. It follows that 𝑒−𝑡𝐴 = 𝑒−𝑎𝑒𝑄 is a
non-negative matrix.

ii. Let 𝑢0 ∈ 𝒱[0,1]. Then 0 ≤ 𝑢0 ≤ 1 vertexwise and thus by (i) 𝒮𝑡0 ≤ 𝒮𝑡𝑢0 ≤ 𝒮𝑡1,
so it suffices to show that 𝒮𝑡0 ≥ 0 and 𝒮𝑡1 ≤ 1. If 𝜇 = 0, then 𝒮𝑡0 = 0 and
𝒮𝑡1 = 1. If 𝜇 ≠ 0, let 𝑣(𝑡) ∶= 𝒮𝑡0 = 𝐴−1𝑓 − 𝐴−1𝑒−𝑡𝐴𝑓. Then 𝑣(0) = 0 and

𝑑𝑣
𝑑𝑡 (𝑡) = 𝑒

−𝑡𝐴𝑓 ≥ 0

since 𝑓 ≥ 0. Hence 𝑣(𝑡) ≥ 0 as desired. Finally, let

𝑤(𝑡) ∶= 1−𝒮𝑡1 = 1−𝐴−1𝑓−𝐴−1𝑒−𝑡𝐴(𝐴1−𝑓) = 1−𝐴−1𝑓−𝐴−1𝑒−𝑡𝐴𝑀(1−𝑓̃).

Then 𝑤(0) = 0 and
𝑑𝑤
𝑑𝑡 (𝑡) = 𝑒

−𝑡𝐴𝑀(1− 𝑓̃) ≥ 0

since 𝑓̃ ∈ 𝒱[0,1] and 𝑀 is a non-negative matrix, so 𝑤(𝑡) ≥ 0 as desired.
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We can then define a fidelity forced MBO scheme and AC flow.

Definition 3.2.7 (Graph MBO with fidelity forcing). For 𝑢0 ∈ 𝒱[0,1] we follow [20,
27], and define the sequence of MBO iterates by diffusing with fidelity for a time
𝜏 ≥ 0 and then thresholding, i.e. 𝑢𝑛+1 = Θ(𝒮𝜏(𝑢𝑛)) where 𝒮𝜏 is the solution map
from (3.7). By the same argument as in the ordinary case, this has variational form:

𝑢𝑛+1 ∈ argmin
𝑢∈𝒱[0,1]

⟨1− 2𝒮𝜏𝑢𝑛 , 𝑢⟩𝒱 ≃
1
2𝜏 ⟨1− 𝑢, 𝑢⟩𝒱 +

||𝑢 − 𝒮𝜏𝑢𝑛||
2
𝒱

2𝜏 . (3.8)

Definition 3.2.8 (Graph AC flow with fidelity forcing). First, define the graph
Ginzburg–Landau functional with fidelity by:

GL𝜀,𝜇,𝑓̃(𝑢) ∶=
1
2 ||∇𝑢||

2
ℰ +

1
𝜀 ⟨𝑊 ∘ 𝑢,1⟩𝒱 +

1
2⟨𝑢 − 𝑓̃,𝑀(𝑢 − 𝑓̃)⟩𝒱 . (3.9)

The gradient flow of this with respect to ⟨⋅, ⋅⟩𝒱 is the fidelity forced AC flow:

𝑑𝑢
𝑑𝑡 = −Δ𝑢 −

1
𝜀𝑊

′ ∘ 𝑢 − 𝑀(𝑢 − 𝑓̃) = −𝐴𝑢 − 1𝜀𝑊
′ ∘ 𝑢 + 𝑓. (3.10)

Note 4. If 𝜇 = 0, then we observe that 𝐴 = Δ, 𝑓 = 0, and thus 𝒮𝑡𝑢 = 𝑒−𝑡Δ𝑢.
Therefore, the fidelity forced MBO scheme and AC flow reduce to the ordinary MBO
scheme and AC flow when 𝜇 = 0, so the ordinary case is a special case of the
fidelity forced case.

3.2.3. The mass-conserving case
We first define what we mean by “mass” in this setting.

Definition 3.2.9. Define the mass of 𝑢 ∈ 𝒱 to be

ℳ(𝑢) ∶= ⟨𝑢,1⟩𝒱 . (3.11)

Furthermore, define the average value of 𝑢 ∈ 𝒱 to be

𝑢̄ ∶= ℳ(𝑢)
ℳ(1) . (3.12)

Given this definition, we can use the variational form to define a mass-conserving
MBO scheme.

Definition 3.2.10 (Mass-conserving graph MBO scheme). We define the mass-
conserving graph MBO scheme by the sequence of variational problems:

𝑢𝑛+1 ∈ argmin
𝑢∈𝒱[0,1]

ℳ(𝑢)=ℳ(𝑢𝑛)

⟨1− 2𝑒−𝜏Δ𝑢𝑛 , 𝑢⟩𝒱 ≃ − ⟨𝑒
−𝜏Δ𝑢𝑛 , 𝑢⟩𝒱 .
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To define a mass-conserving AC flow, we follow the definition of Rubinstein and
Sternberg, who in [30] define a mass-conserving Allen–Cahn flow (on a domain Ω)
as the non-local reaction-diffusion PDE, where 𝑢 ∶ Ω → ℝ,

𝜕𝑢
𝜕𝑡 = Δ𝑢 −𝑊

′(𝑢) + 1
|Ω| ∫Ω

𝑊′(𝑢) 𝑑𝑥 (3.13)

with Neumann boundary conditions. We can readily formulate this on a graph,
noting the differing sign convention on Δ and introducing our scaling, as follows.

Definition 3.2.11 (Mass-conserving graph AC flow). Mass-conserving graph AC
flow is given by the ODE:

𝑑𝑢
𝑑𝑡 = −Δ𝑢 −

1
𝜀𝑊

′ ∘ 𝑢 + 1𝜀
⟨𝑊′ ∘ 𝑢,1⟩𝒱
⟨1,1⟩𝒱

1. (3.14)

We verify the mass conservation property for 𝑢 continuous and 𝐻1. We first
recall a standard fact about continuous representatives of 𝐻1 functions.

Lemma 3.2.12 (See [12, Lemma 3.1]). For any interval 𝑇, if 𝑢 ∈ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱) ∩
𝐶0(𝑇; 𝒱) or 𝑢 ∈ 𝐻1𝑙𝑜𝑐(𝑇;ℝ)∩𝐶0(𝑇;ℝ), then 𝑢 is locally absolutely continous on 𝑇. It
follows that 𝑢 is differentiable a.e. in 𝑇, and the weak derivative equals the classical
derivative a.e. in 𝑇.

Proof. By Proposition 2.1.1, 𝑢 ∈ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱) ∩ 𝐶0(𝑇; 𝒱) if and only if for all 𝑖 ∈ 𝑉,
𝑢𝑖 ∈ 𝐻1𝑙𝑜𝑐(𝑇;ℝ) ∩ 𝐶0(𝑇;ℝ). The result then follows from standard results, see [26,
Theorem 7.13].

Proposition 3.2.13. For any interval 𝑇 and 𝑢 ∈ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱) ∩ 𝐶0(𝑇; 𝒱), if 𝑢 obeys
(3.14) at a.e. 𝑡 ∈ 𝑇, then for a.e. 𝑡 ∈ 𝑇

𝑑
𝑑𝑡ℳ(𝑢(𝑡)) = 0

and soℳ(𝑢(𝑡)) is constant.

Proof. First, note thatℳ(𝑢(𝑡)) ∈ 𝐻1𝑙𝑜𝑐(𝑇;ℝ) ∩ 𝐶0(𝑇;ℝ) with

𝑑
𝑑𝑡ℳ(𝑢(𝑡)) = ⟨𝑑𝑢𝑑𝑡 ,1⟩

𝒱

since for any 𝜑 ∈ 𝐶∞𝑐 (𝑇;ℝ)

∫
𝑇
⟨𝑢(𝑡),1⟩𝒱

𝑑𝜑
𝑑𝑡 𝑑𝑡 = ∫𝑇

⟨𝑢(𝑡), 𝑑𝜑𝑑𝑡 1⟩
𝒱
𝑑𝑡

= −∫
𝑇
⟨𝑑𝑢𝑑𝑡 , 𝜑(𝑡)1⟩

𝒱
𝑑𝑡 = −∫

𝑇
⟨𝑑𝑢𝑑𝑡 ,1⟩

𝒱
𝜑(𝑡) 𝑑𝑡.
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Then for almost every 𝑡 ∈ 𝑇, taking the mass of both sides of (3.14):

⟨𝑑𝑢𝑑𝑡 ,1⟩
𝒱
= −⟨Δ𝑢(𝑡),1⟩𝒱 −

1
𝜀 ⟨𝑊

′ ∘ 𝑢,1⟩𝒱 +
1
𝜀
⟨𝑊′ ∘ 𝑢,1⟩𝒱
⟨1,1⟩𝒱

⟨1,1⟩𝒱

So most of the terms cancel and we are left with

⟨𝑑𝑢𝑑𝑡 ,1⟩
𝒱
= −⟨Δ𝑢(𝑡),1⟩𝒱 = 0

with the final equality because Δ is self-adjoint and Δ1 = 0. Then by absolute
continuity we infer thatℳ(𝑢(𝑡)) is constant.

3.3. Set-up for the next chapter
The key result of the next chapter will be a rigorous link between the AC flow and
MBO schemes. This link will be demonstrated by showing that the MBO scheme
is a special case of what we call a semi-discrete implicit Euler (SDIE) scheme for
AC flow, for a particular choice of 𝑊. We will here define that SDIE scheme in
the ordinary, fidelity forced, and mass-conserving cases, as well as describe (and
motivate) our choice of potential.

3.3.1. Definitions of the SDIE scheme
Definition 3.3.1 (SDIE scheme in the ordinary, fidelity forced, and mass-conserv-
ing cases). Let 𝜏 ≥ 0 be the time step for the scheme. Then for the AC flow (3.5),
the SDIE scheme is defined by

𝑢𝑛+1 = 𝑒−𝜏Δ𝑢𝑛 −
𝜏
𝜀𝑊

′ ∘ 𝑢𝑛+1. (3.15)

For the fidelity forced AC flow (3.10), the fidelity forced SDIE scheme is defined by

𝑢𝑛+1 = 𝒮𝜏𝑢𝑛 −
𝜏
𝜀𝑊

′ ∘ 𝑢𝑛+1. (3.16)

Finally, for the mass-conserving AC flow (3.14), the mass-conserving SDIE scheme
is defined by

𝑢𝑛+1 = 𝑒−𝜏Δ𝑢𝑛 −
𝜏
𝜀𝑊

′ ∘ 𝑢𝑛+1 +
𝜏
𝜀𝑊

′ ∘ 𝑢𝑛+11. (3.17)

These schemes can be rewritten in variational form. For now, we shall show
this just for (3.15), as that will suffice to motivate what follows.

Theorem 3.3.2. Let 𝜆 ∶= 𝜏/𝜀, and assume that 𝑊 ∈ 𝐶2(ℝ) and that for all 𝑥 ∈ ℝ,
𝑊″(𝑥) ≥ −1/𝜆. Then 𝑢𝑛+1 solves (3.15) if and only if

𝑢𝑛+1 ∈ argmin
𝑢∈𝒱

𝜆 ⟨𝑊 ∘ 𝑢,1⟩𝒱 +
1
2||𝑢 − 𝑒

−𝜏Δ𝑢𝑛||
2
𝒱 . (3.18)
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Proof. The objective function in (3.18) is a sum of independent terms which only
depend on the value of 𝑢 at a single vertex, hence 𝑢𝑛+1 solves (3.18) if and only if
for all 𝑖 ∈ 𝑉

(𝑢𝑛+1)𝑖 ∈ argmin
𝑥∈ℝ

𝜆𝑊(𝑥) + 12(𝑥 − (𝑒
−𝜏Δ𝑢𝑛)𝑖)

2 =∶ 𝑔𝑖(𝑥).

Suppose that 𝑢𝑛+1 solves (3.18). Then for all 𝑖 ∈ 𝑉 we have 𝑔′𝑖((𝑢𝑛+1)𝑖) = 0, i.e.

(𝑢𝑛+1)𝑖 − (𝑒−𝜏Δ𝑢𝑛)𝑖 + 𝜆𝑊′((𝑢𝑛+1)𝑖) = 0

and so 𝑢𝑛+1 obeys (3.15).
Next, suppose that 𝑢𝑛+1 solves (3.15). Let 𝑖 ∈ 𝑉, 𝑦 ∶= (𝑢𝑛+1)𝑖, and 𝑧 ∶=

(𝑒−𝜏Δ𝑢𝑛)𝑖. Then 𝑦 = 𝑧 − 𝜆𝑊′(𝑦) and we seek to prove that 𝑦 is a global minimiser
of

ℎ(𝑥) ∶= 𝜆𝑊(𝑥) + 12(𝑥 − 𝑧)
2

for 𝑥 ∈ ℝ. Note that ℎ′(𝑦) = 𝜆𝑊′(𝑦) + 𝑦 − 𝑧 = 0, and that for all 𝑥 ∈ ℝ, ℎ″(𝑥) =
𝜆𝑊″(𝑥)+1 ≥ 0 by the assumption on𝑊. Finally, by Taylor’s theorem, for all 𝑥 ∈ ℝ
there exists 𝜉 ∈ ℝ such that

ℎ(𝑥) = ℎ(𝑦) + (𝑥 − 𝑦)ℎ′(𝑦) + 12(𝑥 − 𝑦)
2ℎ″(𝜉) ≥ ℎ(𝑦),

where the inequality follows from the above notes on ℎ, and thus 𝑦 is a global
minimiser of ℎ. It follows that 𝑢𝑛+1 solves (3.18).

Note 5. This result does not rely on the double-well or non-negativity properties
of 𝑊.

3.3.2. Connection to time-splitting for AC flow
The name “semi-discrete” refers to the fact that the scheme uses the exact solution
operator for the diffusion part of the AC ODE, and uses an implicit Euler time-
discretisation for the potential term. We can make this motivation more precise by
interpreting equation (3.15) as an Euler scheme for a time-splitting scheme for AC
flow, as follows. As with the previous theorem, for simplicity we shall show this just
for the ordinary case (3.15).

We fix 𝜏 > 0 and take 𝑢̃0 ∈ 𝒱, then iteratively apply the steps:

1. (Diffusion step) Define 𝑣 ∶= 𝑒−𝑡Δ𝑢̃𝑛 the heat equation solution with 𝑣(0) =
𝑢̃𝑛 and define 𝑣𝑛 ∶= 𝑣(𝜏).

2. (Reaction step) Define 𝑈𝑛 ∈ 𝐻1((0, 𝜏); 𝒱) ∩ 𝐶0([0, 𝜏]; 𝒱) obeying

𝑑𝑈𝑛
𝑑𝑡 = −𝜀−1𝑊′ ∘ 𝑈𝑛 , 𝑈𝑛(0) = 𝑣𝑛 = 𝑒−𝜏Δ𝑢̃𝑛 . (3.19)

3. Finally, define 𝑢̃𝑛+1 ∶= 𝑈𝑛(𝜏).
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The relation of this time-splitting to the semi-discrete scheme is that if 𝑢𝑛 = 𝑢̃𝑛
we can recognise from (3.15) the semi-discrete update 𝑢𝑛+1 ≈ 𝑢̃𝑛+1 as the implicit
Euler approximation of (3.19):

𝑢𝑛+1 − 𝑣𝑛
𝜏 = −1𝜀𝑊

′ ∘ 𝑢𝑛+1.

That is, we get the semi-discrete update by dissecting the flow in (3.5) into a
diffusion for time 𝜏 followed by a gradient flow of 𝑊, again for time 𝜏. Then, we
use the exact solution for the former and approximate the latter by an implicit Euler
scheme. For more detail on the connection between these schemes, see [12, §4.3],
we omit these details here as they are not particularly relevant to the rest of this
thesis.

3.3.3. The double-obstacle potential
If we compare the variational form of the MBO scheme (3.3) and the SDIE scheme
(3.18), we observe a striking similarity between the objective functions. In order
to make this similarity exact, we need three things to be true:

i. 𝑊 needs to equal 12𝑥(1 − 𝑥) on [0, 1].

ii. 𝑊 needs to force the minimisers to lie in 𝒱[0,1].

iii. 𝜏 needs to equal 𝜀, i.e. 𝜆 = 1.

Conditions (i) and (ii) force us to choose as our potential𝑊 the double-obstacle
potential:

𝑊(𝑥) ∶= {
1
2𝑥(1 − 𝑥), for 0 ≤ 𝑥 ≤ 1,
∞, otherwise.

(3.20)

See Oono and Puri [29] and Blowey and Elliott [6, 7, 8] for study of this potential in
the continuum context and Bosch, Klamt, and Stoll [9] for recent work in the graph
context. Henceforth, 𝑊 will exclusively refer to this potential.

This choice of potential is essential to the whole of this work, so to motivate this
choice we review some of its virtues. One of the key advantages of this potential
over smooth alternatives (as previously noted by Chen and Elliot in [17, p. 430],
where a bunch of other more continuum-centric virtues are also discussed) is that
it forces solutions to lie in 𝒱[0,1] come-what-may, whatever extra constraints or dy-
namics are imposed. This property is especially important when trying to link up
with the MBO hard thresholding. The quadratic form of the potential between the
wells is also very convenient for a number of reasons. Firstly, it meets condition (i).
Secondly, it means that 𝑊′ is an affine function on (0, 1), leading to the resulting
AC flow being analysable using the tools for linear ODEs/differential inclusions. Fi-
nally, in the variational forms the negative quadratic part of 𝑊 ∘ 𝑢 is cancelled out
by the quadratic term (e.g., ||𝑢 − 𝑒−𝜏Δ𝑢𝑛||2𝒱 in (3.18)) to give a convex objective
function, which will allow us to employ the tools of convex optimisation to study
these variational problems.



3

30 3. Graph Allen–Cahn flow and the graph MBO scheme

However, this choice does have one major drawback, which is that it is not
differentiable at 0 or 1. Therefore, we shall have to replace the references to
𝑊′ in the above definitions of AC flow and the SDIE scheme with more careful
considerations of the subdifferential, and we shall rigorously prove that the various
definitions and different forms continue to make sense. Towards this, we must
define some further notation. Write

𝑊(𝑥) = 1
2𝑥(1 − 𝑥) + 𝐼[0,1](𝑥)

where 𝐼[0,1] is the indicator function taking value 0 on [0, 1] and ∞ elsewhere. Now,
we will rewrite our gradient flows against 𝑊 using the subdifferential. That is, we
will rewrite a differential equation of the form (for 𝒟 some differential operator)

𝒟𝑢 + 1𝜀𝑊
′(𝑢) = 0

as the differential inclusion

𝒟𝑢 ∈ −1𝜀 𝜕𝑊(𝑢)

where 𝜕𝑊(𝑢) denotes the subdifferential of 𝑊 at 𝑢 (see Ekeland and Temam [19,
Definition 5.1]). Using the above decomposition of 𝑊, this becomes: for a.e. 𝑡
there exists 𝛽(𝑡) such that for all 𝑖 ∈ 𝑉, 𝛽𝑖(𝑡) ∈ −𝜕𝐼[0,1](𝑢𝑖(𝑡)) and

𝜀𝒟𝑢(𝑡) + 121− 𝑢(𝑡) = 𝛽(𝑡).

The condition on 𝛽(𝑡) can be written more transparently as2

𝛽𝑖(𝑡) ∈

⎧
⎪

⎨
⎪
⎩

∅, 𝑢𝑖(𝑡) < 0,
[0,∞), 𝑢𝑖(𝑡) = 0,
{0}, 0 < 𝑢𝑖(𝑡) < 1,
(−∞, 0], 𝑢𝑖(𝑡) = 1,
∅, 𝑢𝑖(𝑡) > 1.

Notice that this expression only makes sense for trajectories such that 𝑢(𝑡) ∈ 𝒱[0,1]
at a.e. 𝑡. For tidiness of notation, we define

ℬ(𝑢) ∶= {𝛼 ∈ 𝒱 | ∀𝑖 ∈ 𝑉, 𝛼𝑖 ∈ −𝜕𝐼[0,1](𝑢𝑖)} (3.21)

which is non-empty if and only if 𝑢 ∈ 𝒱[0,1]. Then 𝛽(𝑡) satisfies the above condition
if and only if 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)).
2This differs slightly from the corresponding expression given in [12, p. 4108]. In that paper 𝜕𝐼[0,1](𝑥)
was defined such that 𝜕𝐼[0,1](𝑥) = {−∞} for 𝑥 < 0 and 𝜕𝐼[0,1](𝑥) = {∞} for 𝑥 > 1, following [6,
(1.14b)], whilst here we have defined 𝜕𝐼[0,1](𝑥) to be empty in both of those cases. This difference of
convention has no effect on the results, as in the former case 𝛽𝑖(𝑡) was restricted to ℝ.
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3.4. Double-obstacle AC flow
Due to the non-differentiability of the double-obstacle potential, we first need to
redefine our AC flows along the lines of section 3.3.3. Since the ordinary case is
just a special case of the fidelity forced case, we will henceforth only consider two
cases: fidelity forced, and mass-conserving. We will then investigate the properties
of these flows.

3.4.1. Redefining the AC flow
Let us begin with the fidelity forced case. Rewriting the definition via the subdiffer-
ential, we get the following definition.

Definition 3.4.1 (Double-obstacle AC flow with fidelity forcing). Let 𝑇 be an in-
terval. Then a pair (𝑢, 𝛽) ∈ 𝒱[0,1],𝑡∈𝑇 ×𝒱𝑡∈𝑇 is a solution to double-obstacle AC flow
with fidelity forcing on 𝑇 when 𝑢 ∈ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱)∩𝐶0(𝑇; 𝒱) and for almost every 𝑡 ∈ 𝑇,

𝜀𝑑𝑢𝑑𝑡 (𝑡) + 𝜀𝐴𝑢(𝑡) − 𝜀𝑓 +
1
21− 𝑢(𝑡) = 𝛽(𝑡), 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)). (3.22)

Likewise, we redefine in the mass-conserving case as follows.

Definition 3.4.2 (Mass-conserving double-obstacle AC flow). Let 𝑇 be any interval.
A pair (𝑢, 𝛽) ∈ 𝒱[0,1],𝑡∈𝑇 × 𝒱𝑡∈𝑇 is a solution to mass-conserving double-obstacle AC
flow on 𝑇 when 𝑢 ∈ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱) ∩ 𝐶0(𝑇; 𝒱) and for almost every 𝑡 ∈ 𝑇

𝜀𝑑𝑢𝑑𝑡 + 𝜀Δ𝑢(𝑡) − 𝑢(𝑡) + 𝑢(𝑡)1 = 𝛽(𝑡) − 𝛽(𝑡)1, 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)). (3.23)

Proposition 3.4.3. Let (𝑢, 𝛽) be as in Definition 3.4.1 on an interval 𝑇. Then 𝑢(𝑡)
is constant on 𝑇.
Proof. Follows as in Proposition 3.2.13 mutatis mutandis.

Notice that what we have done here is redefine our ODEs to be differential
inclusions. However, by the use of Lemma 3.2.12, we can in fact characterise the
𝛽(𝑡) in terms of 𝑢(𝑡), as described in the following theorem.
Theorem 3.4.4. If (𝑢, 𝛽) obeys Definition 3.4.1, then for all 𝑖 ∈ 𝑉 and a.e. 𝑡 ∈ 𝑇,

𝛽𝑖(𝑡) = {

1
2 + 𝜀(Δ𝑢(𝑡))𝑖 − 𝜀𝑓𝑖 , if 𝑢𝑖(𝑡) = 0,
0, if 𝑢𝑖(𝑡) ∈ (0, 1),
−12 + 𝜀(Δ𝑢(𝑡))𝑖 + 𝜀(𝜇𝑖 − 𝑓𝑖), if 𝑢𝑖(𝑡) = 1,

(3.24)

and hence at a.e. 𝑡 ∈ 𝑇,
𝛽(𝑡) ∈ 𝒱[−1/2,1/2].

If (𝑢, 𝛽) obeys Definition 3.4.2, then for all 𝑖 ∈ 𝑉 and a.e. 𝑡 ∈ 𝑇,

𝛽𝑖(𝑡) − 𝛽(𝑡) = {
𝑢̄ + 𝜀(Δ𝑢(𝑡))𝑖 , if 𝑢𝑖(𝑡) = 0,
−𝛽(𝑡), if 𝑢𝑖(𝑡) ∈ (0, 1),
𝑢̄ − 1 + 𝜀(Δ𝑢(𝑡))𝑖 , if 𝑢𝑖(𝑡) = 1.

(3.25)
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Proof. Since in either case 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)) at a.e. 𝑡 ∈ 𝑇, for all 𝑖 ∈ 𝑉 we have
𝛽𝑖(𝑡) = 0 at a.e. 𝑡 ∈ 𝑇 for which 𝑢𝑖(𝑡) ∈ (0, 1), from which the 𝑢𝑖(𝑡) ∈ (0, 1) case
of (3.24) and (3.25) follow. For the remaining cases, first note that we can write
both (3.22) and (3.23) in the form

𝜀𝑑𝑢𝑑𝑡 + 𝜀Δ𝑢(𝑡) + 𝑣(𝑡) = 𝛾(𝑡)

where in the former case 𝑣(𝑡) = 𝜀𝑀𝑢(𝑡) − 𝜀𝑓 + 1
21 − 𝑢(𝑡) and 𝛾(𝑡) = 𝛽(𝑡), and in

the latter case 𝑣(𝑡) = −𝑢(𝑡) + 𝑢(𝑡)1 and 𝛾(𝑡) = 𝛽(𝑡) − 𝛽(𝑡)1.
Fix 𝑖 ∈ 𝑉. Let 𝑇̃ ⊆ 𝑇 denote the set of times when 𝑢𝑖 is differentiable and has

classical derivative equal to its weak derivative. Since 𝑢𝑖(𝑡) ∈ [0, 1] at all times,
when 𝑡 ∈ 𝑇̃ and 𝑢𝑖(𝑡) ∈ {0, 1} we have 𝑑𝑢𝑖/𝑑𝑡 = 0. Then for a.e. such 𝑡 ∈ 𝑇̃

0 = 𝜀𝑑𝑢𝑖𝑑𝑡 (𝑡) = −𝜀(Δ𝑢(𝑡))𝑖 − 𝑣𝑖(𝑡) + 𝛾𝑖(𝑡)

so, rearranging, at a.e. 𝑡 ∈ 𝑇̃ with 𝑢𝑖(𝑡) ∈ {0, 1}
𝛾𝑖(𝑡) = 𝑣𝑖(𝑡) + 𝜀(Δ𝑢(𝑡))𝑖 .

By a simple case check of the value of 𝑣𝑖(𝑡) for 𝑢𝑖(𝑡) = 0 and for 𝑢𝑖(𝑡) = 1 in the
two cases, we see that (3.24)/(3.25) holds at a.e. 𝑡 ∈ 𝑇̃. By Lemma 3.2.12, 𝑇 ⧵ 𝑇̃
is null, so (3.24)/(3.25) holds at a.e. 𝑡 ∈ 𝑇.

Finally, since 𝑢(𝑡) ∈ 𝒱[0,1], if 𝑢𝑖(𝑡) = 0 then 𝑖 is a minimiser of 𝑢(𝑡), and hence
(Δ𝑢(𝑡))𝑖 ≤ 0. Likewise, if 𝑢𝑖(𝑡) = 1 then (Δ𝑢(𝑡))𝑖 ≥ 0. Hence if 𝛽(𝑡) ∈ ℬ(𝑢(𝑡))
obeys (3.24), then if 𝑢𝑖(𝑡) = 0 we have 𝛽𝑖(𝑡) ≤ 1/2 by (3.24), and if 𝑢𝑖(𝑡) > 0 we
have 𝛽𝑖(𝑡) ≤ 0 by (3.21), and hence 𝛽𝑖(𝑡) ≤ 1/2. Likewise, such a 𝛽𝑖(𝑡) ≥ −1/2.
Hence we have the desired bounds at a.e. 𝑡 ∈ 𝑇.
Note 6. A similar bound on 𝛽 will be proved in the mass-conserving case (see
Lemma 4.5.14), but requires further machinery.

In light of this theorem, for brevity we will often refer to just 𝑢 as a solution to
(3.22) or (3.23) where we also understand that equation to inherit the conditions
on 𝑢 (including the existence of a corresponding 𝛽).

3.4.2. Comparison principle for the fidelity forced flow
Theorem 3.4.5. Let 𝑇 = [0, 𝑇0] or [0,∞), and let (𝑢, 𝛽), (𝑣, 𝛾) ∈ 𝒱[0,1],𝑡∈𝑇 × 𝒱𝑡∈𝑇,
with 𝑢, 𝑣 ∈ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱)∩𝐶0(𝑇; 𝒱) be super- and subsolutions to (3.22), i.e. obeying

𝜀𝑑𝑢𝑑𝑡 (𝑡) + 𝜀𝐴𝑢(𝑡) − 𝜀𝑓 +
1
21− 𝑢(𝑡) ≥ 𝛽(𝑡), 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)), (3.26a)

and

𝜀𝑑𝑣𝑑𝑡 (𝑡) + 𝜀𝐴𝑣(𝑡) − 𝜀𝑓 +
1
21− 𝑣(𝑡) ≤ 𝛾(𝑡), 𝛾(𝑡) ∈ ℬ(𝑣(𝑡)), (3.26b)

vertexwise at a.e. 𝑡 ∈ 𝑇. Then if 𝑣(0) ≤ 𝑢(0) vertexwise, then 𝑣(𝑡) ≤ 𝑢(𝑡)
vertexwise for all 𝑡 ∈ 𝑇.
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Proof. Let 𝑤 ∶= 𝑣 − 𝑢, and let 𝑤+ ∶= max{𝑤, 0}, the pointwise positive part of 𝑤.
Then we have that 𝑤+(0) = 0 and seek to show that 𝑤+(𝑡) = 0 for all 𝑡 ∈ 𝑇. By
subtracting (3.26a) from (3.26b) and then taking the inner product with 𝑤+(𝑡), we
have that

𝜀 ⟨𝑑𝑤𝑑𝑡 (𝑡), 𝑤+(𝑡)⟩
𝒱
+ 𝜀⟨𝐴𝑤(𝑡), 𝑤+(𝑡)⟩𝒱 − ⟨𝑤(𝑡), 𝑤+(𝑡)⟩𝒱 ≤ ⟨𝛾(𝑡) − 𝛽(𝑡), 𝑤+(𝑡)⟩𝒱

(3.27)
that 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)), and that 𝛾(𝑡) ∈ ℬ(𝑣(𝑡)) at a.e. 𝑡 ∈ 𝑇. At each such 𝑡, we
make the following claims:

i. ⟨𝑤(𝑡), 𝑤+(𝑡)⟩𝒱 ≤ ⟨𝑤+(𝑡), 𝑤+(𝑡)⟩𝒱.
ii. ⟨𝛾(𝑡) − 𝛽(𝑡), 𝑤+(𝑡)⟩𝒱 ≤ 0.
iii. ⟨Δ𝑤(𝑡), 𝑤+(𝑡)⟩𝒱 ≥ ⟨Δ𝑤+(𝑡), 𝑤+(𝑡)⟩𝒱 ≥ 0 and so ⟨𝐴𝑤(𝑡), 𝑤+(𝑡)⟩𝒱 ≥ 0.

iv. ∫𝑡
∗

0 ⟨𝑑𝑤𝑑𝑡 (𝑡), 𝑤+(𝑡)⟩𝒱
𝑑𝑡 = 1

2 ||𝑤+(𝑡
∗)||2𝒱 −

1
2 ||𝑤+(0)||

2
𝒱 =

1
2 ||𝑤+(𝑡

∗)||2𝒱 for all 𝑡∗ ∈
𝑇.

Given (i-iv) it follows, by rearranging and integrating (3.27), that for all 𝑡∗ ∈ 𝑇

1
2𝜀||𝑤+(𝑡

∗)||2𝒱 ≤ ∫
𝑡∗

0
||𝑤+(𝑡)||2𝒱 𝑑𝑡.

Thus since ||𝑤+(0)||2𝒱 = 0, it follows that ||𝑤+(𝑡)||2𝒱 ≤ 0 at all 𝑡 ∈ 𝑇 by Grönwall’s
integral inequality [3], and therefore that 𝑤+(𝑡) = 0 for all 𝑡 ∈ 𝑇.

It suffices then to prove (i-iv). Claim (i) is trivial, since 𝑤𝑖(𝑤+)𝑖 ≤ (𝑤+)2𝑖 for all
𝑖 ∈ 𝑉. To show (ii), consider (𝑣𝑖(𝑡) − 𝑢𝑖(𝑡))+(𝛾𝑖(𝑡) − 𝛽𝑖(𝑡)). If 𝑣𝑖(𝑡) ≤ 𝑢𝑖(𝑡) then
the term is zero, and if 𝑣𝑖(𝑡) > 𝑢𝑖(𝑡) then by (3.21) 𝛾𝑖(𝑡) ≤ 𝛽𝑖(𝑡). Hence the term
is non-positive for all 𝑖 ∈ 𝑉, and thus (ii) follows.

Towards (iii), note that ⟨𝐴𝑤(𝑡), 𝑤+(𝑡)⟩𝒱 = ⟨Δ𝑤(𝑡), 𝑤+(𝑡)⟩𝒱 + ⟨𝑀𝑤(𝑡), 𝑤+(𝑡)⟩𝒱
and that since 𝜇𝑖𝑤𝑖(𝑤+)𝑖 ≥ 0 for all 𝑖 ∈ 𝑉 the latter term is non-negative. It suffices
therefore to show that

0 ≤ ⟨Δ(𝑤(𝑡) − 𝑤+(𝑡)), 𝑤+(𝑡)⟩𝒱 = ⟨∇𝑤(𝑡) − ∇𝑤+(𝑡), ∇𝑤+(𝑡)⟩ℰ =
1
2 ∑
𝑖,𝑗∈𝑉

𝜔𝑖𝑗𝑋𝑖𝑗

where 𝑋𝑖𝑗 ∶= ((𝑤+)𝑖(𝑡)− (𝑤+)𝑗(𝑡))(𝑤𝑖(𝑡)− (𝑤+)𝑖(𝑡)−𝑤𝑗(𝑡)+ (𝑤+)𝑗(𝑡)). It suffices
to show that 𝑋𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ 𝑉. WLOG suppose that (𝑤+)𝑖(𝑡) ≥ (𝑤+)𝑗(𝑡). If
(𝑤+)𝑖(𝑡) = (𝑤+)𝑗(𝑡) then 𝑋𝑖𝑗 = 0, and if 𝑤𝑖(𝑡), 𝑤𝑗(𝑡) > 0 then 𝑋𝑖𝑗 = 0. Finally if
𝑤𝑖(𝑡) > 0,𝑤𝑗(𝑡) ≤ 0 then 𝑋𝑖𝑗 = −𝑤𝑖(𝑡)𝑤𝑗(𝑡) ≥ 0.

Finally, to show (iv) fix 𝑖 ∈ 𝑉, 𝑡∗ ∈ 𝑇, and let 𝑥(𝑡) ∶= 𝑤𝑖(𝑡). Then we desire that

∫
𝑡∗

0

𝑑𝑥
𝑑𝑡 (𝑡)𝑥+(𝑡) 𝑑𝑡 =

1
2𝑥+(𝑡

∗)2 − 12𝑥+(0)
2.

Since by Proposition 2.1.1 𝑥 ∈ 𝐻1((0, 𝑡∗); ℝ) ∩ 𝐶0([0, 𝑡∗]; ℝ), this follows from [33,
Lemma 3.3].
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3.4.3. Weak forms and explicit integral forms
In this section, we prove first weak forms (Theorem 3.4.7) of the fidelity forced and
the mass-conserving AC flows, and then explicit integral forms (Theorem 3.4.8).
The weak forms are not used in the remainder of this thesis, however they are of
general interest as they provide graph analogues of the variational inequality form
of the continuum double-obstacle AC flow (see e.g. [6, (1.16)]), which played an
important role in the analysis performed by Blowey and Elliott in [6, 7, 8]. The
explicit integral forms we will use in section 4.5.3 to show the convergence of the
SDIE scheme.

We first prove a useful lemma, which will turn up again when we analyse the
SDIE scheme.

Lemma 3.4.6. Let 𝑢 ∈ 𝒱[0,1] and 𝛽 ∈ ℬ(𝑢). Then for all 𝜂 ∈ 𝒱[0,1], ⟨𝛽, 𝜂 − 𝑢⟩𝒱 ≥ 0.

Proof. Consider 𝛽𝑖(𝜂𝑖 − 𝑢𝑖). If 𝑢𝑖 ∈ (0, 1) then 𝛽𝑖 = 0, so this term equals 0. If
𝑢𝑖 = 0 then 𝛽𝑖 ≥ 0 and 𝜂𝑖−𝑢𝑖 = 𝜂𝑖 ≥ 0, so the term is non-negative. If 𝑢𝑖 = 1 then
𝛽𝑖 ≤ 0 and 𝜂𝑖 − 𝑢𝑖 = 𝜂𝑖 − 1 ≤ 0, so the term is non-negative. Hence for all 𝑖 ∈ 𝑉,
𝛽𝑖(𝜂𝑖 − 𝑢𝑖) ≥ 0.

Theorem 3.4.7 (Weak forms). Let 𝑢 ∈ 𝒱[0,1],𝑡∈𝑇 ∩ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱) ∩ 𝐶(𝑇; 𝒱).
There exists 𝛽 such that (𝑢, 𝛽) is a solution to (3.22) if and only if for a.e. 𝑡 ∈ 𝑇

and all 𝜂 ∈ 𝒱[0,1]

⟨𝜀 𝑑𝑢𝑑𝑡 (𝑡) + 𝜀𝐴𝑢(𝑡) − 𝜀𝑓 +
1
21− 𝑢(𝑡), 𝜂 − 𝑢(𝑡)⟩

𝒱
≥ 0. (3.28)

Likewise, there exists 𝛽 such that (𝑢, 𝛽) is a solution to (3.23) if and only if for
a.e. 𝑡 ∈ 𝑇 and all 𝜂 ∈ 𝒱[0,1] such that ℳ(𝜂) = ℳ(𝑢(𝑡)) (i.e. 𝜂 − 𝑢(𝑡)⊥1), the
following hold

⟨𝜀 𝑑𝑢𝑑𝑡 (𝑡) + 𝜀Δ𝑢(𝑡) − 𝑢(𝑡), 𝜂 − 𝑢(𝑡)⟩
𝒱
≥ 0, (3.29a)

⟨𝑑𝑢𝑑𝑡 (𝑡),1⟩
𝒱
= 0. (3.29b)

Proof. Let (𝑢, 𝛽) solve (3.22). Then at a.e. 𝑡 ∈ 𝑇, 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)) and by (3.22) the
LHS of (3.28) can be written as ⟨𝛽(𝑡), 𝜂 − 𝑢(𝑡)⟩𝒱, and hence is non-negative for all
𝜂 ∈ 𝒱[0,1] by Lemma 3.4.6. Next, suppose that for a.e. 𝑡 ∈ 𝑇, 𝑢(𝑡) obeys (3.28) for
all 𝜂 ∈ 𝒱[0,1]. Fix such a 𝑡 ∈ 𝑇. Then defining 𝛽(𝑡) ∶= 𝜀

𝑑𝑢
𝑑𝑡 (𝑡)+𝜀𝐴𝑢(𝑡)−𝜀𝑓+

1
21−𝑢(𝑡),

we have supposed that ⟨𝛽(𝑡), 𝜂 − 𝑢(𝑡)⟩𝒱 ≥ 0 for all 𝜂 ∈ 𝒱[0,1], and since (𝑢, 𝛽)
satisfies the ODE by definition it suffices to show that 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)). Let 𝑖 ∈ 𝑉,
and define 𝜂, 𝜂′ ∈ 𝒱[0,1] by: 𝜂𝑗 ∶= 𝑢𝑗(𝑡) for all 𝑗 ≠ 𝑖, 𝜂𝑖 ∶= 0, 𝜂′𝑗 ∶= 𝑢𝑗(𝑡) for all
𝑗 ≠ 𝑖, and 𝜂′𝑖 ∶= 1. Substituting 𝜂 and 𝜂′ into the above we have 𝛽𝑖(𝑡)𝑢𝑖(𝑡) ≤ 0 and
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𝛽𝑖(𝑡)(1 − 𝑢𝑖(𝑡)) ≥ 0. Therefore

𝛽𝑖(𝑡) {
= 0, 𝑢𝑖(𝑡) ∈ (0, 1)
≤ 0, 𝑢𝑖(𝑡) = 1
≥ 0, 𝑢𝑖(𝑡) = 0

so 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)).
The proof in the mass-conserving case follows the same pattern, but requires

a bit more care. Let (𝑢, 𝛽) solve (3.23). Then for a.e. 𝑡 ∈ 𝑇 we have (3.29b) and
𝛽(𝑡) ∈ ℬ(𝑢(𝑡)), and for all 𝜂 ∈ 𝒱[0,1] with 𝜂 − 𝑢(𝑡)⊥1

𝐿𝐻𝑆 (3.29a) = ⟨𝜀𝑑𝑢𝑑𝑡 (𝑡) + 𝜀Δ𝑢(𝑡) − 𝑢(𝑡) + 𝑢̄1+ 𝛽(𝑡)1, 𝜂 − 𝑢(𝑡)⟩
𝒱

= ⟨𝛽(𝑡), 𝜂 − 𝑢(𝑡)⟩𝒱 ≥ 0
by Lemma 3.4.6.

Now let 𝑢 satisfy (3.29) at a.e. 𝑡 ∈ 𝑇. Therefore by (3.29a), for a.e. 𝑡 ∈ 𝑇 and
all 𝜂 ∈ 𝒱[0,1] with 𝜂 − 𝑢(𝑡)⊥1

⟨𝜀 𝑑𝑢𝑑𝑡 − 𝑢(𝑡) + 𝜀Δ𝑢(𝑡), 𝜂 − 𝑢(𝑡)⟩
𝒱
≥ 0

and so for any 𝜃 ∶ 𝑇 → ℝ, a.e. 𝑡 ∈ 𝑇, and any 𝜂 as before,

⟨𝜀 𝑑𝑢𝑑𝑡 (𝑡) − 𝑢(𝑡) + 𝜀Δ𝑢(𝑡) + 𝑢(𝑡)1+ 𝜃(𝑡)1, 𝜂 − 𝑢(𝑡)⟩
𝒱
≥ 0. (3.30)

Fix 𝑡 ∈ 𝑇 to be any such 𝑡. For a specific 𝜃 to be determined later, define

𝛽(𝑡) ∶= 𝜀𝑑𝑢𝑑𝑡 (𝑡) + 𝜀Δ𝑢(𝑡) − 𝑢(𝑡) + 𝑢(𝑡)1+ 𝜃(𝑡)1. (3.31)

By considering certain valid test functions 𝜂 for (3.30), we will show that 𝜃(𝑡) can
be chosen so that 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)). Towards this, for any 𝑖, 𝑗 ∈ 𝑉 and 𝑣 ∈ 𝒱 we
define the set

Ξ𝑖,𝑗,𝑣 ∶= {𝜉 ∈ 𝒱 ∣ ∀𝑘 ∉ {𝑖, 𝑗}, 𝜉𝑘 = 0, ∀𝑘 ∈ {𝑖, 𝑗}, 𝜉𝑘 ∈ [−𝑣𝑘 , 1 − 𝑣𝑘], andℳ(𝜉) = 0}
which is constructed so that if 𝜉 ∈ Ξ𝑖,𝑗,𝑢(𝑡) then 𝜂 ∶= 𝑢(𝑡)+𝜉 is a valid test function.
Hence for any 𝜉 ∈ Ξ𝑖,𝑗,𝑢(𝑡), by (3.30) and (3.31) we have that

𝑑𝑟𝑖 𝜉𝑖𝛽𝑖(𝑡) + 𝑑𝑟𝑗 𝜉𝑗𝛽𝑗(𝑡) ≥ 0
and so, sinceℳ(𝜉) = 0 (i.e. 𝑑𝑟𝑖 𝜉𝑖 + 𝑑𝑟𝑗 𝜉𝑗 = 0), for any 𝜉 ∈ Ξ𝑖,𝑗,𝑢(𝑡) we have that

𝑑𝑟𝑖 𝜉𝑖(𝛽𝑖(𝑡) − 𝛽𝑗(𝑡)) ≥ 0. (3.32)

We now embark on a brief interlude on the existence of certain elements of
Ξ𝑖,𝑗,𝑢(𝑡) with specific properties, given certain conditions on 𝑢𝑖(𝑡) and 𝑢𝑗(𝑡). This
information will soon be of help to us in this proof.
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Note 7. If 𝑢𝑖(𝑡) = 0 and 𝑢𝑗(𝑡) > 0, then for 0 < 𝛼 ≤ 1 sufficiently small

𝜉𝑗 ∶= −𝛼𝑢𝑗(𝑡) ∈ [−𝑢𝑗(𝑡), 0) 𝜉𝑖 ∶= 𝛼𝑑−𝑟𝑖 𝑑𝑟𝑗 𝑢𝑗 ∈ (0, 1 − 𝑢𝑖(𝑡)]

defines a 𝜉 ∈ Ξ𝑖,𝑗,𝑢(𝑡) with 𝜉𝑖 > 0. Likewise, if 𝑢𝑖(𝑡) = 1 and 𝑢𝑗(𝑡) < 1, there is a
𝜉 ∈ Ξ𝑖,𝑗,𝑢(𝑡) with 𝜉𝑖 < 0, and if 𝑢𝑖(𝑡), 𝑢𝑗(𝑡) ∈ (0, 1), there exist 𝜉, 𝜉′ ∈ Ξ𝑖,𝑗,𝑢(𝑡) with
𝜉𝑖 > 0 and 𝜉′𝑖 < 0.

Next, first suppose 𝑢𝑗(𝑡) ∈ (0, 1) for some 𝑗 ∈ 𝑉. Then we fix such a 𝑗 and
choose 𝜃(𝑡) so that 𝛽𝑗(𝑡) = 0, and thus by (3.32) for any 𝑖 ∈ 𝑉 and 𝜉 ∈ Ξ𝑖,𝑗,𝑢(𝑡):

𝜉𝑖𝛽𝑖(𝑡) ≥ 0.

Then by the above note, if we choose a 𝜉 ∈ Ξ𝑖,𝑗,𝑢(𝑡) with 𝜉𝑖 of the appropriate sign,

𝛽𝑖(𝑡) {
= 0, if 𝑢𝑖(𝑡) ∈ (0, 1),
≤ 0, if 𝑢𝑖(𝑡) = 1,
≥ 0, if 𝑢𝑖(𝑡) = 0,

and so 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)).
Next, suppose no such 𝑗 exists. By above if 𝑢𝑖(𝑡) = 0 and 𝑢𝑗(𝑡) = 1 then we can

choose 𝜉 ∈ Ξ𝑖,𝑗,𝑢(𝑡) with 𝜉𝑖 > 0 and so by (3.32) we have that 𝛽𝑗(𝑡) ≤ 𝛽𝑖(𝑡). Thus
we can choose 𝜃(𝑡) to add an appropriate constant to the values of 𝛽(𝑡) so that

0 ∈ [ max
𝑢𝑗(𝑡)=1

𝛽𝑗(𝑡), min
𝑢𝑖(𝑡)=0

𝛽𝑖(𝑡)] .

Hence we have

𝛽𝑖(𝑡) {
≤ 0, if 𝑢𝑖(𝑡) = 1,
≥ 0, if 𝑢𝑖(𝑡) = 0,

so 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)). Therefore we can choose 𝜃 so that 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)) at a.e. 𝑡 ∈ 𝑇.
Note finally that whatever the choice of 𝜃, by (3.29b) and (3.31) we have at

a.e. 𝑡 ∈ 𝑇
𝛽(𝑡) = 𝜃(𝑡)

Hence by (3.31), at all such 𝑡

𝜀 𝑑𝑢𝑑𝑡 + 𝜀Δ𝑢(𝑡) − 𝑢(𝑡) + 𝑢(𝑡)1 = 𝛽(𝑡) − 𝛽(𝑡)1

and, by choice of 𝜃(𝑡), 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)). Hence (𝑢, 𝛽) solves (3.23).

Theorem 3.4.8 (Explicit integral forms). Let (𝑢, 𝛽) ∈ 𝒱[0,1],𝑡∈𝑇 ×𝒱𝑡∈𝑇, and recall 𝐹𝑡
from Definition 3.2.5.

Then (𝑢, 𝛽) satisfies Definition 3.4.1 if and only if the following hold:

• 𝛽 is locally integrable,



3.4. Double-obstacle AC flow

3

37

• for a.e. 𝑡 ∈ 𝑇, 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)) and 𝛽(𝑡) ∈ 𝒱[−1/2,1/2], and

• for all 𝑡 ∈ 𝑇 (for 𝐵 ∶= 𝐴 − 𝜀−1𝐼):

𝑢(𝑡) = 𝑒−𝑡𝐵𝑢(0) + 𝐹𝑡(𝐵) (𝑓 −
1
2𝜀1) +

1
𝜀 ∫

𝑡

0
𝑒−(𝑡−𝑠)𝐵𝛽(𝑠) 𝑑𝑠. (3.33)

Furthermore (𝑢, 𝛽) satisfies Definition 3.4.2 if and only if the following hold:

• 𝛽 − 𝛽̄1 is locally integrable,

• for a.e. 𝑡 ∈ 𝑇, 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)) and 𝛽(𝑡) − 𝛽̄(𝑡)1 ∈ 𝒱[𝑢̄−1,𝑢̄], and

• for all 𝑡 ∈ 𝑇 (for 𝐵 ∶= Δ − 𝜀−1𝐼):

𝑢(𝑡) = 𝑢̄1+ 𝑒−𝑡𝐵 (𝑢(0) − 𝑢̄1) + 1𝜀 ∫
𝑡

0
𝑒−(𝑡−𝑠)𝐵 (𝛽(𝑠) − 𝛽̄(𝑠)1) 𝑑𝑠. (3.34)

Note 8. Previously published (namely, in [12, 13, 14]) versions of the results
concerning the explicit integral form (as well as results concerning existence of
solutions, well-posedness, monotonic decrease of Ginzburg–Landau, and Lipschitz
continuity, all to be stated in sections 3.4.4 and 3.4.6 of this chapter) required a
technical condition that 𝜀−1 ∉ 𝜎(Δ) (or 𝜎(𝐴) in the fidelity forced case). In this
chapter, we slightly modify our approach to no longer require this condition. This
will also remove the condition from the SDIE convergence result (Theorem 4.5.9)
proved in the next chapter.

Proof. Let (𝑢, 𝛽) obey Definition 3.4.1 or 3.4.2. Note that we can rewrite both
(3.22) and (3.23) in the form:

𝜀𝑑𝑢𝑑𝑡 (𝑡) + 𝜀𝐵𝑢(𝑡) − 𝑣 = 𝛾(𝑡) (3.35)

where 𝑣 = 𝜀𝑓 − 1
21 and 𝛾 = 𝛽 in the former case, and 𝑣 = −𝑢̄1 and 𝛾 = 𝛽 − 𝛽̄1

in the latter case. Then 𝛾 is a sum of a continuous function and the derivative of a
𝐻1𝑙𝑜𝑐 function and hence is locally integrable. The a.e. pointwise bounds on 𝛾 follow
from Theorem 3.4.4 in the former case and Lemma 4.5.14 in the latter case.

Finally (3.35) can be further rewritten:

𝜀 𝑑𝑑𝑡 (𝑒
𝑡𝐵𝑢(𝑡)) = 𝑒𝑡𝐵(𝛾(𝑡) + 𝑣).

Hence, by the the ‘fundamental theorem of calculus’ on 𝐻1 [10, Theorem 8.2], if
𝑢 ∈ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱) ∩ 𝐶0(𝑇; 𝒱) solves (3.22) or (3.23), then for all 𝑡 ∈ 𝑇

𝑒𝑡𝐵𝑢(𝑡)−𝑢(0) = 1
𝜀 (∫

𝑡

0
𝑒𝑠𝐵𝑣 𝑑𝑠 + ∫

𝑡

0
𝑒𝑠𝐵𝛾(𝑠) 𝑑𝑠) = 1

𝜀 𝑒
𝑡𝐵𝐹𝑡(𝐵)𝑣+

1
𝜀 ∫

𝑡

0
𝑒𝑠𝐵𝛾(𝑠) 𝑑𝑠
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(where we have used that ∫𝑡0 𝑒𝑠𝐵 𝑑𝑠 = 𝑒𝑡𝐵𝐹𝑡(𝐵), which is simple to verify) and so

𝑢(𝑡) = 𝑒−𝑡𝐵𝑢(0) + 1𝜀 𝐹𝑡(𝐵)𝑣 +
1
𝜀 𝑒

−𝑡𝐵∫
𝑡

0
𝑒𝑠𝐵𝛾(𝑠) 𝑑𝑠. (3.36)

Thus if 𝑢 solves (3.22) then 𝑢 solves (3.33). If 𝑢 solves (3.23), then note that 𝑣 is an
eigenvector of 𝑄 with eigenvalue −1/𝜀 and so 𝐹𝑡(𝐵)𝑣 = 𝐹𝑡(−1/𝜀)𝑣 = 𝜀(1−𝑒𝑡/𝜀)𝑢̄1.
Since 𝑒−𝑡𝐵1 = 𝑒𝑡/𝜀1 we thus have that

𝑢(𝑡) = 𝑢̄1+ 𝑒−𝑡𝐵(𝑢(0) − 𝑢̄1) + 1𝜀 𝑒
−𝑡𝐵∫

𝑡

0
𝑒𝑠𝐵𝛾(𝑠) 𝑑𝑠

and so 𝑢 solves (3.34).
Now, let (𝑢, 𝛽) ∈ 𝒱[0,1],𝑡∈𝑇 × 𝒱𝑡∈𝑇 satisfy, at a.e. 𝑡 ∈ 𝑇, 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)), and

𝛾(𝑡) ∈ 𝒱[𝑎,𝑏] (where the ordered pair (𝑎, 𝑏) equals (−1/2, 1/2) in the former case
and (𝑢̄−1, 𝑢̄) in the latter case) is locally integrable, and let at all 𝑡 ∈ 𝑇 𝑢(𝑡) be given
by (3.36). Then, differentiating (3.36), at all 𝑡 ∈ 𝑇 𝑢 has formal weak derivative

𝑑𝑢
𝑑𝑡 (𝑡) = −𝐵𝑒

−𝑡𝐵𝑢(0) + 1𝜀 𝑒
−𝑡𝐵𝑣 + 1𝜀 𝛾(𝑡) −

1
𝜀 𝐵∫

𝑡

0
𝑒−(𝑡−𝑠)𝐵𝛾(𝑠) 𝑑𝑠

which can be checked to satisfy (3.35). All that remains is to check the regularity
of 𝑢. The continuity of 𝑢 is immediate, as it is a sum of two smooth terms and the
integral of an essentially bounded function. To check that 𝑢 ∈ 𝐻1𝑙𝑜𝑐: 𝑢 is bounded,
so is locally 𝐿2, and by above 𝑑𝑢/𝑑𝑡 is a sum of (respectively) two smooth functions,
an essentially bounded function, and the integral of an essentially bounded function,
so is locally essentially bounded and hence locally 𝐿2.

Note 9. The forward reference to Lemma 4.5.14 does not introduce circularity
here, because we do not use this aspect of the forward direction of this theorem
until after proving that lemma. We will however use the converse direction in
proving the convergence of the semi-discrete scheme (Theorem 4.5.9).

3.4.4. Existence and uniqueness theory
We here prove uniqueness results and state existence results (which we shall prove
in section 4.5). These results in fact follow from standard gradient flow theory
(see [1, Chapter 4 especially Theorem 4.0.4] for details; to apply this theory in the
present case it is important to note that GL𝜀 is proper, coercive, lower semicontinu-
ous and is (−1)-convex, and hence [1, (4.0.1) and Assumption 4.0.1] are satisfied).
However, these techniques are more theoretically involved than is needed in the
present case, so we will present these results with more elementary proofs.

We begin with uniqueness.

Theorem 3.4.9. Let 𝑇 = [0, 𝑇0] or [0,∞), and let (𝑢, 𝛽) and (𝑣, 𝛾) satisfy 𝑢, 𝑣 ∈
𝒱[0,1],𝑡∈𝑇 ∩ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱) ∩ 𝐶0(𝑇; 𝒱) and 𝑢(0) = 𝑣(0).

If (𝑢, 𝛽) and (𝑣, 𝛾) solve (3.22), then 𝑢(𝑡) = 𝑣(𝑡) for all 𝑡 ∈ 𝑇 and 𝛽(𝑡) = 𝛾(𝑡)
at a.e. 𝑡 ∈ 𝑇.
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If (𝑢, 𝛽) and (𝑣, 𝛾) solve (3.23), then for all 𝑡 ∈ 𝑇, 𝑢(𝑡) = 𝑣(𝑡), and there exists
𝑇̃ such that 𝑇 ⧵ 𝑇̃ has zero measure and for all 𝑡 ∈ 𝑇̃, 𝛽(𝑡) − 𝛾(𝑡) = (𝛽̄(𝑡) − 𝛾̄(𝑡))1.
Furthermore, if 𝑢𝑖(𝑡) ∈ (0, 1) for some 𝑖 ∈ 𝑉 and 𝑡 ∈ 𝑇̃, then 𝛽(𝑡) = 𝛾(𝑡).

Proof. In the case for (3.22), 𝑢(𝑡) = 𝑣(𝑡) for all 𝑡 ∈ 𝑇 follows immediately from
Theorem 3.4.5 and therefore 𝛽(𝑡) = 𝛾(𝑡) at a.e. 𝑡 ∈ 𝑇 follows from Theorem 3.4.4.

Next, let 𝑢 and 𝑣 solve (3.23). Then by subtracting and since 𝑢̄ = 𝑣̄ we get for
a.e. 𝑡 ∈ 𝑇

𝜀 𝑑𝑑𝑡 (𝑣(𝑡)−𝑢(𝑡))+ 𝜀Δ(𝑣(𝑡)−𝑢(𝑡))− (𝑣(𝑡)−𝑢(𝑡)) = (𝛾(𝑡)−𝛽(𝑡))+ (𝛽̄(𝑡)− 𝛾̄(𝑡))1.

Let 𝑤 ∶= 𝑣 − 𝑢 and take the inner product with 𝑤, noting that ⟨𝑤,1⟩𝒱 = 0,

𝜀 ⟨𝑑𝑤𝑑𝑡 , 𝑤(𝑡)⟩
𝒱
+ 𝜀⟨Δ𝑤(𝑡), 𝑤(𝑡)⟩𝒱 − ⟨𝑤(𝑡), 𝑤(𝑡)⟩𝒱 = ⟨𝛾(𝑡) − 𝛽(𝑡), 𝑤(𝑡)⟩𝒱 .

Consider (𝑣𝑖(𝑡)−𝑢𝑖(𝑡))(𝛾𝑖(𝑡)−𝛽𝑖(𝑡)). If 𝑣𝑖(𝑡) = 𝑢𝑖(𝑡) this equals 0. If 𝑣𝑖(𝑡) > 𝑢𝑖(𝑡)
then a simple case check of the possible values of 𝑢𝑖(𝑡) and 𝑣𝑖(𝑡) gives that 𝛾𝑖(𝑡) ≤
𝛽𝑖(𝑡) and likewise if 𝑣𝑖(𝑡) < 𝑢𝑖(𝑡) then 𝛾𝑖(𝑡) ≥ 𝛽𝑖(𝑡). Hence ⟨𝛾(𝑡)−𝛽(𝑡), 𝑤(𝑡)⟩𝒱 ≤ 0.
Furthermore since Δ is positive semi-definite we have ⟨Δ𝑤(𝑡), 𝑤(𝑡)⟩𝒱 ≥ 0. Therefore
by the above we have for a.e. 𝑡 ∈ 𝑇,

1
2𝜀
𝑑
𝑑𝑡 ||𝑤(𝑡)||

2
𝒱 ≤ ||𝑤(𝑡)||2𝒱

and note that 𝑤(0) = 0. Hence by Grönwall’s differential inequality [24] we have
that for all 𝑡 ∈ 𝑇, ||𝑤(𝑡)||2𝒱 ≤ 0. Therefore, for all 𝑡 ∈ 𝑇, 𝑣(𝑡) = 𝑢(𝑡).

Finally by Theorem 3.4.4, since 𝑢 = 𝑣 on 𝑇, at a.e. 𝑡 ∈ 𝑇 (in particular, at 𝑡 ∈ 𝑇̃
for some 𝑇̃ ⊆ 𝑇 with 𝑇 ⧵ 𝑇̃ of zero measure):

𝛽𝑖(𝑡) − 𝛾𝑖(𝑡) = {
𝛽̄(𝑡) − 𝛾̄(𝑡), if 𝑢𝑖(𝑡) = 0,
0, if 𝑢𝑖(𝑡) ∈ (0, 1),
𝛽̄(𝑡) − 𝛾̄(𝑡), if 𝑢𝑖(𝑡) = 1.

Therefore at 𝑡 ∈ 𝑇̃, either 𝛽(𝑡) − 𝛾(𝑡) = (𝛽̄(𝑡) − 𝛾̄(𝑡))1 or, if 𝑢𝑖(𝑡) ∈ (0, 1) for some
𝑖 ∈ 𝑉, then taking the average value of both sides we get

𝛽̄(𝑡) − 𝛾̄(𝑡) = (𝛽̄(𝑡) − 𝛾̄(𝑡))𝜒{𝑖∣𝑢𝑖(𝑡)∈{0,1}}

so 𝛽̄(𝑡) − 𝛾̄(𝑡) = 0 and hence 𝛽(𝑡) = 𝛾(𝑡) (and thus also 𝛽(𝑡) − 𝛾(𝑡) = (𝛽̄(𝑡) −
𝛾̄(𝑡))1).

Note 10. There are only 2|𝑉| distinct 𝑢 such that 𝑢𝑖 ∈ {0, 1} for all 𝑖 ∈ 𝑉. Hence if
𝑢(0) ∈ [0, 1] ⧵ {𝑢̄ ∣ 𝑢 ∈ 𝒱 and ∀𝑖 ∈ 𝑉, 𝑢𝑖 ∈ {0, 1}}, then we must have 𝛽(𝑡) = 𝛾(𝑡)
for a.e. 𝑡 ∈ 𝑇 (since 𝑢(𝑡) = 𝑢(0)). Note that this set contains all but finitely many
of the values of [0, 1].
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We now state existence results, which we shall prove in section 4.5.

Theorem 3.4.10. Let 𝑇 = [0,∞). Then for all 𝑢0 ∈ 𝒱[0,1], there exists (𝑢, 𝛽)
satisfying Definition 3.4.1 with 𝑢(0) = 𝑢0, and (𝑢, 𝛽) satisfying Definition 3.4.2 with
𝑢(0) = 𝑢0.
Proof. We prove this as Theorem 4.5.9, by taking the limit as 𝜏 ↓ 0 of the semi-
discrete approximations. (We avoid circularity as we do not use this theorem until
after we have proved Theorem 4.5.9.)

3.4.5. Conditions for freezing
It was observed in [22, Theorem 5.3] (though for a different choice of 𝑊) that if 𝜀
is too small the AC flow “freezes”, i.e. any 𝑖 ∈ 𝑉 with 𝑢𝑖(0) ≈ 0 has 𝑢𝑖(𝑡) ≈ 0 for all
𝑡 ≥ 0 (and likewise for 𝑢𝑖(0) ≈ 1). We now show that a similar result holds true in
the fidelity forced and mass-conserving cases with the double-obstacle potential.

Theorem 3.4.11. Let 𝑆 ⊆ 𝑉 and let 𝑢(𝑡) ∶= 𝜒𝑆 for all 𝑡 ∈ 𝑇. Then 𝑢 solves (3.22)
if and only if

𝜀max
𝑖∈𝑆𝑐

|(Δ𝜒𝑆)𝑖| ≤
1
2 − 𝜀𝑓𝑖 , and 𝜀max

𝑖∈𝑆
|(Δ𝜒𝑆)𝑖| ≤

1
2 + 𝜀𝑓𝑖 − 𝜀𝜇𝑖 . (3.37)

Furthermore, 𝑢 solves (3.23) if and only if 𝜀max𝑖∈𝑆𝑐 |(Δ𝜒𝑆)𝑖| ≤ 1−𝜀max𝑖∈𝑆 |(Δ𝜒𝑆)𝑖|,
which always holds if 𝜀 ≤ 1

2 ||Δ𝜒𝑆||
−1
∞ .

Proof. Note that 𝑢(𝑡) ∶= 𝜒𝑆 for all 𝑡 ∈ 𝑇 satisfies 𝑢 ∈ 𝐻1𝑙𝑜𝑐(𝑇; 𝒱)∩𝐶0(𝑇; 𝒱)∩𝒱[0,1],𝑡∈𝑇,
and has weak derivative 𝑑𝑢/𝑑𝑡(𝑡) = 0 for all 𝑡 ∈ 𝑇. Hence, such a 𝑢 solves (3.22)
or (3.23) if and only if there exists a 𝛽 ∈ 𝒱𝑡∈𝑇 such that for a.e. 𝑡 ∈ 𝑇, 𝛽(𝑡) ∈ ℬ(𝜒𝑆)
and

𝜀𝐴𝜒𝑆 − 𝜀𝑓 +
1
21− 𝜒𝑆 = 𝛽(𝑡), or 𝜀Δ𝜒𝑆 − 𝜒𝑆 + 𝜒𝑆1 = 𝛽(𝑡) − 𝛽(𝑡)1,

respectively.
In turn, this holds if and only if there exists a 𝛽′ ∈ 𝒱 such that for all 𝑖 ∈ 𝑆,

𝛽′𝑖 ≤ 0, for all 𝑖 ∈ 𝑆𝑐, 𝛽′𝑖 ≥ 0, and 𝛽(𝑡) ∶= 𝛽′ solves the above equations. In the
fidelity forced case, this immediately gives the desired conditions.

In the mass-conserving case, we want to have that

𝜀Δ𝜒𝑆 − 𝜒𝑆 + 𝜒𝑆1 = 𝛽′ − 𝛽′1. (3.38)

Observe that for all 𝜃 ∈ ℝ, 𝛽″ ∶= 𝜀Δ𝜒𝑆−𝜒𝑆+𝜃1 satisfies (3.38), and furthermore if
some 𝛽‴ satisfies (3.38) then 𝛽″−𝛽″1 = 𝛽‴−𝛽‴1 and so 𝛽‴ = 𝛽″+(𝛽‴−𝛽″)1.
Thus all 𝛽′ satisfying (3.38) are of the form 𝛽′ = 𝜀Δ𝜒𝑆 − 𝜒𝑆 + 𝜃1.

Hence, 𝑢 solves (3.23) if and only if there exists a 𝜃 ∈ ℝ such that for all 𝑖 ∈ 𝑆,
𝜀(Δ𝜒𝑆)𝑖 − 1+ 𝜃 ≤ 0, and for all 𝑖 ∈ 𝑆𝑐, 𝜀(Δ𝜒𝑆)𝑖 + 𝜃 ≥ 0. Note that by the definition
of Δ, (Δ𝜒𝑆)𝑖 ≥ 0 for 𝑖 ∈ 𝑆 and (Δ𝜒𝑆)𝑖 ≤ 0 for 𝑖 ∈ 𝑆𝑐. Therefore, such a 𝜃 exists
if and only if [𝜀max𝑖∈𝑆𝑐 |(Δ𝜒𝑆)𝑖|, 1 − 𝜀max𝑖∈𝑆 |(Δ𝜒𝑆)𝑖|] is non-empty. Finally, if
𝜀||Δ𝜒𝑆||∞ ≤

1
2 , then it suffices to take 𝜃 =

1
2 .
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Note 11. It is common in practice for 𝑓̃ = 𝜒𝑍′ for 𝑍′ ⊆ 𝑍 (recall that 𝑍 ∶= supp 𝜇).
If 𝜇𝑖𝜀 >

1
2 for all 𝑖 ∈ 𝑍 and 𝑆 satisfies (3.37), then since the RHSs must be non-

negative it follows that if 𝑖 ∈ 𝑆∩𝑍 then 𝑖 ∈ 𝑍′, and if 𝑖 ∈ 𝑆𝑐 then 𝑖 ∈ 𝑍′𝑐. That is, we
must have 𝑆 ∩ 𝑍 = 𝑍′. In words, if the reference is binary and the fidelity forcing is
sufficiently strong, then any frozen solutions must agree with the reference on the
reference data.

3.4.6. Miscellaneous properties to be proved in chapter 4
For completeness, we state three more important properties of this AC flow, which
we will prove in the next chapter using the machinery we will develop there using
the SDIE scheme.

Theorem 3.4.12 (Well-posedness of fidelity forced AC flow). Let 𝑢0, 𝑣0 ∈ 𝒱[0,1],
𝑇0 ≥ 0, 𝑇 = [0, 𝑇0] or [0,∞), and let (𝑢, 𝛽), (𝑣, 𝛾) be fidelity forced AC trajectories
on 𝑇 as in Definition 3.4.1 with 𝑢(0) = 𝑢0 and 𝑣(0) = 𝑣0. Then, for 𝜉1 ∶=min𝜎(𝐴),

||𝑢(𝑡) − 𝑣(𝑡)||𝒱 ≤ 𝑒−𝜉1𝑡𝑒𝑡/𝜀||𝑢0 − 𝑣0||𝒱 . (3.39)

Proof. We prove this as Theorem 4.5.13 for the solution given by Theorem 4.5.9,
which by uniqueness is the generic solution.

Theorem3.4.13 (Gradient flow property). For 𝑢 as in Definition 3.4.1,GL𝜀,𝜇,𝑓̃(𝑢(𝑡))
monotonically decreases, and for 𝑢 as in Definition 3.4.2, GL𝜀(𝑢(𝑡)) monotonically
decreases.

Proof. We prove this as Theorem 4.5.12 for the solution given by Theorem 4.5.9,
which by uniqueness is the generic solution.

In the case of 𝑢 as in Definition 3.4.1 we here give a more direct proof. It
suffices to show that at a.e. 𝑡,

𝑑GL𝜀,𝜇,𝑓̃(𝑢(𝑡))
𝑑𝑡 ≤ 0.

Define

𝐺𝜀,𝜇,𝑓̃(𝑢) ∶=
1
2 ||∇𝑢(𝑡)||

2
ℰ +

1
2𝜀 ⟨𝑢(𝑡),1− 𝑢(𝑡)⟩𝒱 +

1
2⟨𝑢 − 𝑓̃,𝑀(𝑢 − 𝑓̃)⟩𝒱

then by (3.9) we have, for all 𝑡,

GL𝜀,𝜇,𝑓̃(𝑢(𝑡)) = 𝐺𝜀,𝜇,𝑓̃(𝑢(𝑡)) +
1
𝜀 ⟨𝐼[0,1] ∘ 𝑢(𝑡),1⟩𝒱 = 𝐺𝜀,𝜇,𝑓̃(𝑢(𝑡))

since 𝑢(𝑡) ∈ 𝒱[0,1] for all 𝑡. Hence, since ∇𝒱𝐺𝜀,𝜇,𝑓̃(𝑢) = 𝐴𝑢 − 𝑓 + 1
𝜀 (

1
21− 𝑢), we
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note that

𝜀2
𝑑GL𝜀,𝜇,𝑓̃(𝑢(𝑡))

𝑑𝑡

= 𝜀2
𝑑𝐺𝜀,𝜇,𝑓̃(𝑢(𝑡))

𝑑𝑡 = ⟨𝜀𝑑𝑢𝑑𝑡 , 𝜀𝐴𝑢(𝑡) − 𝜀𝑓 +
1
21− 𝑢(𝑡)⟩

𝒱

= ⟨𝛽(𝑡) − 𝜀𝐴𝑢(𝑡) + 𝜀𝑓 − 121+ 𝑢(𝑡), 𝜀𝐴𝑢(𝑡) − 𝜀𝑓 +
1
21− 𝑢(𝑡)⟩

𝒱
. (∗)

By Theorem 3.4.4, at a.e. 𝑡 and all 𝑖 ∈ 𝑉, if 𝑢𝑖(𝑡) ∈ {0, 1}, then 𝛽𝑖(𝑡) − 𝜀(𝐴𝑢(𝑡))𝑖 +
𝜀𝑓𝑖 −

1
2 + 𝑢𝑖(𝑡) = 0, and if 𝑢𝑖(𝑡) ∈ (0, 1), then 𝛽𝑖(𝑡) = 0. Thus for a.e. 𝑡, let

𝑉′𝑡 ∶= {𝑖 ∈ 𝑉 ∣ 𝑢𝑖(𝑡) ∈ (0, 1)}, and so

(∗) = −∑
𝑖∈𝑉′𝑡

𝑑𝑟𝑖 (𝜀(𝐴𝑢(𝑡))𝑖 − 𝜀𝑓𝑖 +
1
2 − 𝑢𝑖(𝑡))

2
≤ 0

as desired.

Theorem 3.4.14 (Lipschitz continuity of trajectories). If 𝑢 satisfies Definition 3.4.1
or 3.4.2, then 𝑢 ∈ 𝐶0,1(𝑇; 𝒱).

Proof. We prove this as Theorem 4.5.15.
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4
The SDIE link between

Allen–Cahn flow and the
MBO scheme

The problem with modern mathematics is that it’s all in black boxes and
you can’t see the whirry bits going on inside.

T. W. Körner, during a 1982 Tripos lecture (quoted by Chris Budd)

In chapter 3, we defined and examined the properties of Allen–Cahn (AC) flow
and the Merriman–Bence–Osher (MBO) scheme on a graph, including under
mass-conserving and fidelity forcing constraints, and also defined the semi-
discrete implicit Euler (SDIE) scheme for AC flow. In particular, we defined a
graph AC flow against the non-differentiable double-obstacle potential. Fur-
thermore, we noted that in the continuum setting these two processes are
known to be deeply linked. In this chapter, we rigorously demonstrate that
these processes are also linked in the graph setting. In particular, we shall
prove that the graph MBO scheme is a special case of an SDIE scheme for
the double-obstacle AC flow, and that this fact remains true in the mass-
conserving and fidelity forced cases. Furthermore, we shall give an explicit
form for the solution to the SDIE scheme, and show that as its time step tends
to zero the SDIE scheme converges to a solution to the AC flow.

Parts of this chapter have been published in SIAM J. Math. Anal. 52 (2020) [3], Eur. J. Appl. Math.
(2021) [4], and GAMM Mitteilungen 44 (2021) [5].

47



4

48 4. The SDIE link between Allen–Cahn flow and the MBO scheme

In this chapter, we will rigorously link together the graph MBO scheme and the
double-obstacle AC flow via our SDIE scheme, using the theory developed for the
double-obstacle AC flow in the last chapter. To keep the wood visible for the many
trees, we will begin with a summary of the key results of this chapter.

First, we will define SDIE schemes for each of the AC flows defined in the pre-
vious chapter. We will prove that these numerical schemes are equivalent to vari-
ational equations, and then investigate the solution to these variational schemes.
We will discover that the SDIE updates are given by a diffusion followed by a piece-
wise linear thresholding, with the MBO thresholding as a special case. We will
furthermore show that as the parameters of the SDIE scheme converge to those
corresponding to the MBO special case, the SDIE solutions given by those param-
eters converge to an MBO solution. We will also find conditions under which the
SDIE schemes freeze, connecting to the results of Van Gennip et al. [9] regarding
the freezing of the MBO scheme.

Next, by defining Lyapunov functionals for the SDIE schemes, we will investigate
their long-time behaviour. We will show that the MBO special cases are eventually
constant (under certain conditions), and that in the non-MBO cases the distances
between consecutive terms in an SDIE sequence are square-summable (and hence
converge to zero) and that the SDIE sequences converge along a sub-sequence,
however we will be unable to prove convergence of the whole sequence from these
facts. We will also examine the properties of the gradient of the Lyapunov func-
tional.

Finally, we will show the convergence of the SDIE schemes as their time step
tends to zero. We will prove that the SDIE schemes converge pointwise to solutions
of the corresponding AC flows, proving that solutions to those flows exist. We will
furthermore use this characterisation of the AC flow solutions to prove the results
about the AC flows which were stated in section 3.4.6 of the last chapter.

4.1. The SDIE schemes, and the link to the MBO
scheme

We now define the fidelity forced and mass-conserving SDIE schemes for 𝑊 the
double-obstacle potential.

Definition 4.1.1 (SDIE scheme with fidelity forcing). For 𝑢0 ∈ 𝒱[0,1], 𝑛 ∈ ℕ, and
𝜆 ∶= 𝜏/𝜀 ∈ [0, 1] we define the fidelity forced SDIE scheme iteratively:

(1 − 𝜆)𝑢𝑛+1 − 𝒮𝜏𝑢𝑛 +
𝜆
21 = 𝜆𝛽𝑛+1 (4.1)

for 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1).
Definition 4.1.2 (Mass-conserving SDIE scheme). For 𝑢0 ∈ 𝒱[0,1], 𝑛 ∈ ℕ, and
𝜆 ∈ [0, 1] we define the mass-conserving SDIE scheme iteratively:

𝑢𝑛+1 − 𝑒−𝜏Δ𝑢𝑛 − 𝜆𝑢𝑛+1 + 𝜆𝑢𝑛+11 = 𝜆𝛽𝑛+1 − 𝜆𝛽𝑛+11 (4.2)

for 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1).
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Note 12. Recall that since in both of these schemes ℬ(𝑢𝑛) is non-empty for all
𝑛, we must have 𝑢𝑛 ∈ 𝒱[0,1] for all 𝑛. Note also that a priori, these definitions
permit non-unique trajectories. However, for 𝜆 < 1 we will have as a consequence
of Theorem 4.1.4 that the updates are in fact unique. The 𝜆 = 1 case we will
prove to be the MBO special case, which has non-unique solutions, which we shall
characterise in sections 4.2.1 and 4.2.4 in the fidelity forced and mass-conserving
cases respectively.

We check that the latter scheme conserves mass.

Proposition 4.1.3. For 𝑢𝑛+1 given by (4.2),

ℳ(𝑢𝑛+1) = ℳ(𝑢𝑛).

Proof. Taking the mass of both sides of (4.2) and cancelling gives

⟨𝑢𝑛+1,1⟩𝒱 = ⟨𝑒−𝜏Δ𝑢𝑛 ,1⟩𝒱 = ⟨𝑢𝑛 ,1⟩𝒱

with the final equality because 𝑒−𝜏Δ is self-adjoint and 𝑒−𝜏Δ1 = 1.

We now express these schemes variationally, and link them to the MBO scheme.

Theorem 4.1.4. Suppose 𝜆 ∶= 𝜏/𝜀 ∈ [0, 1].
If (𝑢𝑛+1, 𝛽𝑛+1) solves (4.1) with 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1), then 𝑢𝑛+1 solves:

𝑢𝑛+1 ∈ argmin
𝑢∈𝒱[0,1]

𝜆 ⟨𝑢,1− 𝑢⟩𝒱 + ||𝑢 − 𝒮𝜏𝑢𝑛||
2
𝒱 . (4.3)

Note that for 𝜆 = 1 (4.3) is equivalent to the variational problem (3.8) that defines
the fidelity forced MBO scheme.

If (𝑢𝑛+1, 𝛽𝑛+1) solves (4.2) with 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1), then 𝑢𝑛+1 solves:

𝑢𝑛+1 ∈ argmin
𝑢∈𝒱[0,1]

ℳ(𝑢)=ℳ(𝑢𝑛)

𝜆 ⟨𝑢,1− 𝑢⟩𝒱 + ||𝑢 − 𝑒−𝜏Δ𝑢𝑛||
2
𝒱

≃ (1 − 𝜆) ||𝑢||2𝒱 − 2⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 .
(4.4)

In particular, when 𝜆 = 1 we have

𝑢𝑛+1 ∈ argmax
𝑢∈𝒱[0,1]

ℳ(𝑢)=ℳ(𝑢𝑛)

⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 (4.5)

which is equivalent to the mass-conserving MBO scheme as in Definition 3.2.10.

Proof. Let (𝑢𝑛+1, 𝛽𝑛+1) solve (4.1) or (4.2) with 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1). Let 𝑧 ∶= 𝒮𝜏𝑢𝑛
in the former case or 𝑧 ∶= 𝑒−𝜏Δ𝑢𝑛 in the latter case. We seek to show that for
0 ≤ 𝜆 ≤ 1

𝜆⟨𝑢𝑛+1,1− 𝑢𝑛+1⟩𝒱 + ⟨𝑢𝑛+1 − 𝑧, 𝑢𝑛+1 − 𝑧⟩𝒱 ≤ 𝜆⟨𝜂,1− 𝜂⟩𝒱 + ⟨𝜂 − 𝑧, 𝜂 − 𝑧⟩𝒱
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either for all 𝜂 ∈ 𝒱[0,1] (in the former case) or for all 𝜂 ∈ 𝒱[0,1] with 𝜂 − 𝑢𝑛+1⊥1 (in
the latter case). By rearranging and cancelling this is equivalent to

0 ≤ ⟨𝜂 − 𝑢𝑛+1, 𝜆1− 2𝑧⟩𝒱 + (1 − 𝜆) (⟨𝜂, 𝜂⟩𝒱 − ⟨𝑢𝑛+1, 𝑢𝑛+1⟩𝒱)
= ⟨𝜂 − 𝑢𝑛+1, 𝜆1− 2𝑧 + (1 − 𝜆)(𝜂 + 𝑢𝑛+1)⟩𝒱
= ⟨𝜂 − 𝑢𝑛+1, 2𝜆𝛽𝑛+1 + (1 − 𝜆)(𝜂 − 𝑢𝑛+1)⟩𝒱
= 2𝜆 ⟨𝜂 − 𝑢𝑛+1, 𝛽𝑛+1⟩𝒱 + (1 − 𝜆)||𝜂 − 𝑢𝑛+1||2𝒱

where the second equality follows directly from (4.1) in the former case, and in the
latter case from (4.2) via adding 𝜆(−1+2𝑢̄+2𝛽𝑛+1)1 to the latter term in the inner
product (which doesn’t affect the product since 𝜂 − 𝑢𝑛+1⊥1). Finally, we have by
Lemma 3.4.6 that this inequality holds for all 𝜂 ∈ 𝒱[0,1].

Note 13. This theorem shows that solutions to either of the SDIE schemes solve
a corresponding variational equation. A natural question, which will be the topic
of the next section, is whether the converse holds. That is, are these variational
equations equivalent to the SDIE schemes?

4.2. Solving the variational form, and the converse
of Theorem 4.1.4

In this section, we characterise the solutions to the above variational equations for
the SDIE schemes, and show that these solutions satisfy the definitions of those
schemes. We will begin with the fidelity forced case, which will take us only a single
subsection, and the remainder of this section will be devoted to the mass-conserving
case.

4.2.1. The fidelity forced case
Theorem 4.2.1. The variational equation (4.3) has unique solution for 𝜆 ∈ (0, 1)1

(𝑢𝑛+1)𝑖 =
⎧

⎨
⎩

0, if (𝒮𝜏𝑢𝑛)𝑖 <
1
2𝜆,

1
2 +

(𝒮𝜏𝑢𝑛)𝑖−1/2
1−𝜆 , if 12𝜆 ≤ (𝒮𝜏𝑢𝑛)𝑖 < 1 −

1
2𝜆,

1, if (𝒮𝜏𝑢𝑛)𝑖 ≥ 1 −
1
2𝜆,

(4.6)

with corresponding 𝛽𝑛+1 = 𝜆−1 ((1 − 𝜆)𝑢𝑛+1 − 𝒮𝜏𝑢𝑛 +
𝜆
21), and solutions for 𝜆 = 1

(𝑢𝑛+1)𝑖 ∈ {
{1}, (𝒮𝜏𝑢𝑛)𝑖 > 1/2,
[0, 1], (𝒮𝜏𝑢𝑛)𝑖 = 1/2,
{0}, (𝒮𝜏𝑢𝑛)𝑖 < 1/2,

(4.7)

(i.e. the MBO thresholding) with corresponding 𝛽𝑛+1 =
1
21− 𝒮𝜏𝑢𝑛.

1If 𝜆 = 0 then 𝒮𝜏𝑢𝑛 = 𝑢𝑛 and so we have trivial solution 𝑢𝑛+1 = 𝑢𝑛. It follows that we can take
𝛽𝑛+1 =

1
21 − 𝑢𝑛 ∈ ℬ(𝑢𝑛+1).
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Hence if 𝑢𝑛+1 solves (4.3) then there exists 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1) such that (𝑢𝑛+1, 𝛽𝑛+1)
solves (4.1).

Proof. Let 𝑢 solve (4.3). The functional in (4.3) can be rewritten as

𝜆 ⟨𝑢,1− 𝑢⟩𝒱 + ||𝑢 − 𝒮𝜏𝑢𝑛||
2
𝒱 =∑

𝑖∈𝑉
𝑑𝑟𝑖 𝑔𝑖,𝑛(𝑢𝑖)

where
𝑔𝑖,𝑛(𝑥) ∶= 𝜆𝑥(1 − 𝑥) + (𝑥 − (𝒮𝜏𝑢𝑛)𝑖)

2

so we can reduce (4.3) to the system of 1-dimensional problems

(𝑢𝑛+1)𝑖 ∈ argmin
𝑥∈[0,1]

𝑔𝑖,𝑛(𝑥).

Differentiating, we get that for 0 < 𝜆 < 1, 𝑔𝑖,𝑛 is minimised at

𝑥 =
(𝒮𝜏𝑢𝑛)𝑖 − 𝜆/2

1 − 𝜆 = 1
2 +

(𝒮𝜏𝑢𝑛)𝑖 − 1/2
1 − 𝜆 .

Therefore for 0 ≤ 𝜆 < 1 the solution 𝑢 is given by

𝑢𝑖 =
⎧

⎨
⎩

0, if (𝒮𝜏𝑢𝑛)𝑖 <
1
2𝜆

1
2 +

(𝒮𝜏𝑢𝑛)𝑖−1/2
1−𝜆 , if 12𝜆 ≤ (𝑒

−𝜏Δ𝑢𝑛)𝑖 < 1 −
1
2𝜆

1, if (𝒮𝜏𝑢𝑛)𝑖 ≥ 1 −
1
2𝜆

and hence

𝜆−1 ((1 − 𝜆)𝑢𝑖 − (𝒮𝜏𝑢𝑛)𝑖 +
𝜆
2)

= {

1
2 − 𝜆

−1(𝒮𝜏𝑢𝑛)𝑖 , if (𝒮𝜏𝑢𝑛)𝑖 <
1
2𝜆,

0, if 12𝜆 ≤ (𝒮𝜏𝑢𝑛)𝑖 < 1 −
1
2𝜆,

−12 + 𝜆
−1(1 − (𝒮𝜏𝑢𝑛)𝑖), if (𝒮𝜏𝑢𝑛)𝑖 ≥ 1 −

1
2𝜆.

= {

1
2 − 𝜆

−1(𝒮𝜏𝑢𝑛)𝑖 , if 𝑢𝑖 = 0,
0, if 𝑢𝑖 ∈ (0, 1),
−12 + 𝜆

−1(1 − (𝒮𝜏𝑢𝑛)𝑖), if 𝑢𝑖 = 1.

Thus, noting that the top case has a non-negative value and the bottom case always
has a non-positive value, we observe that 𝛽 ∶= 𝜆−1 ((1 − 𝜆)𝑢 − 𝒮𝜏𝑢𝑛 +

𝜆
21) ∈ ℬ(𝑢),

so (𝑢, 𝛽) solves (4.1).
If 𝜆 = 1 then examine the functional in (4.3) for 𝜆 = 1:

⟨𝑢,1− 𝑢⟩𝒱 + ||𝑢 − 𝒮𝜏𝑢𝑛||
2
𝒱

= ⟨𝑢,1− 𝑢⟩𝒱 + ⟨𝑢 − 𝒮𝜏𝑢𝑛 , 𝑢 − 𝒮𝜏𝑢𝑛⟩𝒱
= ⟨𝑢,1⟩𝒱 − ⟨𝑢, 𝑢⟩𝒱 + ⟨𝑢, 𝑢⟩𝒱 − 2 ⟨𝑢, 𝒮𝜏𝑢𝑛⟩𝒱 + ⟨𝒮𝜏𝑢𝑛 , 𝒮𝜏𝑢𝑛⟩𝒱
≃ ⟨𝑢,1− 2𝒮𝜏𝑢𝑛⟩𝒱 ,
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and therefore 𝑢 as a minimiser must obey

𝑢𝑖 ∈ {
{1}, (𝒮𝜏𝑢𝑛)𝑖 > 1/2,
[0, 1], (𝒮𝜏𝑢𝑛)𝑖 = 1/2,
{0}, (𝒮𝜏𝑢𝑛)𝑖 < 1/2.

Hence 𝛽 ∈ ℬ(𝑢) if and only if for each 𝑖 ∈ 𝑉

𝛽𝑖 ∈ {
[0,∞), (𝒮𝜏𝑢𝑛)𝑖 ≤ 1/2
{0}, (𝒮𝜏𝑢𝑛)𝑖 = 1/2, 𝑢𝑖 ∈ (0, 1)
(−∞, 0], (𝒮𝜏𝑢𝑛)𝑖 ≥ 1/2

and thus 1
21− 𝒮𝜏𝑢𝑛 ∈ ℬ(𝑢), so (𝑢, 𝛽) solves (4.1).

We note a useful consequence of this result.

Theorem 4.2.2. For 𝜆 ∈ [0, 1)2 and all 𝑛 ∈ ℕ, if 𝑢𝑛 and 𝑣𝑛 are SDIE sequences
defined according to Definition 4.1.1 with initial states 𝑢0, 𝑣0 ∈ 𝒱[0,1] and 𝜉1 ∶=
min𝜎(𝐴) then

||𝑢𝑛 − 𝑣𝑛||𝒱 ≤ 𝑒−𝑛𝜉1𝜏(1 − 𝜆)−𝑛||𝑢0 − 𝑣0||𝒱 . (4.8)

Proof. If 𝜆 = 0 (and thus 𝜏 = 0) then 𝑢𝑛 ≡ 𝑢0 and 𝑣𝑛 ≡ 𝑣0 and so the result trivially
follows.

For 𝜆 > 0, let 𝜌𝜆 ∶ 𝒱[0,1] → 𝒱[0,1] be the thresholding operator in (4.6), i.e.

(𝜌𝜆(𝑢))𝑖 ∶= {
0, if 𝑢𝑖 <

1
2𝜆,1

2 +
𝑢𝑖−1/2
1−𝜆 , if 12𝜆 ≤ 𝑢𝑖 < 1 −

1
2𝜆,

1, if 𝑢𝑖 ≥ 1 −
1
2𝜆.

Then by Theorem 4.2.1 it follows that

𝑢𝑛 = (𝜌𝜆 ∘ 𝒮𝜏)𝑛(𝑢0)

and likewise for 𝑣𝑛. Finally, note that 𝒮𝜏𝑢 is affine in 𝑢, and hence is Lipschitz with
constant 𝑒−𝜉1𝜏, and 𝜌𝜆(𝑢) is piecewise affine in 𝑢 with greatest slope (1−𝜆)−1 and
hence is Lipschitz with constant (1−𝜆)−1. Thus (𝜌𝜆 ∘𝒮𝜏)𝑛 is Lipschitz with constant
𝑒−𝑛𝜏𝜉1(1 − 𝜆)−𝑛.

4.2.2. Set-up for the mass-conserving case
Compared to the fidelity forced case, the addition of the mass conservation con-
straint substantially increases the difficulty in solving the equations from Theo-
rem 4.1.4. We here employ the techniques of convex optimisation, particularly
the Krein–Milman theorem, complementary slackness, and strong duality, to help
resolve this difficulty.

We consider the set of feasible solutions to (4.4) and (4.5).
2For the MBO case 𝜆 = 1 the thresholding is discontinuous so we do not get an analogous property.
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Definition 4.2.3. For a given 𝑀 ∈ [0,ℳ(1)], we define the hyperplane 𝑆𝑀 ∶=
{𝑢 ∈ 𝒱 | ⟨𝑢,1⟩𝒱 = 𝑀}. We can visualise this as the plane through some 𝑢0 ∈ 𝑆𝑀
with 𝒱-normal vector 1. Then we write the set of feasible solutions to (4.4) and
(4.5)

𝑋𝑀 ∶= 𝒱[0,1] ∩ 𝑆𝑀 . (4.9)

Note 14. We have that 𝑋𝑀 is compact (since the topology on 𝒱 is equivalent to the
standard topology on ℝ|𝑉|, and 𝑋𝑀 is closed and bounded), and is the intersection
of two convex sets, so is convex. Furthermore, note that 𝑋𝑀 can be described as
the set of solutions to linear inequalities, in particular

∀𝑖 ∈ 𝑉 ⟨𝑢, 𝜒{𝑖}⟩𝒱 ≥ 0 and ⟨𝑢, 𝜒{𝑖}⟩𝒱 ≤ 𝑑𝑟𝑖 and ⟨𝑢,1⟩𝒱 ≥ 𝑀 and ⟨𝑢,1⟩𝒱 ≤ 𝑀,

and thus 𝑋𝑀 is said to be a polyhedral set.

Definition 4.2.4. For a convex set 𝐶, define 𝑥 ∈ 𝐶 to be an extreme point of 𝐶
when

∀𝑦, 𝑧 ∈ 𝐶, ∀𝑡 ∈ (0, 1) (𝑥 = 𝑡𝑦 + (1 − 𝑡)𝑧 ⇒ 𝑦 = 𝑧 = 𝑥)
and write Ext𝐶 for the subset of 𝐶 consisting of all such points.

We can then characterise the extreme points of the feasible set.

Proposition 4.2.5. The set Ext𝑋𝑀 of extreme points of 𝑋𝑀 is finite and is given
by

Ext𝑋𝑀 = {𝑢 ∈ 𝑋𝑀 | ∃𝑖∗ ∈ 𝑉 ∀𝑗 ∈ 𝑉 ⧵ {𝑖∗} 𝑢𝑗 ∈ {0, 1}} .

Proof. Since 𝑋𝑀 is polyhedral, Ext𝑋𝑀 is finite by a standard result [12, Corollary
1.3.1]. Suppose 𝑢 ∈ 𝑋𝑀 and ∃𝑖, 𝑗 ∈ 𝑉 such that 𝑖 ≠ 𝑗 and 𝑢𝑖 , 𝑢𝑗 ∈ (0, 1). Now for
𝛿 > 0 let

𝑣1 ∶= 𝑢 − 𝛿𝑑−𝑟𝑖 𝜒{𝑖} + 𝛿𝑑−𝑟𝑗 𝜒{𝑗},
𝑣2 ∶= 𝑢 + 𝛿𝑑−𝑟𝑖 𝜒{𝑖} − 𝛿𝑑−𝑟𝑗 𝜒{𝑗}.

Then ℳ(𝑣1) = ℳ(𝑣2) = ℳ(𝑢) − 𝛿 + 𝛿 = ℳ(𝑢) = 𝑀 so 𝑣1, 𝑣2 ∈ 𝑆𝑀. And for
𝛿 < min {𝑑𝑟𝑖 𝑢𝑖 , 𝑑𝑟𝑖 (1 − 𝑢𝑖), 𝑑𝑟𝑗 𝑢𝑗 , 𝑑𝑟𝑗 (1 − 𝑢𝑗)} we have 𝑣1, 𝑣2 ∈ 𝒱[0,1]. Therefore we
have 𝑢 = 1

2𝑣1 +
1
2𝑣2 for 𝑣1, 𝑣2 ∈ 𝑋𝑀 ⧵ {𝑢}. Therefore 𝑢 ∉ Ext𝑋𝑀.

Now let 𝑢 ∈ {𝑢 ∈ 𝑋𝑀 | ∃𝑖∗ ∈ 𝑉 ∀𝑗 ∈ 𝑉 ⧵ {𝑖∗} 𝑢𝑗 ∈ {0, 1}}, and suppose 𝑢 = 𝑡𝑣1 +
(1 − 𝑡)𝑣2 for some 𝑣1, 𝑣2 ∈ 𝑋𝑀 and 0 < 𝑡 < 1. As Ext([0, 1]) = {0, 1} we have that
𝑢𝑖 = 0 if and only if (𝑣1)𝑖 = (𝑣2)𝑖 = 0 and likewise for 𝑢𝑖 = 1. So 𝑣1 − 𝑣2 = 𝜃𝜒{𝑖∗}
for some 𝜃, and

0 = ⟨𝑣1 − 𝑣2,1⟩𝒱 = 𝜃⟨𝜒{𝑖∗},1⟩𝒱 = 𝜃𝑑𝑟𝑖∗
and so 𝜃 = 0, i.e. 𝑣1 = 𝑣2. Thus 𝑢 = 𝑡𝑣1 + (1 − 𝑡)𝑣2 ⇒ 𝑣1 = 𝑣2 = 𝑢, so
𝑢 ∈ Ext𝑋𝑀.

For tidiness, we define some useful notation.
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Definition 4.2.6. For 𝑢 ∈ 𝒱[0,1] and 𝜏 > 0 define the set

𝐴𝑢,𝜏 ∶= {𝛼 ∈ [0, 1] | ∃𝑖 ∈ 𝑉 (𝑒−𝜏Δ𝑢)𝑖 = 𝛼} (4.10)

with ordering 𝛼1 < 𝛼2 < ... < 𝛼𝐾 for the elements of 𝐴𝑢,𝜏, where 𝐾 = |𝐴𝑢,𝜏|. Define
the quantities

𝑎𝑢,𝜏,𝛼 ∶= ∑
𝑖∶(𝑒−𝜏Δ𝑢)𝑖=𝛼

𝑑𝑟𝑖 . (4.11)

Proposition 4.2.7. If 𝜏 > 0, then 0 ∈ 𝐴𝑢,𝜏 ⇒ 𝑢 = 0, and 1 ∈ 𝐴𝑢,𝜏 ⇒ 𝑢 = 1.
Proof. Follows immediately from the connected graph case of [9, Lemma 2.6(d)].

4.2.3. The MBO case
We first solve the case when 𝜆 = 1.
Definition 4.2.8. Define the set of solutions to (4.5), where 𝑀 =ℳ(𝑢𝑛)

𝑆𝜏,𝑢𝑛 ∶= argmax
𝑢∈𝑋𝑀

⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 . (4.12)

Note 15. This is convex as the objective function is linear and 𝑋𝑀 is convex, com-
pact as it is a closed subset of 𝑋𝑀, and non-empty as 𝑋𝑀 is compact so the contin-
uous objective function attains its maximum value.

Proposition 4.2.9. Let 𝑀 = ℳ(𝑢𝑛). Then 𝑆𝜏,𝑢𝑛 is a face of 𝑋𝑀, i.e. if 𝑢, 𝑣 ∈ 𝑋𝑀
and 𝑡 ∈ (0, 1), then

𝑡𝑢 + (1 − 𝑡)𝑣 ∈ 𝑆𝜏,𝑢𝑛 ⇒ 𝑢, 𝑣 ∈ 𝑆𝜏,𝑢𝑛 .
Proof. Let 𝑢, 𝑣 ∈ 𝑋𝑀, 𝑡 ∈ (0, 1), and 𝑡𝑢 + (1 − 𝑡)𝑣 ∈ 𝑆𝜏,𝑢𝑛 . Then

𝑡 ⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 + (1 − 𝑡) ⟨𝑣, 𝑒
−𝜏Δ𝑢𝑛⟩𝒱 = max

𝑤∈𝑋𝑀
⟨𝑤, 𝑒−𝜏Δ𝑢𝑛⟩𝒱

and so

𝑡 ⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 ≥ max
𝑤∈𝑋𝑀

⟨𝑤, 𝑒−𝜏Δ𝑢𝑛⟩𝒱−(1−𝑡)max
𝑤∈𝑋𝑀

⟨𝑤, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 = 𝑡max
𝑤∈𝑋𝑀

⟨𝑤, 𝑒−𝜏Δ𝑢𝑛⟩𝒱

and likewise for ⟨𝑣, 𝑒−𝜏Δ𝑢𝑛⟩𝒱. Hence

⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 = ⟨𝑣, 𝑒
−𝜏Δ𝑢𝑛⟩𝒱 = max

𝑤∈𝑋𝑀
⟨𝑤, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 ,

which is to say that 𝑢, 𝑣 ∈ 𝑆𝜏,𝑢𝑛 .
Definition 4.2.10. Let𝒜 ⊆ 𝒱. Then define the convex hull of𝒜, written conv(𝒜),
to be the intersection of all convex sets 𝐶 satisfying 𝒜 ⊆ 𝐶 ⊆ 𝒱. Equivalently, the
convex hull of 𝒜 is the set of all convex combinations of points from 𝒜, i.e.3

conv(𝒜) = {
𝑛

∑
𝑘=1

𝑎𝑘𝑥𝑘|∀𝑘, 𝑥𝑘 ∈ 𝒜 and 𝑎𝑘 ≥ 0, and
𝑛

∑
𝑘=1

𝑎𝑘 = 1} .

3This equivalence is a standard result. We leave it as an exercise for the reader.
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Proposition 4.2.11. Let 𝑀 =ℳ(𝑢𝑛). Then the extreme points of 𝑆𝜏,𝑢𝑛 are given
by

Ext 𝑆𝜏,𝑢𝑛 = 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀
and the solutions to (4.5) are given by the convex hull of the solutions which lie in
Ext𝑋𝑀, i.e.

𝑆𝜏,𝑢𝑛 = conv(𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀).

Proof. Let 𝑢 ∈ 𝑆𝜏,𝑢𝑛∩Ext𝑋𝑀, 𝑣1, 𝑣2 ∈ 𝑆𝜏,𝑢𝑛 ⊆ 𝑋𝑀, 𝑡 ∈ (0, 1), and 𝑢 = 𝑡𝑣1+(1−𝑡)𝑣2.
Then 𝑣1 = 𝑣2 since 𝑢 ∈ Ext𝑋𝑀. So 𝑢 ∈ Ext 𝑆𝜏,𝑢𝑛 .

Next, let 𝑢 ∈ Ext 𝑆𝜏,𝑢𝑛 ⊆ 𝑆𝜏,𝑢𝑛 , 𝑣1, 𝑣2 ∈ 𝑋𝑀, and 𝑢 = 𝑡𝑣1 + (1 − 𝑡)𝑣2. Then
𝑣1, 𝑣2 ∈ 𝑆𝜏,𝑢𝑛 as 𝑆𝜏,𝑢𝑛 is a face, and so 𝑣1 = 𝑣2 since 𝑢 ∈ Ext 𝑆𝜏,𝑢𝑛 . Hence 𝑢 ∈
𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀.

So Ext 𝑆𝜏,𝑢𝑛 = 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀, and finally we apply the Krein–Milman Theorem
(see e.g. [14, p. 75]), which entails in particular that a finite-dimensional compact
convex set is the convex hull of its extreme points.

Corollary 4.2.12. Forℳ(𝑢0) = 𝑀, there exists a trajectory 𝑢𝑛 obeying (4.5) such
that

∀𝑛 ∈ ℕ, 𝑢𝑛 ∈ Ext𝑋𝑀 = {𝑢 ∈ 𝑋𝑀 | ∃𝑖∗ ∈ 𝑉 ∀𝑗 ∈ 𝑉 ⧵ {𝑖∗} 𝑢𝑗 ∈ {0, 1}} .

Proof. Follows immediately from the fact that 𝑆𝜏,𝑢𝑛 is non-empty, and so 𝑆𝜏,𝑢𝑛 ∩
Ext𝑋𝑀 is non-empty as otherwise 𝑆𝜏,𝑢𝑛 = conv(∅) = ∅.

In [10, §5.3], Van Gennip considered a mass-conserving MBO scheme for min-
imising the Ohta–Kawasaki functional with a modified graph diffusion, which in the
𝛾 = 0 special case reduces to ordinary graph diffusion and hence is the same prob-
lem as (4.5). We here repeat a property he proved for the solutions to (4.5) extreme
points.

Theorem 4.2.13. Let 𝑀 =ℳ(𝑢𝑛), 𝑢𝑛+1 ∈ 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀, and write

𝐸 ∶= {𝑖 ∈ 𝑉 | (𝑢𝑛+1)𝑖 = 1}, 𝐹 ∶= {𝑖 ∈ 𝑉 | (𝑢𝑛+1)𝑖 = 0}

Then for each 𝑖 ∈ 𝑉 ⧵ 𝐹, 𝑗 ∈ 𝑉 ⧵ 𝐸 we have (𝑒−𝜏Δ𝑢𝑛)𝑖 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑗.

Proof. By Proposition 4.2.5 we have that 𝑢𝑛+1 = 𝜒𝐸 + 𝜃𝜒𝑉⧵(𝐸∪𝐹) where 𝜃 ∈ (0, 1)
and 𝑉 ⧵ (𝐸 ∪ 𝐹) has at most one element which we will denote 𝑖∗ (when it exists).
Now choose some 0 < 𝛿 <min𝑖∈𝑉{𝑑𝑟𝑖 , 𝑑𝑟𝑖∗𝜃, 𝑑𝑟𝑖∗(1−𝜃)}, and any 𝑖 ∈ 𝑉 ⧵𝐹, 𝑗 ∈ 𝑉 ⧵𝐸.
Define

𝑢 ∶= 𝑢𝑛+1 − 𝛿𝑑−𝑟𝑖 𝜒{𝑖} + 𝛿𝑑−𝑟𝑗 𝜒{𝑗}
where by choice of 𝛿 we have ensured that 𝑢 ∈ 𝑋𝑀. Therefore

0 ≤ ⟨𝑢𝑛+1 − 𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 = 𝛿((𝑒−𝜏Δ𝑢𝑛)𝑖 − (𝑒−𝜏Δ𝑢𝑛)𝑗)

and so (𝑒−𝜏Δ𝑢𝑛)𝑖 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑗 as desired.
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4.2.4. Uniqueness conditions for the mass-conserving MBO
scheme

We consider when (4.5) has a unique solution, and characterise all solutions to
(4.5).

Corollary 4.2.14. Let 𝑀 = ℳ(𝑢𝑛). Then 𝑆𝜏,𝑢𝑛 has one element if and only if
𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀 has one element.

Proof. As 𝑆𝜏,𝑢𝑛 is non-empty, 𝑆𝜏,𝑢𝑛∩Ext𝑋𝑀 is non-empty as else 𝑆𝜏,𝑢𝑛 = conv(∅) =
∅. Thus, if 𝑆𝜏,𝑢𝑛 = {𝑢} then 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀 = {𝑢} as this is the only non-empty
subset of 𝑆𝜏,𝑢𝑛 . Conversely, if 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀 = {𝑢} then by Proposition 4.2.11
𝑆𝜏,𝑢𝑛 = conv({𝑢}) = {𝑢}.

Usefully, Theorem 4.2.13 gives a necessary condition for 𝑢 ∈ 𝑆𝜏,𝑢𝑛 ∩Ext𝑋𝑀. We
demonstrate the following sufficient condition for uniqueness of solutions.

Theorem 4.2.15. Define the condition

∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 ⇒ (𝑒−𝜏Δ𝑢𝑛)𝑖 ≠ (𝑒−𝜏Δ𝑢𝑛)𝑗 . (4.13)

Then if (4.13) holds, 𝑆𝜏,𝑢𝑛 has a unique element (i.e. (4.5) has a unique solution).

Proof. WLOG, up to a relabelling of 𝑉, we may write (4.13) as

𝑖 < 𝑗 ⇔ (𝑒−𝜏Δ𝑢𝑛)𝑖 < (𝑒−𝜏Δ𝑢𝑛)𝑗 .

Let 𝑀 =ℳ(𝑢𝑛).
Let 𝑢 ∈ 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀. By Theorem 4.2.13 we thus have

𝑖 < 𝑗 ⇒ 𝑢𝑖 = 0 or 𝑢𝑗 = 1

and hence by Proposition 4.2.5 𝑢 must have the form

𝑢 = ( 0, 0, ..., 0
𝑎−1

, 𝜃, 1, 1, ..., 1
|𝑉|−𝑎

)

where 𝜃 ∈ (0, 1] so (𝑎, 𝜃) uniquely determines any element of 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀. Let

ℳ(𝑎, 𝜃) ∶= ℳ(𝑢) for 𝑢 defined by (𝑎, 𝜃) as above.

Then for 𝑎 < 𝑏,

ℳ(𝑎, 𝜃) −ℳ(𝑏, 𝜙) = 𝜃𝑑𝑟𝑎 + ∑
𝑎<𝑖<𝑏

𝑑𝑟𝑖 + (1 − 𝜙)𝑑𝑟𝑏 > 0

and clearly ℳ(𝑎, 𝜃) = ℳ(𝑎, 𝜙) if and only if 𝜃 = 𝜙. If 𝑢 ∈ 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀, then
ℳ(𝑢) = 𝑀, and by the above we have that ℳ(𝑎, 𝜃) = 𝑀 for a unique (𝑎, 𝜃).
Thus 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀 has a unique element (as by the proof of Corollary 4.2.12
𝑆𝜏,𝑢𝑛∩Ext𝑋𝑀 is non-empty), so by Corollary 4.2.14 𝑆𝜏,𝑢𝑛 has a unique element.
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Following this idea, we get a characterisation of 𝑆𝜏,𝑢𝑛 and a necessary and suf-
ficient condition for uniqueness.

Theorem 4.2.16. Suppose 𝑢𝑛 ∈ 𝒱[0,1] and𝑀 =ℳ(𝑢𝑛) > 0, then there is a unique
𝑘 such that 1 ≤ 𝑘 ≤ 𝐾 and

𝐾

∑
𝓁=𝑘+1

𝑎𝑢𝑛 ,𝜏,𝛼𝓁 < 𝑀 ≤
𝐾

∑
𝓁=𝑘

𝑎𝑢𝑛 ,𝜏,𝛼𝓁

recalling 𝐾 and 𝑎𝑢,𝜏,𝛼 from Definition 4.2.6. Then 𝑢 ∈ 𝑆𝜏,𝑢𝑛 if and only if 𝑢 ∈ 𝑋𝑀
and

𝑢𝑖 = 0, if (𝑒−𝜏Δ𝑢𝑛)𝑖 < 𝛼𝑘 , (4.14a)

𝑢𝑖 = 1, if (𝑒−𝜏Δ𝑢𝑛)𝑖 > 𝛼𝑘 , (4.14b)

𝑀 −
𝐾

∑
𝓁=𝑘+1

𝑎𝑢𝑛 ,𝜏,𝛼𝓁 = ∑
(𝑒−𝜏Δ𝑢𝑛)𝑖=𝛼𝑘

𝑑𝑟𝑖 𝑢𝑖 . (4.14c)

Therefore 𝑆𝜏,𝑢𝑛 has a unique element if and only if

𝑀 =
𝐾

∑
𝓁=𝑘

𝑎𝑢𝑛 ,𝜏,𝛼𝓁 or ∃!𝑖 ∈ 𝑉, (𝑒−𝜏Δ𝑢𝑛)𝑖 = 𝛼𝑘 . (4.15)

Proof. First, we show that 𝑘 exists and is unique. Let 𝐵𝑟 ∶= ∑
𝐾
𝓁=𝑟 𝑎𝑢𝑛 ,𝜏,𝛼𝓁 . Then as

𝑎𝑢𝑛 ,𝜏,𝛼𝓁 > 0 the 𝐵𝑟 are strictly decreasing in 𝑟 and we observe that 𝐵1 =ℳ(1) ≥ 𝑀
and 𝐵𝐾+1 = 0 < 𝑀. Hence there exists a unique 𝑘 ∈ {1, ..., 𝐾} such that 𝐵𝑘+1 < 𝑀 ≤
𝐵𝑘.

Next, for 𝑣 ∈ 𝒱, define 𝑣̃ ∶ {1, ..., 𝐾} → ℝ by

𝑣̃𝓁 ∶= 𝑎−1𝑢𝑛 ,𝜏,𝛼𝓁 ∑
𝑖∶(𝑒−𝜏Δ𝑢𝑛)𝑖=𝛼𝓁

𝑑𝑟𝑖 𝑣𝑖

and define the inner product

⟨𝑣̃, 𝑤̃⟩𝛼 ∶=
𝐾

∑
𝓁=1

𝑎𝑢𝑛 ,𝜏,𝛼𝓁 𝑣̃𝓁𝑤̃𝓁.

Then note by a simple calculation we have that

⟨𝑣̃,1⟩𝛼 =ℳ(𝑣)

and
⟨𝑣̃, ̃𝑒−𝜏Δ𝑢𝑛⟩𝛼 = ⟨𝑣, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 .
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Hence, defining 𝑋̃𝑀 = {𝑣̃|𝑣 ∈ 𝑋𝑀}, we have that 𝑢 ∈ 𝑆𝜏,𝑢𝑛 if and only if

𝑢̃ ∈ argmax
𝑣̃∈𝑋̃𝑀

⟨𝑣̃, ̃𝑒−𝜏Δ𝑢𝑛⟩
𝛼

and note that (4.13) is satisfied by ̃𝑒−𝜏Δ𝑢𝑛 (i.e. ( ̃𝑒−𝜏Δ𝑢𝑛)𝓁 ≠ ( ̃𝑒−𝜏Δ𝑢𝑛)𝑟 for all
𝓁 ≠ 𝑟 ∈ {1, 2, ..., 𝐾}). Therefore by the same argument as in the proof of the
previous theorem mutatis mutandis (i.e. replacing instances of ⟨⋅, ⋅⟩𝒱 with ⟨⋅, ⋅⟩𝛼, of
𝑑𝑟𝑖 with 𝑎𝑢𝑛 ,𝜏,𝛼𝓁 etc.) there is a unique such 𝑢̃ of the form

𝑢̃ = ( 0, 0, ..., 0
𝑏−1

, 𝜃, 1, 1, ..., 1
𝐾−𝑏

)

where 𝜃 ∈ (0, 1]. Then we have

𝑀 = ⟨𝑢̃,1⟩𝛼 = 𝜃𝑎𝑢𝑛 ,𝜏,𝛼𝑏 +
𝐾

∑
𝓁=𝑏+1

𝑎𝑢𝑛 ,𝜏,𝛼𝓁

so we must have 𝑏 = 𝑘 and

𝜃 = 𝑎−1𝑢𝑛 ,𝜏,𝛼𝑘 (𝑀 −
𝐾

∑
𝓁=𝑘+1

𝑎𝑢𝑛 ,𝜏,𝛼𝓁) .

Taking 𝓁 < 𝑘,
0 = 𝑢̃𝓁 = 𝑎−1𝑢𝑛 ,𝜏,𝛼𝓁 ∑

𝑖∶(𝑒−𝜏Δ𝑢𝑛)𝑖=𝛼𝓁

𝑑𝑟𝑖 𝑢𝑖

and so 𝑢𝑖 = 0 if (𝑒−𝜏Δ𝑢𝑛)𝑖 < 𝛼𝑘, and taking 𝓁 > 𝑘

1 = 𝑢̃𝓁 = 𝑎−1𝑢𝑛 ,𝜏,𝛼𝓁 ∑
𝑖∶(𝑒−𝜏Δ𝑢𝑛)𝑖=𝛼𝓁

𝑑𝑟𝑖 𝑢𝑖

and so 𝑢𝑖 = 1 if (𝑒−𝜏Δ𝑢𝑛)𝑖 > 𝛼𝑘. Finally taking 𝓁 = 𝑘 we get the equivalences

𝑢 ∈ 𝑆𝜏,𝑢𝑛 if and only if 𝑢̃ ∈ argmax
𝑣̃∈𝑋̃𝑀

⟨𝑣̃, ̃𝑒−𝜏Δ𝑢𝑛⟩
𝛼

if and only if {
𝑢𝑖 = 0, if (𝑒−𝜏Δ𝑢𝑛)𝑖 < 𝛼𝑘 ,
𝑢𝑖 = 1, if (𝑒−𝜏Δ𝑢𝑛)𝑖 > 𝛼𝑘 ,
𝜃 = 𝑎−1𝑢𝑛 ,𝜏,𝛼𝑘 ∑(𝑒−𝜏Δ𝑢𝑛)𝑖=𝛼𝑘 𝑑

𝑟
𝑖 𝑢𝑖 .

Hence we have a unique solution if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 = 𝛼𝑘 at a unique 𝑖 ∈ 𝑉 or
𝜃 = 1 (and therefore 𝑢𝑖 = 1 for (𝑒−𝜏Δ𝑢𝑛)𝑖 = 𝛼𝑘), i.e. when (4.15) holds.
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Note 16. If 𝑀 = 0 then 𝑋𝑀 = {0}, so uniqueness is trivial, hence supposing that
𝑀 > 0 incurs no loss of generality.

Note 17. The solution in (4.14), with an adjustible threshold level (i.e. 𝛼𝑘) to
ensure that mass is conserved, accords with the definition of the mass-conserving
graph MBO scheme in Van Gennip [10] and with the definition of the mass-conserving
continuum MBO scheme in Ruuth and Wetton [16]. We here note that there is a
typo in the definition in [10] (i.e., [10, Algorithm (mcOKMBO)]): all instances of
𝑑𝑟𝑖 𝑢𝑖 in that definition should just read 𝑑𝑟𝑖 .

4.2.5. The non-MBO case
We now solve the case for 0 ≤ 𝜆 < 1. To solve (4.4) in this case, we use duality.
For a detailed description of this framework, we refer the reader to e.g. [2, §5].
Let 𝑀 ∶= ℳ(𝑢𝑛) and define the functions

𝑓𝑖(𝑢) ∶= −𝑑𝑟𝑖 𝑢𝑖 , 𝑔𝑖(𝑢) ∶= (𝑢𝑖 − 1)𝑑𝑟𝑖 , ℎ(𝑢) ∶= 2(ℳ(𝑢) − 𝑀). (4.16)

Then (4.4) can be written as the primal problem:

min
𝑢∈𝒱

(1 − 𝜆) ||𝑢||2𝒱 − 2⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 s.t. ∀𝑖 ∈ 𝑉, 𝑓𝑖(𝑢) ≤ 0, 𝑔𝑖(𝑢) ≤ 0, and ℎ(𝑢) = 0.

Hence for 𝜉, 𝜇 ∈ 𝒱 and 𝜈 ∈ ℝ dual variables, (4.4) has Lagrangian:

𝐿(𝑢, 𝜉, 𝜇, 𝜈) ∶= (1 − 𝜆) ||𝑢||2𝒱 − 2⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 +∑
𝑖∈𝑉
(𝜉𝑖𝑓𝑖(𝑢) + 𝜇𝑖𝑔𝑖(𝑢)) + 𝜈ℎ(𝑢)

= (1 − 𝜆) ||𝑢||2𝒱 − 2⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 + ⟨𝑢, 𝜇 − 𝜉⟩𝒱 + ⟨2𝜈𝑢 − 𝜇,1⟩𝒱 − 2𝜈𝑀.
(4.17)

We can rewrite this by making the following definition:

𝑢∗(𝜉, 𝜇, 𝜈) ∶= 1
2(1 − 𝜆) (2𝑒

−𝜏Δ𝑢𝑛 + 𝜉 − 𝜇 − 2𝜈1) (4.18)

so that

𝐿(𝑢, 𝜉, 𝜇, 𝜈) = (1 − 𝜆) ||𝑢||2𝒱 − 2(1 − 𝜆) ⟨𝑢, 𝑢∗(𝜉, 𝜇, 𝜈)⟩𝒱 − ⟨𝜇,1⟩𝒱 − 2𝜈𝑀

= (1 − 𝜆) ||𝑢 − 𝑢∗(𝜉, 𝜇, 𝜈)||2𝒱 − (1 − 𝜆)||𝑢
∗(𝜉, 𝜇, 𝜈)||2𝑉 − ⟨𝜇,1⟩𝒱 − 2𝜈𝑀

which we note is strictly convex, proper, and bounded below in 𝑢 (for fixed 𝜉, 𝜇, and
𝜈). Next, we define the dual objective function:

𝐺(𝜉, 𝜇, 𝜈) ∶= inf
𝑢∈𝒱

𝐿(𝑢, 𝜉, 𝜇, 𝜈) = 𝐿(𝑢∗(𝜉, 𝜇, 𝜈), 𝜉, 𝜇, 𝜈). (4.19)

and therefore

𝐺(𝜉, 𝜇, 𝜈) = −((1 − 𝜆) ||𝑢∗(𝜉, 𝜇, 𝜈)||2𝒱 + ⟨𝜇,1⟩𝒱 + 2𝜈𝑀) . (4.20)

The dual problem to (4.4) is given by

sup
𝜉≥0,𝜇≥0,𝜈

𝐺(𝜉, 𝜇, 𝜈). (4.21)
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Lemma 4.2.17. For 𝑢𝑛 ∈ 𝒱[0,1], 𝑀 =ℳ(𝑢𝑛), (4.4) and (4.21) have strong duality,
i.e.

sup
𝜉≥0,𝜇≥0,𝜈

𝐺(𝜉, 𝜇, 𝜈) = min
𝑢∈𝑋𝑀

(1 − 𝜆) ||𝑢||2𝒱 − 2⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱

and if 𝜉∗, 𝜇∗, and 𝜈∗ optimise (4.21), then 𝑢∗ ∶= 𝑢∗(𝜉∗, 𝜇∗, 𝜈∗) ∈ 𝑋𝑀 as in (4.18)
solves (4.4).

Proof. We apply Slater’s condition for strong duality from [2, §5.2.3] that states in
particular that if the primal problem is convex, the domain of the problem is open
and affine, the problem has affine constraints, and the set of feasible solutions to
the problem is non-empty, then we have strong duality, i.e. the minimum value of
the primal problem equals the maximum value of the dual problem. As the 𝑓𝑖 and
𝑔𝑖 are affine on 𝒱 and 𝒱 is open and affine, Slater’s condition is satisfied if ∃𝑢 ∈ 𝒱
with 𝑓𝑖(𝑢) ≤ 0, 𝑔𝑖(𝑢) ≤ 0, and ℎ(𝑢) = 0, i.e. if ∃𝑢 ∈ 𝑋𝑀. As 𝑢𝑛 ∈ 𝑋𝑀 we thus have
strong duality.

Now let 𝜉∗ ≥ 0, 𝜇∗ ≥ 0, and 𝜈∗ be optimal for (4.21), and let 𝑢̂ ∈ 𝑋𝑀 be optimal
for (4.4), which we know exists since 𝑋𝑀 is compact and the objective function is
continuous. Writing 𝑞(𝑢) ∶= (1−𝜆) ||𝑢||2𝒱−2⟨𝑢, 𝑒−𝜏Δ𝑢𝑛⟩𝒱 we have by strong duality:

𝑞(𝑢̂) = 𝐺(𝜉∗, 𝜇∗, 𝜈∗) = 𝐿(𝑢∗, 𝜉∗, 𝜇∗, 𝜈∗) = inf
𝑢∈𝒱

𝐿(𝑢, 𝜉∗, 𝜇∗, 𝜈∗) ≤ 𝐿(𝑢̂, 𝜉∗, 𝜇∗, 𝜈∗) ≤ 𝑞(𝑢̂)

where the final inequality holds by (4.17), as 𝑢̂ ∈ 𝑋𝑀 and so 𝑓𝑖(𝑢̂), 𝑔𝑖(𝑢̂) ≤ 0 and
ℎ(𝑢̂) = 0. So the inequalities are equalities and 𝐿(𝑢, 𝜉∗, 𝜇∗, 𝜈∗) is minimised at 𝑢̂. As
𝐿 is strictly convex in 𝑢 it has a unique minimiser, so 𝑢∗(𝜉∗, 𝜇∗, 𝜈∗) = 𝑢̂ is optimal for
(4.4).

By Lemma 4.2.17 we have that 𝑢∗ ∶= 𝑢∗(𝜉∗, 𝜇∗, 𝜈∗) ∈ 𝑋𝑀 for (𝜉∗, 𝜇∗, 𝜈∗) dual
optimal, and by applying complementary slackness (see [2, §5.5.2]) we have that

𝑢∗𝑖 > 0 ⇒ 𝜉∗𝑖 = 0, and 𝑢∗𝑖 < 1 ⇒ 𝜇∗𝑖 = 0,
𝜉∗𝑖 > 0 ⇒ 𝑢∗𝑖 = 0, and 𝜇∗𝑖 > 0 ⇒ 𝑢∗𝑖 = 1.

Thus at each 𝑖 ∈ 𝑉, 𝜉∗𝑖 = 0 or 𝜇∗𝑖 = 0. So we have the necessary conditions

𝑢∗𝑖 = {
0 ⇒ 𝜇∗𝑖 = 0,
∈ (0, 1) ⇒ 𝜉∗𝑖 = 𝜇∗𝑖 = 0,
1 ⇒ 𝜉∗𝑖 = 0.

Then by substituting into (4.18)

𝑢∗𝑖 =

⎧
⎪

⎨
⎪
⎩

0, if and only if 𝜇∗𝑖 = 0, 𝜉∗𝑖 = 2𝜈∗ − 2(𝑒−𝜏Δ𝑢𝑛)𝑖 ≥ 0,
(𝑒−𝜏Δ𝑢𝑛)𝑖 − 𝜈∗

1 − 𝜆
∈ (0, 1),

if and only if 𝜉∗𝑖 = 𝜇∗𝑖 = 0, 0 < (𝑒−𝜏Δ𝑢𝑛)𝑖 − 𝜈∗ < 1 − 𝜆,

1, if and only if 𝜉∗𝑖 = 0, 𝜇∗𝑖 = 2(𝑒−𝜏Δ𝑢𝑛)𝑖 − 2(1 − 𝜆) − 2𝜈∗ ≥ 0.
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We simplify by noting that the 𝜈∗ inequality conditions are disjoint and exhaustive,
so we need only consider those conditions (to see this, note that if for example
𝜈∗ ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 then each of the 𝑢∗𝑖 > 0 cases are ruled out, so 𝑢∗𝑖 must equal
zero):

𝑢∗𝑖 = {
0, if and only if 𝜈∗ − (𝑒−𝜏Δ𝑢𝑛)𝑖 ≥ 0,
(𝑒−𝜏Δ𝑢𝑛)𝑖−𝜈∗

1−𝜆 ∈ (0, 1), if and only if 0 < (𝑒−𝜏Δ𝑢𝑛)𝑖 − 𝜈∗ < 1 − 𝜆,
1, if and only if 𝜈∗ ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆).

(4.22)

But by Lemma 4.2.17, 𝑢∗ ∈ 𝑋𝑀, so we haveℳ(𝑢∗) = 𝑀. Thus 𝜈 = 𝜈∗ is a solution
to:

0 = 𝑀 +∑
𝑖∈𝑉
𝑑𝑟𝑖 {

−1, 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆),
𝜈−(𝑒−𝜏Δ𝑢𝑛)𝑖

1−𝜆 , (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
0, 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 ,

(4.23)

which exists by the Intermediate Value Theorem (since the RHS of (4.23) is a sum
of continuous functions in 𝜈). By Definition 4.2.6, we rewrite (4.23)

𝑀 = ∑
𝛼∈𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼 {
1, 𝜈 ≤ 𝛼 − (1 − 𝜆),
𝛼−𝜈
1−𝜆 , 𝛼 − (1 − 𝜆) < 𝜈 < 𝛼,
0, 𝜈 ≥ 𝛼.

(4.24)

Note 18. Although 𝑢∗ is unique, 𝜈∗ is not in general unique, but in such cases
each solution 𝜈∗ gives rise to the same 𝑢∗. For example if 𝐴𝑢𝑛 ,𝜏 = {0} (i.e. 𝑢𝑛 = 0)
then any 𝜈 ≥ 0 solves (4.24), but by the same token in that case any 𝜈 ≥ 0 gives
𝑢∗ = 0. In general, the right hand side of (4.24) is constant in 𝜈 if and only if
𝜈 ∈ [𝛼𝑘 , 𝛼𝑘+1 − (1 − 𝜆)], where 𝛼𝑘 , 𝛼𝑘+1 are consecutive elements in 𝐴𝑢𝑛 ,𝜏. But if 𝜈
in that interval solves (4.24), then by (4.22)

𝑢∗𝑖 = {
0, if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 ≤ 𝛼𝑘 ,
1, if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 > 𝛼𝑘 .

Finally, note that therefore this situation of non-unique 𝜈∗ can only arise if 𝑀 ∈
{ℳ(𝑢) ∣ 𝑢 ∈ 𝒱{0,1}}, which is a finite set of values.

Proposition 4.2.18. Let 𝑢𝑛 ∈ 𝒱[0,1], 𝑀 = ℳ(𝑢𝑛), and suppose 0 < 𝑀 < ⟨1,1⟩𝒱
and 𝜏 > 0. If 𝜈 solves (4.24), then 𝜈 ∈ [𝜆min𝐴𝑢𝑛 ,𝜏 , 𝜆max𝐴𝑢𝑛 ,𝜏] ⊆ (0, 𝜆).

Proof. By Proposition 4.2.7 and the condition on 𝑀, note that 𝐴𝑢𝑛 ,𝜏 ⊆ (0, 1). Since
diffusion preserves mass, 𝑀 =ℳ(𝑒−𝜏Δ𝑢𝑛) and therefore

𝑀 = ∑
𝛼∈𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼𝛼



4

62 4. The SDIE link between Allen–Cahn flow and the MBO scheme

and so we have by (4.24):

0 = ∑
𝛼∈𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼 {
1 − 𝛼, 𝜈 ≤ 𝛼 − (1 − 𝜆),
𝛼−𝜈
1−𝜆 − 𝛼, 𝛼 − (1 − 𝜆) < 𝜈 < 𝛼,
−𝛼, 𝜈 ≥ 𝛼,

(4.25)

i.e., 𝜈 is a solution to

0 = ∑
𝛼∈[1−𝜆+𝜈,1)∩𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼(1 − 𝛼) + ∑
𝛼∈(𝜈,1−𝜆+𝜈)∩𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼
𝛼𝜆 − 𝜈
1 − 𝜆

+ ∑
𝛼∈(0,𝜈]∩𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼(−𝛼).

First, suppose that 𝜈 < 𝜆min𝐴𝑢𝑛 ,𝜏 < min𝐴𝑢𝑛 ,𝜏 (recall that we are still in the
𝜆 ∈ [0, 1) case). Then

∑
𝛼∈(0,𝜈]∩𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼(−𝛼) = 0

and 𝛼𝜆 − 𝜈 > 𝜆(𝛼 −min𝐴𝑢𝑛 ,𝜏) ≥ 0 for 𝛼 ∈ 𝐴𝑢𝑛 ,𝜏 so

∑
𝛼∈[1−𝜆+𝜈,1)∩𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼(1 − 𝛼) + ∑
𝛼∈(𝜈,1−𝜆+𝜈)∩𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼
𝛼𝜆 − 𝜈
1 − 𝜆 > 0

hence 𝜈 does not solve (4.25). (Note that at least one of these sums is non-empty
due to our supposition on 𝜈.)

Next, suppose that 𝜈 > 𝜆max𝐴𝑢𝑛 ,𝜏. Then we havemax𝐴𝑢𝑛 ,𝜏 = (1−𝜆)max𝐴𝑢𝑛 ,𝜏+
𝜆max𝐴𝑢𝑛 ,𝜏 < 1 − 𝜆 + 𝜈 so

∑
𝛼∈[1−𝜆+𝜈,1)∩𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼(1 − 𝛼) = 0

and 𝛼𝜆 − 𝜈 < 𝜆(𝛼 −max𝐴𝑢𝑛 ,𝜏) ≤ 0 for 𝛼 ∈ 𝐴𝑢𝑛 ,𝜏 so

∑
𝛼∈(𝜈,1−𝜆+𝜈)∩𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼
𝛼𝜆 − 𝜈
1 − 𝜆 + ∑

𝛼∈(0,𝜈]∩𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼(−𝛼) < 0.

Thus if 𝜈 solves (4.25) we must have 𝜈 ∈ [𝜆min𝐴𝑢𝑛 ,𝜏 , 𝜆max𝐴𝑢𝑛 ,𝜏].

Note 19. If 𝑀 = 0 then 𝑢∗ = 0 = 𝑢𝑛, which is satisfied if and only if for all 𝑖 ∈ 𝑉,
𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 = 0. If 𝑀 = ⟨1,1⟩𝒱 then 𝑢∗ = 1 = 𝑢𝑛, which is satisfied if and only
if for all 𝑖 ∈ 𝑉, 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − 1 + 𝜆 = 𝜆. Hence we can always assume 𝜈 to lie in
[0, 𝜆].

In summary, we have the following theorem.
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Theorem 4.2.19. For 0 ≤ 𝜆 < 1, (4.4) has a unique solution

(𝑢𝜆𝑛+1)𝑖 = {
0, if and only if 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
(𝑒−𝜏Δ𝑢𝑛)𝑖−𝜈

1−𝜆 , if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
1, if and only if 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆),

(4.26)
where 𝜈 is a solution to (4.24) and hence 𝜈 ∈ [0, 𝜆].

4.2.6. The converse of Theorem 4.1.4 in the mass-conserving
case

In this section we prove the following theorem.

Theorem 4.2.20. If 𝑢 = 𝑢𝑛+1 solves (4.4), then ∃𝛽 ∈ ℬ(𝑢) (given by (4.28) when
𝜆 = 1 and (4.30) when 0 ≤ 𝜆 < 1), such that (𝑢, 𝛽) is a solution to (4.2) (for 𝛽 as
𝛽𝑛+1).
Note 20. If (𝑢, 𝛽) and (𝑢, 𝛽′) solve (4.2) then rearranging we get

𝛽 − 𝛽′ = 𝛽̄1− ̄𝛽′1
i.e. 𝛽 and 𝛽′ differ only by a multiple of 1. So, for a given 𝑢 and 𝛽 ∈ ℬ(𝑢), (𝑢, 𝛽)
is a solution if and only if (𝑢, 𝛽′) is a solution for all and only the 𝛽′ ∈ {𝛽 + 𝜃1 ∣ 𝜃 ∈
ℝ} ∩ ℬ(𝑢). If 𝑢𝑖 ∈ (0, 1) for an 𝑖 ∈ 𝑉 and (𝑢, 𝛽) and (𝑢, 𝛽′) solve (4.2), then 𝛽 = 𝛽′
as 𝛽𝑖 = 𝛽′𝑖 = 0 by the definition of ℬ(𝑢) (3.21).

Our proof of this theorem will split into two cases, 𝜆 = 1 and 𝜆 ∈ [0, 1). In each
case, we shall first engage in some preliminary work to discover a candidate 𝛽, and
then we will prove that this choice of 𝛽 suffices to prove the theorem.

Case: 𝜆 = 1
If 𝑀 = 0 then 𝑢 = 𝑢𝑛 = 0 is trivially a solution to (4.2), for example taking 𝛽 = 0,
and hence WLOG we can suppose 𝑀 =ℳ(𝑢𝑛) > 0. Let 𝑘 be as in Theorem 4.2.16,
such that

𝐾

∑
𝓁=𝑘+1

𝑎𝑢𝑛 ,𝜏,𝛼𝓁 < 𝑀 ≤
𝐾

∑
𝓁=𝑘

𝑎𝑢𝑛 ,𝜏,𝛼𝓁 .

Then, recalling Theorem 4.2.16, any solution 𝑢 to (4.4) for 𝜆 = 1 must satisfy
𝑢𝑖 = 0, if (𝑒−𝜏Δ𝑢𝑛)𝑖 < 𝛼𝑘 ,
𝑢𝑖 = 1, if (𝑒−𝜏Δ𝑢𝑛)𝑖 > 𝛼𝑘 ,

𝑀 −
𝐾

∑
𝓁=𝑘+1

𝑎𝑢𝑛 ,𝜏,𝛼𝓁 = ∑
(𝑒−𝜏Δ𝑢𝑛)𝑖=𝛼𝑘

𝑑𝑟𝑖 𝑢𝑖 .

For 𝜆 = 1, (4.2) becomes

− 𝑒−𝜏Δ𝑢𝑛 +
𝑀

⟨1,1⟩𝒱
1 = 𝛽 − 𝛽̄1. (4.27)
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We seek to find a 𝛽 such that 𝛽𝑖 = 0 if 𝑢𝑖 ∈ (0, 1). Note that if 𝑢𝑖 ∈ (0, 1), then by
Theorem 4.2.16 we have (𝑒−𝜏Δ𝑢𝑛)𝑖 = 𝛼𝑘, so we desire to have

−𝛼𝑘 +
𝑀

⟨1,1⟩𝒱
= −𝛽̄.

Therefore substituting into (4.27) we have candidate solution:

𝛽 = 𝛼𝑘1− 𝑒−𝜏Δ𝑢𝑛 . (4.28)

We now verify that this candidate solution works even for binary 𝑢.

Proof of Theorem 4.2.20 for 𝜆 = 1. We check that the 𝛽 from (4.28) solves (4.27):

−𝑒−𝜏Δ𝑢𝑛 +
𝑀

⟨1,1⟩𝒱
1 = 𝛼𝑘1− 𝑒−𝜏Δ𝑢𝑛 − 𝛼𝑘1+ 𝑒−𝜏Δ𝑢𝑛1.

Moreover, by the form for 𝑢 from Theorem 4.2.16 it follows that 𝛽 ∈ ℬ(𝑢).

Case: 0 ≤ 𝜆 < 1
For 0 ≤ 𝜆 < 1, (4.4) is strictly convex, so recalling (4.26) it has unique solution

𝑢𝑖 = {
0, if and only if 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
(𝑒−𝜏Δ𝑢𝑛)𝑖−𝜈

1−𝜆 , if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
1, if and only if 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆),

where 𝜈 ∈ [0, 𝜆] solving (4.24) is such that 𝑢 = 𝑢𝑛.
Hence (4.2) is satisfied if and only if for all 𝑖 ∈ 𝑉

𝜆𝛽𝑖 − 𝜆𝛽̄ = 𝜆𝑢̄ + {
−(𝑒−𝜏Δ𝑢𝑛)𝑖 , if 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
−𝜈, if (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
1 − 𝜆 − (𝑒−𝜏Δ𝑢𝑛)𝑖 , if 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆).

(4.29)
We seek a 𝛽 solving this with 𝛽𝑖 = 0 if 𝑢𝑖 ∈ (0, 1). Suppose ∃𝑖 ∈ 𝑉 for which

𝑢𝑖 ∈ (0, 1). This occurs when (𝑒−𝜏Δ𝑢𝑛)𝑖 −(1−𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖, and so at this 𝑖:

−𝜆𝛽̄ = 𝜆𝑢̄ − 𝜈.

Plugging into (4.29) we get the candidate solution:

𝛽𝑖 = 𝜆−1 {
𝜈 − (𝑒−𝜏Δ𝑢𝑛)𝑖 , if 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
0, if (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
𝜈 − (𝑒−𝜏Δ𝑢𝑛)𝑖 + 1 − 𝜆, if 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆),

(4.30)

which obeys 𝛽 ∈ ℬ(𝑢) since 𝑢 obeys (4.26).
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Proof of Theorem 4.2.20 for 0 ≤ 𝜆 < 1. If 𝜆 = 0 (and hence 𝜏 = 0), then 𝑢 = 𝑢𝑛
and 𝜈 = 0. We will therefore define the solution to (4.30) in this case to be 𝛽 = 0.
Note that 0 ∈ ℬ(𝑢), and that (𝑢,0) solves (4.2) for 𝜆 = 0. It therefore remains to
prove the 𝜆 ∈ (0, 1) case.

By the above discussion, taking 𝑢 as in (4.26) and 𝛽 as in (4.30) entails that
(𝑢, 𝛽) is a solution to (4.2) if ∃𝑖 ∈ 𝑉 with 𝑢𝑖 ∈ (0, 1). We check the alternative case,
i.e. for all 𝑖 ∈ 𝑉, 𝑢𝑖 ∈ {0, 1}. Take 𝛽 as in (4.30). As 𝑢 is binary, either 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖
or 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) at each 𝑖 ∈ 𝑉, so

𝜆𝛽 = 𝜈1− 𝑒−𝜏Δ𝑢𝑛 + (1 − 𝜆)𝜒{𝑖|(𝑒−𝜏Δ𝑢𝑛)𝑖≥𝜈+1−𝜆}.

But as 𝑢 is binary we have 𝑢 = 𝜒{𝑖|(𝑒−𝜏Δ𝑢𝑛)𝑖≥𝜈+1−𝜆} and so by (4.30)

𝜆𝛽̄ = 𝜈 − 𝑢̄ + (1 − 𝜆)𝑢̄ = 𝜈 − 𝜆𝑢̄.

Thus 𝛽 solves (4.29). Therefore (𝑢, 𝛽) is always a solution to (4.2).

4.3. Properties of the SDIE schemes
4.3.1. The 𝜆 ↑ 1 limit
For 𝜆 < 1 (4.3) and (4.4) are strictly convex, so have unique solution 𝑢𝜆𝑛+1. In this
section we show that as 𝜆 ↑ 1 these solutions converge pointwise to a solution of
the 𝜆 = 1 case, yielding a choice function for the MBO solutions. Recalling that
𝜆 ∶= 𝜏/𝜀, we will make precise the way that we are taking 𝜆 ↑ 1, when relevant.

As a prelude to investigating the convergence properties of 𝑢𝜆𝑛+1, we first show
that convergence of solutions as 𝜆 ↑ 1 is relevant to solving the 𝜆 = 1 case.
Theorem 4.3.1. Fix 𝑢𝑛, denote the objective function in (4.3) or (4.4) by

𝑞𝜏,𝜀 ∶ 𝑢 ↦
𝜏
𝜀 ⟨𝑢,1− 𝑢⟩𝒱 + ||𝑢 − 𝑧(𝜏)||

2
𝒱

where 𝑧(𝜏) ∶= 𝒮𝜏𝑢𝑛 or 𝑧(𝜏) ∶= 𝑒−𝜏Δ𝑢𝑛 respectively, and let 𝑋 ∶= 𝒱[0,1] or 𝑋 ∶=
𝒱[0,1] ∩ 𝑆𝑀 respectively, where 𝑀 ∶= ℳ(𝑢𝑛). Furthermore, let 𝜏𝑛 and 𝜀𝑛 obey:
0 < 𝜏𝑛 < 𝜀𝑛 for all 𝑛, 𝜏𝑛/𝜀𝑛 ↑ 1, and 𝜏𝑛 , 𝜀𝑛 → 𝓁.

Then 𝑞𝜏𝑛 ,𝜀𝑛 → 𝑞𝓁,𝓁 uniformly on 𝑋. Furthermore, if (𝑢𝜏𝑛 ,𝜀𝑛) ∈ 𝑋 solves (4.3)
(respectively (4.4)) with 𝜏 = 𝜏𝑛 and 𝜀 = 𝜀𝑛, and 𝑢𝜏𝑛 ,𝜀𝑛 → 𝑢, then 𝑢 ∈ 𝑋 is a solution
to (4.3) (respectively (4.4)) with 𝜏 = 𝜀 = 𝓁.
Proof. Let 𝜆𝑛 ∶= 𝜏𝑛/𝜀𝑛. Then for any 𝑢 ∈ 𝑋 and 𝑛 ∈ ℕ,

|𝑞𝜏𝑛 ,𝜀𝑛(𝑢) − 𝑞𝓁,𝓁(𝑢)| ≤ (1 − 𝜆𝑛)⟨𝑢,1− 𝑢⟩𝒱 + |⟨𝑧(𝜏𝑛) − 𝑧(𝓁), 𝑧(𝜏𝑛) + 𝑧(𝓁) − 2𝑢⟩𝒱|

≤ (1 − 𝜆𝑛)
1
4 ||1||

2
𝒱 + ||𝑧(𝜏𝑛) − 𝑧(𝓁)||𝒱 ||𝑧(𝜏𝑛) + 𝑧(𝓁) − 2𝑢||𝒱

≤ (1 − 𝜆𝑛)
1
4 ||1||

2
𝒱 + 4 ||𝑧(𝜏𝑛) − 𝑧(𝓁)||𝒱 ||1||𝒱

(with the final inequality since 𝑢, 𝑧(𝜏𝑛), 𝑧(𝓁) ∈ 𝒱[0,1]) which tends to zero uniformly
as 𝑛 → ∞.
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Next, suppose 𝑢𝜏𝑛 ,𝜀𝑛 → 𝑢 is as in the second part of the statement of the
theorem. Then 𝑢 ∈ 𝑋 since 𝑋 is closed. By uniform convergence, for all 𝛿 > 0 we
have some 𝑁 such that for all 𝑛 > 𝑁 and all 𝑣 ∈ 𝑋

|𝑞𝜏𝑛 ,𝜀𝑛(𝑣) − 𝑞𝓁,𝓁(𝑣)| ≤ 𝛿/2.

Therefore since the 𝑢𝜏𝑛 ,𝜀𝑛 minimise 𝑞𝜏𝑛 ,𝜀𝑛 , for any 𝑣 ∈ 𝑋 we have for all 𝑛 > 𝑁

𝑞𝓁,𝓁(𝑢𝜏𝑛 ,𝜀𝑛) − 𝛿/2 ≤ 𝑞𝜏𝑛 ,𝜀𝑛(𝑢𝜏𝑛 ,𝜀𝑛) ≤ 𝑞𝜏𝑛 ,𝜀𝑛(𝑣) ≤ 𝑞𝓁,𝓁(𝑣) + 𝛿/2.

Since 𝑞𝓁,𝓁 is continuous we can take 𝑛 → ∞ and rearrange to get

𝑞𝓁,𝓁(𝑢) ≤ 𝑞𝓁,𝓁(𝑣) + 𝛿

and since 𝛿 was arbitrary we must have that 𝑢 is a minimiser of 𝑞𝓁,𝓁.

Theorem 4.3.2. Let 𝜏 ≥ 0 be fixed, and so any limit as 𝜆 ↑ 1 corresponds to a
limit as 𝜀 ↓ 𝜏.

If 𝑢𝜆𝑛+1 solves (4.3), then for some sufficiently small 𝛿 > 0, depending only on
𝒮𝜏𝑢𝑛, and each 𝜆 ∈ (1 − 𝛿, 1),

(𝑢𝜆𝑛+1)𝑖 = {
0, if and only if (𝒮𝜏𝑢𝑛)𝑖 <

1
2 ,1

2 , if and only if (𝒮𝜏𝑢𝑛)𝑖 =
1
2 ,

1, if and only if (𝒮𝜏𝑢𝑛)𝑖 >
1
2 ,

and thus 𝑢𝜆𝑛+1 converges to a solution of (4.7) as 𝜆 ↑ 1.
Next let 𝑢𝜆𝑛+1 solve (4.4). If 𝑢𝑛 ∈ {0,1} then 𝑢𝜆𝑛+1 = 𝑢𝑛 for all 𝜆 ∈ [0, 1), and

thus converges to 𝑢𝑛. If 𝑢𝑛 ∈ 𝒱[0,1] ⧵ {0,1}, then 𝑀 = ℳ(𝑢𝑛) ∈ (0,ℳ(1)), and so
there exists 𝑘 as in Theorem 4.2.16 with

𝐾

∑
𝑙=𝑘+1

𝑎𝑢𝑛 ,𝜏,𝛼𝑙 < 𝑀 ≤
𝐾

∑
𝑙=𝑘
𝑎𝑢𝑛 ,𝜏,𝛼𝑙 . (4.31)

Then for some sufficiently small 𝛿 > 0, depending only on 𝑒−𝜏Δ𝑢𝑛, and each 𝜆 ∈
(1 − 𝛿, 1)

(𝑢𝜆𝑛+1)𝑖 = {
0, if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 ≤ 𝛼𝑘−1,
𝑎−1𝑢𝑛 ,𝜏,𝛼𝑘 (𝑀 − ∑

𝐾
𝓁=𝑘+1 𝑎𝑢𝑛 ,𝜏,𝛼𝓁) , if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 = 𝛼𝑘 ,

1, if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 ≥ 𝛼𝑘+1,
(4.32)

and thus 𝑢𝜆𝑛+1 converges to the RHS of (4.32) as 𝜆 ↑ 1.

Proof. For the fidelity forced case (4.3), since {(𝒮𝜏𝑢𝑛)𝑖 ∣ 𝑖 ∈ 𝑉} is a finite set there
exists 𝛿 > 0 such that {(𝒮𝜏𝑢𝑛)𝑖 ∣ 𝑖 ∈ 𝑉} ⊆ [0,

1
2 −

1
2𝛿)∪{

1
2 }∪(

1
2 +

1
2𝛿, 1]. Considering

𝜆 ∈ (1 − 𝛿, 1), the result then follows immediately from Theorem 4.2.1.
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For the mass-conserving case (4.4), only the 𝑢𝑛 ∈ 𝒱[0,1] ⧵ {0,1} case is non-
trivial. As 𝐴𝑢𝑛 ,𝜏 is a finite set, we can take 𝛿 > 0 sufficiently small so that the open
𝛿-balls around the 𝛼 ∈ 𝐴𝑢𝑛 ,𝜏 are disjoint. Let 𝜆 ∈ (1 − 𝛿, 1) and choose 𝜈 solving
(4.24). Then by Proposition 4.2.18, 𝜈 ∈ (0, 𝜆), and recall that (4.24) states that

𝑀 = ∑
𝛼∈𝐴𝑢𝑛,𝜏

𝑎𝑢𝑛 ,𝜏,𝛼 {
1, 𝜈 ≤ 𝛼 − (1 − 𝜆),
𝛼−𝜈
1−𝜆 , 𝛼 − (1 − 𝜆) < 𝜈 < 𝛼,
0, 𝜈 ≥ 𝛼,

and by choice of 𝛿, 𝜈 is within 1−𝜆 of at most one 𝛼, since 0 < 1−𝜆 < 𝛿. Let 𝛼0 ∶= 0
and 𝛼𝐾+1 ∶= 1. Then there exists 1 ≤ 𝑚 ≤ 𝐾 such that 𝜈 ∈ (𝛼𝑚−1, 𝛼𝑚+1 − (1− 𝜆)),
since these intervals cover (0, 𝜆), and we have

𝑀 =
𝐾

∑
𝓁=𝑚+1

𝑎𝑢𝑛 ,𝜏,𝛼𝑙 + 𝑎𝑢𝑛 ,𝜏,𝛼𝑚 max {min {𝛼𝑚 − 𝜈1 − 𝜆 , 1} , 0} .

Hence by (4.31) we must have either 𝑚 = 𝑘 if 𝜈 < 𝛼𝑚 or 𝑚 = 𝑘 − 1 if 𝜈 ≥ 𝛼𝑚. If
𝜈 < 𝛼𝑚,

𝛼𝑘 − 𝜈
1 − 𝜆 = 𝑎−1𝑢𝑛 ,𝜏,𝛼𝑘 (𝑀 −

𝐾

∑
𝓁=𝑘+1

𝑎𝑢𝑛 ,𝜏,𝛼𝓁)

which by (4.26) gives (4.32). If 𝜈 ∈ [𝛼𝑚 , 𝛼𝑚+1 − (1 − 𝜆)) then by (4.26) and since
𝑚 = 𝑘 − 1

(𝑢𝜆𝑛+1)𝑖 = {
0, if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 ≤ 𝛼𝑚 = 𝛼𝑘−1,
1, if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 ≥ 𝛼𝑚+1 = 𝛼𝑘 .

Therefore

𝑀 =
𝐾

∑
𝓁=𝑘

𝑎𝑢𝑛 ,𝜏,𝛼𝓁 ,

so it follows that

𝑎−1𝑢𝑛 ,𝜏,𝛼𝑘 (𝑀 −
𝐾

∑
𝓁=𝑘+1

𝑎𝑢𝑛 ,𝜏,𝛼𝓁) = 1

and so (4.32) follows.

Note 21. The RHS of (4.32) can immediately be seen to solve (4.5) as it satisfies
the conditions of (4.14). Furthermore, note that as 𝜆 ↑ 1, 𝑢𝜆𝑛+1 converges to a point
in Ext𝑋 (i.e. the RHS of (4.32) is in Ext𝑋) if and only if (4.15) holds, i.e. if and
only if (4.5) has a unique solution and 𝑢𝜆𝑛+1 converges to the unique solution of
(4.5).

Corollary 4.3.3. Let 𝑢0 ∈ 𝒱[0,1], 𝜏 ≥ 0 be fixed, and for all 𝜆 ∈ [0, 1), let 𝑢𝜆𝑛 be
defined iteratively by (4.3) (respectively (4.4)) with 𝑢𝜆0 = 𝑢0. Then there exists 𝑢1𝑛,
defined iteratively by the 𝜆 = 1 case of (4.3) (respectively (4.4)) with 𝑢10 = 𝑢0, such
that for all 𝑁 there exists 𝛿 > 0 such that for all 𝜆 ∈ (1 − 𝛿, 1) and 𝑛 ≤ 𝑁, 𝑢𝜆𝑛 = 𝑢1𝑛.
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Proof. By the above theorem, there exists 𝛿1 > 0 depending only on 𝑢0 and 𝜏 such
that for 𝜆 ∈ (1− 𝛿1, 1), 𝑢𝜆1 is constant in 𝜆. By repeating the same argument, there
exists 𝛿2 ∈ (0, 𝛿1] such that for 𝜆 ∈ (1− 𝛿2, 1), 𝑢𝜆1 and 𝑢𝜆2 are constant in 𝜆. Hence,
for all 𝑁 there exists 𝛿𝑁 > 0 such that for 𝜆 ∈ (1− 𝛿𝑁 , 1) and 𝑛 ≤ 𝑁, 𝑢𝜆𝑛 is constant
in 𝜆. Finally, define 𝑢1𝑛 to be that eventually constant value.

4.3.2. Conditions on freezing
Similarly to the AC flow, the semi-discrete scheme experiences freezing if 𝜏 is taken
too small. Results giving sufficient conditions for “too small” in the non-mass-
conserving case were proved in [9, Theorem 4.2] (for the MBO scheme) and [3,
Theorem 4.5] (for the semi-discrete scheme in the ordinary case). We here prove
similar results in the fidelity forced and mass-conserving cases.

Lemma 4.3.4. For any 𝑆 ⊆ 𝑉 and 𝛼 ≥ 0, if

𝜏 < ||Δ||−1 log(1 + 𝛼√min𝑖∈𝑉 𝑑𝑟𝑖
ℳ(𝜒𝑆)

) or 𝜏 < 𝛼||Δ𝜒𝑆||−1∞ , (4.33)

then ||𝑒−𝜏Δ𝜒𝑆 − 𝜒𝑆||∞ < 𝛼, and if

𝜏 ≤ ||Δ||−1 log(1 + 𝛼√min𝑖∈𝑉 𝑑𝑟𝑖
ℳ(𝜒𝑆)

) or 𝜏 ≤ 𝛼||Δ𝜒𝑆||−1∞ , (4.34)

then ||𝑒−𝜏Δ𝜒𝑆 − 𝜒𝑆||∞ ≤ 𝛼.
Likewise, if

𝜏 < ||𝐴||−1 log(1 + 𝛼 min𝑖∈𝑉 𝑑𝑟/2𝑖
√ℳ(𝜒𝑆) + ||𝐴||−1||𝑓||𝒱

) or 𝜏 < 𝛼𝐶−1||𝐴𝜒𝑆 − 𝑓||−1∞ , (4.35)

then ||𝒮𝜏𝜒𝑆 − 𝜒𝑆||∞ < 𝛼, and if

𝜏 ≤ ||𝐴||−1 log(1 + 𝛼 min𝑖∈𝑉 𝑑𝑟/2𝑖
√ℳ(𝜒𝑆) + ||𝐴||−1||𝑓||𝒱

) or 𝜏 ≤ 𝛼𝐶−1||𝐴𝜒𝑆 − 𝑓||−1∞ , (4.36)

then ||𝒮𝜏𝜒𝑆 − 𝜒𝑆||∞ ≤ 𝛼, where 𝐶 ∶= sup𝑡∈[0,∞) ||𝑒−𝑡𝐴1||∞ satisfies

𝐶 ≤ (min
𝑖∈𝑉

𝑑𝑟/2𝑖 )
−1

sup𝑡∈[0,∞) ||𝑒−𝑡𝐴1||𝒱 ≤ (min
𝑖∈𝑉

𝑑𝑟/2𝑖 )
−1
||1||𝒱 , and

𝐶 ≥ ||1||∞ = 1.

Proof. It suffices to prove the (4.36) case, as the (4.35) case is the same just with
a strict inequality, and the (4.33) and (4.34) cases can be derived by setting 𝜇 = 0
and hence 𝑓 = 0, 𝐴 = Δ, 𝒮𝜏 = 𝑒−𝜏Δ, and 𝐶 = 1. We now follow the proof of [9,
Theorem 4.2].
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It is straightforward to check that for all 𝑢 ∈ 𝒱, ||𝑢||∞ ≤ (min𝑖∈𝑉 𝑑𝑟/2𝑖 )
−1
||𝑢||𝒱.

Hence

||𝒮𝜏𝜒𝑆 − 𝜒𝑆||∞ ≤ (min
𝑖∈𝑉

𝑑𝑟/2𝑖 )
−1
||𝒮𝜏𝜒𝑆 − 𝜒𝑆||𝒱

≤ (min
𝑖∈𝑉

𝑑𝑟/2𝑖 )
−1
(||(𝑒−𝜏𝐴 − 𝐼)𝜒𝑆||𝒱 + ||

∞

∑
𝑛=0
(−1)𝑛 𝜏𝑛+1

(𝑛 + 1)!𝐴
𝑛𝑓||

𝒱

)

≤ (min
𝑖∈𝑉

𝑑𝑟/2𝑖 )
−1
(𝑒𝜏||𝐴|| − 1) (√ℳ(𝜒𝑆) + ||𝐴||−1||𝑓||𝒱)

and setting 𝑅𝐻𝑆 ≤ 𝛼 gives the first condition in (4.36).
Next, note that since 𝒮𝜏 is the solution operator for (3.6)

||𝒮𝜏𝜒𝑆 − 𝜒𝑆||∞ = ||∫
𝜏

0
−𝐴𝒮𝑡𝜒𝑆 + 𝑓 𝑑𝑡||

∞
= ||∫

𝜏

0
−𝑒−𝑡𝐴 (𝐴𝜒𝑆 − 𝑓) 𝑑𝑡||

∞

≤ ∫
𝜏

0
||𝑒−𝑡𝐴 (𝐴𝜒𝑆 − 𝑓)||∞ 𝑑𝑡

≤ ∫
𝜏

0
𝐶 ||𝐴𝜒𝑆 − 𝑓||∞ 𝑑𝑡 (∗)

= 𝜏𝐶 ||𝐴𝜒𝑆 − 𝑓||∞ 𝑑𝑡

where the second inequality follows from (3.7) and Definition 3.6. Setting 𝑅𝐻𝑆 ≤ 𝛼
gives the second condition in (4.36).

It suffices then to check line (∗). Recall from the proof of Theorem 3.2.6 that
𝑒−𝑡𝐴 is a non-negative matrix. Then for any 𝑢 ∈ 𝑉, −||𝑢||∞1 ≤ 𝑢 ≤ ||𝑢||∞1
vertexwise and so |𝑒−𝑡𝐴𝑢| ≤ ||𝑢||∞𝑒−𝑡𝐴1 vertexwise. It follows that ||𝑒−𝑡𝐴𝑢||∞ ≤
𝐶||𝑢||∞. Finally, since (by Proposition 4.2.7) the eigenvalues of 𝑒−𝑡𝐴 are all in [0, 1]
and we have the inequality at the start of this proof relating the 𝒱 and infinity norms,
we get the desired upper bound for 𝐶. The lower bound for 𝐶 follows immediately
from the definition of 𝐶 by taking 𝑡 = 0.

Theorem 4.3.5. If 𝑆 ⊆ 𝑉 and 𝜏 obey (4.35) (respectively (4.33)) for 𝛼 = 1
2 , 𝜆 = 1,

and 𝑢𝑛 = 𝜒𝑆, then 𝑢 solves (4.3) (respectively (4.4)) if and only if 𝑢 = 𝜒𝑆.

Proof. Let 𝑄 ∶= 𝒮𝜏 or 𝑄 ∶= 𝑒−𝜏Δ respectively. By Lemma 4.3.4, we have that
||𝑄𝜒𝑆 − 𝜒𝑆||∞ <

1
2 and it follows that max𝑖∈𝑆𝑐(𝑄𝜒𝑆)𝑖 <

1
2 <min𝑖∈𝑆(𝑄𝜒𝑆)𝑖.

Hence if 𝑢 solves (4.3), then by (4.7) 𝑢 = 𝜒𝑆, and so 𝜒𝑆 solves (4.3).
In the mass-conserving case, recall from Corollary 4.2.12 that for 𝑀 = ℳ(𝜒𝑆),

𝑆𝜏,𝜒𝑆∩Ext𝑋𝑀 is non-empty, so consider an arbitrary 𝑢 ∈ 𝑆𝜏,𝜒𝑆∩Ext𝑋𝑀. By Corollary
4.2.14, to prove the theorem it will suffice to prove that 𝑢 must equal 𝜒𝑆.

By Theorem 4.2.13, if 𝑢𝑖 > 0 and 𝑢𝑗 < 1 then (𝑒−𝜏Δ𝜒𝑆)𝑖 ≥ (𝑒−𝜏Δ𝜒𝑆)𝑗. Thus if
𝑖 ∈ 𝑆𝑐 and 𝑗 ∈ 𝑆 then (𝑒−𝜏Δ𝜒𝑆)𝑖 <

1
2 < (𝑒−𝜏Δ𝜒𝑆)𝑗 and hence 𝑢𝑖 = 0 or 𝑢𝑗 = 1.

Suppose that 𝑢𝑗 < 1 for some 𝑗 ∈ 𝑆, then by the above 𝑢𝑖 = 0 for all 𝑖 ∈ 𝑆𝑐. But
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then 𝑢 ≤ 𝜒𝑆 vertexwise and 𝑢𝑗 < (𝜒𝑆)𝑗, soℳ(𝑢) < ℳ(𝜒𝑆), a contradiction. Hence
𝑢𝑗 = 1 for all 𝑗 ∈ 𝑆. Likewise, 𝑢𝑖 = 0 for all 𝑖 ∈ 𝑆𝑐.

Theorem 4.3.6. Let 𝑆 ⊆ 𝑉, 𝜆 ∈ [0, 1), 𝜏 obey (4.36) (respectively (4.34)) for
𝛼 = 1

2𝜆, and 𝑢𝑛 = 𝜒𝑆. Then 𝑢 solves (4.3) (respectively (4.4)) if and only if 𝑢 = 𝜒𝑆.

Proof. Recall that solutions to (4.3) and (4.4) are unique for 𝜆 ∈ [0, 1), so it suffices
to show that 𝑢 = 𝜒𝑆 is a valid solution. Let 𝑄 ∶= 𝒮𝜏 or 𝑄 ∶= 𝑒−𝜏Δ respectively. Then
by Lemma 4.3.4 we have that ||𝑄𝜒𝑆 − 𝜒𝑆||∞ ≤

1
2𝜆, and hence (𝑄𝜒𝑆)𝑖 ≤

1
2𝜆 if and

only if 𝑖 ∈ 𝑆𝑐, and (𝑄𝜒𝑆)𝑖 ≥ 1 −
1
2𝜆 if and only if 𝑖 ∈ 𝑆.

By (4.6), it follows that 𝑢 = 𝜒𝑆 solves (4.3) (i.e., the fidelity forced case).
In the mass-conserving case, taking 𝜈 = 1

2𝜆 we observe that (recalling that
𝑀 ∶= ℳ(𝑢𝑛) = ℳ(𝜒𝑆))

𝑀 +∑
𝑖
𝑑𝑟𝑖 {

−1, 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆),
𝜈−(𝑒−𝜏Δ𝑢𝑛)𝑖

1−𝜆 , (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
0, 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 ,

= 𝑀 +∑
𝑖
𝑑𝑟𝑖
⎧

⎨
⎩

−1, 1 − 1
2𝜆 ≤ (𝑒

−𝜏Δ𝑢𝑛)𝑖 ,
𝜈−(𝑒−𝜏Δ𝑢𝑛)𝑖

1−𝜆 , (𝑒−𝜏Δ𝑢𝑛)𝑖 ∈ (
1
2𝜆, 1 −

1
2𝜆) ,

0, 1
2𝜆 ≥ (𝑒

−𝜏Δ𝑢𝑛)𝑖 ,

= 𝑀 +∑
𝑖
𝑑𝑟𝑖 {

−1, 𝑖 ∈ 𝑆,
0, 𝑖 ∈ 𝑆𝑐 ,

= 𝑀 −ℳ(𝜒𝑆) = 0.

Thus 𝜈 = 1
2𝜆 solves (4.23), and so by (4.22) 𝑢 is given by

𝑢𝑖 = {
0, if and only if 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
(𝑒−𝜏Δ𝑢𝑛)𝑖−𝜈

1−𝜆 , if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
1, if and only if 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆),

=
⎧⎪
⎨⎪⎩

0, if and only if 1
2𝜆 ≥ (𝑒

−𝜏Δ𝑢𝑛)𝑖 ,
(𝑒−𝜏Δ𝑢𝑛)𝑖−

1
2𝜆

1−𝜆 , if and only if (𝑒−𝜏Δ𝑢𝑛)𝑖 ∈ (
1
2𝜆, 1 −

1
2𝜆) ,

1, if and only if 1 − 1
2𝜆 ≤ (𝑒

−𝜏Δ𝑢𝑛)𝑖 ,

= {0, if and only if 𝑖 ∈ 𝑆𝑐 ,
1, if and only if 𝑖 ∈ 𝑆,

so 𝑢 = 𝜒𝑆 is a valid solution.
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4.3.3. Bounds on 𝛽𝑛
Lemma 4.3.7. Let 0 < 𝜆 ≤ 1 and 𝑢𝑛 ∈ 𝒱[0,1].

If (𝑢𝑛+1, 𝛽𝑛+1) solves (4.1), then

𝛽𝑛+1 ∈ 𝒱[−1/2,1/2]. (4.37)

If (𝑢𝑛+1, 𝛽𝑛+1) solves (4.2) and 𝑢̄ ∶= 𝑢𝑛 = 𝑢𝑛+1 ∈ (0, 1), then

𝛽𝑛+1 − 𝛽𝑛+11 ∈ 𝒱[𝑢̄−1,𝑢̄] (4.38)

and
𝛽𝑛+1 ∈ 𝒱[−1,1]. (4.39)

Proof. If (𝑢𝑛+1, 𝛽𝑛+1) solves (4.1), then (4.37) follows immediately from the char-
acterisation of 𝛽𝑛+1 in Theorem 4.2.1 and from 𝒮𝜏𝑢𝑛 ∈ 𝒱[0,1] (Theorem 3.2.6).

If (𝑢𝑛+1, 𝛽𝑛+1) solves (4.2) and 𝑢̄ ∶= 𝑢𝑛 = 𝑢𝑛+1 ∈ (0, 1), then first suppose that
𝜆 = 1. Then by (4.27),

(𝛽𝑛+1)𝑖 − 𝛽𝑛+1 = 𝑢̄ − (𝑒−𝜏Δ𝑢𝑛)𝑖 ∈ [𝑢̄ − 1, 𝑢̄].

Next, suppose 𝜆 ∈ (0, 1). Then by (4.29),

(𝛽𝑛+1)𝑖 − 𝛽𝑛+1 = 𝑢̄ +
1
𝜆 {
−(𝑒−𝜏Δ𝑢𝑛)𝑖 , if 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
−𝜈, if (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
1 − 𝜆 − (𝑒−𝜏Δ𝑢𝑛)𝑖 , if 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆),

= 𝑢̄ − 1 + 1𝜆 {
𝜆 − (𝑒−𝜏Δ𝑢𝑛)𝑖 , if 𝜈 ≥ (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
𝜆 − 𝜈, if (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆) < 𝜈 < (𝑒−𝜏Δ𝑢𝑛)𝑖 ,
1 − (𝑒−𝜏Δ𝑢𝑛)𝑖 , if 𝜈 ≤ (𝑒−𝜏Δ𝑢𝑛)𝑖 − (1 − 𝜆),

where we recall from Proposition 4.2.18 that 𝜈 ∈ (0, 𝜆). It is therefore easy to check
that in the first line the conditional term is non-positive, and in the second line the
conditional term is non-negative. Therefore we deduce (4.38).

Consider the set B ∶= {(𝛽𝑛+1)𝑖 ∣ 𝑖 ∈ 𝑉}. By (4.38), B−𝛽𝑛+1 ⊆ [𝑢̄ − 1, 𝑢̄], so we
have that diamB ≤ 1. Furthermore, 𝑢𝑛+1 ∉ {0,1}, so since 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1) we
have 𝑥, 𝑦 ∈ B such that 𝑥 ≥ 0 and 𝑦 ≤ 0. ThereforeB ⊆ [𝑥−1, 𝑥+1]∩[𝑦−1, 𝑦+1] ⊆
[−1, 1].

4.4. Eventual behaviour of the SDIE scheme
In this section we exhibit Lyapunov functionals for each of the cases of the SDIE
scheme, and use these to examine the eventual behaviour of the schemes.

Lemma 4.4.1 (Cf. [9, Lemma 4.5]). Define the following functionals on 𝒱

𝐽0(𝑢) ∶= ⟨1− 𝑢, 𝑒−𝜏Δ𝑢⟩𝒱 ,
𝐽(𝑢) ∶= ⟨𝑢,1− 2𝐹𝜏(𝐴)𝑓 − 𝑒−𝜏𝐴𝑢⟩𝒱 .

These have the following properties:
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i. 𝐽0 and 𝐽 are strictly concave.

ii. 𝐽0 has first variation at 𝑢
(𝐿0)𝑢(𝑣) ∶= ⟨𝑣,1− 2𝑒−𝜏Δ𝑢⟩𝒱 .

iii. 𝐽 has first variation at 𝑢
𝐿𝑢(𝑣) ∶= ⟨𝑣,1− 2𝐹𝜏(𝐴)𝑓 − 2𝑒−𝜏𝐴𝑢⟩𝒱 = ⟨𝑣,1− 2𝒮𝜏𝑢⟩𝒱 .

Proof. Note that 𝐽0 is the 𝜇 = 0 case of 𝐽 (since ⟨1, 𝑒−𝜏Δ𝑢⟩𝒱 = ⟨𝑢,1⟩𝒱), so it suffices
to prove the results for 𝐽. Let 𝑤 ∶= 1− 2𝐹𝜏(𝐴)𝑓. We expand around 𝑢:
𝐽(𝑢 + 𝑡𝑣) = ⟨𝑢 + 𝑡𝑣, 𝑤 − 𝑒−𝜏𝐴(𝑢 + 𝑡𝑣)⟩𝒱

= ⟨𝑢,𝑤 − 𝑒−𝜏𝐴𝑢⟩𝒱 + 𝑡⟨𝑣, 𝑤 − 𝑒𝜏𝐴𝑢⟩𝒱 − 𝑡⟨𝑢, 𝑒−𝜏𝐴𝑣⟩𝒱 − 𝑡2⟨𝑣, 𝑒−𝜏𝐴𝑣⟩𝒱 .

Then to prove (i), note that 𝑑2
𝑑𝑡2 𝐽(𝑢 + 𝑡𝑣) = −2⟨𝑣, 𝑒

−𝜏𝐴𝑣⟩𝒱 < 0 for 𝑣 ≠ 0. To prove
(iii), note that since 𝑒−𝜏𝐴 is self-adjoint, 𝐽(𝑢 + 𝑡𝑣) = 𝐽(𝑢) + 𝑡𝐿𝑢(𝑣) + 𝒪(𝑡2).
Theorem 4.4.2. For 0 ≤ 𝜆 ≤ 1 we define on 𝒱[0,1] the functionals

𝐻0(𝑢) ∶= 𝐽0(𝑢) + (𝜆 − 1)⟨𝑢,1− 𝑢⟩𝒱 , (4.40a)
𝐻(𝑢) ∶= 𝐽(𝑢) + (𝜆 − 1)⟨𝑢,1− 𝑢⟩𝒱 . (4.40b)

These have uniform lower bounds

𝐻0(𝑢) ≥ 0, 𝐻(𝑢) ≥ −2𝜏||𝑓||𝒱||1||𝒱 .
Furthermore, 𝐻 is a Lyapunov functional for the fidelity forced SDIE scheme (4.1),
and 𝐻0 is a Lyapunov functional for the mass-conserving SDIE scheme (4.2), i.e.
𝐻(𝑢𝑛+1) ≤ 𝐻(𝑢𝑛) with equality if and only if 𝑢𝑛+1 = 𝑢𝑛 for 𝑢𝑛+1 defined by (4.1),
and 𝐻0(𝑢𝑛+1) ≤ 𝐻0(𝑢𝑛) with equality if and only if 𝑢𝑛+1 = 𝑢𝑛 for 𝑢𝑛+1 defined by
(4.2). In particular, we have that for 𝑢𝑛+1 given by (4.1)

𝐻(𝑢𝑛) − 𝐻(𝑢𝑛+1) ≥ (1 − 𝜆) ||𝑢𝑛+1 − 𝑢𝑛||
2
𝒱 (4.41)

and for 𝑢𝑛+1 given by (4.2)

𝐻0(𝑢𝑛) − 𝐻0(𝑢𝑛+1) ≥ (1 − 𝜆) ||𝑢𝑛+1 − 𝑢𝑛||
2
𝒱 . (4.42)

Proof. We begin with proving the lower bounds. Note that 𝐻0 is the 𝜇 = 0 and
hence 𝑓 = 0 case of 𝐻, so it suffices to prove the lower bound for 𝐻. We can
rewrite 𝐻 as:
𝐻(𝑢) = 𝜆⟨𝑢,1− 𝑢⟩𝒱 + ⟨𝑢, 𝑢 − 2𝐹𝜏(𝐴)𝑓 − 𝑒−𝜏𝐴𝑢⟩𝒱

≥ ⟨𝑢, (𝐼 − 𝑒−𝜏𝐴)𝑢⟩𝒱 − 2⟨𝑢, 𝐹𝜏(𝐴)𝑓⟩𝒱 since 𝑢 ∈ 𝒱[0,1]
≥ −2⟨𝑢, 𝐹𝜏(𝐴)𝑓⟩𝒱 since 𝐼 − 𝑒−𝜏𝐴 is positive definite
≥ −2||𝑓||𝒱||𝑢||𝒱 ||𝐹𝜏(𝐴)||
≥ −2||𝑓||𝒱||1||𝒱 ||𝐹𝜏(𝐴)|| ≥ −2𝜏||𝑓||𝒱||1||𝒱
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where the final line follows since 𝐹𝜏(𝐴) is self-adjoint (since 𝐴 is) and has eigenvalues

{1 − 𝑒
−𝜏𝜉

𝜉 | 𝜉 ∈ 𝜎(𝐴)}

so we have by Proposition 3.2.4 that

||𝐹𝜏(𝐴)|| ≤ sup
𝑥∈(0,||Δ||+||𝜇||∞]

1 − 𝑒−𝜏𝑥
𝑥

= lim
𝑥→0

1 − 𝑒−𝜏𝑥
𝑥 as 𝑥 ↦ 𝑥−1(1 − 𝑒−𝜏𝑥) is monotonically decreasing4

= 𝜏.

Next we show that 𝐻 is a Lyapunov functional for (4.1). By the concavity of 𝐽:
𝐻(𝑢𝑛) − 𝐻(𝑢𝑛+1)
= 𝐽(𝑢𝑛) − 𝐽(𝑢𝑛+1) + (1 − 𝜆)⟨𝑢𝑛+1,1− 𝑢𝑛+1⟩𝒱 − (1 − 𝜆)⟨𝑢𝑛 ,1− 𝑢𝑛⟩𝒱
≥ 𝐿𝑢𝑛(𝑢𝑛 − 𝑢𝑛+1) + (1 − 𝜆)⟨𝑢𝑛+1,1− 𝑢𝑛+1⟩𝒱 − (1 − 𝜆)⟨𝑢𝑛 ,1− 𝑢𝑛⟩𝒱 (∗)
= ⟨𝑢𝑛 − 𝑢𝑛+1,1− 2𝒮𝜏𝑢𝑛⟩𝒱 + (1 − 𝜆)⟨𝑢𝑛+1,1− 𝑢𝑛+1⟩𝒱 − (1 − 𝜆)⟨𝑢𝑛 ,1− 𝑢𝑛⟩𝒱
= ⟨𝑢𝑛 − 𝑢𝑛+1,1− 2𝒮𝜏𝑢𝑛⟩𝒱 + (1 − 𝜆)(⟨𝑢𝑛+1 − 𝑢𝑛 ,1⟩𝒱 + ⟨𝑢𝑛 , 𝑢𝑛⟩𝒱 − ⟨𝑢𝑛+1, 𝑢𝑛+1⟩𝒱)
= ⟨𝑢𝑛 − 𝑢𝑛+1, 𝜆1− 2𝒮𝜏𝑢𝑛 + (1 − 𝜆)𝑢𝑛+1 + (1 − 𝜆)𝑢𝑛⟩𝒱
= ⟨𝑢𝑛 − 𝑢𝑛+1, 2𝜆𝛽𝑛+1 + (1 − 𝜆)(𝑢𝑛 − 𝑢𝑛+1)⟩𝒱 by (4.1)
≥ (1 − 𝜆) ||𝑢𝑛+1 − 𝑢𝑛||

2
𝒱 ≥ 0

with equality in (∗) if and only if 𝑢𝑛+1 = 𝑢𝑛 as the concavity of 𝐽 is strict, and where
the last line follows by Lemma 3.4.6.

Finally, we show that 𝐻0 is a Lyapunov functional for (4.2). By the concavity of
𝐽0, the linearity of (𝐿0)𝑢𝑛 , and recalling that ⟨𝑢𝑛 − 𝑢𝑛+1,1⟩𝒱 = 0:
𝐻0(𝑢𝑛) − 𝐻0(𝑢𝑛+1)
= 𝐽0(𝑢𝑛) − 𝐽0(𝑢𝑛+1) + (1 − 𝜆)⟨𝑢𝑛+1,1− 𝑢𝑛+1⟩𝒱 − (1 − 𝜆)⟨𝑢𝑛 ,1− 𝑢𝑛⟩𝒱
≥ (𝐿0)𝑢𝑛(𝑢𝑛 − 𝑢𝑛+1) − (1 − 𝜆)⟨𝑢𝑛+1, 𝑢𝑛+1⟩𝒱 + (1 − 𝜆)⟨𝑢𝑛 , 𝑢𝑛⟩𝒱 (∗∗)
= ⟨𝑢𝑛 − 𝑢𝑛+1,1− 2𝑒−𝜏Δ𝑢𝑛⟩𝒱 − (1 − 𝜆)⟨𝑢𝑛+1, 𝑢𝑛+1⟩𝒱 + (1 − 𝜆)⟨𝑢𝑛 , 𝑢𝑛⟩𝒱
= ⟨𝑢𝑛 − 𝑢𝑛+1, −2𝑒−𝜏Δ𝑢𝑛 + (1 − 𝜆)(𝑢𝑛+1 + 𝑢𝑛)⟩𝒱
= ⟨𝑢𝑛 − 𝑢𝑛+1, 2(1 − 𝜆)𝑢𝑛+1 − 2𝑒−𝜏Δ𝑢𝑛 + (1 − 𝜆)(𝑢𝑛 − 𝑢𝑛+1)⟩𝒱
= ⟨𝑢𝑛 − 𝑢𝑛+1, 2𝜆𝛽𝑛+1 − 2𝜆𝑢𝑛+11− 2𝜆𝛽𝑛+11+ (1 − 𝜆)(𝑢𝑛 − 𝑢𝑛+1)⟩

𝒱
by (4.2)

= ⟨𝑢𝑛 − 𝑢𝑛+1, 2𝜆𝛽𝑛+1⟩𝒱 + (1 − 𝜆) ||𝑢𝑛+1 − 𝑢𝑛||
2
𝒱

≥ (1 − 𝜆) ||𝑢𝑛+1 − 𝑢𝑛||
2
𝒱 ≥ 0

with equality in (∗∗) if and only if 𝑢𝑛+1 = 𝑢𝑛 as the concavity of 𝐽0 is strict, and
where the last line follows by Lemma 3.4.6.
4 𝑑
𝑑𝑥 (𝑥

−1(1 − 𝑒−𝜏𝑥)) = 𝑥−2𝑒−𝜏𝑥(1 + 𝜏𝑥 − 𝑒𝜏𝑥) ≤ 0.
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As a corollary, we consider conditions under which the MBO sequence (i.e. the
𝜆 = 1 SDIE sequence) is eventually constant.
Corollary 4.4.3 (Cf. [9, Proposition 4.6] and [10, Lemma 5.18]). Let 𝜆 = 1. If a
fidelity forced MBO sequence 𝑢𝑛 defined by (4.1) satisfies 𝑢𝑛 ∈ 𝒱{0,1} for eventually
all 𝑛, then there exists 𝑢 ∈ 𝒱{0,1} such that for eventually all 𝑛, 𝑢𝑛 = 𝑢.

Furthermore, recall from Definitions 4.2.3 and 4.2.8 (respectively) the notations
𝑋𝑀, for the set of 𝑢 ∈ 𝒱[0,1] with ℳ(𝑢) = 𝑀, and 𝑆𝜏,𝑢𝑛 , for the set of valid mass-
conserving MBO updates of 𝑢𝑛, i.e. the set of solutions to (4.5). If 𝑀 =ℳ(𝑢0) and
a mass-conserving MBO sequence 𝑢𝑛 defined by (4.5) satisfies either:

(i) for eventually all 𝑛, 𝑢𝑛+1 ∈ Ext 𝑆𝜏,𝑢𝑛 , or
(ii) for eventually all 𝑛, 𝑢𝑛+1 is as in (4.32) (i.e. the 𝜆 ↑ 1 limit of the semi-discrete

updates 𝑢𝜆𝑛+1),
then there exists 𝑢 ∈ 𝑋𝑀 such that for eventually all 𝑛, 𝑢𝑛 = 𝑢.
Proof. Note that 𝒱{0,1} is a finite set. Hence {𝑢𝑛 ∣ 𝑛 ∈ ℕ} is a finite set, so if the
𝑢𝑛 are not eventually a single 𝑢 then we must have some 𝑢, 𝑣 ∈ 𝒱{0,1} such that
𝑢 ≠ 𝑣, 𝑢𝑛 = 𝑢 infinitely often, and 𝑢𝑛 = 𝑣 infinitely often. Therefore we must have
𝑛 < 𝑚 < 𝑘 such that 𝑢𝑛 = 𝑢𝑘 = 𝑢 and 𝑢𝑚 = 𝑣, and hence
𝐻(𝑢) ≥ 𝐻(𝑢𝑛+1) ≥ ... ≥ 𝐻(𝑢𝑚−1) ≥ 𝐻(𝑣) ≥ 𝐻(𝑢𝑚+1) ≥ ... ≥ 𝐻(𝑢𝑘−1) ≥ 𝐻(𝑢).

All the inequalities are equalities, and therefore by the equality condition on 𝐻 from
Theorem 4.4.2 we have 𝑢 = 𝑣, a contradiction. Thus the 𝑢𝑛 are eventually constant.

In the mass-conserving cases, it will likewise suffice to show that the sequence
is eventually contained within a finite set. For (i), recall from Propositions 4.2.11
and 4.2.5 (respectively) that Ext 𝑆𝜏,𝑢𝑛 = 𝑆𝜏,𝑢𝑛 ∩ Ext𝑋𝑀 ⊆ Ext𝑋𝑀 and that Ext𝑋𝑀
is a finite set. For (ii), we show that there are finitely many possible 𝑢 ∈ 𝑋𝑀 of the
form (4.32). Each such 𝑢 has the form

𝑢 =
𝑀 −ℳ(𝜒𝑉3)
ℳ(𝜒𝑉2)

𝜒𝑉2 + 𝜒𝑉3

for a partition 𝑉 = 𝑉1 ∪ 𝑉2 ∪ 𝑉3 with 0 ≤ 𝑀 − ℳ(𝜒𝑉3) ≤ ℳ(𝜒𝑉2). To see this,
note that 𝑢 as in (4.32) has 𝑉1 = {𝑖 ∣ (𝑒−𝜏Δ𝑢𝑛)𝑖 < 𝛼𝑘}, 𝑉2 = {𝑖 ∣ (𝑒−𝜏Δ𝑢𝑛)𝑖 = 𝛼𝑘},
and 𝑉3 = {𝑖 ∣ (𝑒−𝜏Δ𝑢𝑛)𝑖 > 𝛼𝑘}. But since 𝑉 is finite, there are only finitely many
tripartitions of 𝑉.
Corollary 4.4.4. If 𝜆 ∈ [0, 1) and the sequence 𝑢𝑛 obeys (4.1) or (4.2), then

∞

∑
𝑛=0

||𝑢𝑛+1 − 𝑢𝑛||
2
𝒱 < ∞

and therefore in particular

lim
𝑛→∞

||𝑢𝑛+1 − 𝑢𝑛||𝒱 = 0.

If 𝜆 = 1 then in any of the cases of Corollary 4.4.3, this result also holds.
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Proof. For 𝜆 < 1, in the (4.1) case by the lower bound on 𝐻 from Theorem 4.4.2
and (4.41) we have

(1 − 𝜆)
𝑁

∑
𝑛=0

||𝑢𝑛+1 − 𝑢𝑛||
2
𝒱 ≤ 𝐻(𝑢0) − 𝐻(𝑢𝑁+1) ≤ 𝐻(𝑢0) + 2𝜏||𝑓||𝒱||1||𝒱

so the result follows by taking 𝑁 → ∞. The case for (4.2) is likewise.
For 𝜆 = 1, the result trivially holds when 𝑢𝑛 is eventually constant.

We wish to use the gradient of 𝐻 and 𝐻0 to investigate critical points of the
flow. However as in the mass-conserving case we will restrict the flow to lie in 𝑆𝑀,
a non-Hilbert space, we make the following definition.

Definition 4.4.5. Let 𝑌0 be a Hilbert space with inner product ⟨⋅, ⋅⟩𝑌0 , and let 𝑌1 ⊆ 𝑌0
be a closed subspace. Let 𝑌̃ ∶= 𝑥 + 𝑌1 for some 𝑥 ∈ 𝑌0. Let 𝑓 ∶ 𝑌0 → ℝ be a Fréchet
differentiable map, with Fréchet derivative 𝐷𝑓 defined at each 𝑢 ∈ 𝑌0 to be the
unique linear map such that

𝑓(𝑢 + ℎ) = 𝑓(𝑢) + 𝐷𝑓(𝑢)(ℎ) + 𝑜(ℎ).

Then we define the Fréchet derivative of 𝑓|𝑌̃ at 𝑢 ∈ 𝑌̃ by

𝐷𝑓|𝑌̃(𝑢) ∶= 𝐷𝑓(𝑢)|𝑌1
where the restriction of the argument to 𝑌1 ensures that for 𝑢 ∈ 𝑌̃ the 𝑢 + ℎ terms
satisfy 𝑢 + ℎ ∈ 𝑌̃. Then we define the gradient

∇𝑌̃𝑓|𝑌̃(𝑢) ∈ 𝑌1
to be the Riesz representative of 𝐷𝑓|𝑌̃(𝑢), i.e. the unique element of 𝑌1 such that

∀𝑣 ∈ 𝑌1 ⟨∇𝑌̃𝑓|𝑌̃(𝑢), 𝑣⟩𝑌0 = 𝐷𝑓|𝑌̃(𝑢)(𝑣) = 𝐷𝑓(𝑢)(𝑣).

Note therefore that for 𝑢 ∈ 𝑌̃, since ∇𝑌0𝑓(𝑢) is the Riesz representative of 𝐷𝑓(𝑢),

∀𝑣 ∈ 𝑌1 ⟨∇𝑌0𝑓(𝑢), 𝑣⟩𝑌0 = ⟨∇𝑌̃𝑓|𝑌̃(𝑢), 𝑣⟩𝑌0
and so (∇𝑌̃𝑓|𝑌̃(𝑢) − ∇𝑌0𝑓(𝑢))⊥𝑌1. That is, for 𝑢 ∈ 𝑌̃, ∇𝑌̃𝑓|𝑌̃(𝑢) is the orthogonal
projection of ∇𝑌0𝑓(𝑢) onto 𝑌1.
Proposition 4.4.6. Let 𝑢 ∈ 𝒱(0,1). Then the Lyapunov functional 𝐻 for (4.1) has
Hilbert space gradient:

∇𝒱𝐻(𝑢) = 𝜆1− 2𝒮𝜏𝑢 + 2(1 − 𝜆)𝑢. (4.43)

Next, let 𝑢 ∈ 𝒱(0,1) ∩𝑋𝑀 (and so 𝑀 ∶= ℳ(𝑢)). Then the Lyapunov functional 𝐻0
for (4.2) has restricted gradient:

∇𝑆𝑀𝐻0|𝑆𝑀(𝑢) = 2(𝑢 − 𝑒−𝜏Δ𝑢) − 2𝜆𝑢 + 2𝜆𝑢̄1. (4.44)

Therefore:
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i. For a sequence 𝑢𝑛 ∈ 𝒱(0,1) given by (4.1)

∇𝒱𝐻(𝑢𝑛) = 2(1 − 𝜆)(𝑢𝑛 − 𝑢𝑛+1). (4.45)

ii. If 𝑢 ∈ 𝒱(0,1), it follows that ∇𝒱𝐻(𝑢) = 0 (i.e. 𝑢 is a critical point of 𝐻) if and
only if (𝑒−𝜏𝐴 − (1 − 𝜆)𝐼)𝑢 = 1

2𝜆1− 𝐹𝜏(𝐴)𝑓.

iii. Such a critical point is a global maximum of 𝐻 in 𝒱[0,1] if and only if 𝑒−𝜏𝐴−(1−𝜆)𝐼
is positive semi-definite, which holds if and only if 𝑒−𝜆||𝐴|| ≥ 1 − 𝜆.

iv. For a sequence 𝑢𝑛 ∈ 𝒱(0,1) ∩ 𝑋𝑀 obeying (4.2)

∇𝑆𝑀𝐻0|𝑆𝑀(𝑢𝑛) = 2(1 − 𝜆)(𝑢𝑛 − 𝑢𝑛+1). (4.46)

v. Define E to be the eigenspace of Δ with eigenvalue −𝜏−1 log(1 − 𝜆), or {0} if
there is no such eigenvalue. If 𝑢 ∈ 𝒱(0,1) ∩𝑋 then ∇𝑆𝑀𝐻0|𝑆𝑀(𝑢) = 0 if and only
if 𝑢 ∈ (𝑢̄1+ E ) ∩ 𝒱(0,1).

vi. 𝑢̄1 is a global maximum of 𝐻0 in 𝑋𝑀 if and only if 𝑒−𝜏Δ − (1 − 𝜆)𝐼 is positive
semi-definite, which holds if and only if 𝑒−𝜆||Δ|| ≥ 1 − 𝜆.

Proof. It is straightforward to check that

⟨∇𝒱𝐻(𝑢), 𝑣⟩𝒱 ∶= lim
𝑡→0

𝐻(𝑢 + 𝑡𝑣) − 𝐻(𝑢)
𝑡 = ⟨1− 2𝒮𝜏𝑢, 𝑣⟩𝒱 + (𝜆 − 1)⟨1− 2𝑢, 𝑣⟩𝒱

and therefore

∇𝒱𝐻(𝑢) = 1− 2𝒮𝜏𝑢 + (𝜆 − 1)(1− 2𝑢) = 𝜆1− 2𝒮𝜏𝑢 + 2(1 − 𝜆)𝑢.
Plugging in 𝜇 = 0 into the above gives

∇𝒱𝐻0(𝑢) = 1 − 2𝑒−𝜏Δ𝑢 + (𝜆 − 1)(1 − 2𝑢) = 𝜆1− 2𝑒−𝜏Δ𝑢 + 2(1 − 𝜆)𝑢.
Restricting to 𝑆𝑀 = 𝑢 + {1}⊥, by definition ∇𝑆𝑀𝐻0|𝑆𝑀(𝑢) ∈ {1}⊥ and
∇𝑆𝑀𝐻0|𝑆𝑀(𝑢) − ∇𝒱𝐻0(𝑢) ∈ span{1}. Thus ∇𝑆𝑀𝐻0|𝑆𝑀(𝑢) = ∇𝒱𝐻0(𝑢) − ∇𝒱𝐻0(𝑢)1,
yielding (4.44).

i. Since 𝑢𝑛+1 ∈ 𝒱(0,1) we have 𝛽𝑛+1 = 0, and by (4.1), 𝜆1 − 2𝑆𝜏𝑢𝑛 = 2𝜆𝛽𝑛+1 −
2(1 − 𝜆)𝑢𝑛+1. Thus substituting into (4.43) gives (4.45).

ii. Follows trivially by (4.43) and the definition of 𝒮𝜏.

iii. Let 𝑤 ∶= 1
2𝜆1− 𝐹𝜏(𝐴)𝑓 and 𝑃 ∶= 𝑒

−𝜏𝐴 − (1 − 𝜆)𝐼. Then we can rewrite 𝐻 as

𝐻(𝑢) = ⟨𝑢, 2𝑤 − 𝑃𝑢⟩𝒱 .
If 𝑢∗ ∈ 𝒱(0,1) satisfies 𝑃𝑢∗ = 𝑤, then

𝐻(𝑢∗ + 𝑣) = ⟨𝑢∗ + 𝑣, 𝑃(𝑢∗ − 𝑣)⟩𝒱 = 𝐻(𝑢∗) − ⟨𝑣, 𝑃𝑣⟩𝒱
which is less than or equal to 𝐻(𝑢∗) for all 𝑣 ∈ 𝒱 if and only if 𝑃 is positive
semi-definite.
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iv. Since 𝑢𝑛+1 ∈ 𝒱(0,1) we have 𝛽𝑛+1 = 0, so from (4.2) we have

𝑢𝑛+1 − 𝑒−𝜏Δ𝑢𝑛 − 𝜆𝑢𝑛+1 + 𝜆𝑢̄1 = 𝜆𝛽𝑛+1 − 𝜆𝛽𝑛+11 = 0

and so
(1 − 𝜆)𝑢𝑛+1 = 𝑒−𝜏Δ𝑢𝑛 − 𝜆𝑢̄

and (4.46) follows by substituting 𝑢𝑛 into (4.44).
v. Let 𝐵1 ∶ 𝑣 ↦ 𝑣̄1 and define 𝐵2 ∶= 2𝑒−𝜏Δ+2(𝜆−1)𝐼−2𝜆𝐵1. Then ∇𝑆𝑀𝐻0|𝑆𝑀(𝑢) =

0 if and only if 𝐵2𝑢 = 0. Note that 𝐵21 = 21+2𝜆1−21−2𝜆1 = 0 so 𝑀
⟨1,1⟩𝒱

1 ∈
𝑋𝑀 is a solution. Taking (𝜉𝑘)𝑘>0 the eigenvectors for Δ (with eigenvalues 𝛾𝑘)
as a basis for {1}⊥ we get that (recalling, from spectral property (c) in chapter
2, that 𝜉𝑘⊥1 for 𝑘 > 0 and 𝛾𝑘 > 0 for 𝑘 > 0)

𝐵2𝜉𝑘 = 2(𝑒−𝜏𝛾𝑘 + 𝜆 − 1)𝜉𝑘 = 0 if and only if 𝜉𝑘 ∈ E .
Thus 𝐵2𝑢 = 0 if and only if

𝐵2 (𝑢 −
𝑀

⟨1,1⟩𝒱
1) = 0

if and only if

𝑢 − 𝑀
⟨1,1⟩𝒱

1 ∈ E

as desired.

vi. Since 𝐻0 is the 𝜇 = 0 case of 𝐻, by the same argument as in (iii)
𝐻0(𝑢) = ⟨𝑢, 𝜆1− 𝑃𝑢⟩𝒱 .

for 𝑃 ∶= 𝑒−𝜏Δ − (1 − 𝜆)𝐼. Let 𝜂⊥1, then since 𝑃1 = 𝜆1
𝐻0(𝑢̄1+ 𝜂) = ⟨𝑢̄1+ 𝜂, 𝜆1− 𝑢̄𝜆1− 𝑃𝜂⟩𝒱 = 𝐻0(𝑢̄1) − ⟨𝜂, 𝑃𝜂⟩𝒱

and the claim follows.

Since 𝐻(𝑢𝑛) (or 𝐻0(𝑢𝑛); the statements in this paragraph apply in the mass-
conserving casemutatis mutandis) is monotonically decreasing and bounded below,
it follows that 𝐻(𝑢𝑛) ↓ 𝐻∞ for some 𝐻∞ ≥ −2𝜏||𝑓||𝒱||1||𝒱. Furthermore, since the
sequence 𝑢𝑛 is contained in 𝒱[0,1] which is compact, there exists a subsequence
𝑢𝑛𝑘 that converges to some 𝑢∗ ∈ 𝑋 with 𝐻(𝑢∗) = 𝐻∞, since 𝐻 is continuous.
Unfortunately, just like Luo and Bertozzi [13] for graph AC flow with the standard
quartic potential, we are unable to infer convergence of the whole sequence from
these facts. However by the same argument as in [13, Lemma 5] if the set of
accumulation points of the 𝑢𝑛 is finite then there is in fact only one such point and
the whole sequence converges. Notably, if 𝑢∗ ∈ 𝒱(0,1) is an accumulation point of
the 𝑢𝑛 then by Corollary 4.4.4 and (4.45) we have that ∇𝒱𝐻(𝑢∗) = 0. Thus, by
Proposition 4.4.6(iii) if 𝑒−𝜆||𝐴|| ≥ 1−𝜆, 𝑢∗ is a global maximum of 𝐻 on 𝒱[0,1]. Thus
if 𝐻(𝑢0) ≠ 𝐻(𝑢∗) then no accumulation points of the 𝑢𝑛 lie in 𝒱(0,1).
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4.5. Convergence of the SDIE scheme to AC flow as
𝜏 ↓ 0

In this section, we shall show that trajectories of the SDIE scheme converge to
solutions to AC flow as 𝜏 ↓ 0 with 𝜀 fixed. We will then use this characterisation of
AC solutions to prove some key properties.

4.5.1. Set-up
To handle both the fidelity forced and mass-conserving cases at once, we write
(4.1) and (4.2) in the form

(1 − 𝜆)𝑢𝑛+1 − 𝑒−𝜏𝑄𝑢𝑛 −𝑤 = 𝜆𝛾𝑛+1 (4.47)

where 𝑄 ∶= 𝐴 or 𝑄 ∶= Δ, 𝑤 ∶= −12𝜆1 + 𝐹𝜏(𝐴)𝑓 or 𝑤 ∶= −𝜆𝑢̄1, and 𝛾𝑛+1 ∶= 𝛽𝑛+1 or
𝛾𝑛+1 ∶= 𝛽𝑛+1 − 𝛽𝑛+11 (all respectively).
Note 22. In this section, 𝑄, 𝑤, and 𝛾𝑛 will always denote the above quantities.

We now solve the SDIE recurrence relation for the 𝑛𝑡ℎ term.
Proposition 4.5.1. For 𝜆 ∈ [0, 1) the sequence generated by (4.47) is given by:

𝑢𝑛 =(1 − 𝜆)−𝑛𝑒−𝑛𝜏𝑄𝑢0 +
𝑛

∑
𝑘=1
(1 − 𝜆)−𝑘𝑒−(𝑘−1)𝜏𝑄𝑤

+ 𝜆
1 − 𝜆

𝑛

∑
𝑘=1
(1 − 𝜆)−(𝑛−𝑘)𝑒−(𝑛−𝑘)𝜏𝑄𝛾𝑘

(4.48)

Proof. We rearrange (4.47) as

(1 − 𝜆)𝑢𝑛+1 = 𝑒−𝜏𝑄𝑢𝑛 +𝑤 + 𝜆𝛾𝑛+1.
We then check (4.48) inductively. The 𝑛 = 0 case is trivial, and supposing (4.48)
to be true for 𝑛 = 𝑚 we have that

𝑢𝑚+1 = (1 − 𝜆)−1𝑒−𝜏𝑄𝑢𝑚 + (1 − 𝜆)−1𝑤 +
𝜆

1 − 𝜆𝛾𝑚+1

= (1 − 𝜆)−(𝑚+1)𝑒−(𝑚+1)𝜏𝑄𝑢0 +
𝑚

∑
𝑘=1
(1 − 𝜆)−(𝑘+1)𝑒−𝑘𝜏𝑄𝑤 + (1 − 𝜆)−1𝑤

+ 𝜆
1 − 𝜆

𝑚

∑
𝑘=1
(1 − 𝜆)−((𝑚+1)−𝑘)𝑒−((𝑚+1)−𝑘)𝜏𝑄𝛾𝑘 +

𝜆
1 − 𝜆𝛾𝑚+1

= (1 − 𝜆)−(𝑚+1)𝑒−(𝑚+1)𝜏𝑄𝑢0 +
𝑚

∑
𝑘=0
(1 − 𝜆)−(𝑘+1)𝑒−𝑘𝜏𝑄𝑤

+ 𝜆
1 − 𝜆

𝑚+1

∑
𝑘=1

(1 − 𝜆)−((𝑚+1)−𝑘)𝑒−((𝑚+1)−𝑘)𝜏𝑄𝛾𝑘
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completing the proof.

We complete this set-up by exhibiting the asymptotics of (4.48). First, we define
the limit relative to which we will consider asymptotics.

Definition 4.5.2. We will consider the limit of 𝜏 ↓ 0 and 𝑛 → ∞ with 𝑛𝜏− 𝑡 ∈ [0, 𝜏)
for some fixed 𝑡 ≥ 0 and for fixed 𝜀 > 0. We will say, for real (matrix) valued
𝑔, that 𝑔(𝜏, 𝑛) = 𝒪(𝜏) if and only if limsup ||𝑔(𝜏, 𝑛)/𝜏|| < ∞ as (𝜏, 𝑛) → (0,∞) in
{(𝜌,𝑚) ∣ 𝜌 > 0, 𝑚𝜌−𝑡 ∈ [0, 𝜌)} with the subspace topology induced by the standard
topology on (0,∞) × ℕ. (Note that the choice of norm here is irrelevant since all
norms on finite-dimensional real spaces are equivalent.)

Theorem 4.5.3. Let 𝑡 ≥ 0, 𝜀 > 0, 𝒪 be as in Definition 4.5.2, 𝐵 ∶= 𝑄 − 𝜀−1𝐼, 𝐹𝑡
as in Definition 3.2.5, and 𝑣 ∶= 𝜀𝑓 − 1

21 in the fidelity forced case and 𝑣 ∶= −𝑢̄1 in
the mass-conserving case. Then:

i. (1 − 𝜆)−𝑛𝑒−𝑛𝜏𝑄𝑢0 = 𝑒−𝑡𝐵𝑢0 + 𝒪(𝜏).

ii. ∑𝑛𝑘=1(1 − 𝜆)−𝑘𝑒−(𝑘−1)𝜏𝑄𝑤 =
1
𝜀𝐹𝑡(𝐵)𝑣 + 𝒪(𝜏).

iii. 𝜆
1−𝜆 ∑

𝑛
𝑘=1(1 − 𝜆)−(𝑛−𝑘)𝑒−(𝑛−𝑘)𝜏𝑄𝛾𝑘 = 𝜆∑

𝑛
𝑘=1 𝑒−(𝑛−𝑘)𝜏𝐵𝛾𝑘 + 𝒪(𝜏).

Hence by (4.48), the SDIE term obeys

𝑢𝑛 = 𝑒−𝑡𝐵𝑢0 +
1
𝜀 𝐹(𝐵)𝑣 + 𝜆

𝑛

∑
𝑘=1

𝑒−(𝑛−𝑘)𝜏𝐵𝛾𝑘 + 𝒪(𝜏). (4.49)

Proof. Let 𝑛𝜏 − 𝑡 =∶ 𝜂𝑛 = 𝒪(𝜏). Note that 𝑒𝜂𝑛𝑋 = 𝐼 + 𝒪(𝜏) for any bounded matrix
𝑋.

Note that 𝒪(𝜏) is the same as 𝒪(𝜆), since 𝜆 ∶= 𝜏/𝜀 and 𝜀 is fixed.

i. ||(1−𝜆)−𝑛𝑒−𝑛𝜏𝑄𝑢0−𝑒−𝑡𝐵𝑢0||𝒱 ≤ ||(1−𝜆)−𝑛𝑒−𝑛𝜏𝑄−𝑒−𝑡𝐵|| ⋅ ||𝑢0||𝒱, so it suffices
to consider (1− 𝜆)−𝑛𝑒−𝑛𝜏𝑄 −𝑒−𝑡𝐵. Since (1− 𝜆)−𝑛 = 𝑒𝑛𝜆 +𝒪(𝜏2) we infer that

(1 − 𝜆)−𝑛𝑒−𝑛𝜏𝑄 = 𝑒𝑡/𝜀𝑒𝜂𝑛/𝜀𝑒−𝑡𝑄𝑒−𝜂𝑛𝑄 + 𝒪(𝜏2) = 𝑒−𝑡𝐵 + 𝒪(𝜏).

ii. We make the following claim:

𝑛

∑
𝑘=1
(1 − 𝜆)−𝑘𝑒−(𝑘−1)𝜏𝑄 = ((1 − 𝜆)𝐼 − 𝑒−𝜏𝑄)−1(𝐼 − (1 − 𝜆)−𝑛𝑒−𝑛𝜏𝑄) (∗)

= ((1 − 𝜆)𝐼 − 𝑒−𝜏𝑄)−1(𝐼 − 𝑒−𝑡𝐵) + 𝒪(𝜏) (∗∗)
= ((1 − 𝜆)𝐼 − 𝑒−𝜏𝑄)−1𝐵𝐹𝑡(𝐵) + 𝒪(𝜏)

Towards showing (∗), note that if the sum is multiplied by 𝒜 ∶= (1−𝜆)𝐼 −𝑒−𝜏𝑄
then it telescopes to 𝐼 − (1 − 𝜆)−𝑛𝑒−𝑛𝜏𝑄. Thus to show (∗), it suffices check
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that as 𝜆 ↓ 0, 𝒜 is indeed invertible: let 𝜇𝑘 be the eigenvalues of 𝑄 and let
𝜇′𝑘 ∶= 𝜇𝑘 −

1
𝜀 . Then 𝒜 has eigenvalues:

1 − 𝜆 − 𝑒−𝜏𝜇𝑘 = 1 − 𝜆 − 𝑒−𝜆𝑒−𝜏𝜇′𝑘

If 𝜇′𝑘 ≤ 0 then for 𝜆 > 0

𝑒−𝜆𝑒−𝜏𝜇′𝑘 ≥ 𝑒−𝜆 > 1 − 𝜆

so the 𝑘𝑡ℎ eigenvalue of 𝒜 is non-zero. If 𝜇′𝑘 > 0 then 𝑒−𝜀𝜇
′
𝑘 < 1 and 𝑒(1 −

𝜆)1/𝜆 → 1 as 𝜆 ↓ 0, so there exists 𝜆∗𝑘 > 0 such that for all 𝜆 ∈ (0, 𝜆∗𝑘)

𝑒(1 − 𝜆)1/𝜆 ∈ (𝑒−𝜀𝜇′𝑘 , 1]

and so for all such 𝜆, the 𝑘𝑡ℎ eigenvalue of 𝒜 is non-zero since 𝑒𝜆(1 − 𝜆) >
𝑒−𝜆𝜀𝜇′𝑘 . Hence for all 𝜆 ∈ (0,min𝑘 𝜆∗𝑘), 𝒜 is invertible.

To show (∗∗), note that by the proof of (i) it suffices to show that 𝒜−1𝒪(𝜏2) =
𝒪(𝜏), i.e. that 𝒜𝒪(𝜏) = 𝒪(𝜏2). This follows since 𝒜 = −𝜆𝐼 + (𝐼 − 𝑒−𝜏𝑄), both
terms of which are 𝒪(𝜏).

Therefore, to show (ii) we seek to show that

𝐵𝐹𝑡(𝐵)𝑤 =
1
𝜀𝒜𝐹𝑡(𝐵)𝑣 + 𝒪(𝜏).

Noting that 𝐵 and 𝑄 commute, and hence all the matrices here commute, it will
therefore suffice to show that

𝜀𝐵𝑤 = 𝒜𝑣 + 𝒪(𝜏).

Note that for all 𝑥 ∈ 𝒱

𝜀𝐵𝜆𝑥 = 𝜏𝑄𝑥 − 𝜆𝑥

and so

𝒜𝑥 = −𝜆𝑥 + (𝐼 − 𝑒−𝜏𝑄)𝑥 = 𝜀𝐵𝜆𝑥 + 𝒪(𝜏2).

Finally, note that (since 𝐹𝜏(𝐴)𝑓 = 𝜏𝑓 +𝒪(𝜏2)) 𝑤 = 𝜆𝑣+𝒪(𝜏2) in either case, so
we have the desired result by the above.
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iii. We consider the difference (recalling the bounds from Lemma 4.3.7)

|| 𝜆
1 − 𝜆

𝑛

∑
𝑘=1
(1 − 𝜆)−(𝑛−𝑘)𝑒−(𝑛−𝑘)𝜏𝑄𝛾𝑘 − 𝜆

𝑛

∑
𝑘=1

𝑒−(𝑛−𝑘)𝜏𝐵𝛾𝑘||
𝒱

= 𝜆 ||
𝑛

∑
𝑘=1

((1 − 𝜆)−(𝑛−𝑘+1) − 𝑒(𝑛−𝑘)𝜆) 𝑒−(𝑛−𝑘)𝜏𝑄𝛾𝑘||
𝒱

= 𝜆 ||
𝑛−1

∑
𝓁=0

((1 − 𝜆)−(𝓁+1) − 𝑒𝓁𝜆) 𝑒−𝓁𝜏𝑄𝛾𝑘||
𝒱

≤ 𝜆
𝑛−1

∑
𝓁=0

((1 − 𝜆)−(𝓁+1) − 𝑒𝓁𝜆) ||𝑒−𝓁𝜏𝑄𝛾𝑘||𝒱 as (1 − 𝜆)−(𝓁+1) − 𝑒𝓁𝜆 ≥ 0

≤ 𝜆||1||𝒱
𝑛−1

∑
𝓁=0

((1 − 𝜆)−(𝓁+1) − 𝑒𝓁𝜆) as ||𝑒−𝓁𝜏𝑄|| ≤ 1 and ||𝛾𝑘||𝒱 ≤ ||1||𝒱

= 𝜆||1||𝒱 (
(1 − 𝜆)−𝑛 − 1
1 − (1 − 𝜆) − 𝑒

𝑛𝜆 − 1
𝑒𝜆 − 1 )

= ||1||𝒱 ((1 − 𝜆)−𝑛 − 𝑒𝑛𝜆) + 𝒪(𝜏) as 𝜆/(𝑒𝜆 − 1) = 1 + 𝒪(𝜏)
= 𝒪(𝜏)

as desired.

4.5.2. Some functional analytic preamble
In the next subsection, we will consider the limit of (4.49). The key insight will
be noticing that (4.49) strongly resembles a Riemann sum for the explicit integral
form for the AC flows from Theorem 3.4.8. In this subsection, we will make some
definitions to make this resemblance explicit, and prove some key convergence
results.

Recalling that 𝐵 ∶= 𝑄 − 𝜀−1𝐼, we define the piecewise constant function 𝑧𝜏 ∶
[0,∞) → 𝒱,

𝑧𝜏(𝑠) ∶= {
𝑒𝜏𝐵𝛽[𝜏]1 , 0 ≤ 𝑠 ≤ 𝜏,
𝑒𝑘𝜏𝐵𝛽[𝜏]𝑘 , (𝑘 − 1)𝜏 < 𝑠 ≤ 𝑘𝜏 for 𝑘 ∈ ℕ, 𝑘 ≥ 2,

and the function

𝜁𝜏(𝑠) ∶= 𝑒−𝑠𝐵𝑧𝜏(𝑠) = {
𝑒(𝜏−𝑠)𝐵𝛽[𝜏]1 , 0 ≤ 𝑠 ≤ 𝜏,
𝑒(𝑘𝜏−𝑠)𝐵𝛽[𝜏]𝑘 , (𝑘 − 1)𝜏 < 𝑠 ≤ 𝑘𝜏 for 𝑘 ∈ ℕ, 𝑘 ≥ 2, (4.50)

where the superscript [𝜏] is bookkeeping notation to keep track of the time-step
governing 𝑢𝑛 and 𝛽𝑛. Furthermore, define 𝑧̃𝜏 ∶= 𝑧𝜏 in the fidelity forced case and
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𝑧̃𝜏 ∶= 𝑧𝜏 − 𝑧𝜏1 in the mass-conserving case. Finally, define ̃𝜁𝜏(𝑠) ∶= 𝑒−𝑠𝐵𝑧̃𝜏(𝑠). We
note a simple result.

Proposition 4.5.4.

𝑧̃𝜏(𝑠) = {
𝑒𝜏𝐵𝛾[𝜏]1 , 0 ≤ 𝑠 ≤ 𝜏,
𝑒𝑘𝜏𝐵𝛾[𝜏]𝑘 , (𝑘 − 1)𝜏 < 𝑠 ≤ 𝑘𝜏 for 𝑘 ∈ ℕ, 𝑘 ≥ 2,

and therefore

̃𝜁𝜏(𝑠) = {
𝑒(𝜏−𝑠)𝐵𝛾[𝜏]1 , 0 ≤ 𝑠 ≤ 𝜏,
𝑒(𝑘𝜏−𝑠)𝐵𝛾[𝜏]𝑘 , (𝑘 − 1)𝜏 < 𝑠 ≤ 𝑘𝜏 for 𝑘 ∈ ℕ, 𝑘 ≥ 2.

Proof. In the fidelity forced case 𝛾 = 𝛽 so this is trivial. In the mass-conserving
case since 𝐵 = Δ − 1

𝜀 𝐼

⟨𝑒𝑘𝜏𝐵𝛽𝑘 ,1⟩𝒱 = ⟨𝛽𝑘 , 𝑒𝑘𝜏𝐵1⟩𝒱 = 𝑒−𝑘𝜏/𝜀⟨𝛽𝑘 ,1⟩𝒱

and therefore for (𝑘 − 1)𝜏 < 𝑠 ≤ 𝑘𝜏

𝑧𝜏(𝑠)1 = 𝑒𝑘𝜏𝐵𝛽𝑘1

from which the result follows. The case for 𝑘 = 1 is likewise.

We note some important convergence results.

Proposition 4.5.5. For any sequence 𝜏′𝑛 → 05 with 𝜏′𝑛 < 𝜀 for all 𝑛, there exists a
function 𝑧 ∶ [0,∞) → 𝒱 and a subsequence 𝜏𝑛 of 𝜏′𝑛 such that 𝑧𝜏𝑛 converges weakly
to 𝑧 in 𝐿2𝑙𝑜𝑐([0,∞); 𝒱) and 𝑧𝜏𝑛 weak*-converges to 𝑧 in 𝐿∞𝑙𝑜𝑐([0,∞); 𝒱). Furthermore,
let 𝑧̃ ∶= 𝑧 in the fidelity forced case and 𝑧̃ ∶= 𝑧 − 𝑧̄1 in the mass-conserving case.
Then 𝑧̃𝜏𝑛 converges weakly to 𝑧̃ in 𝐿2𝑙𝑜𝑐([0,∞); 𝒱) and 𝑧̃𝜏𝑛 weak*-converges to 𝑧̃ in
𝐿∞𝑙𝑜𝑐([0,∞); 𝒱).

Proof. For 𝑁 ∈ ℕ, consider 𝑧𝜏|[0,𝑁]. As the 𝛽[𝜏]𝑘 ∈ 𝒱[−1,1] for all 𝑘 and 𝜏 by Lemma
4.3.7, we have for all 𝑠 ∈ [0, 𝑁] and 𝜏 < 𝜀

||𝑧𝜏(𝑠)||𝒱 ≤ sup
𝑠′∈[0,𝑁+𝜀]

||𝑒𝐵𝑠′ || ⋅ ||1||𝒱 ≤ 𝑒(𝑁+𝜀)||𝐵|| ⋅ ||1||𝒱

where we have used that for 𝑠 ≤ 𝑁 the corresponding 𝑘𝜏 in the exponent of 𝑧𝜏(𝑠)
is less than 𝑁 + 𝜏, and that for 𝑠′ ≥ 0, ||𝑒𝐵𝑠′ || ≤ 𝑒𝑠′||𝐵||. Therefore for 𝜏 < 𝜀 the
𝑧𝜏|[0,𝑁] are uniformly bounded in 𝑠 with respect to || ⋅ ||𝒱 (and therefore with respect
to || ⋅ ||∞, since all norms on 𝒱 are equivalent), and hence they lie in a closed ball in
𝐿2([0, 𝑁]; 𝒱) and in 𝐿∞([0, 𝑁]; 𝒱). By the Banach–Alaoglu theorem the former ball
is weak-compact and the latter ball is weak*-compact. Hence for any 𝜏′𝑛 ↓ 0 there
5By this convergence, we just mean in the ordinary sense, not the sense of Definition 4.5.2. We are not
fixing a 𝑡, and 𝑛 is here just an index.
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exists 𝜏″𝑛 a subsequence of 𝜏′𝑛 and 𝑧1 ∈ 𝐿2([0, 𝑁]; 𝒱) and 𝑧2 ∈ 𝐿∞([0, 𝑁]; 𝒱) such
that

𝑧𝜏″𝑛 |[0,𝑁] ⇀ 𝑧1 in 𝐿2([0, 𝑁]; 𝒱),
𝑧𝜏″𝑛 |[0,𝑁] ⇀∗ 𝑧2 in 𝐿∞([0, 𝑁]; 𝒱).

We claim that 𝑧1 = 𝑧2 a.e. on [0, 𝑁]. By the definitions of the weak and weak*
topologies we have that for all 𝑓 ∈ 𝐿2([0, 𝑁]; 𝒱) and 𝑔 ∈ 𝐿1([0, 𝑁]; 𝒱)

∫
𝑁

0
⟨𝑧𝜏″𝑛(𝑡), 𝑓(𝑡)⟩𝒱 𝑑𝑡 → ∫

𝑁

0
⟨𝑧1(𝑡), 𝑓(𝑡)⟩𝒱 𝑑𝑡,

∫
𝑁

0
⟨𝑧𝜏″𝑛(𝑡), 𝑔(𝑡)⟩𝒱 𝑑𝑡 → ∫

𝑁

0
⟨𝑧2(𝑡), 𝑔(𝑡)⟩𝒱 𝑑𝑡.

Hence for any 𝒜 ⊆ [0,𝑁] (measurable) and 𝑖 ∈ 𝑉 define 𝑓𝒜,𝑖(𝑡) ∶= 𝜒𝑖 if 𝑡 ∈ 𝒜 and
𝑓𝒜,𝑖(𝑡) ∶= 0 otherwise. Then for all measurable 𝒜 ⊆ [0,𝑁], 𝑓𝒜,𝑖 ∈ 𝐿2([0, 𝑁]; 𝒱) ∩
𝐿1([0, 𝑁]; 𝒱) and so

∫
𝒜
(𝑧1)𝑖(𝑡) − (𝑧2)𝑖(𝑡) 𝑑𝑡 = 0.

Hence (𝑧1)𝑖 = (𝑧2)𝑖 a.e. for each 𝑖 ∈ 𝑉, so 𝑧1 = 𝑧2 a.e. on [0, 𝑁].
Next, we extend to [0,∞) by a “local-to-global” diagonal argument. First, we

take 𝑁 = 1: by the above argument we can choose a subsequence 𝜏(1) of 𝜏′
such that 𝑧𝜏(1)𝑛 converges in both the weak topology on 𝐿2 and the weak* topology
on 𝐿∞ to some 𝑧 on [0, 1] . Then to move from 𝑁 to 𝑁 + 1 we likewise choose
a subsequence 𝜏(𝑁+1) of 𝜏(𝑁) such that 𝑧𝜏(𝑁+1)𝑛

converges in both senses to 𝑧 on
[0, 𝑁 + 1]. Finally, define 𝜏𝑛 ∶= 𝜏(𝑛)𝑛 . Then for all bounded 𝑇 ⊆ [0,∞), we have
𝑇 ⊆ [0,𝑀] for some 𝑀 ∈ ℕ and hence 𝑧𝜏𝑛 |𝑇 is eventually a subsequence of 𝑧𝜏(𝑀)𝑛

|𝑇
and so converges in both senses to 𝑧|𝑇.

Finally, both the identity map and the map 𝑓 ↦ 𝑓 − ̄𝑓1 are continuous with
respect to both topologies, so the result about 𝑧̃ immediately follows.

Corollary 4.5.6. From 𝑧𝜏𝑛 ⇀ 𝑧 (defined in Proposition 4.5.5) in 𝐿2𝑙𝑜𝑐([0,∞); 𝒱) we
infer:

A. 𝜁𝜏𝑛 ⇀ 𝜁 and ̃𝜁𝜏𝑛 ⇀ ̃𝜁, where 𝜁(𝑠) ∶= 𝑒−𝑠𝐵𝑧 and ̃𝜁(𝑠) ∶= 𝑒−𝑠𝐵𝑧̃ (for 𝑧̃ defined in
Proposition 4.5.5), both in 𝐿2𝑙𝑜𝑐([0,∞); 𝒱).

B. For all 𝑡 ≥ 0,

∫
𝑡

0
𝑧𝜏𝑛(𝑠) 𝑑𝑠 → ∫

𝑡

0
𝑧(𝑠) 𝑑𝑠 and ∫

𝑡

0
𝑧̃𝜏𝑛(𝑠) 𝑑𝑠 → ∫

𝑡

0
𝑧̃(𝑠) 𝑑𝑠.

C. Replacing 𝜏𝑛 by an appropriate subsequence, we have strong convergence of
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the Cesàro sums, i.e. for all bounded 𝑇 ⊆ [0,∞)

1
𝑁

𝑁

∑
𝑛=1

𝑧𝜏𝑛 → 𝑧,
1
𝑁

𝑁

∑
𝑛=1

𝜁𝜏𝑛 → 𝜁,

1
𝑁

𝑁

∑
𝑛=1

𝑧̃𝜏𝑛 → 𝑧,
1
𝑁

𝑁

∑
𝑛=1

̃𝜁𝜏𝑛 → 𝜁,

in 𝐿2(𝑇; 𝒱) as 𝑁 → ∞.

And from 𝑧𝜏𝑛 ⇀∗ 𝑧 in 𝐿∞𝑙𝑜𝑐([0,∞); 𝒱) we infer:

D. 𝜁𝜏𝑛 ⇀∗ 𝜁 and ̃𝜁𝜏𝑛 ⇀∗ ̃𝜁 in 𝐿∞𝑙𝑜𝑐([0,∞); 𝒱).

Proof. All results regarding 𝑧̃ or ̃𝜁 follow from the corresponding result regarding
𝑧 or 𝜁 since both the identity map and the map 𝑓 ↦ 𝑓 − ̄𝑓1 are continuous with
respect to all of these topologies. We therefore prove just the 𝑧 or 𝜁 parts.

Claim (A) follows since 𝑓 ↦ 𝑒−𝑠𝐵𝑓 (where 𝑠 is the argument of 𝑓) is a continuous
self-adjoint map on 𝐿2(𝑇; 𝒱) for 𝑇 bounded. Hence for all 𝑓 ∈ 𝐿2(𝑇; 𝒱),

(𝜁𝜏𝑛 , 𝑓)𝑠∈𝑇 = (𝑧𝜏𝑛 , 𝑒−𝑠𝐵𝑓)𝑠∈𝑇 → (𝑧, 𝑒−𝑠𝐵𝑓)𝑠∈𝑇 = (𝜁, 𝑓)𝑠∈𝑇 . (∗)

Claim (B) is a direct consequence of weak convergence. Claim (C) follows by the
Banach–Saks theorem [1], which states that weak 𝐿𝑝 convergence on a bounded
interval entails strong convergence of Cesàro sums on that interval along an ap-
propriate subsequence, and a “local-to-global” diagonal argument as in the above
proof to extract a subsequence that works on all of [0,∞). Claim (D) follows since
𝑓 ↦ 𝑒−𝑠𝐵𝑓 is continuous on 𝐿∞(𝑇; 𝒱) and on 𝐿1(𝑇; 𝒱), for 𝑇 bounded, and for all
𝑓 ∈ 𝐿∞(𝑇; 𝒱) and 𝑔 ∈ 𝐿1(𝑇; 𝒱)

∫
𝑇
⟨𝑒−𝑠𝐵𝑓(𝑠), 𝑔(𝑠)⟩𝒱 𝑑𝑠 = ∫

𝑇
⟨𝑓(𝑠), 𝑒−𝑠𝐵𝑔(𝑠)⟩𝒱 𝑑𝑠

so the map is “self-adjoint” with respect to the pairing of 𝐿∞ with 𝐿1, and so (D)
follows by the same argument as (∗).

4.5.3. Convergence of the SDIE trajectories
We now turn to the question of convergence of the SDIE trajectories. Fixing 𝑡 ∈
[0,∞) and 𝜀 > 0, we consider the limit as 𝜏 ↓ 0, 𝑛 → ∞ as in Definition 4.5.2. Taking
𝜏 to zero along the sequence 𝜏𝑛 from Proposition 4.5.5, we define 𝑚𝑛(𝑡) ∶= ⌈𝑡/𝜏𝑛⌉,
so that 𝑚𝑛(𝑡) → ∞ as 𝑛 → ∞, and 𝑚𝑛(𝑡)𝜏𝑛 − 𝑡 ∈ [0, 𝜏𝑛). Thus 𝜏𝑛 , 𝑚𝑛(𝑡) satisfy the
conditions of the limit in Definition 4.5.2 sequentially. To reduce the clutter in our
notation, we shall henceforth abbreviate 𝑚𝑛(𝑡) by 𝑚.

We thus define (for any 𝑡 ≥ 0) the pointwise limit of the SDIE trajectories

𝑢̂(𝑡) ∶= lim
𝑛→∞

𝑢[𝜏𝑛]𝑚 (4.51)
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when this limit exists (which we shall prove it does for all 𝑡 ≥ 0). By (4.49), we can
rewrite this as:

𝑢̂(𝑡) = 𝑒−𝑡𝐵𝑢0 +
1
𝜀 𝐹𝑡(𝐵)𝑣 + lim

𝑛→∞
𝜏𝑛
𝜀

𝑚

∑
𝑘=1

𝑒−(𝑚−𝑘)𝜏𝑛𝐵𝛾[𝜏𝑛]𝑘

= 𝑒−𝑡𝐵𝑢0 +
1
𝜀 𝐹𝑡(𝐵)𝑣 +

1
𝜀 lim
𝑛→∞

𝑒−𝑚𝜏𝑛𝐵∫
𝑚𝜏𝑛

0
𝑧̃𝜏𝑛(𝑠) 𝑑𝑠.

We seek to show that the pair (𝑢̂, 𝜁) (where 𝜁 is as in Corollary 4.5.6) solves (3.22)
or (3.23) in the respective cases, i.e. 𝑢̂ is an AC flow trajectory. We will do this
by checking that (𝑢̂, 𝜁) satisfy the sufficient conditions given for (𝑢, 𝛽) in Theorem
3.4.8. We will split this into two lemmas. First, we show all but one of the required
conditions.

Proposition 4.5.7. The pair (𝑢̂, 𝜁) obeys:
(i) For all 𝑡 ≥ 0, 𝑢̂(𝑡) exists and is given by

𝑢̂(𝑡) = 𝑒−𝑡𝐵𝑢0 +
1
𝜀 𝐹𝑡(𝐵)𝑣 +

1
𝜀 ∫

𝑡

0
𝑒−(𝑡−𝑠)𝐵 ̃𝜁(𝑠) 𝑑𝑠, (4.52)

where 𝑣 is as in Theorem 4.5.3 and ̃𝜁 is as in Corollary 4.5.6.

(ii) 𝑢̂(𝑡) ∈ 𝒱[0,1] for all 𝑡 ≥ 0.

(iii) ̃𝜁 is locally essentially bounded and locally integrable.

Note 23. By our choice of notation, these cover both cases of Theorem 3.4.8.

Proof. (i) Note that 𝑚𝜏𝑛 =∶ 𝑡 + 𝜂𝑛 where 𝜂𝑛 ∈ [0, 𝜏𝑛). Therefore

lim
𝑛→∞

𝑒−𝑚𝜏𝑛𝐵∫
𝑚𝜏𝑛

0
𝑧̃𝜏𝑛(𝑠) 𝑑𝑠

= lim
𝑛→∞

𝑒−𝜂𝑛𝐵𝑒−𝑡𝐵∫
𝑡

0
𝑧̃𝜏𝑛(𝑠) 𝑑𝑠 + 𝑒−𝜂𝑛𝐵𝑒−𝑡𝐵∫

𝑡+𝜂𝑛

𝑡
𝑧̃𝜏𝑛(𝑠) 𝑑𝑠

= lim
𝑛→∞

𝑒−𝑡𝐵∫
𝑡

0
𝑧̃𝜏𝑛(𝑠) 𝑑𝑠 + 𝑒−𝑡𝐵∫

𝑡+𝜂𝑛

𝑡
𝑧̃𝜏𝑛(𝑠) 𝑑𝑠 (∗)

= lim
𝑛→∞

𝑒−𝑡𝐵∫
𝑡

0
𝑧̃𝜏𝑛(𝑠) 𝑑𝑠 (∗∗)

= 𝑒−𝑡𝐵∫
𝑡

0
𝑧̃(𝑠) 𝑑𝑠 by Corollary 4.5.6(B).

To show line (∗), note that by the proof of Proposition 4.5.5, the 𝑧̃𝜏𝑛 |[0,⌊𝑡+1⌋]
lie in the continuous image of a closed ball in 𝐿∞, so are uniformly bounded
in 𝑛 with respect to || ⋅ ||∞,𝑡∈[0,⌊𝑡+1⌋], and therefore the integral of 𝑧̃𝜏𝑛 over
[0, 𝑡] is bounded and over [𝑡, 𝑡 + 𝜂𝑛] is 𝒪(𝜏𝑛). Therefore, because 𝑒−𝜂𝑛𝐵 =
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𝐼+𝒪(𝜏𝑛), line (∗) follows. Line (∗∗) follows because 𝑧̃𝜏𝑛(𝑠) is bounded on [𝑡, 𝑡+
max𝑛′ 𝜂𝑛′] uniformly in 𝑛 by Proposition 4.5.5. Then (4.52) is an immediate
consequence of the final line.

(ii) 𝑢̂(𝑡) is a limit of SDIE iterates, each of which lies in 𝒱[0,1].

(iii) Since, by Corollary 4.5.6(A), ̃𝜁 is a weak limit of locally bounded and locally
integrable functions, it must be locally essentially bounded and locally inte-
grable.

Lastly, we check the subdifferential condition from Theorem 3.4.8.

Lemma 4.5.8. 𝜁(𝑡) ∈ ℬ(𝑢̂(𝑡)) for a.e. 𝑡 ≥ 0.

We give two proofs of this result.

Proof (A). By Corollary 4.5.6(C), on each bounded 𝑇 ⊆ [0,∞) 𝜁 is the 𝐿2(𝑇; 𝒱) limit
of

𝑆𝑁 ∶=
1
𝑁

𝑁

∑
𝑛=1

𝜁𝜏𝑛

as 𝑁 → ∞. As 𝐿2 convergence implies a.e. pointwise convergence along a subse-
quence, by a “local-to-global” diagonal argument there exists a sequence 𝑁𝑘 → ∞
such that for a.e. 𝑡 ≥ 0

𝜁(𝑡) = lim
𝑘→∞

1
𝑁𝑘

𝑁𝑘
∑
𝑛=1

𝜁𝜏𝑛(𝑡).

Let 𝜂𝑛 ∶= 𝑚𝜏𝑛 − 𝑡 ∈ [0, 𝜏𝑛). Then by Lemma 4.3.7

||𝜁𝜏𝑛(𝑡) − 𝛽
[𝜏𝑛]𝑚 ||𝒱 = ||(𝑒𝜂𝑛𝐵 − 𝐼)𝛽[𝜏𝑛]𝑚 ||𝒱 by (4.50)

≤ (1 − 𝑒−𝜂𝑛||𝐵||) ||1||𝒱
< (1 − 𝑒−𝜏𝑛||𝐵||)||1||𝒱
< 𝜏𝑛||𝐵|| ||1||𝒱 .

(4.53)

Therefore for a.e. 𝑡 ≥ 0,

||𝜁(𝑡) − 1
𝑁𝑘

𝑁𝑘
∑
𝑛=1

𝛽[𝜏𝑛]𝑚 ||
𝒱

≤ ||𝜁(𝑡) − 1
𝑁𝑘

𝑁𝑘
∑
𝑛=1

𝜁𝜏𝑛(𝑡)||
𝒱

+ ||𝐵|| ||1||𝒱
1
𝑁𝑘

𝑁𝑘
∑
𝑛=1

𝜏𝑛 → 0

as 𝑘 → ∞ (since 𝜏𝑛 → 0 and the convergence of a sequence implies the convergence
of its Cesàro sums to the same limit), so for a.e. 𝑡 ≥ 0

𝜁(𝑡) = lim
𝑘→∞

1
𝑁𝑘

𝑁𝑘
∑
𝑛=1

𝛽[𝜏𝑛]𝑚 . (4.54)



4.5. Convergence of the SDIE scheme to AC flow as τ ↓0

4

87

Recall that as 𝑛 → ∞, 𝑢[𝜏𝑛]𝑚 → 𝑢̂(𝑡) and 𝛽[𝜏𝑛]𝑚 ∈ ℬ (𝑢[𝜏𝑛]𝑚 ). Suppose first that 𝑢̂𝑖(𝑡) ∈
(0, 1). Then we have some 𝑀 such that for all 𝑛 > 𝑀, (𝑢[𝜏𝑛]𝑚 )𝑖 ∈ (0, 1) and so
(𝛽[𝜏𝑛]𝑚 )𝑖 = 0. Hence

𝜁𝑖(𝑡) = lim
𝑘→∞

1
𝑁𝑘
(
𝑀

∑
𝑛=1
(𝛽[𝜏𝑛]𝑚 )𝑖 +

𝑁𝑘
∑

𝑛=𝑀+1
0) = 0

as desired. Next suppose 𝑢̂𝑖(𝑡) = 0. Then we have some 𝑀 such that for all 𝑛 > 𝑀,
(𝑢[𝜏𝑛]𝑛 )𝑖 ∈ [0, 1) and so (𝛽[𝜏𝑛]𝑛 )𝑖 ≥ 0. Hence

𝜁𝑖(𝑡) ≥ lim
𝑘→∞

1
𝑁𝑘
(
𝑀

∑
𝑛=1
(𝛽[𝜏𝑛]𝑚 )𝑖 +

𝑁𝑘
∑

𝑛=𝑀+1
0) = 0

as desired. Likewise for 𝑢̂𝑖(𝑡) = 1, 𝜁𝑖(𝑡) ≤ 0. Hence we have 𝜁(𝑡) ∈ ℬ(𝑢̂(𝑡)).

Proof (B). Fix 𝑖 ∈ 𝑉 and bounded 𝑇 ⊆ [0,∞). For tidiness of notation, we define
𝑥𝑛(𝑡) ∶= 𝑢[𝜏𝑛]⌈𝑡/𝜏𝑛⌉ and 𝑥(𝑡) ∶= 𝑢̂𝑖(𝑡), and likewise 𝜉𝑛(𝑡) ∶= (𝛽

[𝜏𝑛]
⌈𝑡/𝜏𝑛⌉)𝑖 and 𝜉(𝑡) ∶= 𝜁𝑖(𝑡).

Let

𝑇1 ∶= {𝑡 ∈ 𝑇 ∣ 𝑥(𝑡) = 0}, 𝑇2 ∶= {𝑡 ∈ 𝑇 ∣ 𝑥(𝑡) ∈ (0, 1)}, 𝑇3 ∶= {𝑡 ∈ 𝑇 ∣ 𝑥(𝑡) = 1}.

Then it suffices to show that 𝜉 ≥ 0 a.e. on 𝑇1, 𝜉 = 0 a.e. on 𝑇2, and 𝜉 ≤ 0 a.e. on
𝑇3.

By Corollary 4.5.6(D) we have that (𝜁𝜏𝑛)𝑖 ⇀∗ 𝜉 in 𝐿∞𝑙𝑜𝑐([0,∞); 𝒱) and therefore
(𝜁𝜏𝑛)𝑖 ⇀∗ 𝜉 in 𝐿∞(𝑇, ℝ), i.e. for all 𝑓 ∈ 𝐿1(𝑇, ℝ), as 𝑛 → ∞

∫
𝑇
(𝜁𝜏𝑛)𝑖(𝑡)𝑓(𝑡) 𝑑𝑡 → ∫𝑇

𝜉(𝑡)𝑓(𝑡) 𝑑𝑡.

It follows from (4.53) that (𝜁𝜏𝑛)𝑖(𝑡) = 𝜉𝑛(𝑡)+𝒪(𝜏𝑛), and so we infer that as 𝑛 → ∞

∫
𝑇
𝜉𝑛(𝑡)𝑓(𝑡) 𝑑𝑡 → ∫

𝑇
𝜉(𝑡)𝑓(𝑡) 𝑑𝑡.

By (4.51) we have by definition that for all 𝑡 ∈ 𝑇1, 𝑥𝑛(𝑡) → 0. We define
the increasing sequence of (measurable) sets 𝐴𝑁 ∶= {𝑡 ∈ 𝑇1 ∣ ∀𝑛 ≥ 𝑁 𝑥𝑛(𝑡) <
1/2}. Then by the pointwise convergence of the 𝑥𝑛, 𝑇1 = ⋃𝑁 𝐴𝑁. Suppose for
contradiction that for some 𝑋 ⊆ 𝑇1 of positive measure, 𝜉 < 0 on 𝑋. So there exists
𝛿 > 0 and 𝑌 ⊆ 𝑋 of positive measure such that 𝜉 ≤ −𝛿 on 𝑌. As 𝑇1 is the union
of the 𝐴𝑁 there exists 𝑁 ∈ ℕ such that 𝑌 ∩ 𝐴𝑁 is of positive measure. Taking test
function 𝑓(𝑡) = 1 if 𝑡 ∈ 𝜒𝑌∩𝐴𝑁 and 𝑓(𝑡) = 0 otherwise, we infer that as 𝑛 → ∞ (and
𝜇 the Lebesgue measure)

∫
𝑌∩𝐴𝑁

𝜉𝑛(𝑡) 𝑑𝑡 → ∫
𝑌∩𝐴𝑁

𝜉(𝑡) 𝑑𝑡 ≤ −𝛿𝜇(𝑌 ∩ 𝐴𝑁) < 0
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but since 𝛽[𝜏𝑛]⌈𝑡/𝜏𝑛⌉ ∈ ℬ(𝑢
[𝜏𝑛]
⌈𝑡/𝜏𝑛⌉) we have that if 𝑡 ∈ 𝐴𝑁 then for all 𝑛 ≥ 𝑁, 𝜉𝑛(𝑡) ≥ 0,

so this is a contradiction. Hence 𝜉 ≥ 0 a.e. on 𝑇1. By the same argument, 𝜉 ≤ 0
a.e. on 𝑇3.

Finally, for all 𝑡 ∈ 𝑇2, since 𝑥𝑛(𝑡) → 𝑥(𝑡), 𝑥𝑛(𝑡) is eventually in (0, 1). Define
𝐵𝑁 ∶= {𝑡 ∈ 𝑇2 ∣ ∀𝑛 ≥ 𝑁 𝑥𝑛(𝑡) ∈ (0, 1)}, and note that 𝑇2 = ⋃𝑁 𝐵𝑁 and that for
𝑡 ∈ 𝐵𝑁 and 𝑛 ≥ 𝑁, 𝜉𝑛(𝑡) = 0 since 𝛽[𝜏𝑛]⌈𝑡/𝜏𝑛⌉ ∈ ℬ(𝑢

[𝜏𝑛]
⌈𝑡/𝜏𝑛⌉). Suppose for contradiction

that for some 𝑋 ⊆ 𝑇2 of positive measure, 𝜉 ≠ 0 on 𝑋. Then WLOG there exists
𝛿 > 0 and 𝑌 ⊆ 𝑋 of positive measure such that 𝜉 ≥ 𝛿 on 𝑌. As before there exists
𝑁 ∈ ℕ such that 𝑌 ∩ 𝐵𝑁 is of positive measure. Taking 𝑓(𝑡) = 1 if 𝑡 ∈ 𝜒𝑌∩𝐵𝑁 and
𝑓(𝑡) = 0 otherwise, we infer that as 𝑛 → ∞ (for 𝑛 ≥ 𝑁)

0 = ∫
𝑌∩𝐵𝑁

𝜉𝑛(𝑡) 𝑑𝑡 → ∫
𝑌∩𝐵𝑁

𝜉(𝑡) 𝑑𝑡 ≥ 𝛿𝜇(𝑌 ∩ 𝐴𝑁) > 0

a contradiction. Therefore 𝜉 = 0 a.e. on 𝑇2.

Note 24. We thank Dr Carolin Kreisbeck for her suggestion of using weak* 𝐿∞
convergence which led to the development of proof (B).

Therefore, by Theorem 3.4.8, we have the following convergence result.

Theorem 4.5.9. For any given 𝑢0 ∈ 𝒱[0,1] ⧵ {0,1}, 𝜀 > 0 and 𝜏𝑛 ↓ 0, there exists
a subsequence 𝜏′𝑛 of 𝜏𝑛 with 𝜏′𝑛 < 𝜀 for all 𝑛, such that along this subsequence
the semi-discrete iterates (𝑢[𝜏

′𝑛]𝑚 , 𝛽[𝜏
′𝑛]𝑚 ) given by (4.1) (respectively (4.2)) with initial

state 𝑢0 converge to an AC solution. That is, there exists (𝑢̂, 𝜁) a solution to (3.22)
(respectively (3.23)) with 𝑢̂(0) = 𝑢0, such that:

a. 𝛽[𝜏
′𝑛]

⌈⋅/𝜏′𝑛⌉ converges to 𝜁 weakly in 𝐿2𝑙𝑜𝑐([0,∞); 𝒱) and weakly* in 𝐿∞𝑙𝑜𝑐([0,∞); 𝒱),

b. for each 𝑡 ≥ 0 and for 𝑚 ∶= ⌈𝑡/𝜏′𝑛⌉, 𝑢[𝜏
′𝑛]𝑚 → 𝑢̂(𝑡) as 𝑛 → ∞, and

c. there is a sequence 𝑁𝑘 → ∞ such that for almost every 𝑡 ≥ 0, 1
𝑁𝑘
∑𝑁𝑘𝑛=1 𝛽

[𝜏′𝑛]𝑚 →
𝜁(𝑡) as 𝑘 → ∞.

Note 25. This result proves Theorem 3.4.10, i.e. the existence of AC solutions.

Note 26. For 𝑢0 = 0 or 1, the 𝑢[𝜏𝑛]𝑚 ≡ 𝑢0 trivially converge but the 𝛽[𝜏𝑛]𝑚 need not
converge.

By the use of a basic topological spaces fact, we can eliminate the need to pass
to a subsequence for the convergence of the 𝑢[𝜏𝑛]𝑚 to 𝑢̂.

Corollary 4.5.10. Let 𝑢0 ∈ 𝒱[0,1], 𝜀 > 0, and 𝜏𝑛 ↓ 0 with 𝜏𝑛 < 𝜀 for all 𝑛. Then for
each 𝑡 ≥ 0, as 𝑛 → ∞, 𝑢[𝜏𝑛]⌈𝑡/𝜏𝑛⌉ → 𝑢̂(𝑡).
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Proof. Consider the following fact about topological spaces: if (𝑋, 𝜌) is a topolog-
ical space, 𝑥𝑛 , 𝑥 ∈ 𝑋, and every subsequence of 𝑥𝑛 has a further subsequence
converging to 𝑥 in 𝜌, then 𝑥𝑛 → 𝑥 in 𝜌.6

Let 𝑥𝑛 ∶= 𝑡 ↦ 𝑢[𝜏𝑛]⌈𝑡/𝜏𝑛⌉ ∈ (𝒱𝑡∈[0,∞), 𝜌) for 𝜌 the topology of pointwise convergence,
and let 𝜏𝑛𝑘 be any subsequence of 𝜏𝑛. Then by the theorem there is a further
subsequence 𝜏𝑛𝑘𝑙 such that 𝑥𝑛𝑘𝑙 → 𝑢̃ pointwise where 𝑢̃ is an AC solution with
initial condition 𝑢̃(0) = 𝑢0. By Theorem 3.4.9 such solutions are unique, so 𝑢̃ = 𝑢̂.
Thus there exists 𝑥 (in particular, 𝑥 = 𝑢̂) such that every subsequence of 𝑥𝑛 has a
further convergent subsequence with limit 𝑥, and hence by the above fact, 𝑥𝑛 → 𝑥
pointwise.

4.5.4. Consequences of Theorem 4.5.9
Given the representation from Theorem 4.5.9 of the unique solutions to (3.22) and
(3.23) as limits of SDIE approximations, we can deduce a number of properties of
these AC flows.

We first verify that these flows monotonically decrease their respective Ginzburg–
Landau energies, by considering the Lyapunov functionals for the SDIE schemes.

Proposition 4.5.11. Let 𝐻𝜏(𝑢) ∶=
1
2𝜏𝐻(𝑢) and 𝐻0,𝜏(𝑢) ∶=

1
2𝜏𝐻0(𝑢) . Then for

𝑢 ∈ 𝒱[0,1]

𝐻𝜏(𝑢) = GL𝜀,𝜇,𝑓̃(𝑢) −
1
2⟨𝑓̃,𝑀𝑓̃⟩𝒱 +

1
2𝜏⟨𝑢, 𝑄𝜏(𝐴𝑢 − 2𝑓)⟩𝒱

𝐻0,𝜏(𝑢) = GL𝜀(𝑢) +
1
2𝜏⟨𝑢, 𝑄

′
𝜏𝑢⟩𝒱

where 𝑄𝜏 ∶= 𝜏−2(𝐹𝜏(𝐴) − 𝜏𝐼) and 𝑄′𝜏 ∶= 𝜏−2(𝐼 − 𝜏Δ − 𝑒−𝜏Δ). Furthermore, 𝐻𝜏 +
1
2 ⟨𝑓̃, 𝑀𝑓̃⟩𝒱 → GL𝜀,𝜇,𝑓̃ and 𝐻0,𝜏 → GL𝜀uniformly on 𝒱[0,1] as 𝜏 → 0, and if 𝑢𝜏 → 𝑢 in

𝒱[0,1] then 𝐻𝜏(𝑢𝜏) +
1
2 ⟨𝑓̃,𝑀𝑓̃⟩𝒱 → GL𝜀,𝜇,𝑓̃(𝑢) and 𝐻0,𝜏(𝑢𝜏) → GL𝜀.

Proof. Note that GL𝜀 and 𝐻0 are the 𝜇 = 0 (and hence 𝑓 = 0 and 𝐴 = Δ) cases
of GL𝜀,𝜇,𝑓̃ and 𝐻, and that in that case 𝑄′𝜏 = Δ𝑄𝜏 = 𝑄𝜏Δ. Hence it suffices to prove
the theorem in the 𝐻 cases.

Expanding and collecting terms in (3.9), we find that for 𝑢 ∈ 𝒱[0,1]

GL𝜀,𝜇,𝑓̃(𝑢) =
1
2𝜀 ⟨𝑢,1− 𝑢⟩𝒱 +

1
2⟨𝑢, 𝐴𝑢 − 2𝑓⟩𝒱 +

1
2⟨𝑓̃,𝑀𝑓̃⟩𝒱 .

Then by (4.40b) and recalling that 𝜆 ∶= 𝜏/𝜀

𝐻𝜏(𝑢) =
1
2𝜀 ⟨𝑢,1− 𝑢⟩𝒱 +

1
2⟨𝑢, 𝜏

−1𝐹𝜏(𝐴)(𝐴𝑢 − 2𝑓)⟩𝒱

= GL𝜀,𝜇,𝑓̃(𝑢) −
1
2⟨𝑓̃,𝑀𝑓̃⟩𝒱 +

1
2𝜏 ⟨𝑢, (𝐹𝜏(𝐴) − 𝜏𝐼) (𝐴𝑢 − 2𝑓)⟩𝒱

= GL𝜀,𝜇,𝑓̃(𝑢) −
1
2⟨𝑓̃,𝑀𝑓̃⟩𝒱 +

1
2𝜏⟨𝑢, 𝑄𝜏(𝐴𝑢 − 2𝑓)⟩𝒱 .

6Suppose 𝑥𝑛 ↛ 𝑥. Then there exists 𝑈 ∈ 𝜌 such that 𝑥 ∈ 𝑈 and infinitely many 𝑥𝑛 ∉ 𝑈. Choose 𝑥𝑛𝑘
such that for all 𝑘, 𝑥𝑛𝑘 ∉ 𝑈. This subsequence has no further subsequence converging to 𝑥.



4

90 4. The SDIE link between Allen–Cahn flow and the MBO scheme

To show the uniform convergence, note that (since ||𝐴|| is finite by Proposition
3.2.4) ||𝑢||𝒱 and ||𝐴𝑢 − 2𝑓||𝒱 are uniformly bounded in 𝑢 for 𝑢 ∈ 𝒱[0,1]. Thus it
suffices to prove that ||𝑄𝜏|| is uniformly bounded in 𝜏. But 𝑄𝜏 is self-adjoint, and
if 𝜉𝑘 is an eigenvalue of 𝐴 (and thus 𝜉𝑘 ≥ 0 by Proposition 3.2.4), then 𝑄𝜏 has
corresponding eigenvalue

𝜏−2((1 − 𝑒−𝜏𝜉𝑘)/𝜉𝑘 − 𝜏) =
1
𝜏2𝜉𝑘

(1 − 𝜏𝜉𝑘 − 𝑒−𝜏𝜉𝑘) ∈ [−
1
2𝜉𝑘 , 0]

so ||𝑄𝜏|| ≤
1
2 ||𝐴||.

Finally, it suffices to show that 𝐻𝜏(𝑢𝜏) − 𝐻𝜏(𝑢) → 0, since

𝐻𝜏(𝑢𝜏)+
1
2⟨𝑓̃,𝑀𝑓̃⟩𝒱−GL𝜀,𝜇,𝑓̃(𝑢) = 𝐻𝜏(𝑢𝜏)−𝐻𝜏(𝑢)+(𝐻𝜏(𝑢) +

1
2⟨𝑓̃,𝑀𝑓̃⟩𝒱 −GL𝜀,𝜇,𝑓̃(𝑢))

and the bracketed term converges to zero. But by the above expression for 𝐻𝜏 and
GL𝜀,𝜇,𝑓̃(𝑢) (and since 𝐴(𝐼 + 𝜏𝑄𝜏) is self-adjoint)

𝐻𝜏(𝑢𝜏) − 𝐻𝜏(𝑢) =
1
2 ⟨𝑢𝜏 − 𝑢,

1
𝜀 (1 − 𝑢𝜏 − 𝑢) + 𝐴(𝐼 + 𝜏𝑄𝜏)(𝑢𝜏 + 𝑢) − 2(𝐼 + 𝜏𝑄𝜏)𝑓⟩

𝒱
,

which converges to zero since the right-hand entry in the inner product is bounded
uniformly in 𝜏.

Theorem 4.5.12. The fidelity forced AC trajectory 𝑢 defined by Definition 3.4.1
has GL𝜀,𝜇,𝑓̃(𝑢(𝑡)) monotonically decreasing in 𝑡. More precisely: for all 𝑡 > 𝑠 ≥ 0,

GL𝜀,𝜇,𝑓̃(𝑢(𝑠)) −GL𝜀,𝜇,𝑓̃(𝑢(𝑡)) ≥
1

2(𝑡 − 𝑠) ||𝑢(𝑠) − 𝑢(𝑡)||
2
𝒱 . (4.55)

Furthermore, this entails an explicit 𝐶0,1/2 condition for 𝑢:

||𝑢(𝑠) − 𝑢(𝑡)||𝒱 ≤ √|𝑡 − 𝑠|√2GL𝜀,𝜇,𝑓̃(𝑢(0)). (4.56)

The mass-conserving AC trajectory 𝑢 defined by Definition 3.4.2 has GL𝜀(𝑢(𝑡))
monotonically decreasing in 𝑡. More precisely: for all 𝑡 > 𝑠 ≥ 0,

GL𝜀(𝑢(𝑠)) −GL𝜀(𝑢(𝑡)) ≥
1

2(𝑡 − 𝑠) ||𝑢(𝑠) − 𝑢(𝑡)||
2
𝒱 (4.57)

and therefore,
||𝑢(𝑠) − 𝑢(𝑡)||𝒱 ≤ √|𝑡 − 𝑠|√2GL𝜀(𝑢(0)). (4.58)

Proof. It suffices to prove the former case, the latter is likewise.
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Let 𝑡 > 𝑠 ≥ 0, 𝓁 ∶= ⌈𝑠/𝜏𝑛⌉, and 𝑚 ∶= ⌈𝑡/𝜏𝑛⌉. Note that therefore 𝓁 ≤ 𝑚. Next,
note a standard inner product space fact: for all sequences 𝑣𝑛 ∈ 𝒱,

𝑁

∑
𝑛=1

||𝑣𝑛||
2
𝒱 =

1
𝑁 ||

𝑁

∑
𝑛=1

𝑣𝑛||

2

𝒱

+ 1
𝑁 ∑
𝑘<𝑛

||𝑣𝑛 − 𝑣𝑘||
2
𝒱 ≥

1
𝑁 ||

𝑁

∑
𝑛=1

𝑣𝑛||

2

𝒱

, (4.59)

which can be checked by expanding the inner products and collecting terms. Now
by Theorems 3.4.9 (i.e., uniqueness of AC solutions) and 4.5.9, we have sequences
𝑢[𝜏𝑛]𝓁 → 𝑢(𝑠) and 𝑢[𝜏𝑛]𝑚 → 𝑢(𝑡). It follows that:
GL𝜀,𝜇,𝑓̃(𝑢(𝑠))−GL𝜀,𝜇,𝑓̃(𝑢(𝑡))

= lim
𝑛→∞

𝐻𝜏𝑛 (𝑢
[𝜏𝑛]
𝓁 ) − 𝐻𝜏𝑛 (𝑢

[𝜏𝑛]𝑚 ) by Proposition 4.5.11

= lim
𝑛→∞

𝑚−1

∑
𝑘=𝓁

𝐻𝜏𝑛 (𝑢
[𝜏𝑛]
𝑘 ) − 𝐻𝜏𝑛 (𝑢

[𝜏𝑛]
𝑘+1)

≥ lim
𝑛→∞

1
2𝜏𝑛

(1 − 𝜏𝑛𝜀 )
𝑚−1

∑
𝑘=𝓁

||𝑢[𝜏𝑛]𝑘+1 − 𝑢
[𝜏𝑛]
𝑘 ||

2

𝒱
by (4.41)

≥ lim
𝑛→∞

1
2𝜏𝑛

(1 − 𝜏𝑛𝜀 )
1

𝑚 − 𝓁 ||𝑢
[𝜏𝑛]𝑚 − 𝑢[𝜏𝑛]𝓁 ||

2

𝒱
by (4.59)

= 1
2(𝑡 − 𝑠) ||𝑢(𝑠) − 𝑢(𝑡)||

2
𝒱 ≥ 0

as desired, since 𝜏𝑛(𝑚 − 𝓁) → 𝑡 − 𝑠.
Finally, since GL𝜀,𝜇,𝑓̃(𝑢) ≥ 0 for all 𝑢 ∈ 𝒱, it follows that

||𝑢(𝑠) − 𝑢(𝑡)||2𝒱 ≤ 2(𝑡 − 𝑠)(GL𝜀,𝜇,𝑓̃(𝑢(𝑠)) −GL𝜀,𝜇,𝑓̃(𝑢(𝑡)))
≤ 2(𝑡 − 𝑠)GL𝜀,𝜇,𝑓̃(𝑢(𝑠)) ≤ 2(𝑡 − 𝑠)GL𝜀,𝜇,𝑓̃(𝑢(0)).

Next, we prove the well-posedness of the fidelity forced AC flow.

Note 27. We have yet to determine if the mass-conserving AC flow (3.23) is well-
posed.

Theorem 4.5.13. Let 𝑢0, 𝑣0 ∈ 𝒱[0,1] define fidelity forced AC trajectories 𝑢, 𝑣 by
Definition 3.4.1. Then, if 𝜉1 ∶=min𝜎(𝐴), then

||𝑢(𝑡) − 𝑣(𝑡)||𝒱 ≤ 𝑒−𝜉1𝑡𝑒𝑡/𝜀||𝑢0 − 𝑣0||𝒱 . (4.60)

Proof. Fix 𝑡 ≥ 0 and let 𝑚 ∶= ⌈𝑡/𝜏𝑛⌉. By Corollary 4.5.10, we take 𝜏𝑛 ↓ 0 such that
𝑢[𝜏𝑛]𝑚 → 𝑢(𝑡) and 𝑣[𝜏𝑛]𝑚 → 𝑣(𝑡) as 𝑛 → ∞. Then by (4.8):

||𝑢[𝜏𝑛]𝑚 − 𝑣[𝜏𝑛]𝑚 ||𝒱 ≤ 𝑒−𝑚𝜉1𝜏𝑛(1 − 𝜏𝑛/𝜀)−𝑚||𝑢0 − 𝑣0||𝒱
and taking 𝑛 → ∞ gives (4.60).
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Finally, we derive some bounds on the 𝜁 from Corollary 4.5.6 and thereby infer
a Lipschitz condition on AC trajectories.

Lemma 4.5.14. Let 𝜁(𝑡) (as defined in Corollary 4.5.6) be given at a.e. 𝑡 ≥ 0 by
(4.54), and let 𝑡 be any such 𝑡.

In the fidelity forced case

𝜁(𝑡) ∈ 𝒱[−1/2,1/2],

and in the mass-conserving case

𝜁(𝑡) − 𝜁(𝑡)1 ∈ 𝒱[𝑢̄−1,𝑢̄] and 𝜁(𝑡) ∈ 𝒱[−1,1].

Proof. The bounds on 𝜁(𝑡) follow immediately from (4.54) and the bounds on 𝛽𝑛+1
in Lemma 4.3.7. Finally, since 𝑣 ↦ 𝑣 − 𝑣̄1 is linear and continuous, by (4.54)

𝜁(𝑡) − 𝜁(𝑡)1 = lim
𝑘→∞

1
𝑁𝑘

𝑁𝑘
∑
𝑛=1

(𝛽[𝜏𝑛]𝑚 − 𝛽[𝜏𝑛]𝑚 1) .

and thus the bounds on 𝜁(𝑡) − 𝜁(𝑡)1 follow from (4.38).

Theorem 4.5.15. In both the fidelity forced and mass-conserving cases, the AC
solution (𝑢̂, 𝜁) given by Theorem 4.5.9 has 𝑢̂ ∈ 𝐶0,1([0,∞); 𝒱).

Proof. Recall from (3.36) (in the proof of Theorem 3.4.8) that for 𝐵 ∶= 𝐴 − 1
𝜀 𝐼 or

𝐵 ∶= Δ − 1
𝜀 𝐼, 𝑣 ∶= 𝜀𝑓 −

1
21 or 𝑣 ∶= −𝑢̄1, and 𝛾 ∶= 𝜁 or 𝛾 ∶= 𝜁 − ̄𝜁1, we have that

since (𝑢̂, 𝜁) is an AC solution,

𝑢̂(𝑡) = 𝑒−𝑡𝐵𝑢̂(0) + 1𝜀 𝐹𝑡(𝐵)𝑣 +
1
𝜀 ∫

𝑡

0
𝑒(𝑠−𝑡)𝐵𝛾(𝑠) 𝑑𝑠

and by Lemma 4.5.14, 𝛾(𝑠) ∈ 𝒱[−1,1] at a.e. 𝑠 in either case. Let 0 ≤ 𝑡1 < 𝑡2. Since
(𝑢̂, 𝜁) solves either (3.22) or (3.23), and both of these equations are time-translation
invariant, it follows that

𝑢̂(𝑡2) − 𝑢̂(𝑡1) = (𝑒−(𝑡2−𝑡1)𝐵 − 𝐼) 𝑢̂(𝑡1) +
1
𝜀 𝐹𝑡2−𝑡1(𝑄)𝑣 +

1
𝜀 ∫

𝑡2−𝑡1

0
𝑒(𝑠−(𝑡2−𝑡1))𝐵𝛾(𝑠) 𝑑𝑠

= (𝑒−(𝑡2−𝑡1)𝐵 − 𝐼) 𝑢̂(𝑡1) +
1
𝜀 𝐹𝑡2−𝑡1(𝑄)𝑣 +

1
𝜀 ∫

𝑡2−𝑡1

0
𝑒−𝑠𝐵𝛾(𝑡2 − 𝑡1 − 𝑠) 𝑑𝑠.

Let 𝐵𝑠 ∶= (𝑒−𝑠𝐵 − 𝐼)/𝑠 for 𝑠 > 0. Then 𝐵𝑠 commutes with 𝐵, is self-adjoint, and
as −𝐵 has largest eigenvalue less than or equal to 1/𝜀 (by Proposition 3.2.4), we
have ||𝐵𝑠|| < (𝑒𝑠/𝜀 − 1)/𝑠, with RHS monotonically increasing in 𝑠 for 𝑠 > 0.7
Furthermore, if 𝜂 is an eigenvalue of 𝐵 (and hence in [−1/𝜀, ||𝐴|| − 1/𝜀]), then by
7 𝑑
𝑑𝑠 ((𝑒

𝑠/𝜀 − 1)/𝑠) = 𝑠−2𝑒𝑠/𝜀 (𝑒−𝑠/𝜀 − 1 + 𝑠/𝜀) > 0 for 𝑠 > 0.
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Definition 3.2.5 𝐹𝑠(𝑄)/𝑠 has corresponding eigenvalue (1−𝑒−𝑠𝜂)/𝑠𝜂 (or 1 if 𝜂 = 0).
If 𝜂 ≥ 0, then this term is positive and less than or equal to 1. If 𝜂 < 0, then the
term has absolute value (𝑒𝑠|𝜂| − 1)/𝑠|𝜂|, which is bounded above by 𝜀(𝑒𝑠/𝜀 − 1)/𝑠
since |𝜂| ≤ 1/𝜀 in the 𝜂 < 0 case, and (𝑒𝑠𝑥 − 1)/𝑠𝑥 is monotonically increasing in
𝑥 for 𝑥 > 0. Since that latter bound is greater than or equal to 1, we have that
||𝐹𝑠(𝑄)/𝑠|| ≤ 𝜀(𝑒𝑠/𝜀 − 1)/𝑠 which is monotonically increasing in 𝑠.

Since 𝑣 is constant, 𝑢̂ is uniformly bounded in time, and 𝛾 is uniformly essentially
bounded, let 𝐶 be such that ||𝑣||𝒱 , ||𝑢̂(𝑡)||𝒱 , ||𝛾(𝑠)||𝒱 < 𝐶 for all 𝑡 ≥ 0 and a.e.
𝑠 ≥ 0. Then we have for 𝑡2 − 𝑡1 < 1

||𝑢̂(𝑡2) − 𝑢̂(𝑡1)||𝒱
𝑡2 − 𝑡1

≤ 𝐶||𝐵𝑡2−𝑡1 || + 𝐶
1
𝜀 ||𝐹𝑡2−𝑡1(𝑄)/(𝑡2 − 𝑡1)|| + 𝐶

1
𝜀 max
𝑠∈[0,𝑡2−𝑡1]

||𝑒−𝑠𝑄||

≤ 𝐶 𝑒
(𝑡2−𝑡1)/𝜀 − 1
𝑡2 − 𝑡1

+ 𝐶𝑒
(𝑡2−𝑡1)/𝜀 − 1
𝑡2 − 𝑡1

+ 𝐶1𝜀 𝑒
(𝑡2−𝑡1)/𝜀

≤ 2𝐶(𝑒1/𝜀 − 1) + 𝐶1𝜀 𝑒
1/𝜀

with the last line since 𝜀(𝑒𝑠/𝜀−1)/𝑠 is monotonically increasing in 𝑠, and for 𝑡2−𝑡1 ≥
1 we simply have

||𝑢̂(𝑡2) − 𝑢̂(𝑡1)||𝒱
𝑡2 − 𝑡1

≤ ||𝑢̂(𝑡2) − 𝑢̂(𝑡1)||𝒱 ≤ ||1||𝒱

completing the proof.

4.6. Conclusions and future work
In the previous chapter, we defined Allen–Cahn (AC) flow and the Merriman–Bence–
Osher (MBO) scheme in a graph setting, and in particular defined a graph AC flow
against the double-obstacle potential, including under either fidelity forcing or mass
conservation constraints. We have proved that this double-obstacle AC flow, de-
spite its definition requiring the introduction of subdifferential terms, has various
desirable properties (including under either constraint). The first wave of these
were proved in the last chapter direct from the definition, and included an ex-
plicit integral form and uniqueness of solutions. The second wave of these, in-
cluding existence and Lipschitz regularity of solutions, and monotonic decrease of
the Ginzburg–Landau energy along solutions, we proved in this chapter, by char-
acterising the solutions as the limit of trajectories of the SDIE scheme for AC flow.
Furthermore, we have demonstrated that the MBO scheme is a special case of this
SDIE scheme, including under either constraint, and that therefore AC flow and the
MBO scheme can be rigorously linked together.

A primary direction for future work could be the extension of this connection to
the case of the multi-class AC flow and MBO scheme. The multi-class versions of
these flows have received considerable attention for solving problems in which one
seeks to classify data into multiple classes (i.e., more than just the binary “0” and
“1” classes we consider in this thesis), often with mass conservation and/or fidelity
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forcing, for example in Merkurjev et al. [8], Jacobs et al. [11], and Calder et al. [6].
However, applying the MBO thresholding in the presence of these constraints is a
non-trivial task, inspiring for example the intriguing “auction dynamics” technique
of [11]. In the above, the SDIE scheme yielded (for 𝜆 < 1) a convex relaxation of
the MBO thresholding whose solutions converged to MBO solutions as 𝜆 ↑ 1. If a
similar result turns out to hold in the multi-class case, that could provide another
method for applying this thresholding.

Another direction for future research could be to examine higher-order MBO
schemes on graphs, such as those studied in the continuum in [15, 17]. Can these
be understood as higher-order numerical schemes of AC flow in a like manner to the
above? Moreover, can these lead to improved classification algorithms compared
those based on the basic MBO scheme? (For details on classification algorithms
using the basic MBO scheme, see the next chapter).

A final direction could be linking this work back up with the continuum. It seems
plausible that the SDIE link between graph AC flow and the graph MBO scheme
should also hold between continuum AC flow and the continuum MBO scheme.
Furthermore, we can ask what happens to this SDIE link as the underlying graph
converges to a continuum object, for example in the sense considered in García
Trillos et al. [7].
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5
Applications in Image

Segmentation

One day ladies will take their computers for walks in the park and tell each
other, “My little computer said such a funny thing this morning!”

Alan Turing, quoted in Alan Turing: The Enigma

Amajor application of the graph flows defined in chapter 3 has been in image
segmentation, the task of locating the “important” parts of an image. In this
chapter, we shall describe how our SDIE scheme can be used as an algorithm
for this task, along the way presenting some refinements compared to how
this was previously done in a paper by Merkurjev, Kostić, and Bertozzi [22]
with the MBO scheme. We then test this method on the “two cows” example
considered by [22] (and also Bertozzi and Flenner [6]), as well as two related
examples. We find that whilst in this example the SDIE scheme does not
improve on its MBO special case, our other refinements lead to a substantially
improved segmentation compared to those of [6] and [22].

Parts of this chapter have been published in GAMM Mitteilungen 44 (2021) [9]. Jonas Latz contributed
significantly to this chapter.
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5.1. Introduction

I n this chapter, we will be investigating how the tools from the last chapter can
be applied in image segmentation, i.e. the task of locating the “important” parts

of an image. For example, in an image of a cancer patient the “important” part to
be located might be the pixels corresponding to a tumour or tumours. This is an
example of a classification problem, i.e. a problem where one wishes to assign a
label to every member of a set of individuals (in this case, the set of pixels in an
image) in such a way that individuals which are relevantly “similar” get assigned
the same label. In classification problems, one also has a priori information, in the
form of some subset of already labelled individuals. The task then is to propagate
those a priori labels to the whole set.

In this chapter, we will restrict ourselves to binary classification problems, i.e.
problems in which there are only two labels, and the key idea will be to encode the
individuals as a graph and use the fidelity forced SDIE scheme to propagate the
labels.

5.1.1. Background
In the continuum, a major class of techniques for classification problems relies
upon the minimisation of total variation (TV), e.g. the famous Mumford–Shah [24]
and Chan–Vese [11] algorithms. These methods are linked to Ginzburg–Landau
methods by the fact that the (continuum) Ginzburg–Landau functional Γ-converges
to TV [20, 23] (a result that continues to hold in the graph context [16]). This
motivated a common technique of minimising the Ginzburg–Landau functional in
place of TV, e.g. in Esedoḡlu and Tsai [14] two-class Chan–Vese segmentation was
implemented by replacing TV with the Ginzburg–Landau functional; the resulting
energy was minimised by using a fidelity forced MBO scheme.

Inspired by this continuum work, in Bertozzi and Flenner [6] a method for graph
classification was introduced based on minimising the Ginzburg–Landau functional
on a graph by evolving the graph Allen–Cahn (AC) equation. The a priori information
was incorporated by including a fidelity forcing term, leading to the equation

𝑑𝑢
𝑑𝑡 = −Δ𝑢 −

1
𝜀𝑊

′ ∘ 𝑢 − 𝜇̂𝑃𝑍(𝑢 − 𝑓̃),

where 𝑢 is a labelling function which, due to the influence of a double-well potential
(e.g. 𝑊(𝑥) = 𝑥2(𝑥−1)2) will take values close to 0 and 1, indicating the two classes.
The a priori knowledge is encoded in the reference 𝑓̃ which is supported on 𝑍, a
subset of the node set with corresponding projection operator 𝑃𝑍.

In Merkurjev, Kostić, and Bertozzi [22] an alternative method was introduced:
a graph MBO scheme with fidelity forcing, inspired by the use of the original MBO
scheme [4] to approximate motion by mean curvature in the continuum. Heuristi-
cally, this MBO scheme was expected to behave similarly to the graph AC flow as
the thresholding step resembles a “hard” version of the “soft” double-well potential
nonlinearity in the AC flow. We have rigorously supported this heuristic argument
in the previous chapter.
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5.2. The SDIE scheme as a classification algorithm
In the last chapter, we showed that the fidelity forced SDIE scheme (4.1) gener-
alises the MBO scheme into a family of schemes, all of the same computational
cost as the MBO scheme (excluding the negligible extra cost incurred performing a
piecewise linear thresholding instead of a hard thresholding), and which as 𝜏 ↓ 0
become increasingly more accurate approximations of the AC trajectories. As was
described in the above background, graph AC and MBO trajectories can be de-
ployed as classification algorithms, as was originally done in work by Bertozzi and
co-authors in [6, 22]. In this chapter, we will investigate whether the use of the
SDIE scheme can significantly improve on the use of the MBO scheme to segment
the “two cows” images from [6, 22]. We will also investigate other refinements to
the method of [22].

5.2.1. Groundwork
In this section, we will describe the framework for applying graph dynamics to
classification problems, following [6, 22].

The individuals that we seek to classify we will denote as a set 𝑉, upon which
we have some information 𝑥 ∶ 𝑉 → ℝ𝑞. For example, in image segmentation 𝑉
is the set of pixels in the image, and 𝑥 is the greyscale/RGB/etc. values at each
pixel. Furthermore, we have labelled reference data, which we shall denote as
𝑍 ⊆ 𝑉, and binary reference labels 𝑓̃ supported on 𝑍. Supported on 𝑍 we have our
fidelity parameter 𝜇 ∈ 𝒱[0,∞) ⧵ {0}, and we recall the notation from Definition 3.2.3
of 𝑀 ∶= diag(𝜇) and 𝑓 ∶= 𝑀𝑓̃ (recall that the operator diag sends a vector to the
diagonal matrix with that vector as diagonal, and also vice versa).

To build our graph, we first construct feature vectors 𝑧 ∶ 𝑉 → ℝ𝓁. The philosophy
behind these is that we want vertices which are “similar” (and hence should be
similarly labelled) to have feature vectors that are “close together”. What this means
in practice will depend on the application, e.g. [28] incorporates texture into the
features and [6, 10] give other options.

Next, we construct the weights on the graph by deciding on the edge set 𝐸 (e.g.
𝐸 = 𝑉2 ⧵ {(𝑖, 𝑖) ∣ 𝑖 ∈ 𝑉}) and for each 𝑖𝑗 ∈ 𝐸 computing 𝜔𝑖𝑗 ∶= Ω(𝑧𝑖 , 𝑧𝑗) (and for
𝑖𝑗 ∉ 𝐸, 𝜔𝑖𝑗 ∶= 0) for some similarity function Ω. There are a number of standard
choices for the similarity function Ω, see e.g. [6, 7, 31, 33]. The similarity function
we will use in this thesis is the Gaussian function:

Ω(𝑧, 𝑤) ∶= 𝑒−
||𝑧−𝑤||2𝐹
𝓁𝜎2 ,

where || ⋅ ||𝐹 denotes the Frobenius norm.
Note 28. The above described process for constructing a graph upon (image) data
does not exhaust all methods used in the literature. For example, there has been
recent interest in using deep learning methods to construct graphs upon data, see
e.g. de Vriendt et al. [29].

Finally, from these weights we compute the graph Laplacian so that we can
employ the graph ODEs discussed in the previous sections. In particular, we com-
pute the normalised (a.k.a. random walk) graph Laplacian, i.e. we will henceforth
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take 𝑟 = 1 and so Δ = 𝐼 − 𝐷−1𝜔. We will also consider the symmetric normalised
Laplacian Δ𝑠 ∶= 𝐼 − 𝐷−1/2𝜔𝐷−1/2, though this does not fit into the schema for the
graph Laplacian given in chapter 2 (extending the theory from the previous two
chapters to the symmetric normalised Laplacian case is a topic for future research).
This normalisation matters because, as discussed in [6], the segmentation proper-
ties of diffusion-based graph dynamics are linked to the segmentation properties
of the eigenvectors of the corresponding Laplacian. As shown in [6, Figure 2.1],
normalisation vastly improves these segmentation properties. As that figure looked
at the symmetric normalised Laplacian, we include Fig. 5.1 to show the difference
between the symmetric normalised and the random walk Laplacian.

Figure 5.1: Second, third, and fourth eigenvectors of the random walk Laplacian (left) and symmetric
normalised Laplacian (right) for the graph built on one of the “two cows” images from Example 5.3.1,
computed using Algorithm 1.

5.2.2. The basic classification algorithm
For some time step 0 < 𝜏 ≤ 𝜀 note that from (3.7),

𝒮𝜏𝑢 = 𝑒−𝜏𝐴𝑢 + 𝑏

where 𝑏 ∶= 𝐹𝜏(𝐴)𝑓 = 𝐴−1(𝐼 − 𝑒−𝜏𝐴)𝑓 is independent of 𝑢.
Then the basic approach of the classification algorithm can be summarised as

follows.

1. Input: Vector 𝑥 ∶ 𝑉 → ℝ𝑞, reference data 𝑍, and labels 𝑓 supported on 𝑍.

2. Convert 𝑥 into feature vectors 𝑧 ∶ 𝑉 → ℝ𝓁.

3. Build a weight matrix 𝜔 = (𝜔𝑖𝑗) on 𝑉2 via 𝜔𝑖𝑗 ∶= Ω(𝑧𝑖 , 𝑧𝑗), a from this compute
𝐴 and 𝑏.

4. From some initial condition 𝑢0, compute the SDIE sequence 𝑢𝑛 until it meets
a stopping condition at some 𝑛 = 𝑁.
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5. Output: 𝑢𝑁 thresholded to lie in 𝒱{0,1}, i.e. we output Θ(𝑢𝑁) where Θ is as
in (3.1).

Unfortunately, as written this algorithm cannot be feasibly run. The chief obsta-
cle is that in many applications 𝜔, and therefore 𝐴, are too large to store in memory,
yet we need to quickly compute 𝑒−𝜏𝐴𝑢, potentially a large number of times. We
also need to compute 𝑏 accurately. Moreover, in general 𝐴 does not have low nu-
merical rank, so it cannot be well approximated by a low-rank matrix. In the rest
of this section we describe our modifications to this basic algorithm that make it
computationally efficient.

5.2.3. Matrix compression and approximate SVDs
Since 𝐴 is Δ plus a diagonal matrix, the latter of which we can therefore easily store
in memory, our first challenge will be to compress Δ into something we can store
in memory. Following [6, 22], we employ the Nyström extension [15, 25]. We
choose 𝐾 ≪ |𝑉| to be the rank to which we will compress Δ, and choose nonempty
Nyström interpolation sets 𝑋1 ⊆ 𝑉 ⧵ 𝑍 and 𝑋2 ⊆ 𝑍 at random such that |𝑋| = 𝐾
where 𝑋 ∶= 𝑋1 ∪ 𝑋2. We write |𝑋1| =∶ 𝐾1 and |𝑋2| =∶ 𝐾2. Then using the function
𝑖𝑗 ↦ 𝜔𝑖𝑗 we compute the matrices 𝜔𝑉𝑋 ∶= 𝜔(𝑉, 𝑋) (i.e. 𝜔𝑉𝑋 ∶= (𝜔𝑖𝑗)𝑖∈𝑉,𝑗∈𝑋) and
𝜔𝑋𝑋 ∶= 𝜔(𝑋, 𝑋) and then the Nyström extension is the approximation:

𝜔 ≈ 𝜔𝑉𝑋𝜔−1𝑋𝑋𝜔𝑇𝑉𝑋 . (5.1)

Note 29. This approximation avoids having to compute the full matrix 𝜔, which
in many applications is too large to store in memory. However, a word of warning:
there is no a priori guarantee that 𝜔𝑋𝑋 will be well-conditioned or even invertible.
For example, if there were no edges between elements of 𝑋 then 𝜔𝑋𝑋 would be the
zero matrix. Therefore, the use of this approximation induces some constraints on
one’s construction of the graph edge weights and one’s choice of 𝐾. Fortunately,
since 𝜔𝑋𝑋 is by construction small, one can compute its condition number and
thereby check whether or not invertibility is in fact an issue for a given generated
𝜔𝑋𝑋.

We next compute an approximation for the degree vector 𝑑 and degree matrix
𝐷 ∶= diag(𝑑) of our graph

𝑑 ≈ 𝑑̂ ∶= 𝜔𝑉𝑋𝜔−1𝑋𝑋𝜔𝑇𝑉𝑋1, 𝐷 ≈ 𝐷̂ ∶= diag (𝑑̂) .

We thus approximately normalise 𝜔

𝜔̃ ∶= 𝐷−1/2𝜔𝐷−1/2 ≈ 𝐷̂−1/2𝜔𝑉𝑋𝜔−1𝑋𝑋𝜔𝑇𝑉𝑋𝐷̂−1/2 = 𝜔̃𝑉𝑋𝜔−1𝑋𝑋𝜔̃𝑇𝑉𝑋
where 𝜔̃𝑉𝑋 ∶= 𝐷̂−1/2𝜔𝑉𝑋.

Following [6, 22], we next compute an approximate eigendecomposition of 𝜔̃.
We here diverge from the method of [6, 22]. The method used in those papers
requires taking the matrix square root of 𝜔𝑋𝑋, but unless 𝜔𝑋𝑋 is the zero matrix it
will not be positive semi-definite.1 Whilst this clearly does not prevent the method
1It is easy to see that non-zero 𝜔𝑋𝑋 has negative eigenvalues, as it has zero trace.



5

102 5. Applications in Image Segmentation

of [6, 22] from working in practice, it is a potential source of error and we found
it conceptually troubling. We here present an improved method, adapted from the
method from Bebendorf and Kunis [3] for computing a singular value decomposi-
tion (SVD) from an adaptive cross approximation (ACA) (see [3] for a definition of
ACA), which was recently recommended for the Nyström decomposition of graph
Laplacians in Alfke et al. [1].

First, we compute the so-called “thin” QR decomposition (see [17, Theorem
5.2.2])

𝜔̃𝑉𝑋 = 𝑄𝑅
where 𝑄 ∈ ℝ|𝑉|×𝐾 has orthonormal columns, and 𝑅 ∈ ℝ𝐾×𝐾 is upper triangular.
Next, we compute the eigendecomposition

𝑅𝜔−1𝑋𝑋𝑅𝑇 = ΦΣΦ𝑇

where Φ ∈ ℝ𝐾×𝐾 is the orthogonal matrix of eigenvectors of 𝑅𝜔−1𝑋𝑋𝑅𝑇 and Σ ∈ ℝ𝐾×𝐾
is the diagonal matrix of the corresponding eigenvalues. It follows that 𝜔̃ has
approximate eigendecomposition:

𝜔̃ ≈ 𝑄ΦΣΦ𝑇𝑄𝑇 = 𝑈𝑠Σ𝑈𝑇𝑠

where 𝑈𝑠 ∶= 𝑄Φ has orthonormal columns. This gives an approximate eigende-
composition of the symmetric normalised Laplacian

Δ𝑠 = 𝐼 − 𝜔̃ ≈ 𝑈𝑠(𝐼𝐾 − Σ)𝑈𝑇𝑠 = 𝑈𝑠Λ𝑈𝑇𝑠

where 𝐼𝐾 is the 𝐾×𝐾 identity matrix and Λ ∶= 𝐼𝐾−Σ, and so we get an approximate
SVD of the random walk Laplacian

Δ = 𝐷−1/2Δ𝑠𝐷1/2 ≈ 𝑈1Λ𝑈𝑇2

where 𝑈1 ∶= 𝐷̂−1/2𝑈𝑠 and 𝑈2 ∶= 𝐷̂1/2𝑈𝑠. As in [3], it is easy to see that the
computational complexity of this approach is 𝒪(𝐾|𝑉|) in space and 𝒪(𝐾2|𝑉| + 𝐾3)
in time. We summarise this all as Algorithm 1.

5.2.4. Numerical examination of thematrix compressionmeth-
ods

We consider the accuracy of our Nyström-QR approach for the compression of
the symmetric normalised Laplacian2 Δ𝑠 built on the image in Fig. 5.2, contain-
ing |𝑉| = 6400 pixels, which is small enough for us to compute the true value of
Δ𝑠 to high accuracy. For 𝐾 ∈ {50, 100,… , 500}, we compare the rank 𝐾 approx-
imation 𝑈𝑠Λ𝑈𝑇𝑠 with the true Δ𝑠 in terms of the relative Frobenius distance, i.e.
||𝑈𝑠Λ𝑈𝑇𝑠 − Δ𝑠||𝐹/||Δ𝑠||𝐹. Moreover, we compare these errors to the errors incurred
by other low-rank approximations of Δ𝑠, namely the Nyström method used in [6,

2The case of the random walk Laplacian is similar (due to the similarity of the matrices) except for a
small additional error incurred by the approximation of 𝐷.
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Algorithm 1 QR decomposition-based Nyström method for computing an approx-
imate SVD of Δ or Δ𝑠, inspired by Bebendorf and Kunis [3].
1: function NyströmQR(𝑖𝑗 ↦ 𝜔𝑖𝑗 , 𝑉, 𝑍, 𝐾) // Computes 𝑈1, Λ, and 𝑈2, where
Δ ≈ 𝑈1Λ𝑈𝑇2 is an approximate SVD of rank 𝐾.

2: 𝑋1 = random_subset(𝑉 ⧵ 𝑍, 𝐾1) // A random subset of 𝑉 ⧵ 𝑍 of size 𝐾1
3: 𝑋2 = random_subset(𝑍, 𝐾2) // A random subset of 𝑍 of size 𝐾2, note

that 𝐾1 + 𝐾2 = 𝐾
4: 𝑋 = 𝑋1 ∪ 𝑋2
5: 𝜔𝑋𝑋 = 𝜔(𝑋, 𝑋)
6: 𝜔𝑉𝑋 = 𝜔(𝑉, 𝑋)
7: 𝑑̂ = 𝜔𝑉𝑋 (𝜔−1𝑋𝑋 (𝜔𝑇𝑉𝑋1))
8: 𝜔̃𝑉𝑋 = 𝑑̂−1/2⊙𝜔𝑉𝑋 // Applying⊙ columnwise, i.e. (𝜔̃𝑉𝑋)𝑖𝑗 = 𝑑̂−1/2𝑖 (𝜔𝑉𝑋)𝑖𝑗
9: [𝑄, 𝑅] = thin_qr(𝜔̃𝑉𝑋) // Computes thin QR decomposition 𝜔̃𝑉𝑋 = 𝑄𝑅
10: 𝑆 = 𝑅𝜔−1𝑋𝑋𝑅𝑇
11: 𝑆 = (𝑆 + 𝑆𝑇)/2 // Corrects symmetry-breaking computational errors
12: [Φ, Σ] = eig(𝑆) // Computes eigendecomposition 𝑆 = ΦΣΦ𝑇
13: Λ = 𝐼𝐾 − Σ
14: 𝑈𝑠 = 𝑄Φ // Note that Δ𝑠 ≈ 𝑈𝑠Λ𝑈𝑇𝑠 , so to return the

decomposition of Δ𝑠 terminate here
15: 𝑈1 = 𝑑̂−1/2⊙𝑈𝑠 // I.e. (𝑈1)𝑖𝑗 = 𝑑̂−1/2𝑖 (𝑈𝑠)𝑖𝑗
16: 𝑈2 = 𝑑̂1/2⊙𝑈𝑠 // I.e. (𝑈2)𝑖𝑗 = 𝑑̂1/2𝑖 (𝑈𝑠)𝑖𝑗
17: return 𝑈1, Λ, 𝑈2
18: end function

22], the Halko–Martinsson–Tropp (HMT) method3 [18], and the optimal rank 𝐾 ap-
proximation of Δ𝑠 with respect to || ⋅ ||𝐹, which (by the Eckart–Young theorem [13];
see also [17, Theorem 2.4.8]) is obtained by setting all but the 𝐾 leading singu-
lar values of Δ𝑠 to 0. In addition to the methods’ accuracy, we also measure the
complexity of the methods, via the runtimes of MATLAB R2019a implementations
of them on the set-up as in section 5.3.2.

We report the relative Frobenius distance in Fig. 5.3. As the Nyström (and HMT)
methods are randomised, we repeat the experiments 1000 times and plot the mean
(relative Frobenius) error in the far-left figure and the standard deviations of the
errors in the centre-right figure. To expose the difference between the methods
for 𝐾 ≥ 100, we plot the percentage increase of the other mean errors above the
SVD error (i.e. [mean error/errorSVD−1]×100%) and show this percentage in the
centre-left figure. In the far-right figure, we compare the average runtime of the
algorithms. The SVD timing is constant in 𝐾 as we always computed a full SVD and
kept the largest 𝐾 singular values.

We observe that the Nyström-QR method outperforms the Nyström method

3The HMT results serve only to give an additional benchmark for the Nyström methods: HMT requires
matrix-vector-products with the full Δ𝑠, which was infeasible for us in applications due to the size of
the matrix. A topic for future work will be to investigate the use of [1, Algorithm 3], which potentially
allows feasible computation of an HMT-like SVD of Δ𝑠.
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Figure 5.2: The 80 × 80 image on which the Laplacian Δ𝑠 is constructed to test the low-rank approxi-
mations.
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Figure 5.3: Error of the low-rank approximations of Δ𝑠 in terms of their relative Frobenius distance to the
true Δ𝑠 (far-left), percentage increase above the optimal error reached with the SVD (centre-left), and
standard deviations (StD) of the errors (centre-right). Timings of the methods in seconds (far-right). In
the far-left figure the red and cyan lines are both plotted but cannot be distinguished from each other
by the eye.

from [6, 22]: it is faster, more accurate, and the mean error does not blow up for
small 𝐾. In terms of accuracy, the Nyström-QR error is only about 0.012% larger
than the optimal low-rank error. Notably, this additional error is (almost) constant
in 𝐾, suggesting that the Nyström-QR method and the SVD converge at a similar
rate. The Nyström-QR randomness has hardly any effect on the error; the standard
deviation of the relative error ranges from 8.87 × 10−7 (𝐾 = 50) to 5.00 × 10−8
(𝐾 = 500). By contrast, for the Nyström method from [6, 22] we see much more
random variation. The bump in the HMT error at 𝐾 = 450 is an outlier that is
present in many repeats of this experiment.

5.2.5. Interlude: an analysis of the method from [22]
In [22], the authors approximated 𝒮𝜏𝑢 by a semi-implicit Euler method for fidelity
forced diffusion. That is, since 𝒮𝜏𝑢 is defined to equal 𝑣(𝜏) where 𝑣 is defined by

𝑑𝑣
𝑑𝑡 = −Δ𝑣 −𝑀(𝑣 − 𝑓̃), 𝑣(0) = 𝑢,

the authors of [22] approximate trajectories of this ODE by a semi-implicit Euler
method with time step 𝛿𝑡 > 0 (such that 𝜏/𝛿𝑡 ∈ ℕ), i.e. 𝑣0 ∶= 𝑢 and

𝑣𝑘+1 − 𝑣𝑘
𝛿𝑡 = −Δ𝑣𝑘+1 −𝑀(𝑣𝑘 − 𝑓̃)
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with solution (recalling that 𝑓 ∶= 𝑀𝑓̃)

𝑣𝑘+1 = (𝐼 + 𝛿𝑡Δ)
−1 (𝑣𝑘 − 𝛿𝑡𝑀(𝑣𝑘 − 𝑓̃))

= (𝐼 + 𝛿𝑡Δ)−1 (𝐼 − 𝛿𝑡𝑀) 𝑣𝑘 + 𝛿𝑡 (𝐼 + 𝛿𝑡Δ)
−1 𝑓.

(5.2)

This Euler method then corresponds to the approximation 𝒮𝜏𝑢 ≈ 𝑣𝜏/𝛿𝑡. To compute
(5.2), they use the Nyström decomposition to compute the leading eigenvectors
and eigenvalues of Δ.

Note 30. In fact, in [22] the authors use Δ𝑠 not Δ. It makes no difference to this
analysis which Laplacian is used.

Given Δ ≈ 𝑈1Λ𝑈𝑇2 , i.e. the SVD of a low-rank matrix which approximates Δ, the
authors approximate (5.2) by

𝑣̂𝑘+1 = 𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 (𝑣̂𝑘 − 𝛿𝑡𝑀(𝑣̂𝑘 − 𝑓̃))
= 𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 (𝐼 − 𝛿𝑡𝑀)𝑣̂𝑘 + 𝛿𝑡𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 𝑓.

(5.3)

The final approximation for 𝒮𝜏𝑢 in [22] is then computed by setting 𝑣̂0 = 𝑢 and
𝒮𝜏𝑢 ≈ 𝑣̂𝜏/𝛿𝑡.

Note 31. The substitution of 𝑈1(𝐼𝐾+𝛿𝑡Λ)−1𝑈𝑇2 for (𝐼+𝛿𝑡Δ)−1 incurs an 𝒪(1) error.
In particular, if 𝛿𝑡 <min {||Λ||−1, ||Δ||−1} then

𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 = 𝑈1 (𝐼𝐾 − 𝛿𝑡Λ + 𝛿𝑡2Λ2 −+⋯)𝑈𝑇2
= 𝑈1𝑈𝑇2 − 𝛿𝑡𝑈1Λ𝑈𝑇2 + 𝛿𝑡2𝑈1Λ2𝑈𝑇2 −+⋯
≈ 𝑈1𝑈𝑇2 − 𝐼 + (𝐼 − 𝛿𝑡Δ + 𝛿𝑡2Δ2 −+⋯)
= 𝑈1𝑈𝑇2 − 𝐼 + (𝐼 + 𝛿𝑡Δ)−1

where 𝑈1𝑈𝑇2 is the projection onto the singular vectors used in the low-rank ap-
proximation, and so the error incurred arises from replacing the identity with this
projection.

Both (5.2) and (5.3) are of the form

𝑣𝑘+1 = 𝒜𝑣𝑘 + 𝑔.

By induction, such a scheme has 𝑘th term

𝑣𝑘 = 𝒜𝑘𝑣0 +
𝑘−1

∑
𝑟=0

𝒜𝑟𝑔 = 𝒜𝑘𝑣0 + (𝒜 − 𝐼)−1(𝒜𝑘 − 𝐼)𝑔. (5.4)
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Thus taking 𝑘 = 𝜏/𝛿𝑡 and 𝑣0 = 𝑢, we get successive approximations

𝒮𝜏𝑢

≈ [(𝐼 + 𝛿𝑡Δ)−1 (𝐼 − 𝛿𝑡𝑀)]
𝑘
𝑢 (5.5)

+ [(𝐼 + 𝛿𝑡Δ)−1 (𝐼 − 𝛿𝑡𝑀) − 𝐼]
−1
([(𝐼 + 𝛿𝑡Δ)−1 (𝐼 − 𝛿𝑡𝑀)]

𝑘
− 𝐼) 𝛿𝑡 (𝐼 + 𝛿𝑡Δ)−1 𝑓

≈ [𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 (𝐼 − 𝛿𝑡𝑀)]
𝑘 𝑢 (5.6)

+ [𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 (𝐼 − 𝛿𝑡𝑀) − 𝐼]
−1

([𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 (𝐼 − 𝛿𝑡𝑀)]
𝑘 − 𝐼) 𝛿𝑡𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 𝑓.

To see what these approximations are doing, note that with respect to the limit
𝛿𝑡 → 0,

𝐼 + 𝛿𝑡𝑋 = 𝑒𝛿𝑡𝑋 + 𝒪(𝛿𝑡2)
and note the Lie product formula [19, Theorem 2.11] (with respect to the limit
𝑘 → ∞)

𝑒(𝑋+𝑌)/𝑘 = 𝑒𝑋/𝑘𝑒𝑌/𝑘 + 𝒪(𝑘−2) and therefore 𝑒𝑋+𝑌 = (𝑒𝑋/𝑘𝑒𝑌/𝑘)𝑘 + 𝒪(𝑘−1).

Then, since 𝑘𝛿𝑡 = 𝜏,

[(𝐼 + 𝛿𝑡Δ)−1 (𝐼 − 𝛿𝑡𝑀)]
𝑘
= [𝑒−𝛿𝑡Δ𝑒−𝛿𝑡𝑀 + 𝒪(𝛿𝑡2)]𝑘

= [𝑒−𝛿𝑡Δ𝑒−𝛿𝑡𝑀]𝑘 + 𝒪(𝑘𝛿𝑡2)
= (𝑒−𝜏(Δ+𝑀) + 𝒪(𝑘𝛿𝑡2)) + 𝒪(𝑘𝛿𝑡2)
= 𝑒−𝜏𝐴 + 𝒪(𝛿𝑡)

(5.7)

and the second term in (5.5) becomes

[𝐼 − (𝐼 + 𝛿𝑡Δ)−1 (𝐼 − 𝛿𝑡𝑀)]
−1
(𝐼 − 𝑒−𝜏𝐴 + 𝒪(𝛿𝑡)) 𝛿𝑡 (𝐼 + 𝛿𝑡Δ)−1

= (Δ +𝑀)−1 (𝐼 + 𝛿𝑡Δ) (𝐼 − 𝑒−𝜏𝐴 + 𝒪(𝛿𝑡)) (𝐼 + 𝛿𝑡Δ)−1

= 𝐴−1(𝐼 − 𝑒−𝜏𝐴) + 𝐸 + 𝒪(𝛿𝑡)

where (writing [𝑋, 𝑌] ∶= 𝑋𝑌 − 𝑌𝑋 for the commutator of 𝑋 and 𝑌)

𝐸 ∶= 𝐴−1(𝐼 + 𝛿𝑡Δ) [𝐼 − 𝑒−𝜏𝐴, (𝐼 + 𝛿𝑡Δ)−1]
= −𝐴−1(𝐼 + 𝛿𝑡Δ) [𝑒−𝜏𝐴, (𝐼 + 𝛿𝑡Δ)−1]
= 𝐴−1 [𝑒−𝜏𝐴, (𝐼 + 𝛿𝑡Δ)] (𝐼 + 𝛿𝑡Δ)−1

= 𝛿𝑡𝐴−1 [𝑒−𝜏𝐴, Δ] (𝐼 + 𝛿𝑡Δ)−1 = 𝒪(𝛿𝑡)

is the commutation error. Hence the overall error for (5.5) is 𝒪(𝛿𝑡). The error for
(5.6) is similar but also contains an extra error from the spectrum truncation.
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We can also relate this Euler method to a modified quadrature rule. It is easy
to see from (3.7) that

𝑆𝜏𝑢 = 𝑒−𝜏𝐴𝑢 + ∫
𝜏

0
𝑒−𝑡𝐴𝑓 𝑑𝑡.

We understand the Euler approximation for the 𝑒−𝜏𝐴𝑢 term by (5.7). By (5.4) and
(5.7), we can write the Euler approximation for the integral term as

∫
𝜏

0
𝑒−𝑡𝐴𝑓 𝑑𝑡 ≈ 𝛿𝑡

𝑘−1

∑
𝑟=0

[(𝐼 + 𝛿𝑡Δ)−1 (𝐼 − 𝛿𝑡𝑀)]
𝑟
(𝐼 + 𝛿𝑡Δ)−1 𝑓 (5.8)

≈ 𝛿𝑡
𝑘−1

∑
𝑟=0

[𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 (𝐼 − 𝛿𝑡𝑀)]
𝑟 𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 𝑓. (5.9)

We note that, since 𝑀 = diag(𝜇) (and assuming that 𝛿𝑡||𝜇||∞ < 1),

(𝐼 − 𝛿𝑡𝑀)−1 = diag ((1− 𝛿𝑡𝜇)−1)

applying the reciprocation elementwise. Therefore, we can rewrite (5.8) as

𝑏 ∶= ∫
𝜏

0
𝑒−𝑡𝐴𝑓 𝑑𝑡

≈ 𝛿𝑡
𝑘−1

∑
𝑟=0

[(𝐼 + 𝛿𝑡Δ)−1 (𝐼 − 𝛿𝑡𝑀)]
𝑟+1

((1− 𝛿𝑡𝜇)−1⊙𝑓)

= 𝛿𝑡
𝑘

∑
𝑟=1

(𝑒−𝑟𝛿𝑡𝐴 ((1− 𝛿𝑡𝜇)−1⊙𝑓) + 𝒪(𝑟𝛿𝑡2)) by (5.7) and relabelling 𝑟

= (𝛿𝑡
𝑘

∑
𝑟=1

𝑒−𝑟𝛿𝑡𝐴 ((1− 𝛿𝑡𝜇)−1⊙𝑓)) + 𝒪(𝜏2𝛿𝑡)

recalling that 𝑘𝛿𝑡 = 𝜏. This can be seen to be a so-called “right-hand rule” quadra-
ture of the integral

∫
𝜏

0
𝑒−𝑡𝐴 ((1− 𝛿𝑡𝜇)−1⊙𝑓) 𝑑𝑡.

Likewise, we can rewrite (5.9) as

∫
𝜏

0
𝑒−𝑡𝐴𝑓 𝑑𝑡 ≈ 𝛿𝑡

𝑘

∑
𝑟=1

[𝑈1(𝐼𝐾 + 𝛿𝑡Λ)−1𝑈𝑇2 (𝐼 − 𝜇𝛿𝑡𝑃𝑍)]
𝑟 ((1− 𝛿𝑡𝜇)−1⊙𝑓)

where going from (5.8) to (5.9) has incurred an extra error from the spectrum
truncation alongside the quadrature and Lie product formula errors.
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The key takeaway from these calculations concerns (5.7). That equation shows
that the Euler approximation for the 𝑒−𝜏𝐴 term is in fact an approximation of an
approximation. That is, it approximates a Lie product formula approximation for
𝑒−𝜏𝐴. This motivates the method we shall explore in the next subsection of cutting
out the middleman and using a matrix exponential formula directly, and furthermore
using a formula which is more accurate than the Lie product formula. We have
also shown how the [22] Euler method approximation for 𝑏 can be written as a
form of quadrature, motivating our investigation in the next subsection into other
quadrature methods as potential improvements for computing 𝑏.

5.2.6. Computing the SDIE scheme: a Strang formula method
To compute the iterates of our SDIE scheme, we will need to compute an approx-
imation for 𝒮𝜏𝑢𝑛. We saw in (5.7) in the previous subsection that the [22] semi-
implicit Euler method works by approximating a Lie product formula approximation
of 𝑒−𝜏𝐴, which incurs an error which is linear in the Euler time-step (plus a spectrum
truncation error). Therefore we propose as an improvement a scheme that directly
employs the superior Strang formula4 to approximate 𝑒−𝜏𝐴𝑢𝑛—with quadratic error
(plus a spectrum truncation error). We also consider potential improvements of
the accuracy of computing 𝑏: by expressing 𝑏 as an integral and using quadrature
methods;5 by expressing 𝑏 as a solution to the ODE from (3.6) with initial condition
0, and using the Euler method from [22] with a very small time step (or a higher-
order ODE solver);6 or by computing the closed form solution for 𝑏 directly using
the Woodbury identity [30]. We therefore improve on the accuracy of computing
𝒮𝜏𝑢 at low cost.

The Strang formula for matrix exponentials [27] is given, for 𝑘 > 0 a parameter
and 𝒪 relative to the limit 𝑘 → ∞, by

𝑒𝑋+𝑌 = (𝑒
1
2𝑌/𝑘𝑒𝑋/𝑘𝑒

1
2𝑌/𝑘)

𝑘
+ 𝒪(𝑘−2).

Given Δ ≈ 𝑈1Λ𝑈𝑇2 as in Algorithm 1 (the case for Δ𝑠 is likewise) for any 𝑢 ∈ 𝒱 we
compute (writing 𝛿𝑡 ∶= 𝜏/𝑘)

𝑒−𝜏𝐴𝑢 = (𝑒−
1
2 𝜏/𝑘𝑀𝑒−𝜏/𝑘Δ𝑒−

1
2 𝜏/𝑘𝑀)

𝑘
𝑢 + 𝒪(𝑘−2)

= (𝑒−
1
2𝛿𝑡𝑀 (𝐼 + 𝑈1(𝑒−𝛿𝑡Λ − 𝐼𝐾)𝑈𝑇2 ) 𝑒−

1
2𝛿𝑡𝑀)

𝑘
𝑢 + 𝐸 + 𝒪(𝛿𝑡2)

=∶ 𝑣𝑘 + 𝐸 + 𝒪(𝛿𝑡2)

(5.10)

where 𝐸 is a spectrum truncation error.7

4We owe the suggestion to use this formula to Arieh Iserles, who also suggested to us the Yoshida
method that we consider below.
5We again thank Arieh Iserles for also making this suggestion.
6We can afford to do this for 𝑏, but not generally for the 𝒮𝜏𝑢𝑛, because 𝑏 only needs to be computed
once rather than at each 𝑛.
7Specifically, 𝐸 = (𝑒−

1
2 𝛿𝑡𝑀𝑒−𝛿𝑡Δ𝑒−

1
2 𝛿𝑡𝑀)𝑘𝑢 − (𝑒−

1
2 𝛿𝑡𝑀(𝐼 + 𝑈1(𝑒−𝛿𝑡Λ − 𝐼𝐾)𝑈𝑇2 )𝑒−

1
2 𝛿𝑡𝑀)𝑘𝑢 is incurred

by the spectrum truncation in the middle of the latter term.
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Note 32. Here we have used that:

𝑒−𝑈1Λ𝑈𝑇2 = 𝐼 − 𝑈1Λ𝑈𝑇2 +
1
2𝑈1Λ

2𝑈𝑇2 −+⋯

= 𝐼 + 𝑈1 (−Λ +
1
2Λ

2 −+⋯)𝑈𝑇2

= 𝐼 + 𝑈1(𝑒−Λ − 𝐼𝐾)𝑈𝑇2 .

This works because (recalling the notation of section 5.2.3) 𝑈𝑇2𝑈1 = 𝑈𝑇𝑠 𝐷̂1/2𝐷̂−1/2𝑈𝑠 =
𝑈𝑇𝑠 𝑈𝑠 and 𝑈𝑇𝑠 𝑈𝑠 = Φ𝑇𝑄𝑇𝑄Φ = 𝐼𝐾 because 𝑄 has orthonormal columns and Φ is
orthogonal. Note that therefore we have here avoided needing to use the [22]
approximation of 𝐼 by 𝑈1𝑈𝑇2 (see Note 31) and hence avoided the error that ap-
proximation incurs.

Furthermore, we can compute the term 𝑣𝑘 by setting 𝑣0 ∶= 𝑢, and defining 𝑣𝑟
for 𝑟 ∈ {1, ..., 𝑘} iteratively by

𝑣𝑟+1 = 𝑒−𝛿𝑡𝑀𝑣𝑟 + 𝑒−
1
2𝛿𝑡𝑀𝑈1(𝑒−𝛿𝑡Λ − 𝐼𝐾)𝑈𝑇2 𝑒−

1
2𝛿𝑡𝑀𝑣𝑟

= 𝑎1(𝛿𝑡) ⊙ 𝑣𝑟 + 𝑎3(𝛿𝑡) ⊙ (𝑈1 (𝑎2(𝛿𝑡) ⊙ (𝑈𝑇2 (𝑎3(𝛿𝑡) ⊙ 𝑣𝑟))))
=∶ 𝑆(𝛿𝑡)𝑣𝑟

(5.11)

where ⊙ is the Hadamard (i.e. elementwise) product, 𝑎1(𝛿𝑡) ∶= exp(−𝛿𝑡𝜇),
𝑎2(𝛿𝑡) ∶= exp(−𝛿𝑡 diag(Λ)) − 1𝐾, and 𝑎3(𝛿𝑡) ∶= exp(−12𝛿𝑡𝜇) is the elementwise
square root of 𝑎1(𝛿𝑡) (where exp is applied elementwise, and 1𝐾 is the vector of
𝐾 ones). In Fig. 5.5, we verify on a simple image that this method has quadratic
error (plus a spectrum truncation error) and outperforms the [22] Euler method.
Moreover, (5.11) is (to leading order) as fast as (5.3) (i.e., a step of the [22] Euler
method). This is because by defining 𝑎̃1 ∶= 1−𝛿𝑡𝜇 and 𝑎̃2 ∶= (1𝐾 +𝛿𝑡 diag(Λ))−1
(applying the reciprocation elementwise), we can rewrite (5.3) as

𝑣𝑟+1 = 𝑈1 (𝑎̃2⊙ (𝑈𝑇2 (𝑎̃1⊙𝑣𝑟 + 𝜇𝛿𝑡𝑓)))
and so both (5.11) and (5.3) involve two 𝒪(𝑁𝐾) matrix multiplications and the
vectors in (5.11) and (5.3) and are at most 𝑁-dimensional, hence the Hadamard
products in (5.11) and (5.3) are all at most 𝒪(𝑁) and so are not the leading order
contributions to the computation time.

At the cost of extra 𝒪(𝑁𝐾) matrix multiplications, one can employ the method
of Yoshida [32] to increase the order of the (non-spectrum-truncation) error by 2.
If we set 𝛼0 ∶= −

3√2/(2 − 3√2) and 𝛼1 ∶= 1/(2 −
3√2) then from the map 𝑆(𝑡) from

(5.11) we can define the map

𝑌(𝛿𝑡) ∶= 𝑆(𝛼1𝛿𝑡) ∘ 𝑆(𝛼0𝛿𝑡) ∘ 𝑆(𝛼1𝛿𝑡)
which gives 𝑌𝑘(𝛿𝑡)𝑢 = 𝑒−𝜏𝐴𝑢+𝒪(𝛿𝑡4) plus a spectrum truncation error.8 However,
as can be seen in Fig. 5.5(c,d), the spectrum truncation error can make negligible
any gain from using the Yoshida method over the Strang formula.
8This method can be extended to give higher-order formulae of any even order [32], but consideration
of those formulae is beyond the scope of this thesis.
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It remains to compute an approximation for 𝑏 ∶= 𝐴−1(𝐼 − 𝑒−𝜏𝐴)𝑓. A straightfor-
ward application of calculus shows that 𝑏 can be rewritten as the integral

𝑏 = ∫
𝜏

0
𝑒−𝑡𝐴𝑓 𝑑𝑡

which we can approximate via a quadrature, e.g. applying the midpoint or Simp-
son’s rules respectively we get

𝑏 = 𝜏𝑒−
1
2 𝜏𝐴𝑓 + 𝒪(𝜏3) = 1

6𝜏(𝐼 + 4𝑒
− 12 𝜏𝐴 + 𝑒−𝜏𝐴)𝑓 + 𝒪(𝜏5) (5.12)

any of which we can approximate efficiently via the above methods. Furthermore,
as we only need to compute 𝑏 once, we can take a large value, 𝑘𝑏, for 𝑘 in those
methods. As is standard for quadrature methods, the accuracy can often be im-
proved by subdividing the interval. For example, using Simpson’s rule and subdi-
viding into intervals of length ℎ ∶= 𝜏/(2𝑚) we get

𝑏 = 1
3ℎ(𝐼 + 2

𝑚−1

∑
𝑗=1

𝑒−2𝑗ℎ𝐴 + 4
𝑚

∑
𝑗=1
𝑒−(2𝑗−1)ℎ𝐴 + 𝑒−𝜏𝐴)𝑓 + 𝒪(𝜏ℎ4)

which if 𝑘𝑏 = 2𝑚 (i.e. if the Simpson subdivision equals the Strang/Yoshida step
number) can be approximated using the above tools by

𝑏 = 1
3ℎ(𝑓 + 2

𝑚−1

∑
𝑗=1

𝑤2𝑗 + 4
𝑚

∑
𝑗=1
𝑤2𝑗−1 +𝑤2𝑚) + 𝐸1 + 𝐸2 + 𝒪(𝜏ℎ4)

where one can choose 𝑤𝑟 ∶= 𝑆𝑟(ℎ)𝑓 with quadrature error 𝐸1 = 𝒪(𝜏2ℎ) or choose
𝑤𝑟 ∶= 𝑌𝑟(ℎ)𝑓 with quadrature error 𝐸1 = 𝒪(𝜏2ℎ3), and where 𝐸2 is the spectrum
truncation error. Finally, we can also let MATLAB compute whatever quadrature
it thinks is best using the built-in integrate function, using either the Strang
formula or Yoshida method to compute the integrand. However, we found this to
be very slow.

Another method to compute 𝑏 is to solve an ODE. We note that, by (3.7), 𝑏 is
the fidelity forced diffusion of 0 at time 𝜏, i.e.

𝑑𝑣
𝑑𝑡 (𝑡) = −Δ𝑣(𝑡) − 𝑀𝑣(𝑡) + 𝑓, 𝑣(0) = 0,

has 𝑣(𝜏) = 𝑏. Hence we can approximate 𝑏 by solving
𝑑𝑣̂
𝑑𝑡 (𝑡) = −𝑈1Λ(𝑈

𝑇
2 𝑣̂(𝑡)) − 𝜇 ⊙ 𝑣̂(𝑡) + 𝑓, 𝑣̂(0) = 0,

via the semi-implicit Euler method from [22]. Since we only need to compute 𝑏
once we can choose a small time step, i.e. a time-step of 𝜏/𝑘𝑏 for 𝑘𝑏 large, for
this Euler method. One could also choose a higher-order ODE solver for this same
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reason, however as [22] notes this ODE is stiff, which we found causes standard
solvers such as ode45 (i.e. Dormand–Prince-(4, 5) [12]) to be inaccurate, and we
ran into the issue of the MATLAB stiff solvers requiring matrices too large to fit in
memory.

Finally, we can try to compute the formula for 𝑏 directly. By the Strang formula
or Yoshida method, we can efficiently compute 𝑔 ∶= 𝑓 − 𝑒−𝜏𝐴𝑓. It remains to
compute 𝑏 = 𝐴−1𝑔. Towards this, we consider the Woodbury identity [30]

(Ψ + 𝑈̃1Ξ𝑈̃𝑇2 )−1 = Ψ−1 −Ψ−1𝑈̃1 (Ξ−1 + 𝑈̃𝑇2Ψ−1𝑈̃1)
−1 𝑈̃𝑇2Ψ−1

where Ψ ∈ ℝ𝑁×𝑁 and Ξ ∈ ℝ𝐾×𝐾 are invertible, and 𝑈̃1, 𝑈̃2 ∈ ℝ𝑁×𝐾. Then given this
identity and our approximation Δ ≈ 𝑈1Λ𝑈𝑇2 , we approximate

𝐴−1 = (Δ+𝑀)−1 ≈ (𝐼 −𝑈1Σ𝑈𝑇2 +𝑀)−1 = Ψ−1−Ψ−1𝑈1 (−Σ+ + 𝑈𝑇2Ψ−1𝑈1)
−1 𝑈𝑇2Ψ−1

where Ψ ∶= 𝐼 + 𝑀, superscript + denotes the Moore–Penrose pseudoinverse (see
[17, §5.5.2]), and Σ ∶= 𝐼𝐾 −Λ (note that this approach does involve approximating
𝐼 by 𝑈1𝑈𝑇2 ). Then

𝑏 = 𝜓⊙ (𝑔 − 𝑈1𝑥)
where 𝜓 ∶= (1+𝜇)−1, reciprocation applied elementwise, and 𝑥 is given by solving

(−Σ+ + 𝑈𝑇2 (𝜓 ⊙ 𝑈1)) 𝑥 = 𝑈𝑇2 (𝜓 ⊙ 𝑔)

where we define 𝜓⊙𝑈1 as columnwise Hadamard multiplication, i.e. (𝜓⊙𝑈1)𝑖𝑗 ∶=
𝜓𝑖(𝑈1)𝑖𝑗.

We compare the accuracy of these approximations of 𝑏 in Table 5.1, and observe
that no method is hands-down superior. Table 5.1 also indicates that the likely
reason for methods like Simpson’s rule not performing as well as expected is that
the spectrum truncation error is dominating.

Given these ingredients, it is then straightforward to compute the SDIE scheme
sequence via Algorithm 2.

5.2.7. Numerical examination of the methods for computing
the SDIE scheme

In this section, we will build our graphs on a 80×80 image and a 40×40 image of
the form displayed in Fig. 5.4, which are small enough for us to compute the true
values of 𝑒−𝜏𝐴𝑢 (with 𝐴 here given by Δ𝑠 +𝑀) and 𝑏 to high accuracy.

First, in Fig. 5.5 we investigate the accuracy of the Strang formula and Yoshida
method vs. the [22] Euler method. We take |𝑉| = 1600, 𝜏 = 0.5, 𝑢 a random vector
given by MATLAB’s rand(1600,1), and 𝜇 as the characteristic function of the left two
quadrants of the image. We consider two cases: one where 𝐾 = |𝑉| (i.e. full-rank)
and one where 𝐾 = √|𝑉|. We observe that the Strang formula and Yoshida method
are more accurate than the Euler method in both cases,9 and that the Yoshida
9In the rank-reduced case, the 𝒪(1) improvement of the Strang/Yoshida methods over the Euler method
derives from the latter making an approximation of 𝐼 that incurs an 𝒪(1) error, whilst the former both
avoid this. See Notes 31 and 32 for details.
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Algorithm 2 The SDIE scheme via a Strang formula method.

1: function SDIE(𝜇, 𝑓, 𝑈1, Λ, 𝑈2, 𝜏, 𝜀, 𝑢0, 𝑘, 𝑘𝑏, 𝐾, 𝛿) // Computes the terminus
of the SDIE scheme.

2: if using the quadrature method then
3: 𝐹1 ∶ 𝑡 ↦ 𝑒−𝑡𝐴𝑓 // Computed using Strang formula or

Yoshida method, with parameter 𝑘𝑏
4: 𝑏 = quadrature(𝐹1, [0, 𝜏]) // Approximates ∫𝜏0 𝐹1(𝑡) 𝑑𝑡 by some

quadrature method
5: else if using the ODE method then
6: 𝐹2 ∶ 𝑥 ↦ (−𝑈1Λ(𝑈𝑇2 𝑥) − 𝜇 ⊙ 𝑥 + 𝑓)
7: 𝑣̂ = ode_solver(𝐹2, [0, 𝜏],0) // Solves 𝑣̂′(𝑡) = 𝐹2(𝑣̂) on [0, 𝜏]

with 𝑣̂(0) = 0
8: 𝑏 = 𝑣̂(𝜏)
9: else if using the Woodbury identity method then
10: 𝑔 = 𝑓 − 𝑒−𝜏𝐴𝑓 // Computed using Strang formula or

Yoshida method, with parameter 𝑘𝑏
11: 𝜓 = (1 + 𝜇)−1
12: Σ = 𝐼𝐾 − Λ
13: (−Σ+ + 𝑈𝑇2 (𝜓 ⊙ 𝑈1))𝑥 = 𝑈𝑇2 (𝜓 ⊙ 𝑔) // Solving the linear system for 𝑥
14: 𝑏 = 𝜓⊙ (𝑔 − 𝑈1𝑥)
15: end if
16: 𝑎1 = exp(−𝜏/𝑘𝜇)
17: 𝑎2 = exp(−𝜏/𝑘 diag(Λ)) − 1𝐾
18: 𝑎3 = sqrt(𝑎1)
19: 𝑛 = 0
20: while ||𝑢𝑛 − 𝑢𝑛−1||22/||𝑢𝑛||22 ≥ 𝛿 do
21: 𝑣 = 𝑢𝑛
22: for 𝑟 = 1 to 𝑘 do
23: 𝑣 = 𝑎1⊙𝑣 + 𝑎3⊙ (𝑈1 (𝑎2⊙ (𝑈𝑇2 (𝑎3⊙𝑣)))) // Strang formula

iteration
24: end for
25: 𝑣 = 𝑣 + 𝑏 // Approximates 𝑣 = 𝒮𝜏𝑢𝑛
26: 𝑉1 = {𝑖 ∈ 𝑉 ∣ 𝑣𝑖 ∈ [𝜏/2𝜀, 1 − 𝜏/2𝜀)}
27: 𝑉2 = {𝑖 ∈ 𝑉 ∣ 𝑣𝑖 ≥ 1 − 𝜏/2𝜀}
28: 𝑢𝑛+1 = (1 − 𝜏/𝜀)−1(𝑣 − 𝜏/2𝜀1) ⊙ 𝜒𝑉1 + 𝜒𝑉2 // Applies (4.6), the piece-

wise linear thresholding
29: 𝑛 = 𝑛 + 1
30: end while
31: return 𝑢𝑛
32: end function
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Figure 5.4: The 80 × 80 image (the 40 × 40 image is similar) that we build one of our graphs upon,
using feature vectors as described in section 5.3.2.

method is more accurate than the Strang formula, but only barely in the rank-
reduced case (with the difference in the rank-reduced case plotted in Fig. 5.5(d)).
Furthermore, the log-log gradients of the Strang formula error and the Yoshida
method error (excluding the outliers for small 𝑘 values and the outliers caused by
errors from reaching machine precision) in Fig. 5.5(b) are respectively 2.000 and
3.997 (computed using polyfit), confirming that these methods achieve their
theoretical orders of error in the full-rank case.

Next, in Table 5.1 we compare the accuracy of the different methods for com-
puting 𝑏. We take 𝑍 as the left two quadrants of the image, 𝜇 = 𝜒𝑍, 𝑓̃ as equal to
the image on 𝑍, and 𝑘𝑏 = 1000 in the Strang formula/Yoshida method approxima-
tions for 𝑒−𝑡𝐴𝑓 and in the [22] Euler scheme. We observe that the rank reduction
plays a significant role in the errors incurred, and that no method is hands-down
superior. In the “two cows” application (Example 5.3.1), we have observed that (in-
terestingly) the [22] Euler method yields the best segmentation. A topic for future
research can be whether this is generally true for large matrices.
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(a) Plot of 𝓁2 errors vs. 1/𝑘. (b) Log-log plot, i.e. plot of the log of the 𝓁2 errors
vs. − log𝑘.

(c) Plot of 𝓁2 errors vs. 1/𝑘 in the rank-reduced case. (d) Log-log plot of Strang formula error minus Yoshidaformula error vs. 1/𝑘 in the rank-reduced case.

Figure 5.5: Comparison of the 𝓁2 error from approximating 𝑒−𝜏𝐴𝑢 via the semi-implicit Euler method
(blue), Strang formula (red), and Yoshida method (green) approximations for 𝑒−𝜏𝐴𝑢 on the graph built
on the image in Fig. 5.4. For (a) and (b), 𝐾 = |𝑉|. For (c) and (d), 𝐾 = √|𝑉|. The gradient of the line in
(d), excluding outliers for small 𝑘, is 2.000. In (c), the green and red lines are both plotted but cannot
be distinguished by the eye.

5.3. Applications in image processing
5.3.1. Examples
We consider three examples, all using images of cows from the Microsoft Research
Cambridge Object Recognition Image Database.10 Some of these images have been
used before by [6, 22] to illustrate and test graph-based segmentation algorithms.

Example 5.3.1 (Two cows). We first introduce the “two cows” example familiar
from [6, 22]. We take the image of two cows in the top left of Fig. 5.6 as the
reference data 𝑍 and the segmentation in the bottom left as the reference labels
𝑓̃, which separate the cows from the background. We apply the SDIE scheme to
segment the image of two cows shown in the top right of Fig. 5.6, aiming to separate
the cows from the background, and compare to the ground truth in the bottom right.
Both images are RGB images of size 480 × 640 pixels, i.e. the reference data and
the image are tensors of size 480 × 640 × 3.

We will use Example 5.3.1 to illustrate the application of the SDIE scheme.
Moreover, we will run several numerical experiments on this example. Namely, we
will:

• study the influence of the parameters 𝜀 and 𝜏, comparing the non-MBO SDIE
case (𝜏 < 𝜀) and MBO SDIE case (𝜏 = 𝜀);

10Available at https://www.microsoft.com/en-us/research/project/image-
understanding/, accessed 17 June 2021.
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Data image Image

Data segmentation Ground truth segmentation

Figure 5.6: Two cows: the reference data image, the image to be segmented, the reference 𝑓̃ (which
is a segmentation of the reference data image), and the ground truth segmentation associated to Ex-
ample 5.3.1. Both segmentations were drawn by hand by the authors.
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Method
|𝑉|, 𝐾

Relative 𝓁2 error for 𝜏 = 0.5 Relative 𝓁2 error for 𝜏 = 4
1600,1600 1600,40 6400,40 1600,1600 1600,40 6400,40

Euler method [22] 1.43 ⋅ 10−4 0.495 0.411 2.88 ⋅ 10−4 0.207 0.172
Woodbury identity 2.29 ⋅ 10−8 0.575 0.461 1.04 ⋅ 10−7 0.197 0.154
Midpoint rule (5.12) 0.028 0.129 0.111 0.428 0.608 0.611
Simpson’s rule

via Strang formula 2.59 ⋅ 10−9 0.134 0.114 5.85 ⋅ 10−7 0.512 0.483

MATLAB integrate
via Strang formula n/a 0.134 0.114 n/a 0.512 0.483

Simpson’s rule
via Yoshida method 8.38 ⋅ 10−14 0.134 0.114 9.34 ⋅ 10−12 0.512 0.483

MATLAB integrate
via Yoshida method n/a 0.134 0.114 n/a 0.512 0.483

Table 5.1: Comparison of the relative 𝓁2 errors from the methods for approximating 𝑏 on the image
from Fig. 5.4. We did not compute integrate for 𝐾 = 1600 as it ran too slowly. Bold entries indicate
the smallest error in that column. Simpson’s rule was computed with 𝑚 = 500.

• compare different normalisations of the graph Laplacian, i.e. the symmetric
vs. random walk normalisation;

• investigate the influence of the Nyström-QR approximation of the graph Lapla-
cian (i.e., Algorithm 1) in terms of the rank 𝐾; and

• quantify the inherent uncertainty in the computational strategy induced by
the randomised Nyström approximation.

Example 5.3.2 (Greyscale). This example is the greyscale version of Example 5.3.1.
Hence, we map the images in Fig. 5.6 to greyscale using rgb2gray. We show the
greyscale images in Fig. 5.7. We use the same segmentation of the reference data
image as in Example 5.3.1. The greyscale images are matrices of size 480 × 640.

Data image Image

Figure 5.7: Two cows greyscale: the reference data image and the image to be segmented associated
to Example 5.3.2. Note that the reference 𝑓̃ and the ground truth segmentation are identical to those
in Fig. 5.6.

The greyscale image is much harder to segment than the RGB image, as there is
no clear colour separation. With Example 5.3.2, we aim to illustrate the performance
of the SDIE scheme in a harder segmentation task.
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Example 5.3.3 (Many cows). In this example, we have concatenated four images
of cows that we aim to segment as a whole. We show the concatenated image
in Fig. 5.8. Again, we shall separate the cows from the background. As reference
data, we use the reference data image and labels as in Example 5.3.1. Hence, the
reference data is a tensor of size 480×640×3. The image consists of approximately
1.23 megapixels. It is represented by a tensor of size 480 × 2560 × 3.

Image

Figure 5.8: Many cows: the image to be segmented associated to Example 5.3.3. Note that the reference
data image and labels are identical to those in Fig. 5.6 (left).

With Example 5.3.3, we will illustrate the application of the SDIE scheme to
large scale images, as well as the case where the image and reference data are of
different sizes.

Note 33. In each of these examples we took as reference data a separate ref-
erence data image. However, our algorithm does not require this, and one could
take a subset of the pixels of a single image to be the reference data, and thereby
investigate the impact of the relative size of the reference data on the segmen-
tation, which is beyond the scope of this thesis but is explored for the [22] MBO
segmentation algorithm and related methods in [26, Figure 4].

5.3.2. Set-up
Algorithms We here use the Nyström-QR method (Algorithm 1) to compute the
rank 𝐾 approximation to the Laplacian, and we use the [22] semi-implicit Euler
method (with time step 𝜏/𝑘𝑏) to compute 𝑏 (as we found that in practice, for the
above examples, this worked better than the quadrature and Woodbury identity
methods).

Feature vectors Let 𝒩(𝑖) denote the 3 × 3 neighbourhood of pixel 𝑖 ∈ 𝑉 in
the image (with replication padding at borders performed via padarray) and let
𝒦 be a 3 × 3 Gaussian kernel with standard deviation 1 (computed via fspe-
cial(‘gaussian’,3,1)). Thus 𝑥|𝒩(𝑖) can be viewed as a triple of 3 × 3 matrices
𝑥𝐽|𝒩(𝑖) for 𝐽 ∈ {𝑅, 𝐺, 𝐵} (i.e. one in each of the R, G, and B channels). Then in each
channel we define

𝑧𝑅𝑖 ∶= 9𝒦 ⊙ 𝑥𝑅|𝒩(𝑖), 𝑧𝐺𝑖 ∶= 9𝒦 ⊙ 𝑥𝐺|𝒩(𝑖), 𝑧𝐵𝑖 ∶= 9𝒦 ⊙ 𝑥𝐵|𝒩(𝑖),

and thus define 𝑧𝑖 ∶= (𝑧𝑅𝑖 , 𝑧𝐺𝑖 , 𝑧𝐵𝑖 ) ∈ ℝ3×3×3, which we reshaped (using reshape)
so that 𝑧 ∈ ℝ|𝑉|×27.
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Interpolation sets For the interpolation sets 𝑋1, 𝑋2 in Nyström we took 𝐾1 =
𝐾2 = 𝐾/2. That is, we took 𝐾/2 vertices from the reference data image and 𝐾/2
vertices from the image to be segmented, chosen at random using randperm. We
experimented with choosing interpolation sets using ACA (see [3]), but this showed
no improvement over choosing random sets, and ran much slower.

Initial condition We took the initial condition, i.e. 𝑢0, to equal the reference
𝑓̃ on the reference data vertices and to equal 0.49 on the vertices of the image
to be segmented (where 𝑓̃ labels ‘cow’ with 1 and ‘not cow’ with 0). We used
0.49 rather than the more natural 0.5 because the latter led to much more of the
background (e.g. the grass) getting labelled as ‘cow’. This choice can be viewed as
incorporating the slight extra a priori information that the image to be segmented
has more non-cow than cow.

Note 34. It is not an improvement to initialise with the exact proportion of cow in
the image (about 0.128), as in that case the thresholding is liable to send every 𝑢𝑖
for 𝑖 ∈ 𝑉 ⧵ 𝑍 to zero. If one has access to that a priori information, one should use
such an initial condition alongside a mass-conserving scheme. What the 0.49 initial
condition does is more modest. After the initial diffusion, some pixels will have a
value very close to 0.5; by lowering the value of the initial condition, we lower the
diffused values, introducing a bias towards classifying these borderline pixels as
‘not cow’. As there is more non-cow than cow in the image, this bias improves the
accuracy. It is unknown to the authors why this was necessary for us but was not
necessary for [22] nor for [6].

Fidelity parameter We followed [22] and took 𝜇 = 𝜇̂𝜒𝑍, for 𝜇̂ > 0 a parameter.

Computational set-up All programming was done in MATLAB R2019a with rele-
vant toolboxes the Computer Vision Toolbox Version 9.0, Image Processing Toolbox
Version 10.4, and Signal Processing Toolbox Version 8.2. All reported runtimes are
of implementations executed serially on a machine with an Intel® Core™ i7-9800X
@ 3.80 GHz [16 cores] CPU and 32 GB RAM of memory.

5.3.3. The “two cows” example
We begin with some examples of segmentations obtained via the SDIE scheme.
Based on these, we illustrate the progression of the algorithm and discuss the seg-
mentation output qualitatively. Note that we give here merely typical realisations
of the random output of the algorithm—the output is random due to the random
choice of interpolation sets in the Nyström approximation. We will give a quan-
titative analysis in the first subsubsection of this subsection, and investigate the
stochasticity of the algorithm in the second subsubsection.

We consider three different cases: the MBO case 𝜏 = 𝜀 and two non-MBO cases,
where 𝜏 ≪ 𝜀, and 𝜏 < 𝜀. We show the resulting reconstructions from these methods
in Fig. 5.9. Moreover, we show the progression of the algorithms in Fig. 5.11. The
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(a) Reference data image, image to be segmented, and
image masked with ground truth segmentation.

(b) 𝜏 = 0.001 ≪ 0.003 = 𝜀. Relative segmentation
error: 1.6416%, elapsed time: 13.0 sec.

(c) 𝜏 = 0.0025 < 0.003 = 𝜀. Relative segmentation
error: 1.9424%, elapsed time: 4.9 sec.

(d) 𝜏 = 𝜀 = 0.003 (following [22]). Relative segmentation
error: 1.5378%, elapsed time: 2.4 sec.

Figure 5.9: MBO SDIE and non-MBO SDIE segmentations for the two cows segmentation task. In the
top left figure, we show the reference data image, the image to be segmented, and the image masked
with the segmentation we consider the ground truth, see also Fig. 5.6. The other figures (b)-(d) show
the labels on the reference data, the segmentation returned by the respective algorithm, and the original
images masked with the segmentation.

parameters not given in the captions of Fig. 5.9 are 𝜇̂ = 30, 𝜎 = 35, 𝑘𝑏 = 1, 𝑘 = 1,
𝛿 = 10−10, and 𝐾 = 70.
Note 35. The regime 𝜏 > 𝜀 is not of much interest since, by [8, Remark 4.8]
mutatis mutandis, in this regime the SDIE scheme has non-unique solution for the
update, of which one is just the MBO solution.

Comparing the results in Fig. 5.9, we see roughly equivalent segmentations and
segmentation errors. Indeed, the cows are generally nicely segmented in each of
the cases. However, the segmentation also labels as ‘cow’ a part of the wall in the
background and small clumps of grass, while a small part of the left cow’s snout
is cut out. This may be because the reference data image does not contain these
features and so the scheme is not able to handle them correctly.

In Fig. 5.10 we compare the result of Fig. 5.9(d) (our best segmentation) with
the results of the analogous experiments in [6, 22]. We observe significant qual-
itative improvement. In particular, our method achieves a much more complete
identification of the left cow’s snout, complete identification of the left cow’s eyes
and ear tag, and a slightly more complete identification of the right cow’s hind.
However, our method does misclassify more of the grass than the methods in [6,
22] do. Note that in the case of Fig. 5.9(d) we are using the MBO scheme, so the
only differences between our method and [22] are the Nyström-QR method, the
Strang formula method, and the reference that we hand-drew (see Fig. 5.6, bottom-
left), which is slightly different from both the reference used in [6, Figure 4.6] and
the reference used in [22, Figure 2(e)].

We measure the computational cost of the SDIE scheme through the measured
runtime of the respective algorithm. We note from Fig. 5.9 that the MBO scheme
(𝜏 = 𝜀) outperforms the non-MBO schemes (𝜏 < 𝜀); the SDIE relaxation of the MBO
scheme merely slows down the convergence of the algorithm, without improving
the segmentation. This can especially be seen in Fig. 5.11, where the SDIE scheme
needs many more steps to satisfy the termination criterion. At least for this example,
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(a) Segmentation from [6, Figure 4.6] (b) Segmentation from [22, Figure 2(f)]

(c) Segmentation from Fig. 5.9(d)

Figure 5.10: Comparison of our segmentation (using the set-up in Fig. 5.9(d)) with the analogous
segmentations from the previous literature [6, 22], both reproduced with permission from SIAM and the
authors. Note that unfortunately in reproduction the colour balances and aspect ratios have become
slightly inconsistent, but we can still make qualitative comparisons.

the non-MBO SDIE scheme is less efficient than the MBO scheme. Thus, in the
following sections we focus on the MBO case.

Errors and timings
We now quantify the influence, on the accuracy and computational cost of the seg-
mentation, of the Nyström rank 𝐾, the number of discretisation steps 𝑘𝑏 and 𝑘 in
the Euler method and the Strang formula respectively, and the choice of normali-
sation of the graph Laplacian. To this end, we segment the two cows image using
the following parameters: 𝜀 = 𝜏 = 0.003, 𝜇̂ = 30, 𝜎 = 35, and 𝛿 = 10−10. We
take 𝐾 ∈ {10, 25, 70, 100, 250}, (𝑘𝑏 , 𝑘) ∈ {(1, 1), (10, 5)}, and use the random walk
Laplacian Δ and the symmetric normalised Laplacian Δ𝑠.

We plot total runtimes (i.e. the time elapsed from the loading of the image to
be segmented, the reference data image, and the reference, to the output of the
segmentation) and relative segmentation errors in Fig. 5.12. As our method has
randomness from the Nyström extension, we repeat every experiment 100 times
and show means and standard deviations. We make several observations. Start-
ing with the runtimes, we indeed see that these are roughly linear in 𝐾, verifying
numerically the expected complexity. The runtime also increases when increasing
𝑘𝑏 and 𝑘. That is, increasing the accuracy of the Euler method and Strang formula
does not lead to faster convergence. Moving on to the errors, we observe that
increasing 𝑘𝑏 and 𝑘 also does not increase the accuracy of the overall segmenta-
tion. Finally, we see that the symmetric normalised Laplacian incurs consistently
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(a) 𝜏 = 0.001 ≪ 0.003 = 𝜀. (b) 𝜏 = 0.0025 < 0.003 = 𝜀. (c) 𝜏 = 𝜀 = 0.003 (following
[22]).

Figure 5.11: Progression of MBO and non-MBO SDIE for the two cows example. In each subfigure:
The first row shows the reference data, image, and ground truth, as in Fig. 5.9. The intermediary rows
(showing the current segmentation 𝑢𝑛 and the image masked by that segmentation) each represent
one iteration of the considered algorithm, to be read from top to bottom. The last row gives the state
returned by the scheme, i.e. the state satisfying the termination criterion, which correspond to the
subfigures in Fig. 5.9. For layout reasons, we have squashed the figure in (a).
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low relative segmentation error for small values of 𝐾. This property is of the utmost
importance to scale up our algorithm for very large images. Interestingly, the seg-
mentations using the symmetric normalised Laplacian seem to deteriorate for large
𝐾, though it is not clear to us as to why. The random walk Laplacian has diametric
properties in this regard: the segmentations are only reliably accurate when 𝐾 is
reasonably large.

Uncertainty in the segmentation
Due to the randomised Nyström approximation, our approximation of the SDIE
scheme is inherently stochastic. Therefore, the segmentations that the algorithm
returns are realisations of random variables. We now briefly study these random
variables, especially with regard to 𝐾. We show pixelwise mean and standard de-
viations of the binary labels in each of the left two columns of the four subfigures
of Fig. 5.13. In the remaining figures, we weight the original two cows image with
these means (varying continuously between label 1 for ‘cow’ and label 0 for ‘not
cow’) and standard deviations. For these experiments we use the same parameter
set-up as in the previous subsubsection.

Wemake several observations. First, as 𝐾 increases we see less variation. This is
what we expect, as when 𝐾 = |𝑉| the method is deterministic so has no variation.
Second, the type of normalisation of the Laplacian has an effect: the symmetric
normalised Laplacian leads to less variation than the random walk Laplacian. Third,
the parameters 𝑘𝑏 and 𝑘 appear to have no major effect for the values tested.
Finally, looking at the figures with rather large 𝐾, we observe that the standard
deviation of the labels is high in the areas of the figure in which there is indeed
uncertainty in the segmentation, namely the boundaries of the cows and the parts
of the wall with similar colour to the dark cow. Determining the exact position of
the boundary of a cow on a pixel-by-pixel level is indeed also difficult for a human
observer. Moreover, the SDIE scheme usually confuses the wall in the background
for a cow. Hence, a large standard deviation here reflects that the estimate is
uncertain.

This is of course not a rigorous Bayesian uncertainty quantification, as for in-
stance is given in [5, 26] for graph-based learning. However the use of stochastic
algorithms for inference tasks, and the use of their output as a method of uncer-
tainty quantification, has for instance been motivated by [21].

5.3.4. The greyscale example
We now move on to Example 5.3.2, the greyscale problem. We will especially use
this example to study the influence of the parameters 𝜇̂ and 𝜎. The parameter 𝜇̂ > 0
determines the strength of the fidelity term in the AC flow. From a statistical point of
view, we can understand a choice of 𝜇̂ as an assumption on the statistical precision
(i.e. the inverse of the variance of the noise) of the reference 𝑓̃ (see [5, Section
3.3] for details). Thus, a small 𝜇̂ should lead to a stronger regularisation coming
from the Ginzburg–Landau functional, and a large 𝜇̂ leads to more adherence to the
reference. The parameter 𝜎 > 0 is the ‘standard deviation’ in the Gaussian kernel Ω
used to build the weight matrix 𝜔. For our methods we must not choose too small
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(a) 𝑘𝑏 = 1, 𝑘 = 1, random walk Laplacian.
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(b) 𝑘𝑏 = 10, 𝑘 = 5, random walk Laplacian.
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(c) 𝑘𝑏 = 1, 𝑘 = 1, symmetric normalised Laplacian.
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(d) 𝑘𝑏 = 10, 𝑘 = 5, symmetric normalised Laplacian.

Figure 5.12: Errors and timings of 100 independent segmentations of the two cows image (Exam-
ple 5.3.1) with the MBO SDIE scheme. The solid lines represent the means averaged over 100 runs, the
dotted lines show means ± standard deviations.
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(a) 𝑘𝑏 = 1, 𝑘 = 1, random walk Laplacian.
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(b) 𝑘𝑏 = 10, 𝑘 = 5, random walk Laplacian.
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(c) 𝑘𝑏 = 1, 𝑘 = 1, symmetric normalised Laplacian.
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(d) 𝑘𝑏 = 10, 𝑘 = 5, symmetric normalised Laplacian.

Figure 5.13: Mean, standard deviation, and images weighted by mean and standard deviation of 100
independent segmentations of Example 5.3.1 with the MBO SDIE scheme, with set-up as in Section 5.3.3.
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a 𝜎, as otherwise the weight matrix becomes sparse (up to some precision), and so
the Nyström submatrix 𝜔𝑋𝑋 has a high probability of being ill-conditioned. In such
a case instead of using the Nyström method this sparsity can be exploited using
Rayleigh–Chebyshev [2] methods as in [22], or MATLAB sparse matrix algorithms
as in [6], but this lies beyond the scope of this thesis. If 𝜎 is too large then the
graph structure no longer reflects the features of the image.

 = 150,    = 1000,   
error = 5.54%,   

time = 6.628s

 = 150,    = 1000,   
error = 5.54%,   

time = 6.628s(a) 𝜇̂ = 150, 𝜎 = 103, error = 5.54 %, time = 6.6 sec.
 = 150,    = 35,   error = 5.8226%,   runtime = 12.8658s

(b) 𝜇̂ = 150, 𝜎 = 35, error = 5.8226 %, time = 12.9 sec.

Figure 5.14: MBO SDIE segmentations for the greyscale segmentation task. In the centred top figure,
we show the reference data image, the image to be segmented, and the image masked with the ground
truth segmentation, cf. Fig. 5.6. The other figures show the reference 𝑓̃, the segmentation returned by
the algorithm, and the original images masked with the segmentation.

In the following, we set 𝜀 = 𝜏 = 0.00024, 𝑘𝑏 = 10, 𝑘 = 5, and 𝛿 = 10−10.
To get reliable results we choose a rather large 𝐾, 𝐾 = 200, and therefore (by the
discussion in Section 5.3.3) we use the random walk Laplacian. We will qualitatively
study single realisations of the inherently stochastic SDIE algorithm. We vary 𝜇̂ ∈
{50, 100, 150, 200} and 𝜎 ∈ {2, 35, 103, 104}. We show the best results from these
tests in Fig. 5.14. Moreover, we give a comprehensive overview of all tests and
the progression of the SDIE scheme in Figs 5.15 and 5.16. We observe that this
segmentation problem is indeed considerably harder than the “two cows” problem,
as we anticipated after stating Example 5.3.2. The difference in shade between
the left cow and the wall is less visible than in Example 5.3.1, and the left cow’s
snout is less identifiable as part of the cow. Thus, the segmentation errors we incur
are about 3 times larger than before. There is hardly any visible influence from
changing 𝜎 in {35, 103}. However, 𝜎 = 2 and 𝜎 = 104 lead to significantly worse
results. For 𝜎 = 2, the sparsity (up to some precision) of the matrix deteriorates
the results and the method becomes unstable; for 𝜎 = 104, the weight matrix does
not sufficient distinguish pixels of different shade, which is why the method labels
everything as ‘not cow’.

Given 𝜎 in {35, 103}, the strength of the fidelity term 𝜇̂ has a significant impact
on the result, as well. Indeed, for 𝜇̂ = 50 the algorithm does not find any seg-
mentation. For 𝜇̂ ≥ 100, we get more practical segmentations. Interestingly, for
𝜇̂ = 150 and 𝜇̂ = 200 we get almost all of the left cow, but misclassify most of
the wall in the background; for 𝜇̂ = 100, we miss a large part of the left cow, but
classify more accurately the wall. The interpretation of 𝜇̂ as the statistical precision
of the reference explains this effect well. For 𝜇̂ = 100, we assume that the refer-
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 = 50,    = 2,   
error = 25.2741%,   

time = 15.4032s

(a) 𝜇̂ = 50, 𝜎 = 2,
error: 25.2741%, time: 15.4 sec.

 = 100,    = 2,   
error = 27.098%,   

time = 15.5921s

(b) 𝜇̂ = 100, 𝜎 = 2,
error: 27.098%, time: 15.6 sec.

 = 150,    = 2,   
error = 28.0225%,   

time = 14.7433s

(c) 𝜇̂ = 150, 𝜎 = 2,
error: 28.0225%, time: 14.7 sec.

 = 200,    = 2,   
error = 8.013%,   
time = 15.0868s

(d) 𝜇̂ = 200, 𝜎 = 2,
error: 8.013%, time: 15.1 sec.

 = 50,    = 35,   
error = 13.0137%,   

time = 14.4849s

(e) 𝜇̂ = 50, 𝜎 = 35,
error: 13.0137%, time: 14.5 sec.

 = 100,    = 35,   
error = 5.9385%,   

time = 6.7198s

(f) 𝜇̂ = 100, 𝜎 = 35,
error: 5.9385%, time: 6.7 sec.

 = 150,    = 35,   
error = 5.8226%,   

time = 12.8658s

(g) 𝜇̂ = 150, 𝜎 = 35,
error: 5.8226%, time: 12.9 sec.

 = 200,    = 35,   
error = 6.2301%,   

time = 6.7191s

(h) 𝜇̂ = 200, 𝜎 = 35,
error: 6.2301%, time: 6.7 sec.

Figure 5.15: Progression of the MBO SDIE scheme for the greyscale segmentation task. In each sub-
figure: The first row shows the reference data, the image to be segmented, and the ground truth
segmentation. The middle rows, showing the reshaped label vector 𝑢𝑛 and the image masked by the
label, each represent one iteration of the considered algorithm, to be read from top to bottom. The last
row gives the state returned by the scheme, i.e. the state satisfying the termination criterion.



5.3. Applications in image processing

5

127

 = 50,    = 1000,   
error = 12.8148%,   

time = 6.659s

(a) 𝜇̂ = 50, 𝜎 = 103 ,
error: 12.8148%, time: 6.7 sec.

 = 100,    = 1000,   
error = 6.5934%,   

time = 6.5683s

(b) 𝜇̂ = 100, 𝜎 = 103 ,
error: 6.5934%, time: 6.6 sec.

 = 150,    = 1000,   
error = 5.54%,   

time = 6.628s

(c) 𝜇̂ = 150, 𝜎 = 103 ,
error: 5.54%, time: 6.6 sec.

 = 200,    = 1000,   
error = 6.3376%,   

time = 6.5769s

(d) 𝜇̂ = 200, 𝜎 = 103 ,
error: 6.3376%, time: 6.6 sec.

 = 50,    = 10000,   
error = 12.8089%,   

time = 6.528s

(e) 𝜇̂ = 50, 𝜎 = 104 ,
error: 12.8089%, time: 6.5 sec.

 = 100,    = 10000,   
error = 12.8092%,   

time = 6.6455s

(f) 𝜇̂ = 100, 𝜎 = 104 ,
error: 12.8092%, time: 6.6 sec.

 = 150,    = 10000,   
error = 12.8122%,   

time = 6.4764s

(g) 𝜇̂ = 150, 𝜎 = 104 ,
error: 12.8122%, time: 6.5 sec.

 = 200,    = 10000,   
error = 12.8171%,   

time = 6.4285s

(h) 𝜇̂ = 2000, 𝜎 = 104 ,
error: 12.8171%, time: 6.4 sec.

Figure 5.16: Continuation of Fig. 5.15.
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ence is less precise than for larger 𝜇̂, leading us (due to the smoothing effect of
the Ginzburg–Landau regularisation) to classify accurately most of the wall. With
𝜇̂ ≥ 150, we assume that the reference is more precise, leading us to misclassify
the wall (due to its similarity to the cows in the reference data image) but classify
accurately more of the cows. At 𝜇̂ = 200, this effect even leads to a larger total
segmentation error. The runtime varied throughout the experiments: typical was
between 6 and 7 seconds, but a number of cases took twice that time. By doing
an additional step of the MBO scheme before converging, the times for 𝜎 = 2 as
well as (𝜇̂, 𝜎) = (50, 35) were significantly increased. We also see a larger runtime
in the case of (𝜇̂, 𝜎) = (150, 35).

5.3.5. The “many cows” example

(a) Segmentation with parameters 𝜀 = 𝜏 = 0.003, 𝐾 = 70, 𝑘𝑏 = 1, 𝑘 = 1, 𝜇̂ = 30, 𝜎 = 35, and the symmetric
normalised Laplacian. Elapsed time for segmentation: 9.1 sec.

(b) Segmentation with parameters 𝜀 = 𝜏 = 0.00025, 𝐾 = 100, 𝑘𝑏 = 1, 𝑘 = 1, 𝜇̂ = 500, 𝜎 = 35, and the symmetric
normalised Laplacian. Elapsed time for segmentation: 14.0 sec.

(c) Segmentation with parameters 𝜀 = 𝜏 = 0.00025, 𝐾 = 100, 𝑘𝑏 = 10, 𝑘 = 10, 𝜇̂ = 400, 𝜎 = 35, and the symmetric
normalised Laplacian. Elapsed time for segmentation: 19.1 sec.

Figure 5.17: Segmentations via the MBO scheme for the “many cows” segmentation task. In each
subfigure: the top row shows the reference data image and twice the image that is to be segmented,
for comparison with the bottom row, which shows the reference 𝑓̃, the segmentation returned by the
respective algorithm, and the original image masked with the segmentation.

We finally study the “many cows” example, i.e. Example 5.3.3. The main differ-
ences to the earlier examples are the larger size of the image that is to be segmented
(see Fig. 5.8) and the variety of the features within it. We first comment on the
size. The image is given by a 480×2560×3 tensor, which is a manageable size. The
graph Laplacian, however, is a dense matrix with 1.536 × 106 rows and columns.
A matrix of this size would require 17.6 TB of memory to be constructed in MAT-
LAB R2019a, if we were constructing the full matrix and not using the Nyström-QR
method to compress it. Furthermore, this image is much more difficult to segment
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than the previous examples, in which the cows in the image to be segmented are
very similar to the cows in the reference data. Here, we have concatenated images
of cows that look very different, e.g. cows with a white blaze on their nose.

As the “two cows” image is part of the “many cows” image, we first test the
algorithmic set-up that was successful at segmenting the former. We show the
result (and remind the reader of the set-up) in Fig. 5.17(a). The segmentation
obtained in this experiment is rather mediocre—even the “two cows” part is only
coarsely reconstructed. We present two more attempts at segmenting the “many
cows” image in Fig. 5.17(b,c): we choose 𝜀 = 𝜏 = 0.00025, a slightly larger Nyström
rank 𝐾 = 100, and vary (𝑘𝑏 , 𝑘, 𝜇̂) ∈ {(1, 1, 500), (10, 10, 400)}. In both cases, we
obtain a considerably better segmentation of the image. In the case where 𝜇̂ = 500,
we see a good, but slightly noisy segmentation of the brown and black parts of the
cows. In the case where 𝜇̂ = 400, we reduce the noise in the segmentation, but
then also misclassify some parts of the cows. The blaze (and surrounding fur) is
not recognised as ‘cow’ in any of the segmentations, likely because the blaze is
not represented in the reference data image. The influence of the set-up on the
runtimes is now much more pronounced. For the given segmentations, however,
all the runtimes are at most a factor of eight larger than the smallest runtimes in
the previous examples, despite the larger image size.

5.4. Conclusion
We have here demonstrated how to use the SDIE scheme to solve classification
problems. We have furthermore provided an algorithm (Algorithms 1 and 2) to solve
the SDIE scheme, which—besides the obvious extension from the MBO scheme to
the SDIE scheme—differs in two key places from the [22] algorithm for graph MBO
with fidelity forcing: it implements the Nyström extension via a QR decomposition
(Algorithm 1) and it replaces the Euler discretisation of the diffusion step with a
computation based on the Strang formula for matrix exponentials (see (5.11)). The
former of these changes appears to have been a quite significant improvement: in
experiments the Nyström-QR method proved to be faster, more accurate, and more
stable than the Nyström method used in previous literature [6, 22], and it is less
conceptually troubling than that method, as it does not involve taking the square
root of a matrix which is never positive semi-definite.

We applied this algorithm to a number of image segmentation examples con-
cerning images of cows from the Microsoft Research Cambridge Object Recognition
Image Database. We found that whilst the SDIE scheme yielded no improvement
over the MBO scheme (and took longer to run in the non-MBO case) the other im-
provements that we made led to a substantial qualitative improvement over the seg-
mentations of the corresponding examples in [6, 22]. We furthermore investigated
empirically various properties of this numerical method and the role of different
parameters. In particular:

• We found that the symmetric normalised Laplacian incurred consistently low
segmentation error when approximated to a low rank, whilst the random walk
Laplacian was more reliably accurate at higher ranks (where ‘higher’ is still
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less than 0.1% of the full rank). Thus for applications that require scalabity,
and thus very low-rank approximations, we recommend using the symmetric
normalised Laplacian.

• We investigated empirically the uncertainty inherited from the randomisation
in the Nyström extension. We found that the rank reduction and the nor-
malisation of the graph Laplacian had the most influence on the uncertainty,
and we furthermore observed that at higher ranks the segmentations had
high variance at those pixels which are genuinely difficult to classify, e.g. the
boundaries of the cows.

• We noted that the fidelity parameter 𝜇 corresponds to ascribing a statistical
precision to the reference data. We observed that when the reference data
were not fully informative, as in Examples 5.3.2 and 5.3.3, it was particularly
important to tune this parameter to get an accurate segmentation.
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6
Joint

Reconstruction-Segmentation
on Graphs

Real data is messy. [...] It’s all very, very noisy out there. Very hard to spot
the tune. Like a piano in the next room, it’s playing your song, but

unfortunately it’s out of whack, some of the strings are missing, and the
pianist is tone deaf and drunk — I mean, the noise! Impossible!

Tom Stoppard, Arcadia

In practice, image segmentation tasks also require the image to be recon-
structed from noisy, distorted, or incomplete observations. A recent approach
for solving such tasks is to perform this reconstruction jointly with the seg-
mentation, using each to guide the other. Past work on this has employed
relatively simple segmentation algorithms, such as the Chan–Vese algorithm
[9]. In this chapter, we present a foundation for performing joint reconstruction-
segmentation using the graph-based segmentation method of chapter 5. We
consider the joint reconstruction-segmentation task as a minimisation prob-
lem, which we attempt to solve via an iterative minimisation scheme which
alternately refines the reconstruction (using the current segmentation) and
refines the segmentation (using the current reconstruction). As in chapter 5,
complications arise due to the large size of the matrices involved, and we

Parts of this chapter to appear in J. Budd, Y. van Gennip, J. Latz, S. Parisotto, and C.-B. Schönlieb, “Joint
reconstruction-segmentation on graphs”, in preparation. Jonas Latz and Simone Parisotto contributed
significantly to this chapter.
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show how these complications can be managed. We then exhibit some sim-
ple tests, applying the scheme to a noised version of the “two cows” example
from chapter 5. Finally, we discuss a number of directions for future work
building on this foundation.
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6.1. Introduction

I n practice, we often do not observe images directly, but rather observe data thatis noisy, may have pieces missing, and/or may be a transform of the true image
(e.g. in a CT or MRI scan). In such cases, one must “reconstruct” the image from
these observations. Hence, when we seek to segment an image, we will frequently
need to also reconstruct it. That is, in practice a segmentation task is often a
reconstruction-segmentation task. Joint reconstruction-segmentation is a powerful
approach for solving such tasks. It performs the reconstruction and segmentation
together, using each to guide the other, with the goal of improving the quality of
the reconstruction/segmentation compared to performing the tasks in sequence.
In this chapter, we will develop a foundation for incorporating the graph-based
segmentation method of chapter 5 into this technique.

6.1.1. Background
In the last chapter, we examined the task of image segmentation. Image re-
construction is another fundamental task in image processing, perhaps the most
fundamental. The general setting for image reconstruction is that we have some
observations 𝑦 of an image 𝑥∗, which are related via

𝑦 = 𝒯(𝑥∗) + 𝑒 (6.1)

where 𝒯 is the forward model, typically a linear map, and 𝑒 is an error term (e.g. a
Gaussian random variable). For example, in MRI imaging the map 𝒯 is a sampling
of the Fourier transform [11]. Even given 𝑦, 𝒯, and the distribution of 𝑒, solving
this equation for 𝑥∗ is in general an ill-posed problem. A key approach to solving
such problems, deriving from pioneering work by Tikhonov [24] and Phillips [19] in
the 1960s, has been to solve a variational problem of the form

argmin
𝑥

𝑅(𝑥) + 𝜇𝐷(𝒯(𝑥), 𝑦) (6.2)

where 𝑅 is a regulariser, which encodes a priori information about the solution 𝑥,
and 𝐷 is a distance term which enforces fidelity to our observed data and encodes
information about the error 𝑒. A considerable amount of work has been devoted to
the choice of regulariser 𝑅. To give a whistle-stop tour: Tikhonov used an 𝓁2 norm,
which was superseded by Rudin, Osher, and Fatemi’s [22] use of total variation
in the 1990s, which recently inspired more sophisticated regularisers such as total
generalised variation [16], and finally the cutting-edge approach is to use data-
driven learned regularisers such as those discussed in Arridge et al. [3]. Solving
(6.2) can be computationally challenging. Some examples of approaches include:
Euler–Lagrange methods [5] (and the references therein), duality-based methods
[8, 16], split-Bregman methods [12], accelerated proximal gradient methods [7,
27], alternating direction method of multipliers (ADMM) methods [25, 26], and
data-driven optimisation methods (see [3, §4.9] for a detailed overview).

Joint reconstruction-segmentation lies in the middle of two different approaches
to reconstruction-segmentation, i.e. the task of obtaining a segmentation 𝑢 of an
image 𝑥∗, from observations 𝑦 of the form (6.1).
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At one extreme is the traditional sequential approach, in which one first recon-
structs an image 𝑥 ≈ 𝑥∗ from 𝑦 via the above methods, and then one performs a
segmentation of 𝑥. The drawback of this method is that it doesn’t make full use of
all the resources at hand, since the reconstruction step is blind to any segmentation-
relevant information. Furthermore the reconstruction methods might induce a loss
of contrast [23] that might interfere with achieving the best segmentation.

At the other extreme is the end-to-end approach, in which one collects training
data {(𝑦𝑛 , 𝑢𝑛)} of pairs of observations and the corresponding ground truth seg-
mentations, and then using this training data one learns (e.g., via deep learning1) a
map that sends 𝑦 to 𝑢. The drawbacks of this approach are that it forgoes entirely
reconstructing an explicit 𝑥∗, and that this map may be somewhat of a “black box”,
i.e. it may be hard to explain why it outputs the segmentation that it does or to
prove theoretical guarantees.

Joint reconstruction-segmentation (a.k.a. simultaneous reconstruction and seg-
mentation) lies between these extremes, seeking to perform the reconstruction and
segmentation simultaneously, using each to guide the other. It was first proposed
by Ramlau and Ring [21] in 2007 for Computed Tomography (CT) imaging, with
related methods later developed for other medical imaging tasks (for an overview,
see [10, §2.4] and the references therein). The methods employed in this initial
work were extremely varied, and largely application-driven. An extensive theoreti-
cal overview of task-adapted reconstruction, of which reconstruction-segmentation
is a special case, was developed in Adler et al. [1]. That work also found that joint
reconstruction-segmentation outperformed both the sequential and end-to-end ap-
proaches with respect to segmentation accuracy. In recent work by Corona et al.
[10] this method was enhanced using Bregman iteration methods, and a number of
theoretical guarantees were proved about this enhanced scheme. However, these
approaches have mostly relied on Mumford–Shah or Chan–Vese methods to per-
form the segmentation.2 In this chapter, we will demonstrate how to incorporate
the graph-based segmentation methods discussed in the previous chapter into this
joint reconstruction-segmentation technique.

6.1.2. Groundwork
We express the reconstruction-segmentation task that we shall be attempting to
solve as follows.

Problem 6.1.1. Let 𝑥∗ ∶ 𝑌 → ℝ𝓁 be the image to be reconstructed and segmented,
𝑦 = 𝒯(𝑥∗) + 𝑒 be observed data where 𝒯 ∈ 𝐶1 is the forward model and 𝑒 is some
random variable which describes observation error, and let 𝑥𝑑 ∶ 𝑍 → ℝ𝓁 be an
already reconstructed and segmented reference image with a priori segmentation
𝑓̃ ∶ 𝑍 → {0, 1}. Given 𝑦, 𝒯, 𝑥𝑑, and 𝑓̃: reconstruct 𝑥 ≈ 𝑥∗ and find 𝑢 ∶ 𝑌 ∪ 𝑍 → {0, 1}
such that 𝑢|𝑌 segments 𝑥 and 𝑢|𝑍 is close to 𝑓̃.

We incorporate this into a graph framework, as in section 5.2.1. We will define
our vertex set to be 𝑉 ∶= 𝑌 ∪ 𝑍 and our edge set by 𝑖𝑗 ∈ 𝐸 if and only if 𝑖 ≠ 𝑗.
1See Goodfellow, Bengio, and Courville [14] for an overview of deep learning.
2See Mumford and Shah [17] and Chan and Vese [9] for details on these methods.
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We will also define 𝑁 ∶= |𝑌| and 𝑁𝑑 ∶= |𝑍|. Then, given a candidate reconstruction
𝑥 ∶ 𝑌 → ℝ𝓁, we define the weights on the edges of this graph by defining feature
vectors 𝑧 ∶ 𝑌 → ℝ𝑞 and 𝑧𝑑 ∶ 𝑍 → ℝ𝑞, according to linear maps 𝑧 ∶= ℱ(𝑥) and
𝑧𝑑 ∶= ℱ𝑑(𝑥𝑑) where ℱ and ℱ𝑑 will be fixed and known. Since 𝑥𝑑 and ℱ𝑑 are
given, we can hereafter treat 𝑧𝑑 as given. We will then define the edge weights via
𝜔 = Ω(𝑧, 𝑧𝑑), where Ω(𝑧, 𝑧𝑑) is given by (for z ∶= (𝑧, 𝑧𝑑))

Ω𝑖𝑗(𝑧, 𝑧𝑑) ∶= 𝑒
−
||z𝑖−z𝑗||2𝐹
𝑞𝜎2 (6.3)

where || ⋅ ||𝐹 denotes the Frobenius norm. The 𝑞 in the denominator averages over
the 𝑞 components of z so as to make a parameter choice for 𝜎 generalise better.

Note 36. The feature vectors 𝑧 and 𝑧𝑑 are here defined so that 𝑧 does not depend
on 𝑥𝑑 and vice versa. This is a simplification, since 𝑥 and 𝑥𝑑 might be different parts
of the same image and hence one might want 𝑧 to partially depend on 𝑥𝑑. However,
this simplification greatly aids in the following analysis, and in computation, as it
means that the edge weights between vertices of 𝑍 can be considered fixed and
given.

We shall be using the Ginzburg–Landau energy from (3.9) to measure the ad-
equacy of our segmentation, and following the previous chapter we will be taking
𝑟 = 1. Over the course of the reconstruction, the candidate image 𝑥 and therefore
the weight matrix 𝜔 will be updated, and so it will be useful to reconsider GL𝜀,𝜇,𝑓̃
as a function of both 𝑢 and 𝜔. A simple calculation gives that when 𝑟 = 1

GL𝜀,𝜇,𝑓̃(𝑢, 𝜔) =
1
2 ∑
𝑖,𝑗∈𝑉

𝜔𝑖𝑗(𝑢𝑖 − 𝑢𝑗)2 +
1
2𝜀 ∑

𝑖,𝑗∈𝑉
𝜔𝑖𝑗(𝑊(𝑢𝑖) +𝑊(𝑢𝑗))

+ 14 ∑
𝑖,𝑗∈𝑉

𝜔𝑖𝑗 (𝜇𝑖(𝑢𝑖 − 𝑓̃𝑖)2 + 𝜇𝑗(𝑢𝑗 − 𝑓̃𝑗)2)
(6.4)

where 𝜇 ∈ 𝒱 ⧵ {0} is supported on 𝑍. Note that this is linear in 𝜔. We can therefore
define 𝐺 ∶ 𝒱 → ℝ𝑉×𝑉 given by

(𝐺(𝑢))𝑖𝑗 =
1
2 ((𝑢𝑖 − 𝑢𝑗)

2 + 1𝜀 (𝑊(𝑢𝑖) +𝑊(𝑢𝑗)) +
1
2(𝜇𝑖(𝑢𝑖 − 𝑓̃𝑖)

2 + 𝜇𝑗(𝑢𝑗 − 𝑓̃𝑗)2))
(6.5)

such that
GL𝜀,𝜇,𝑓̃(𝑢, 𝜔) = tr(𝐺(𝑢)𝑇𝜔) =∶ ⟨𝐺(𝑢), 𝜔⟩𝐹

where ⟨⋅, ⋅⟩𝐹 denotes the Frobenius inner product. Furthermore, note that if 𝑣𝑖 ∶=1
2𝑢

2
𝑖 +

1
2𝜀𝑊(𝑢𝑖) +

1
4𝜇𝑖(𝑢𝑖 − 𝑓̃𝑖)

2, then

𝐺(𝑢) = −𝑢𝑢𝑇 + 𝑣1𝑇 + 1𝑣𝑇 .
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6.1.3. The iPiano method
In order to update our reconstruction in (6.9a), it will be necessary to solve problems
of the form

argmin
𝑥

𝑅(𝑥) +F (𝑥)

where 𝑅 is convex (and proper and lower semi-continuous) but non-smooth, and
F is smooth but non-convex. We will follow Ochs et al. [18, Algorithm 4] and
use the iPiano method to solve such problems. This finds such a minimiser via the
following iterative scheme.

Let 𝑥′0 be some initial guess, and let 𝜉 ∈ [0, 1) be fixed. Then given 𝑥′𝑘,
𝑥′𝑘+1 ∶= prox𝜃𝑘𝑅(𝑥

′
𝑘 − 𝜃𝑘∇𝑥F (𝑥′𝑘) + 𝜉(𝑥′𝑘 − 𝑥′𝑘−1))3 (6.6)

where 𝜃𝑘 < 2(1 − 𝜉)𝐿−1𝑘 , and 𝐿𝑘 is the least value in {𝑏𝐿𝑘−1, 𝑎𝑏𝐿𝑘−1, 𝑎2𝑏𝐿𝑘−1, ...}
such that

F (𝑥′𝑘+1) ≤ F (𝑥′𝑘) + ⟨∇𝑥F (𝑥′𝑘), 𝑥′𝑘+1 − 𝑥′𝑘⟩𝐹 +
1
2𝐿𝑘||𝑥

′
𝑘+1 − 𝑥′𝑘||2𝐹 (6.7)

for some fixed 𝑎 > 1 and 𝑏 ≥ 1. Note that since 𝑥′𝑘+1 depends on 𝐿𝑘, to implement
this involves backtracking. That is, we compute a candidate 𝑥′𝑘+1 with the smallest
candidate 𝐿𝑘, check (6.7), and if that fails we repeat with the next candidate 𝐿𝑘.
This process to pick 𝐿𝑘 must eventually terminate, since if 𝐿 is our candidate 𝐿𝑘,
then as 𝐿 → ∞, 𝜃𝑘 → 0, and so our candidate 𝑥′𝑘+1 tends to 𝑥′𝑘+𝜉(𝑥′𝑘−𝑥′𝑘−1). Since
F is smooth, there exists an 𝐿 such that for all 𝑥′ with ||𝑥′−𝑥′𝑘||𝐹 ≤ 2𝜉||𝑥′𝑘−𝑥′𝑘−1||𝐹,

F (𝑥′) ≤ F (𝑥′𝑘) + ⟨∇𝑥F (𝑥′𝑘), 𝑥′ − 𝑥′𝑘⟩𝐹 +
1
2𝐿||𝑥

′ − 𝑥′𝑘||2𝐹 .

In practice, we will terminate the iPiano scheme if 𝐿𝑘 > 1010, and output the current
𝑥′𝑘 as the minimiser.

Note that to use this method, we need to able to compute both ∇𝑥F and F .

6.2. The joint reconstruction-segmentation scheme
We consider the joint minimisation problem

min
𝑥∈ℝ𝑁×𝓁 ,𝑢∈𝒱

𝑅(𝑥) + 𝛼||𝒯(𝑥) − 𝑦||2𝐹 + 𝛽GL𝜀,𝜇,𝑓̃(𝑢, Ω(ℱ(𝑥), 𝑧𝑑)) (6.8)

where 𝑅 is a convex regulariser. Given the number of moving parts in this, we con-
sider an iterative scheme to approach solutions (where 𝛼, 𝛽, 𝜂𝑛 , 𝜈𝑛 are parameters):

𝑥𝑛+1 = argmin
𝑥∈ℝ𝑁×𝓁

𝑅(𝑥) + 𝛼||𝒯(𝑥) − 𝑦||2𝐹 + 𝛽GL𝜀,𝜇,𝑓̃(𝑢𝑛 , Ω(ℱ(𝑥), 𝑧𝑑)) (6.9a)

+ 𝜂𝑛||𝑥 − 𝑥𝑛||2𝐹 ,
𝑢𝑛+1 = argmin

𝑢∈𝒱
𝛽GL𝜀,𝜇,𝑓̃(𝑢, Ω(ℱ(𝑥𝑛+1), 𝑧𝑑)) + 𝜈𝑛||𝑢|𝑌 − 𝑢𝑛|𝑌||22. (6.9b)

3Recall that if 𝑓 is proper, lower semi-continuous, and convex, then
prox𝑓(𝑦) ∶= argmin𝑥 𝑓(𝑥) +

1
2 ||𝑥 − 𝑦||

2
2.
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We can understand this scheme intuitively as iterating the following steps:

I. Given the current segmentation, update the reconstruction using the segmen-
tation energy as part of the regulariser and the previous reconstruction as a
momentum term.

II. Given the current reconstruction, update the segmentation using the previous
segmentation of the image to be reconstructed as a momentum term.

It is important to discuss what (6.9a) is doing in a bit more detail. There are
two goals we might have for solving this joint reconstruction-segmentation prob-
lem. One is to achieve both a more accurate reconstruction and more accurate
segmentation than could be achieved by doing these tasks in sequence. However,
a second goal is simply to achieve a more accurate segmentation of the image,
without interest in the reconstruction.

In the latter case, it will be advantageous for our candidate reconstructions 𝑥𝑛
to have higher contrast than the ground truth 𝑥∗, and in particular for the difference
between the pixels belonging to different segments to be exaggerated. This be-
haviour is encouraged by the middle term in (6.9a). That is the Ginzburg–Landau
term penalises 𝑥 via penalising 𝜔𝑖𝑗 being large (i.e. ||z𝑖 − z𝑗||𝐹 being small) when
(𝐺(𝑢𝑛))𝑖𝑗 is large. And one of the main ways for (𝐺(𝑢𝑛))𝑖𝑗 to be large is for 𝑖 and 𝑗 to
be put in different segments by 𝑢𝑛.4 That is, minimising that term rewards images
where the pixels put into different segments by 𝑢𝑛 have more distinct features.

Therefore, the 𝛽 parameter will govern how strong this segmentation-driven
increase in contrast is. If one desires an accurate reconstruction as well as seg-
mentation, one will therefore want 𝛽 to be lower than if one desires only an accurate
segmentation.

6.2.1. Initialisation
The simplest choice for the initial condition 𝑥0 would be to choose it to be the
(Moore–Penrose) pseudoinverse of 𝒯 (see [13, §5.5.2]) applied to 𝑦, i.e. 𝑥0 ∶=
𝒯+(𝑦). However, in practice we have found that this can be too poorly structured
to give a good initial segmentation, and furthermore it can be highly sensitive to
small changes/errors in 𝑦 and 𝒯 [13, §5.5.3] and doesn’t generalise to non-linear
𝒯. Therefore, an alternative initialisation would be to initialise with some cheap
reconstruction 𝑥0 ∶= Recon(𝑦, 𝒯). Then the initial segmentation 𝑢0 is constructed
by applying the SDIE scheme to 𝑥0 as in the previous chapter.

4The other ways are for 𝑢𝑛 to send 𝑖 or 𝑗 to a non-binary value; for 𝑖 in 𝑍, for (𝑢𝑛)𝑖 to disagree with
𝑓̃𝑖; and for 𝑗 ∈ 𝑍, for (𝑢𝑛)𝑗 to disagree with 𝑓̃𝑗.
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6.2.2. Solving (6.9b)
We solve (6.9b) via the SDIE scheme. We can rewrite the functional that is to be
minimised as

GL𝜀(𝑢, Ω(ℱ(𝑥𝑛+1), 𝑧𝑑)) +
1
2 ∑
𝑖∈𝑍
𝜇𝑖(𝑢𝑖 − 𝑓̃𝑖)2 +

1
2
2𝜈𝑛
𝛽 ||𝑢𝑌 − (𝑢𝑛)𝑌||22

= GL𝜀(𝑢, Ω(ℱ(𝑥𝑛+1), 𝑧𝑑)) +
1
2 ∑
𝑖∈𝑉
𝜇′𝑖(𝑢𝑖 − 𝑓̃′𝑖 )2

where 𝜇′ = 𝜇 + 2𝜈𝑛𝛽−1𝜒𝑌 and 𝑓̃′ = 𝑓̃ + 𝑢𝑛 ⊙ 𝜒𝑌. We then solve this using the
algorithm from the last chapter, with 𝜇′ and 𝑓̃′ in place of that chapter’s “𝜇” and
“𝑓̃”. Conceptually, this uses the previous segmentation as a reference, with our
confidence in those previous labels encoded by the momentum parameter 𝜈𝑛 scaled
by 𝛽.

6.3. Solving (6.9a)
To solve (6.9a), we first rewrite it. Define 𝐺𝑛 ∶= 𝐺(𝑢𝑛) and 𝑣𝑛 by (𝑣𝑛)𝑖 ∶=

1
2(𝑢𝑛)

2
𝑖 +

1
2𝜀𝑊((𝑢𝑛)𝑖) +

1
4𝜇𝑖((𝑢𝑛)𝑖 − 𝑓̃𝑖)

2, so that

𝐺𝑛 = −𝑢𝑛𝑢𝑇𝑛 + 𝑣𝑛1𝑇 + 1𝑣𝑇𝑛 . (6.10)

Then since 𝜔𝑍𝑍 depends only on 𝑧𝑑, and is hence constant in 𝑛, the Ginzburg–
Landau energy term can be rewritten

⟨𝐺𝑛 , Ω(ℱ(𝑥), 𝑧𝑑)⟩𝐹 ≃ ⟨(𝐺𝑛)𝑌𝑌 , Ω𝑌𝑌(ℱ(𝑥))⟩𝐹 + 2⟨(𝐺𝑛)𝑌𝑍 , Ω𝑌𝑍(ℱ(𝑥), 𝑧𝑑)⟩𝐹

so we seek to minimise via iPiano the energy:

𝑅(𝑥)+

𝛽⟨(𝐺𝑛)𝑌𝑌 , Ω𝑌𝑌(ℱ(𝑥))⟩𝐹
=∶F1(ℱ(𝑥))

+ 2𝛽⟨(𝐺𝑛)𝑌𝑍 , Ω𝑌𝑍(ℱ(𝑥), 𝑧𝑑)⟩𝐹
=∶F2(ℱ(𝑥))

+ 𝛼||𝒯(𝑥) − 𝑦||2𝐹 + 𝜂𝑛||𝑥 − 𝑥𝑛||2𝐹
=∶F3(𝑥)

=∶F(𝑥)

.

To this end, we need to be able to compute ∇𝑥F (𝑥) and F (𝑥).

6.3.1. Computing the gradient
Recall that the features 𝑧 are given by 𝑧 ∶= ℱ(𝑥). Then

∇𝑥F (𝑥) = ∇𝑥F1(ℱ(𝑥))+∇𝑥F2(ℱ(𝑥))+∇𝑥F3(𝑥) = ℱ∗(∇𝑧F1(𝑧))+ℱ∗(∇𝑧F2(𝑧))+∇𝑥F3(𝑥)

where ℱ∗ is the adjoint of ℱ with respect to ⟨⋅, ⋅⟩𝐹. We compute each term in turn.
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Computing ∇𝑧F1(𝑧)
Expanding around 𝑧

F1(𝑧 + 𝛿𝑧) = 𝛽⟨(𝐺𝑛)𝑌𝑌 , Ω𝑌𝑌(𝑧 + 𝛿𝑧)⟩𝐹
= 𝛽 ⟨(𝐺𝑛)𝑌𝑌 , Ω𝑌𝑌(𝑧) + [⟨∇𝑧Ω𝑖𝑗(𝑧), 𝛿𝑧⟩𝐹]𝑖,𝑗∈𝑌⟩𝐹 + 𝑜(𝛿𝑧)

= F1(𝑧) + 𝛽 ∑
𝑖,𝑗∈𝑌

(𝐺𝑛)𝑖𝑗
𝑞

∑
𝑙∈𝑌,𝑟=1

(∇𝑧Ω𝑖𝑗(𝑧))𝑙𝑟𝛿𝑧𝑙𝑟 + 𝑜(𝛿𝑧)

and thus for all 𝑙 ∈ 𝑌 and 𝑟 ∈ {1, ..., 𝑞}

(∇𝑧F1(𝑧))𝑙𝑟 = 𝛽 ∑
𝑖,𝑗∈𝑌

(𝐺𝑛)𝑖𝑗(∇𝑧Ω𝑖𝑗(𝑧))𝑙𝑟 .

Now, since (Ω𝑌𝑌)𝑖𝑗(𝑧) = 𝑒−||𝑧𝑖−𝑧𝑗||
2
2/𝑞𝜎2 for 𝑖 ≠ 𝑗 and (Ω𝑌𝑌)𝑖𝑖(𝑧) = 0, we have

∇𝑧𝑙𝑟(Ω𝑌𝑌)𝑖𝑗(𝑧) =
1
𝑞𝜎2 {

0, 𝑙 ∉ {𝑖, 𝑗},
2(Ω𝑌𝑌)𝑖𝑙(𝑧)(𝑧𝑖𝑟 − 𝑧𝑙𝑟), 𝑗 = 𝑙,
2(Ω𝑌𝑌)𝑙𝑗(𝑧)(𝑧𝑙𝑟 − 𝑧𝑗𝑟), 𝑖 = 𝑙

}

= 2
𝑞𝜎2 (Ω𝑌𝑌)𝑖𝑗(𝑧)(𝑧𝑖𝑟 − 𝑧𝑗𝑟)(𝛿𝑗𝑙 − 𝛿𝑖𝑙).

Therefore

(∇𝑧F1(𝑧))𝑙𝑟 =
2𝛽
𝑞𝜎2 ∑

𝑖,𝑗∈𝑌
(𝐺𝑛)𝑖𝑗Ω𝑖𝑗(𝑧)(𝑧𝑖𝑟 − 𝑧𝑗𝑟)(𝛿𝑗𝑙 − 𝛿𝑖𝑙).

Hence, letting 𝒜(𝑧) ∶= (𝐺𝑛)𝑌𝑌⊙Ω𝑌𝑌(𝑧), we get

(∇𝑧F1(𝑧))𝑙𝑟 =
2𝛽
𝑞𝜎2 ∑

𝑖,𝑗∈𝑌
𝒜𝑖𝑗(𝑧)(𝑧𝑖𝑟 − 𝑧𝑗𝑟)(𝛿𝑗𝑙 − 𝛿𝑖𝑙)

= 4𝛽
𝑞𝜎2 (∑

𝑗∈𝑌
𝒜𝑙𝑗(𝑧)𝑧𝑗𝑟 − 𝑧𝑙𝑟∑

𝑗∈𝑌
𝒜𝑙𝑗(𝑧)) since 𝒜(𝑧) is symmetric

and therefore

∇𝑧F1(𝑧) =
4𝛽
𝑞𝜎2 (𝒜(𝑧)𝑧 − (𝒜(𝑧)1𝑁) ⊙ 𝑧) . (6.11)

Computing ∇𝑧F2(𝑧)
By a similar argument as the above, for all 𝑙 ∈ 𝑌 and 𝑟 ∈ {1, ..., 𝑞}

(∇𝑧F2(𝑧))𝑙𝑟 = −
4𝛽
𝑞𝜎2 ∑

𝑖∈𝑌,𝑗∈𝑍
((𝐺𝑛)𝑖𝑗)(Ω𝑌𝑍)𝑖𝑗(𝑧, 𝑧𝑑)(𝑧𝑖𝑟 − (𝑧𝑑)𝑗𝑟)𝛿𝑖𝑙 .
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Hence, letting ℬ(𝑧) ∶= (𝐺𝑛)𝑌𝑍⊙Ω𝑌𝑍(𝑧, 𝑧𝑑), we get

(∇𝑧F2(𝑧))𝑙𝑟 = −
4𝛽
𝑞𝜎2 ∑

𝑖∈𝑌,𝑗∈𝑍
ℬ𝑖𝑗(𝑧)(𝑧𝑖𝑟 − (𝑧𝑑)𝑗𝑟)𝛿𝑖𝑙

= − 4𝛽𝑞𝜎2 (𝑧𝑙𝑟∑
𝑗∈𝑍
ℬ𝑙𝑗(𝑧) −∑

𝑗∈𝑍
ℬ𝑙𝑗(𝑧𝑑)𝑗𝑟)

and we therefore arrive at a similar formula to before

∇𝑧F2(𝑧) =
4𝛽
𝑞𝜎2 (ℬ(𝑧)𝑧𝑑 − (ℬ(𝑧)1𝑁𝑑) ⊙ 𝑧) . (6.12)

Computing ∇𝑥F3(𝑥)
Recall that

F3(𝑥) ∶= 𝛼||𝒯(𝑥) − 𝑦||2𝐹 + 𝜂𝑛||𝑥 − 𝑥𝑛||2𝐹
The gradient of the latter term is simply

2𝜂𝑛(𝑥 − 𝑥𝑛).

For the former term, since 𝒯 is assumed to be 𝐶1, for all 𝑥 there is a linear map 𝐷𝑥
such that

𝒯(𝑥 + ℎ) = 𝒯(𝑥) + 𝐷𝑥(ℎ) + 𝑜(ℎ).
Therefore

||𝒯(𝑥 + ℎ) − 𝑦||2𝐹 = ||𝒯(𝑥) + 𝐷𝑥(ℎ) − 𝑦||2𝐹 + 𝑜(ℎ)
= ||𝒯(𝑥) − 𝑦||2𝐹 + 2⟨𝐷𝑥(ℎ), 𝒯(𝑥) − 𝑦⟩𝐹 + 𝑜(ℎ)

and so the gradient of the former term is 2𝛼𝐷∗𝑥(𝒯(𝑥) − 𝑦)). Hence

∇𝑥F3(𝑥) = 2𝛼𝐷∗𝑥(𝒯(𝑥) − 𝑦) + 2𝜂𝑛(𝑥 − 𝑥𝑛). (6.13)

Note that if 𝒯 is linear then 𝐷𝑥 = 𝒯 for all 𝑥.

The full gradient
Tying this all together, recalling 𝑧 ∶= ℱ(𝑥), we get

∇𝑥F (𝑥) = 4𝛽
𝑞𝜎2ℱ

∗(𝒜(𝑧)𝑧 + ℬ(𝑧)𝑧𝑑 − (𝒜(𝑧)1𝑁 + ℬ(𝑧)1𝑁𝑑) ⊙ 𝑧)

+ 2𝛼𝐷∗𝑥(𝒯𝑥 − 𝑦) + 2𝜂𝑛(𝑥 − 𝑥𝑛)

= 4𝛽
𝑞𝜎2ℱ

∗ (𝒞(𝑧) ( 𝑧𝑧𝑑) − (𝒞(𝑧)1𝑁+𝑁𝑑) ⊙ 𝑧)

+ 2𝛼𝐷∗𝑥(𝒯(𝑥) − 𝑦) + 2𝜂𝑛(𝑥 − 𝑥𝑛)

(6.14)

where 𝒞(𝑧) ∶= (𝐺𝑛)𝑌𝑉 ⊙ Ω𝑍𝑉(𝑧, 𝑧𝑑). To compute (6.14), we need to compute
matrix-vector products of the form 𝒞(𝑧)𝑣.
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Recalling (6.10), it follows that

(𝐺𝑛)𝑍𝑉 = −(𝑢𝑛)𝑌𝑢𝑇𝑛 + (𝑣𝑛)𝑌1𝑇𝑉 + 1𝑌𝑣𝑇𝑛 .

Then we observe an neat linear algebra result5

((−𝑢𝑛|𝑌𝑢𝑇𝑛+𝑣𝑛|𝑌1𝑇𝑉+1𝑌𝑣𝑇𝑛 )⊙𝐴)𝑣 = −𝑢𝑛|𝑌⊙(𝐴(𝑢𝑛⊙𝑣))+𝑣𝑛|𝑌⊙(𝐴𝑣)+𝐴(𝑣𝑛⊙𝑣)

where in this case 𝐴 = Ω𝑌𝑉(𝑧, 𝑧𝑑). Hence it suffices to be able to compute terms of
the form Ω𝑌𝑉(𝑧, 𝑧𝑑)𝑣. But via the Nyström extension (5.1) we have

Ω𝑌𝑉(ℱ(𝑥), 𝑧𝑑)𝑣 ≈ (Ω𝑉𝑋(ℱ(𝑥), 𝑧𝑑)Ω−1𝑋𝑋(ℱ(𝑥), 𝑧𝑑)Ω𝑋𝑉(ℱ(𝑥), 𝑧𝑑)𝑣) |𝑌 (6.15)

where 𝑋 ⊆ 𝑉 is some interpolation set, so we can compute matrix-vector products
quickly.

6.3.2. Computing the objective function
The hard part is computing F1 and F2. This is equivalent to computing the full
Frobenuis inner product

⟨𝐺𝑛 , Ω(ℱ(𝑥), 𝑧𝑑)⟩𝐹 .
Recall that

𝐺𝑛 = −𝑢𝑛𝑢𝑇𝑛 + 𝑣𝑛1𝑇 + 1𝑣𝑇𝑛 .
Thus

⟨𝐺𝑛 , Ω(ℱ(𝑥), 𝑧𝑑)⟩𝐹 = −⟨𝑢𝑛 , Ω(ℱ(𝑥), 𝑧𝑑)𝑢𝑛⟩𝐹 + ⟨𝑣𝑛 , Ω(ℱ(𝑥), 𝑧𝑑)1⟩𝐹 + ⟨1, Ω(ℱ(𝑥), 𝑧𝑑)𝑣𝑛⟩𝐹
= −⟨𝑢𝑛 , Ω(ℱ(𝑥), 𝑧𝑑)𝑢𝑛⟩𝐹 + 2⟨𝑣𝑛 , Ω(ℱ(𝑥), 𝑧𝑑)1⟩𝐹

and as in (6.15) we can use the Nyström extension to compute approximations to
these matrix-vector products quickly.

6.4. The full algorithm for (6.9)
In this section, we combine the above ingredients together into a sequence of
algorithms. We begin with Algorithm 3, implementing the iPiano update used to
solve (6.9a). We finally give the algorithm for (6.9) in Algorithm 5.

6.5. Linearising (6.9a)
In the test we will shortly describe, we found that (6.9a) was a computational
bottleneck. We will therefore also consider a simplification of (6.9a). Recall from
section 6.3 that the objective functional of (6.9a) can be rewritten

𝑅(𝑥) +F1(ℱ(𝑥)) +F2(ℱ(𝑥)) + 𝛼||𝒯(𝑥) − 𝑦||2𝐹 + 𝜂𝑛||𝑥 − 𝑥𝑛||2𝐹 .
5To see this, observe that in suffix notation, for 𝑖 ∈ 𝑌 and 𝑗 ∈ 𝑉, the LHS is (−(𝑢𝑛)𝑖(𝑢𝑛)𝑗 + (𝑣𝑛)𝑖 +
(𝑣𝑛)𝑗)𝐴𝑖𝑗𝑣𝑗 and the RHS is −(𝑢𝑛)𝑖𝐴𝑖𝑗((𝑢𝑛)𝑗𝑣𝑗) + (𝑣𝑛)𝑖𝐴𝑖𝑗𝑣𝑗 + 𝐴𝑖𝑗((𝑣𝑛)𝑗𝑣𝑗).
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Algorithm 3 Implementation of a step of iPiano for (6.9a).

1: function iPiano(𝑥′, 𝑥, 𝑧𝑑 , 𝑢, 𝑣, ℱ, 𝒯, 𝐷∗, 𝑦, 𝑅, 𝛼, 𝛽, 𝑞, 𝜎, 𝜂, 𝛿𝑥′, 𝐿, 𝜉, 𝑎, 𝑏, 𝑉, 𝑌, 𝑍, 𝐾) //
Computes a step of the iPiano scheme for (6.9a), outputting the iPiano update
𝑥′𝑘+1 of 𝑥′𝑘 for 𝑥′𝑘 equal to the input 𝑥′, as well as the value of 𝐿 such that (6.7)
is satisfied.

2: F𝑜𝑙𝑑 = Feval(𝑥′, 𝑥, 𝑧𝑑 , 𝑢, 𝑣, ℱ, 𝒯, 𝑦, 𝛼, 𝛽, 𝜎, 𝜂, 𝑉, 𝑌, 𝑍, 𝐾) // Feval defined
in Algorithm 4

3: 𝑧′ = ℱ(𝑥′)
4: 𝑤1 = CzProd(𝑧′, (𝑧, 𝑧𝑑), 𝑢, 𝑣, 𝜎, 𝑉, 𝑌, 𝑍, 𝐾) // CzProd defined in Algorithm 4
5: 𝑤2 = CzProd(𝑧′,1𝑉 , 𝑢, 𝑣, 𝜎, 𝑉, 𝑌, 𝑍, 𝐾)
6: 𝑔1 =

4𝛽
𝑞𝜎2ℱ

∗(𝑤1 −𝑤2⊙ 𝑧′)
7: 𝑔2 = 2𝛼𝐷∗𝑥′(𝒯(𝑥′) − 𝑦) + 2𝜂𝑛(𝑥′ − 𝑥)
8: 𝑔 = 𝑔1 + 𝑔2 // 𝑔 ≈ ∇𝑥F (𝑥′) as in (6.14)
9: check = 0 // Check variable for condition (6.7)
10: while check = 0 and 𝐿 < 1010 do // Backtracking loop
11: 𝜃 = 1.99(1 − 𝜉)/𝐿 // As an example of how to pick 𝜃
12: 𝑝 = prox𝜃𝑅(𝑥′ − 𝜃𝑔 + 𝜉𝛿𝑥′) // prox computed using FISTA [6]
13: F𝑛𝑒𝑤 = Feval(𝑝, 𝑥, 𝑧𝑑 , 𝑢, 𝑣, ℱ, 𝒯, 𝑦, 𝛼, 𝛽, 𝜎, 𝜂, 𝑉, 𝑌, 𝑍, 𝐾)
14: if F𝑛𝑒𝑤 ≤ F𝑜𝑙𝑑 + ⟨𝑔, 𝑝 − 𝑥′⟩𝐹 +

1
2𝐿||𝑝 − 𝑥

′||2𝐹 then
15: check = 1
16: else
17: 𝐿 = 𝑎𝐿
18: end if
19: end while
20: return 𝑝, 𝐿
21: end function
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Algorithm 4 Definitions of the Feval and CzProd functions used in Algorithm 3.

1: function Feval(𝑥, 𝑥𝑛 , 𝑧𝑑 , 𝑢, 𝑣, ℱ, 𝒯, 𝑦, 𝛼, 𝛽, 𝜎, 𝜂, 𝑉, 𝑌, 𝑍, 𝐾) // Approximates F (𝑥)
as in section 6.3.2.

2: 𝑧 = ℱ(𝑥)
3: 𝐹1 = −⟨𝑢,OmegaProd(𝑢, 𝑧, 𝑧𝑑 , 𝜎, 𝑉, 𝑌, 𝑍, 𝐾)⟩𝐹 // OmegaProd defined below
4: 𝐹2 = 2⟨𝑣,OmegaProd(1𝑉 , 𝑧, 𝑧𝑑 , 𝜎, 𝑉, 𝑌, 𝑍, 𝐾)⟩𝐹
5: 𝐹3 = 𝛼||𝒯(𝑥) − 𝑦||2𝐹 + 𝜂||𝑥 − 𝑥𝑛||2𝐹
6: return 𝐹1 + 𝐹2 + 𝐹3
7: end function
8: function CzProd(𝑧, 𝑣, 𝑢, 𝑣𝑛 , 𝜎, 𝑉, 𝑌, 𝑍, 𝐾) // Approximates 𝒞(𝑧)𝑣 as in the end of
section 6.3.1.

9: 𝐴 ∶ 𝑤 ↦ (OmegaProd(𝑤, 𝑧, 𝑧𝑑 , 𝜎, 𝑉, 𝑌, 𝑍, 𝐾))|𝑌
10: 𝑤1 = −𝑢|𝑌⊙𝐴(𝑢 ⊙ 𝑣)
11: 𝑤2 = 𝑣𝑛|𝑌⊙𝐴(𝑣)
12: 𝑤3 = 𝐴(𝑣𝑛⊙𝑣)
13: return 𝑤1 +𝑤2 +𝑤3
14: end function
15: function OmegaProd(𝑣, 𝑧, 𝑧𝑑 , 𝜎, 𝑉, 𝑌, 𝑍, 𝐾) // Approximates Ω(𝑧, 𝑧𝑑)𝑣 via the

Nyström extension as in (6.15).
16: 𝜔 ∶ 𝑖𝑗 ↦ Ω𝑖𝑗(𝑧, 𝑧𝑑 , 𝜎) // Defined as in (6.3)
17: 𝑋1 = random_subset(𝑌, 𝐾/2) // A random subset of 𝑌 of size 𝐾/2
18: 𝑋2 = random_subset(𝑍, 𝐾/2) // A random subset of 𝑍 of size 𝐾/2
19: 𝑋 = 𝑋1 ∪ 𝑋2
20: 𝜔𝑋𝑋 = 𝜔(𝑋, 𝑋)
21: 𝜔𝑉𝑋 = 𝜔(𝑉, 𝑋)
22: 𝜔𝑋𝑋𝑣′ = 𝜔𝑇𝑉𝑋𝑣 // Solving the linear system for 𝑣′
23: return 𝜔𝑉𝑋𝑣′
24: end function
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Algorithm 5 Graph-based joint reconstruction-segmentation algorithm implement-
ing (6.9).

1: function JointReconSeg(𝑦, 𝒯, 𝐷∗, 𝑧𝑑 , 𝑓̃, 𝑉, 𝑌, 𝑍, ℱ, 𝜎, 𝑅,𝑊, 𝛼, 𝛽, 𝜂𝑛 , 𝜈𝑛 , 𝜏, 𝜀, 𝜇, 𝑎, 𝑏,
𝐿0, 𝜉, 𝐾, 𝑁) // Computes the first 𝑁 iterates of (6.9).

2: 𝑥0 = cheap_reconstruction(𝑦, 𝒯) // Initial cheap reconstruction
3: 𝑢0 = SDIE_seg(ℱ(𝑥0), 𝑧𝑑 , 𝜇, 𝑓̃, 𝜏, 𝜀, 𝜎) // Initial SDIE segmentation (see

chapter 5) on the graph built
from the features (ℱ(𝑥0), 𝑧𝑑)

4: for 𝑛 = 0 to 𝑁 − 1 do // The iterations of (6.9)
5: 𝑥′0 = 𝑥𝑛
6: 𝑣𝑛 =

1
2(𝑢𝑛)

2 + 1
2𝜀𝑊(𝑢𝑛) +

1
4𝜇 ⊙ (𝑢𝑛 − 𝑓̃)2 // Squaring elementwise

7: 𝑘 = 0
8: while iPiano stopping condition not met do
9: 𝛿𝑥′ = 0
10: if 𝑘 > 0 then
11: 𝐿𝑘 = 𝑏𝐿𝑘−1
12: 𝛿𝑥′ = 𝑥′𝑘 − 𝑥′𝑘−1
13: end if
14: [𝑥′𝑘+1, 𝐿𝑘] = iPiano(𝑥′𝑘 , 𝑥𝑛 , 𝑧𝑑 , 𝑢𝑛 , 𝑣𝑛 , ℱ, 𝒯, 𝐷∗, 𝑦, 𝑅, 𝛼, 𝛽, 𝜎, 𝜂𝑛 , 𝛿𝑥′, 𝐿𝑘

𝜉, 𝑎, 𝑏, 𝑉, 𝑌, 𝐾)
15: 𝑘 = 𝑘 + 1
16: end while
17: 𝑥𝑛+1 = 𝑥′𝑘 // Solving (6.9a)
18: 𝜇′ = 𝜇 + 2𝜈𝑛𝛽−1𝜒𝑌
19: 𝑓̃′ = 𝑓̃ + 𝑢𝑛⊙𝜒𝑌
20: 𝑢𝑛+1 = SDIE_seg(ℱ(𝑥𝑛+1), 𝑧𝑑 , 𝜇′, 𝑓̃′, 𝜏, 𝜀, 𝜎) // Solving (6.9b)
21: end for
22: return {𝑥𝑛}𝑁𝑛=0, {𝑢𝑛}𝑁𝑛=0
23: end function
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Let us assume that our candidate minimisers are close to 𝑥𝑛 (which will become a
more accurate assumption the larger 𝜂𝑛 is). Then we shall simplify this functional
via the linearisation

F1(𝑧) +F2(𝑧) ≈ F1(𝑧𝑛) +F2(𝑧𝑛) + ⟨𝑥 − 𝑥𝑛 , ℱ∗ (∇𝑧F1(𝑧𝑛) + ∇𝑧F2(𝑧𝑛))⟩
≃ ⟨𝑥, 𝑔𝑛⟩

where 𝑧 ∶= ℱ(𝑥), 𝑧𝑛 ∶= ℱ(𝑥𝑛), and 𝑔𝑛 ∶= ℱ∗ (∇𝑧F1(𝑧𝑛) + ∇𝑧F2(𝑧𝑛)). Given this
assumption it follows that the linearisation of the objective function of (6.9a) is

𝑅(𝑥) + ⟨𝑥, 𝑔𝑛⟩𝐹 + 𝛼||𝒯(𝑥) − 𝑦||2𝐹 + 𝜂𝑛||𝑥 − 𝑥𝑛||2𝐹

which is equivalent to

𝑅(𝑥) + 𝛼||𝒯(𝑥) − 𝑦||2𝐹 + 𝜂𝑛||𝑥 − 𝑥̃𝑛||2𝐹 (6.16)

where 𝑥̃𝑛 ∶= 𝑥𝑛 −
1
2𝜂

−1
𝑛 𝑔𝑛.

Note 37. If we define 𝑅𝑛(𝑥) ∶= 𝑅(𝑥) + 𝜂𝑛||𝑥 − 𝑥̃𝑛||2𝐹 then minimising (6.16) is the
same as solving

argmin
𝑥

𝑅𝑛(𝑥) + 𝛼||𝒯(𝑥) − 𝑦||2𝐹

which is of the form of a standard variational image reconstruction problem (6.2),
which we discussed in section 6.1.1. In this thesis we will continue to solve this
problem via iPiano, but given its standard form we seek to improve on this in future
work by using the standard methods from the literature (a subset of which we listed
in section 6.1.1).

Thus, our difficulty is reduced to computing 𝑥̃𝑛, which requires computing 𝑔𝑛.
Defining 𝒞𝑛 ∶= (𝐺𝑛)𝑌𝑍⊙Ω𝑌𝑍(𝑧𝑛 , 𝑧𝑑), by considering (6.14) we get that

𝑔𝑛 =
4𝛽
𝑞𝜎2ℱ

∗ (𝒞𝑛 (
𝑧𝑛
𝑧𝑑) − (𝒞𝑛1𝑁+𝑁𝑑) ⊙ 𝑧𝑛)

which we can compute via the methods described at the end of section 6.3.1.
We describe the joint reconstruction-segmentation scheme using this linearised

(6.9a) in Algorithm 6.

6.6. A simple denoising-segmentation test
To demonstrate this scheme in action, we will apply it to a noised version of the
“two cows” example (i.e. Example 5.3.1) from the previous chapter. We will exhibit
two parameter set-ups, which demonstrate different behaviour.

6.6.1. The example
Example 6.6.1 (Noised two cows). We take the reference data 𝑍 and reference
labels 𝑓̃ as in Example 5.3.1. The true image 𝑥∗ to be reconstructed and segmented



6

150 6. Joint Reconstruction-Segmentation on Graphs

Algorithm 6 Graph-based joint reconstruction-segmentation algorithm implement-
ing (6.9) using the linearised (6.9a).

1: function JointReconSeg2(𝑦, 𝒯, 𝐷∗, 𝑧𝑑 , 𝑓̃, 𝑉, 𝑌, 𝑍, ℱ, 𝜎, 𝑅,𝑊, 𝛼, 𝛽, 𝜂𝑛 , 𝜈𝑛 , 𝜏, 𝜀, 𝜇, 𝑎, 𝑏,
𝐿0, 𝜉, 𝐾, 𝑁) // Computes the first 𝑁 iterates of (6.9) using the linearised (6.9a).

2: 𝑥0 = cheap_reconstruction(𝑦, 𝒯) // Initial cheap reconstruction
3: 𝑢0 = SDIE_seg(ℱ(𝑥0), 𝑧𝑑 , 𝜇, 𝑓̃, 𝜏, 𝜀, 𝜎) // Initial SDIE segmentation
4: for 𝑛 = 0 to 𝑁 − 1 do // The iterations of (6.9)
5: 𝑣𝑛 =

1
2(𝑢𝑛)

2 + 1
2𝜀𝑊(𝑢𝑛) +

1
4𝜇 ⊙ (𝑢𝑛 − 𝑓̃)2 // Squaring elementwise

6: 𝑧𝑛 = ℱ(𝑥𝑛)
7: 𝑤1 = CzProd(𝑧𝑛 , (𝑧𝑛 , 𝑧𝑑), 𝑢𝑛 , 𝑣𝑛 , 𝜎, 𝑉, 𝑌, 𝑍, 𝐾) // See Algorithm 4
8: 𝑤2 = CzProd(𝑧𝑛 ,1𝑉 , 𝑢𝑛 , 𝑣𝑛 , 𝜎, 𝑉, 𝑌, 𝑍, 𝐾)
9: 𝑔𝑛 =

4𝛽
𝑞𝜎2ℱ

∗(𝑤1 −𝑤2⊙ 𝑧𝑛)
10: 𝑥̃𝑛 = 𝑥𝑛 −

1
2𝜂

−1
𝑛 𝑔𝑛

11: 𝑥′0 = 𝑥𝑛
12: 𝑘 = 0
13: while iPiano stopping condition not met do
14: 𝛿𝑥′𝑘 = 0
15: if 𝑘 > 0 then
16: 𝐿𝑘 = 𝑏𝐿𝑘−1
17: 𝛿𝑥′𝑘 = 𝑥′𝑘 − 𝑥′𝑘−1
18: end if
19: F𝑜𝑙𝑑 = 𝛼||𝒯(𝑥′𝑘) − 𝑦||2𝐹 + 𝜂𝑛||𝑥′𝑘 − 𝑥̃𝑛||2𝐹
20: ∇F = 2𝛼𝐷∗𝑥′𝑘(𝒯(𝑥

′
𝑘) − 𝑦) + 2𝜂𝑛(𝑥′𝑘 − 𝑥̃𝑛)

21: check = 0 // Check variable for condition (6.7)
22: while check = 0 and 𝐿𝑘 < 1010 do // Backtracking loop
23: 𝜃 = 1.99(1 − 𝜉)/𝐿𝑘
24: 𝑥′𝑘+1 = prox𝜃𝑅(𝑥′𝑘 − 𝜃∇F + 𝜉𝛿𝑥′𝑘) // Computed using FISTA [6]
25: F𝑛𝑒𝑤 = 𝛼||𝒯(𝑥′𝑘+1) − 𝑦||2𝐹 + 𝜂𝑛||𝑥′𝑘+1 − 𝑥̃𝑛||2𝐹
26: if F𝑛𝑒𝑤 ≤ F𝑜𝑙𝑑 + ⟨∇F , 𝑥′𝑘+1 − 𝑥′𝑘⟩𝐹 +

1
2𝐿𝑘||𝑥

′
𝑘+1 − 𝑥′𝑘||2𝐹 then

27: check = 1
28: else
29: 𝐿𝑘 = 𝑎𝐿𝑘
30: end if
31: end while
32: 𝑘 = 𝑘 + 1
33: end while
34: 𝑥𝑛+1 = 𝑥′𝑘 // Solving the linearised (6.9a)
35: 𝜇′ = 𝜇 + 2𝜈𝑛𝛽−1𝜒𝑌
36: 𝑓̃′ = 𝑓̃ + 𝑢𝑛⊙𝜒𝑌
37: 𝑢𝑛+1 = SDIE_seg(ℱ(𝑥𝑛+1), 𝑧𝑑 , 𝜇′, 𝑓̃′, 𝜏, 𝜀, 𝜎) // Solving (6.9b)
38: end for
39: return {𝑥𝑛}𝑁𝑛=0, {𝑢𝑛}𝑁𝑛=0
40: end function
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will be also be as in that example. Finally, we take the observed data 𝑦 (see Fig. 6.1)
to be 𝑥∗ plus Gaussian noise with mean zero and standard deviation 0.6, created
using imnoise. We generate 𝑦 once and use the same 𝑦 throughout this section.
Since this example is a denoising with no further transformations, 𝒯 is the identity.

Figure 6.1: The observed data 𝑦 for Example 6.6.1.

Note that the noise level in this example corresponds to a significant amount of
noise, as the mean value of 𝑥∗ is 0.5116. This noise rate was chosen to be a stress
test of the method.

6.6.2. Set-up
Parameters
We took 𝛼 = 50, 𝜂𝑛 = 2𝛽 × 2𝑛, and 𝜎 = 3. For the SDIE scheme for (6.9b), we
took 𝜏 = 𝜀 = 0.003, 𝜇 = 50𝜒𝑍, and stopping condition parameter 𝛿 = 10−10. For
the iPiano scheme for (6.9a), we took 𝜉 = 0.45, 𝐿0 = 1000, 𝑎 = 2, 𝑏 = 1, and
𝛼𝑘 = 0.099/𝐿𝑘. For all matrix compressions, we took 𝐾 = 70.

Next, we took as regulariser 𝑅 the Huber-TV [15] function:

𝑅(𝑥) = 10∑
𝑖∈𝑌
{||(∇𝑥)𝑖||2 − 0.005, if ||(∇𝑥)𝑖||2 > 0.01,
||(∇𝑥)𝑖||22/0.02, if ||(∇𝑥)𝑖||2 ≤ 0.01,

where ∇𝑥 is the vector of forward finite differences between 𝑥 at the pixel 𝑖 and at its
neighbouring pixels, i.e. for each 𝑗 either directly above/below or directly left/right
of 𝑖, (∇𝑥)𝑖 has a component with the value 𝑥𝑗 − 𝑥𝑖. This choice of regulariser was
fairly arbitrary; we have not yet explored the impact of the choice of regulariser on
the behaviour of this scheme.

Finally, we considered two cases for 𝛽 and 𝜈𝑛:
(I) 𝛽 = 0.05 and 𝜈𝑛 = 0.25 × (1.3)𝑛.
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(II) 𝛽 = 0.0001 and 𝜈𝑛 = 20 × (1.3)𝑛.

Initialisation
The initial reconstruction 𝑥0 was computed via a standard TV-based (i.e., Rudin–
Osher–Fatemi [22]) denoising, with fidelity term 0.1. That is

𝑥0 = argmin
𝑥

TV(𝑥) + 0.1||𝑥 − 𝑦||2𝐹

where TV(𝑥) ∶= ∑𝑖∈𝑌 ||(∇𝑥)𝑖||2 for ∇𝑥 defined as above.
The initial segmentation 𝑢0 of 𝑥0 was computed via the SDIE scheme with the

above parameters and with initial state 0.48𝜒𝑌 + 𝑓̃.

The feature map and its adjoint
In the above, we needed to be able to quickly compute ℱ and ℱ∗. This constrains
somewhat our choice of features.

As a simple choice we define ℱ as follows. For each pixel 𝑖 ∈ 𝑌, suppose we
have a map 𝒩𝑖 ∶ {1, ..., 𝑘} → 𝑌 which defines the 𝑘 “neighbours” of 𝑖 in 𝑌 (in the
sense of the image, not the graph) and we likewise have a kernel 𝒦 ∶ {1, ..., 𝑘} → ℝ.
Then for each channel 𝑠 ∈ {1, ..., 𝓁} of 𝑥, 𝑖 ∈ 𝑌, and 𝑝 ∈ {1, ..., 𝑘}, we define 𝒢(𝑥𝑠) ∶=
𝑧𝑠 ∈ ℝ𝑁×𝑘, where 𝑧𝑠 is given by

𝑧𝑠𝑖𝑝 ∶= 𝒦(𝑝)𝑥𝑠𝒩𝑖(𝑝).

Then 𝑧 = ℱ(𝑥) ∈ ℝ𝑁×𝑘𝓁 is defined by 𝑧 = (𝑧1 𝑧2 ... 𝑧𝓁). We can then derive
the adjoint of ℱ with respect to ⟨⋅, ⋅⟩𝐹, i.e. the map ℱ∗ ∶ ℝ𝑁×𝑞 → ℝ𝑁×𝓁 such that for
all 𝑥 ∈ ℝ𝑁×𝓁 and 𝑤 ∈ ℝ𝑁×𝑞

⟨ℱ(𝑥), 𝑤⟩𝐹 = ⟨𝑥, ℱ∗(𝑤)⟩𝐹 .
Write 𝑤 = (𝑤1 𝑤2 ... 𝑤𝓁), where 𝑤𝑠 ∈ ℝ𝑁×𝑘. Then since

⟨𝒢(𝑥𝑠), 𝑤𝑠⟩𝐹 =
𝑘

∑
𝑖∈𝑌,𝑝=1

𝑥𝑠𝒩𝑖(𝑝)𝒦(𝑝)𝑤
𝑠
𝑖𝑝

=∑
𝑗∈𝑌
𝑥𝑠𝑗 ( ∑

{(𝑖,𝑝)∣𝒩𝑖(𝑝)=𝑗}
𝒦(𝑝)𝑤𝑠𝑖𝑝)

it follows that 𝒢 has adjoint 𝒢∗ ∶ ℝ𝑁×𝑘 → ℝ𝑁 given by

(𝒢∗(𝑤𝑠))𝑗 = ∑
{(𝑖,𝑝)∣𝒩𝑖(𝑝)=𝑗}

𝒦(𝑝)𝑤𝑠𝑖𝑝.

Furthermore, by construction ℱ∗(𝑤) = (𝒢∗(𝑤1) 𝒢∗(𝑤2) ... 𝒢∗(𝑤𝓁)).
In particular, we took 𝑘 = 9, with the neighbours of pixel 𝑖 corresponding to the

3×3 square centred on 𝑖, and 𝒦 being 9 multiplied by a 3×3 Gaussian kernel with
standard deviation 1, centred on the centre of that square. Since the image is RGB
and hence 𝓁 = 3, it follows that 𝑞 = 27.
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6.6.3. Results for parameter set-up (I)
We first examine the behaviour of the scheme for the parameter set-up (I). The
bottle-neck in terms of run time was found to be in solving (6.9a). We exhibit
two strategies to alleviate this: truncating the number of iterations of the iPiano
scheme, and using the linearised scheme from section 6.5. We give here results for
three cases: truncation to a single step, truncation to five steps, and the linearised
case.

All run times are for MATLAB R2019a implementations performed on a ASUS
ZenBook with Intel® Core™ i5-8265U CPU @ 1.60GHz and 8.00 GB RAM.

Single-step iPiano

Figure 6.2: Results after 30 iterations of (6.9) using the full (6.9a) with iPiano restricted to a single step,
and using parameter set-up (I).

We give results for iPiano truncated to a single step in Fig. 6.2. In that figure, the
top left is 𝑥0, i.e. the TV-denoised 𝑦. Bottom left is the ground truth masked with
𝑢0, i.e. the SDIE segmentation of 𝑥0. The middle column are the reconstruction
at iteration 30 and the ground truth masked with the segmentation at iteration 30.
The top-right shows the most accurate reconstruction, which occurred at iteration
7 and had relative error 0.1805 to the ground truth. Finally, the bottom right shows
the ground truth masked with the most accurate segmentation, which occurred at
iteration 25 and was 94.7998% accurate (it should be noted that the segmentation
at iteration 8 was already 94.7161% accurate).

It took around 20 minutes to compute all 30 iterations.

Five-step iPiano
We give results for iPiano truncated to five steps in Fig. 6.3. In that figure, the
top left is 𝑥0, i.e. the TV-denoised 𝑦. Bottom left is the ground truth masked with
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Figure 6.3: Results after 30 iterations of (6.9) using the full (6.9a) with iPiano restricted to five steps,
and using parameter set-up (I).

𝑢0, i.e. the SDIE segmentation of 𝑥0. The middle column are the reconstruction
at iteration 30 and the ground truth masked with the segmentation at iteration 30.
The top-right shows the most accurate reconstruction, which occurred at iteration
4 and had relative error 0.1867 to the ground truth. Finally, the bottom right shows
the ground truth masked with the most accurate segmentation, which occurred at
iteration 20 and was 93.6670% accurate.

It took around 40 minutes to compute all 30 iterations.

Linearised (6.9a)
After the initial segmentation, Fig. 6.4 shows 𝑥̃0 (see (6.16) and the line following)
and the corresponding 𝑥1. As can be observed, this parameter set-up has induced
an extreme segmentation-driven contrast. The scheme then breaks down, as when
we try to use the Nyström method to compute the next segmentation, we find that
the submatrix 𝜔𝑋𝑋 has infinite condition number.

Discussion
We notice a number of important features of these results. First and foremost, it
seems that the reconstruction and segmentation do not converge to the ground
truths with this parameter set-up. As was previously discussed, for the reconstruc-
tion this is not unexpected and is not necessarily undesired. That is, the increas-
ing inaccuracy of later reconstructions derives largely from the increasing levels of
segmentation-driven contrast. As can be seen by the relative iterations at which
the best segmentation is attained vs. the best reconstruction, this increase in con-
trast does for a time lead to better segmentations. However, at a certain point this
stops being the case, and the accuracy of the segmentation drops as it settles on a
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(a) The image 𝑥̃0, i.e. segmentation-driven adjust-
ment of the initial reconstruction.

(b) The first reconstruction 𝑥1, i.e. the minimiser of
(6.16) for 𝑛 = 0.

Figure 6.4: After the initial segmentation, the segmentation-driven adjustment 𝑥̃0 of 𝑥0 and the cor-
responding first reconstruction 𝑥1, using the linearised (6.9a) from section 6.5, and using parameter
set-up (I).

constant segmentation. One possible explanation for this is that it is because of the
fact that, due to the increase in contrast, the edge weights both between vertices
in 𝑌 and 𝑌 and between vertices in 𝑌 and 𝑍 are on average lower in the graph
generated by 𝑥30 compared to the graph generated by 𝑥0.6 This will cause there
to be less penalisation of the 𝑢 = (0𝑌 , 𝑓̃) candidate, potentially explaining why we
see something close to it eventually dominate.

Secondly, and perhaps more worryingly, increased iterations of iPiano seem to
result in less accurate reconstructions and segmentations, and a greatly increased
run time. Inspecting the values of the objective functional in (6.9a) during the iP-
iano iterations, we discovered that it frequently increased. This suggests that the
problem is that our approximations of the gradient in section 6.3.1 are insufficiently
accurate, and these errors in the gradient are compounding. We tested this hy-
pothesis by scaling down the image to the point that we could compute the exact
gradient, and found that in this scaled-down case the objective functional in (6.9a)
monotonically decreased during the iPiano iterations.

Finally, we observed that in the linearised case if 𝑥̃ has too much segmentation-
driven contrast, then the segmentation method breaks down as the weight matrix
becomes singular. Therefore we must not have 𝛽/𝜂𝑛 too large in the linearised
scheme.

6.6.4. Results for parameter set-up (II)
We now examine the behaviour of the scheme for the parameter set-up (II). We
found for this set-up that the iPiano scheme could be run to convergence. We give
here results for two cases: solving (6.9) with the full (6.9a), and solving (6.9) with
the linearised (6.9a).

6For example, in the single-step case the average edge weight between the first 1000 vertices in 𝑌 and
themselves fell from 0.9970 to 0.9789, and the average weight between the first 1000 vertices in 𝑌
and the first 1000 vertices of 𝑍 fell from 0.9950 to 0.9841.
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The full scheme

Figure 6.5: Results after 10 iterations of (6.9) using the full (6.9a), and using parameter set-up (II).

We show the results of using the full scheme in Fig. 6.5. In that figure, the
top left is 𝑥0, i.e. the TV-denoised 𝑦. Bottom left is the ground truth masked with
𝑢0, i.e. the SDIE segmentation of 𝑥0. The middle column are the reconstruction
at iteration 10 and the ground truth masked with the segmentation at iteration 10.
The top-right shows the most accurate reconstruction, which occurred at iteration
2 and had relative error 0.2145 to the ground truth. Finally, the bottom right shows
the ground truth masked with the most accurate segmentation, which occurred at
iteration 4 and was 94.8597% accurate.

It took around 30 minutes to compute all 10 iterations.

The linearised scheme
We show the results of using the linearised scheme in Fig. 6.6. In that figure, the
top left is 𝑥0, i.e. the TV-denoised 𝑦. Bottom left is the ground truth masked with
𝑢0, i.e. the SDIE segmentation of 𝑥0. The middle column are the reconstruction
at iteration 10 and the ground truth masked with the segmentation at iteration 10.
The top-right shows the most accurate reconstruction, which occurred at iteration
3 and had relative error 0.2014 to the ground truth. Finally, the bottom right shows
the ground truth masked with the most accurate segmentation, which occurred at
iteration 5 and was 94.8538% accurate.

It took around 10 minutes to compute all 10 iterations.

Discussion
Much of what we observe here is similar to before, however there are some notable
differences. First with this parameter set-up, the linearised scheme works and gives
results which are of equal quality to the full scheme. Second, the iPiano scheme
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Figure 6.6: Results after 10 iterations of (6.9) using the linearised (6.9a), and using parameter set-up
(II).

ran significantly faster with this parameter set-up, such that we could run it to
convergence, which took around 20 iPiano iterations for the full scheme (recall that
for parameter set-up (I) we truncated to at most 5 iPiano iterations) and less than
10 iPiano iterations for the linearised scheme. Third, we found that the iPiano
scheme roughly monotonically decreased the energy for the full scheme, and for
the linearised scheme always monotonically decreased the energy, reinforcing our
above theory that the issues with iPiano in set-up (I) were caused by errors in the
computation of the gradient. Finally, this time the reconstruction converges without
going overboard on the contrast, though the converged reconstruction is still worse
than the best reconstruction, and the best reconstructions are worse than for set-up
(I) (though the best segmentations are better).

6.7. Conclusions and directions for future work
In this chapter, we have outlined a framework for joint reconstruction-segmentation
on graphs, understood as an iterative scheme. As in our earlier segmentation re-
sults, complications arise because of the large size of the matrices involved, requir-
ing some careful analysis to reduce the problem to that of computing a number of
matrix-vector products which can be done via the Nyström method. We presented
an algorithm for this scheme in Algorithm 5. We furthermore considered a simplified
scheme, where by linearising the segmentation-driven regularisation in (6.9a) we
reduce that problem to a standard image reconstruction problem. We presented an
algorithm for this simplified scheme in Algorithm 6. We then performed some basic
numerical experiments with a highly noised version of the “two cows” example from
the previous chapter.

However, this work is still in early days, based on as-yet unpublished material,
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and there are many directions for future work.
First, as we saw above the scheme is highly influenced by parameter choices,

and there are a large number of parameters that require tuning. It will therefore
be important to investigate how to tune these parameters in a straightforward and
reliable way, in order to get high-quality results. Moreover, we have made a number
of choices above regarding our regulariser, our initial reconstruction method, and
the use of iPiano to solve problems like (6.9a), and we seek to investigate the
impact of those choices and identify any potential improvements.

Second, we also saw that in neither of the parameter cases we looked at did the
scheme converge to the best reconstruction-segmentation. Rather, the segmenta-
tion converged to something close to (0𝑌 , 𝑓̃), and the reconstruction would improve
for a few iterations before declining in quality, in the former case significantly as the
segmentation-driven contrast took over. This might be solvable by better param-
eter choices, or by the parameters adapting appropriately over the course of the
scheme. Alternatively, we might have to develop some smart stopping condition
that can identify when the scheme has done the best it can.

Third, it would seem that the gradient of the energy in (6.9a) is not being approx-
imated sufficiently accurately by the Nyström method described in section 6.3.1.
Future work should therefore investigate ways to improve this approximation. One
avenue might be to consider the NFFT method of Alfke et al. [2] as an alternative
method for computing the required matrix-vector products. Another avenue will be
to consider how we can reduce the dimension of our problem, for example by re-
constructing the image as a collection of sub-images, which we could also connect
to only a subset of our reference data, and thereby form a smaller graph. However
such an approach of splitting up our dataset might cause us to lose accuracy, and
might also lead to the sub-images being inconsistently reconstructed or segmented
resulting in a very patchwork final reconstruction-segmentation.

Fourth, one modification that could improve the quality of the scheme greatly
is to incorporate the “human-in-the-loop” idea from Qiao et al. [20]. That is, in
our experiments above the first few iterations did a great job clearing away a lot
of the noise in the initial segmentation, but then got stuck with a segmentation
accuracy in the low-to-mid 90s%, not able to identify the misclassified grass, wall,
and parts of the cow’s face. This in turn in set-up (I) led to artefacts from that
misclassification getting included in the reconstruction. A human-in-the-loop could
identify this, pause the scheme, spend a few minutes in an image editor tidying
things up (erasing the wall, most of the grass, and filling in the face) before handing
the tidied up segmentation back to the scheme to continue working with.

Finally, on the theoretical side we want to investigate the convergence properties
of this scheme, making use of the theory from Attouch et al. [4]. In particular, we
want to understand the conditions under which the iterative scheme (6.9) converges
to a minimiser of (6.8).
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7
Mean Curvature Flow on

Graphs

Mathematics is the art of giving the same name to different things.

Henri Poincaré, The Future Of Mathematics

In chapter 3, we developed a rigorous link between graph AC flow and the
graph MBO scheme. In the continuum, those two flows both have important
connections to mean curvature flow (MCF). It was therefore conjectured by
Van Gennip, Guillen, Osting, and Bertozzi [17] that these connections would
translate into the graph context, i.e. that graph AC flow and the graph MBO
scheme would have some link to the graph MCF defined in that paper. In
this chapter, we will first present some promising Γ-convergence results that
support this conjecture. However, we will then demonstrate a key flaw in the
[17] definition of graph MCF which prevents any such connection. Finally,
we will present a definition that avoids this flaw and formally resembles the
MBO scheme, and give directions for future research.

Parts of this chapter have been published in SIAM J. Math. Anal. 52 (2020) [10].
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7.1. The continuum background

I n this section, we shall give a brief overview of mean curvature flow (MCF) in
the continuum. We will not go into too many details of the continuum setting, as

such details lie beyond the scope of this thesis. In the continuum, a closed oriented
hypersurface Σ𝑡 ⊂ ℝ𝑛 is defined to evolve under MCF when the normal velocity at
a point 𝑥 ∈ Σ𝑡 is the mean of the principal curvatures at 𝑥. However, this definition
can break down when the evolving surface develops singularities, so a more general
definition was desired.

The first such reformulation was developed by Brakke [8] using tools from ge-
ometric measure theory. A later and highly fruitful reformulation was the level-set
approach developed by Osher and Sethian [22], Evans and Spruck [15], and Chen,
Giga, and Goto [11]. Supposing that 𝜙 ∶ ℝ𝑛×[0,∞) → ℝ satisfies: 𝜙(𝑥, 0) is contin-
uous in 𝑥, 𝜙(𝑥, 0) > 0 for 𝑥 “inside” Σ0, 𝜙(𝑥, 0) < 0 for 𝑥 “outside” Σ0, 𝜙(𝑥, 0) = 0
for 𝑥 ∈ Σ0, and 𝜙 is a weak (viscosity) solution to

𝜕𝜙
𝜕𝑡 = −|∇𝜙|div(

∇𝜙
|∇𝜙|) , (7.1)

then Σ𝑡 evolves by MCF if and only if Σ𝑡 = {𝜙(⋅, 𝑡) = 0}. That is, MCF trajectories
can be reformulated as level sets of viscosity solutions to (7.1). As we will briefly
discuss in this chapter, this reformulation has inspired the definition of graph MCF
used by Elmoataz and co-authors, e.g. in El Chakik et al. [13].

Another reformulation, relevant to the definition of graph MCF from Van Gennip
et al. [17] which shall be the focus of this chapter, is the variational formulation
devised by Almgren, Taylor, and Wang [2]. Let Φ be the surface area functional,
i.e. the map which sends a surface to the area of that surface. Then they define
the energy

E (Ω, Ω′, 𝛿𝑡) ∶= Φ(𝜕Ω′) + 1
𝛿𝑡 ∫ΩΔΩ′

dist(𝑥, 𝜕Ω) 𝑑𝑥 (7.2)

where Ω,Ω′ ⊆ ℝ𝑛, 𝜕Ω′ is the boundary of Ω′, and ΩΔΩ′ is the symmetric difference
of Ω and Ω′. Then if we define approximate discrete-time flows by

Ω𝛿𝑡𝑘+1 ∈ argmin
Ω

E (Ω𝛿𝑡𝑘 , Ω, 𝛿𝑡) , Ω𝛿𝑡(𝑡) ∶= Ω𝛿𝑡⌊𝑡/𝛿𝑡⌋

they define a flat Φ curvature flow as one that arises as a limit of approximate
flows as 𝛿𝑡 → 0 along some subsequence. These coincide with MCF when MCF
does not exhibit singularities. So we can think of MCF as a kind of gradient flow of
the surface area of Σ𝑡, as it is a limit of a kind of generalised minimising movement.
A note that will be important for later is that Φ(𝜕Ω) is given by the total variation
of 𝜒Ω, so MCF is a kind of gradient flow of total variation. A similar minimising
movements scheme was developed by Luckhaus and Sturzenhecker [20] for their
weak formulation of MCF.

Finally, it is well-studied that, in the continuum, AC flow, the MBO scheme,
and MCF are interrelated in important ways. The MBO scheme was developed in
[6] as a means of approximating motion according to MCF, and that paper gave
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a formal analysis showing that diffusion of a set locally corresponded to motion
with curvature dependent velocity, suggesting a convergence as the MBO time-step
(corresponding to 𝜏 in the graph case) goes to zero. This formal analysis was then
supported by rigorous convergence proofs by Evans [16] and Barles and Georgelin
[3], making use of the level-set formulation of MCF. Recently, Swartz and Kwan Yip
[24] presented an elementary proof of the convergence via the weak formulation
of MCF in Luckhaus and Sturzenhecker [20]. The connections between Ginzburg–
Landau dynamics and mean curvature flow have been extensively studied, dating
back to a formal analysis by Allen and Cahn [1]. The basic convergence result, see
e.g. [9, 14, 23], is that as 𝜀 → 0 the solution to the AC flow tends to a phase-
separation with the interface evolving by MCF. Thus a method of approximating
MCF is as a singular limit of “phase fields” evolving under AC flow.1 These results
suggest the conjecture that graph MCF should also be linked to the graph MBO
scheme and AC flow.

7.2. Γ-convergence results
A positive answer to the question of linking the graph MBO scheme, AC flow, and
MCF has been suggested by Γ-convergence2 results linking the associated energies
of graph AC flow [19] and the MBO scheme [18] to graph total variation

TV(𝑢) ∶= 1
2 ∑
𝑖,𝑗∈𝒱

𝜔𝑖𝑗|𝑢𝑖 − 𝑢𝑗|

which, based on the continuum analogy, should be a Lyapunov functional for any
reasonable definition of graph MCF. We here extend these results toGL𝜀 andGL𝜀,𝜇,𝑓̃
with the double-obstacle potential, and to the SDIE Lyapunov functionals 𝐻 and 𝐻0
(with and without fidelity forcing, respectively).

First, let us define Γ-convergence.
Definition 7.2.1 (Γ-convergence, see [7, Definitions 1.5 and 1.45]). Let 𝑋 be a
metric space. A sequence 𝑓𝑛 ∶ 𝑋 → ℝ ∪ {±∞} Γ-converges to a function 𝑓 ∶ 𝑋 →
ℝ ∪ {±∞} if for all 𝑥 ∈ 𝑋:
(i) (Lim-inf inequality) For all sequences 𝑥𝑛 in 𝑋 such that 𝑥𝑛 → 𝑥

𝑓(𝑥) ≤ liminf𝑛 𝑓𝑛(𝑥𝑛),

(ii) (Existence of a recovery sequence for the 𝑓𝑛 and 𝑓) There exists a sequence
𝑥̄𝑛 in 𝑋 such that 𝑥̄𝑛 → 𝑥 such that

𝑓(𝑥) = lim
𝑛
𝑓𝑛(𝑥̄𝑛).

Note that there are numerous equivalent conditions for (ii). Finally, for a continuous
parameter 𝛼 defining a family of functions 𝑓𝛼 ∶ 𝑋 → ℝ ∪ {±∞}, we define 𝑓 to be
the Γ-limit of 𝑓𝛼 as 𝛼 → 0 if for all sequences 𝛼𝑛 with 𝛼𝑛 → 0, 𝑓𝛼𝑛 Γ-converges to 𝑓.
1See [4, 9, 14] for details on this method.
2For details on Γ-convergence, see e.g. Braides [7] and Dal Maso [21].
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This notion of convergence is important because of the following theorem.

Theorem 7.2.2 (See [7, Theorem 1.21]). Let 𝑋 be a metric space, and let 𝑓𝑛 ∶ 𝑋 →
ℝ ∪ {±∞} be a sequence of functions with Γ-limit 𝑓, such that there exists a non-
empty compact set 𝐾 ⊆ 𝑋 such that for all 𝑛, inf𝑋 𝑓𝑛 = inf𝐾 𝑓𝑛. Then there exists
a minimiser of 𝑓 in 𝑋 and min𝑋 𝑓 = lim𝑛 inf𝑋 𝑓𝑛. Furthermore, if 𝑥𝑛 is a sequence
contained within a compact subset of 𝑋, such that lim𝑛 𝑓𝑛(𝑥𝑛) = lim𝑛 inf𝑋 𝑓𝑛, then
every accumulation point of 𝑥𝑛 is a minimiser of 𝑓. In particular, if 𝑥𝑛 is a minimiser
of 𝑓𝑛 for all 𝑛 and 𝑥𝑛 → 𝑥, then 𝑥 is a minimiser of 𝑓.

This makes Γ-convergence ideally suited as a tool for investigating anything re-
lated to minimisation problems. The AC flowmonotonically decreases the Ginzburg–
Landau functional (and likewise for the SDIE schemes and their respective Lyapunov
functionals) and we will seek to define MCF so that it monotonically decreases TV.
Therefore, if we have Γ-convergences of the former functionals to TV that is very
promising, and will suggest that these flows are indeed linked.

We also note another useful property, which will come in handy below.

Proposition 7.2.3 (Cf. [7, Remark 1.7]). Let 𝑋 be a metric space, 𝑓𝑛 ∶ 𝑋 →
ℝ ∪ {±∞} be a sequence of functions with Γ-limit 𝑓, and 𝑔𝑛 ∶ 𝑋 → ℝ ∪ {±∞} be a
sequence of functions uniformly converging on 𝑋 to 𝑔 ∶ 𝑋 → ℝ∪{±∞}, a continuous
function. Then 𝑓𝑛 +𝑔𝑛 Γ-converges to 𝑓+𝑔. In particular, by taking 𝑔𝑛 ≡ 𝑔, 𝑓𝑛 +𝑔
Γ-converges to 𝑓 + 𝑔.
Proof. Fix 𝑥 ∈ 𝑋. We prove each condition in turn. To show the lim-inf inequality,
note first that for all sequences 𝑥𝑛, liminf𝑛 𝑓𝑛(𝑥𝑛) + 𝑔𝑛(𝑥𝑛) ≥ liminf𝑛 𝑓𝑛(𝑥𝑛) +
liminf𝑛 𝑔𝑛(𝑥𝑛). Thus since 𝑓𝑛 Γ-converges to 𝑓, it suffices to show that for 𝑥𝑛 → 𝑥,
liminf𝑛 𝑔𝑛(𝑥𝑛) ≥ 𝑔(𝑥). But by the uniform convergence of 𝑔𝑛 to 𝑔 on 𝑋, for all
𝜀 > 0 there exists 𝑁 such that for all 𝑛 > 𝑁 and 𝑥′ ∈ 𝑋, 𝑔𝑛(𝑥′) > 𝑔(𝑥′) − 𝜀.
Therefore

liminf𝑛 𝑔𝑛(𝑥𝑛) ≥ liminf𝑛 𝑔(𝑥𝑛) − 𝜀 = 𝑔(𝑥) − 𝜀
with the latter equality following from the continuity of 𝑔. The lim-inf inequality
follows.

Next, since 𝑓𝑛 Γ-converges to 𝑓 we have a recovery sequence for the 𝑓𝑛 and 𝑓,
i.e. a sequence 𝑥̄𝑛 → 𝑥 such that 𝑓𝑛(𝑥̄𝑛) → 𝑓(𝑥). To show that 𝑥̄𝑛 is a recovery
sequence for the 𝑓𝑛+𝑔𝑛 and 𝑓+𝑔, it therefore suffices to show that 𝑔𝑛(𝑥̄𝑛) → 𝑔(𝑥).
This follows since

|𝑔𝑛(𝑥̄𝑛) − 𝑔(𝑥)| ≤ |𝑔𝑛(𝑥̄𝑛) − 𝑔(𝑥̄𝑛)| + |𝑔(𝑥̄𝑛) − 𝑔(𝑥)| → 0
with the former term converging to 0 because of the uniform convergence of 𝑔𝑛 to
𝑔, and the latter term because of the continuity of 𝑔.

Next, let us define the following function on 𝒱[0,1]:

TV0(𝑢) ∶= {
1
2 TV(𝑢), 𝑢 ∈ 𝒱[0,1] ∩ 𝒱{0,1},
∞, 𝑢 ∈ 𝒱[0,1] ⧵ 𝒱{0,1}.

Then we have the following Γ-convergences.
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Theorem 7.2.4 (Cf. [19, Theorem 3.1]). The Ginzburg–Landau functional GL𝜀
with double-obstacle potential defined in (3.4) has Γ-limit in 𝒱[0,1]:

Γ − lim
𝜀↓0

GL𝜀 = TV0 .

Proof. The proof is more or less identical to its counterpart in [19]. Let 𝑢𝜀 → 𝑢 for
𝑢𝜀 , 𝑢 ∈ 𝒱[0,1]. Suppose 𝑢𝑖 ∈ (0, 1) for some 𝑖 ∈ 𝑉, then eventually (𝑢𝜀)𝑖 ∈ (0, 1)
and GL𝜀(𝑢𝜀) ≥

1
2𝜀𝑑

𝑟
𝑖 (𝑢𝜀)𝑖(1 − (𝑢𝜀)𝑖) → ∞, so TV0(𝑢) ≤ lim inf𝜀→0GL𝜀(𝑢𝜀). Now

if 𝑢 ∈ 𝒱{0,1} then TV0(𝑢) =
1
2 ||∇𝑢||

2
𝒱 = lim𝜀→0

1
2 ||∇𝑢𝜀||

2
𝒱 ≤ lim inf𝜀→0GL𝜀(𝑢𝜀).

Now let 𝑢 ∈ 𝒱[0,1] and choose the recovery sequence 𝑢̄𝛼 ≡ 𝑢. If 𝑢𝑖 ∈ (0, 1) for
some 𝑖 ∈ 𝑉, then GL𝜀(𝑢) ≥

1
2𝜀𝑑

𝑟
𝑖 𝑢𝑖(1−𝑢𝑖) → ∞ so TV0(𝑢) = lim𝜀→0GL𝜀(𝑢). If 𝑢 ∈

𝒱{0,1} then GL𝜀(𝑢) =
1
2 ||∇𝑢||

2
𝒱 = TV0(𝑢) so again TV0(𝑢) = lim𝜀→0GL𝜀(𝑢).

Corollary 7.2.5. Let 𝑔𝜇,𝑓̃(𝑢) ∶=
1
2 ⟨𝑢 − 𝑓̃,𝑀(𝑢 − 𝑓̃)⟩𝒱 where 𝑀 ∶= diag(𝜇). Then

the Ginzburg–Landau functional with fidelity forcing GL𝜀,𝜇,𝑓̃ with double-obstacle
potential defined in (3.9) has Γ-limit in 𝒱[0,1]:

Γ − lim
𝜀↓0

GL𝜀,𝜇,𝑓̃ = TV0+𝑔𝜇,𝑓̃ .

Proof. Follows immediately from Proposition 7.2.3, since 𝑔𝜇,𝑓̃ is continuous and
GL𝜀,𝜇,𝑓̃ = GL𝜀 +𝑔𝜇,𝑓̃.

Corollary 7.2.6. The Lyapunov functional 𝐻0 for the SDIE scheme without fidelity
forcing defined in (4.40a) has Γ-convergence in 𝒱[0,1]:

Γ − lim
𝜀↓0, 0<𝜏≤𝜀

1
2𝜏𝐻0 = TV0,

and the Lyapunov functional for the SDIE scheme with fidelity forcing 𝐻 defined in
(4.40b) has Γ-convergence in 𝒱[0,1]:

Γ − lim
𝜀↓0, 0<𝜏≤𝜀

1
2𝜏𝐻 = TV0+𝑔𝜇,𝑓̃ −

1
2⟨𝑓̃,𝑀𝑓̃⟩𝒱 ,

recalling the notation from Corollary 7.2.5.

Proof. Fix sequences 𝜏𝑛 and 𝜀𝑛 such that for all 𝑛, 0 < 𝜏𝑛 ≤ 𝜀𝑛, and 𝜀𝑛 ↓ 0 (and
hence 𝜏𝑛 ↓ 0).

Recall from Proposition 4.5.11 the notation 𝐻𝜏(𝑢) ∶=
1
2𝜏𝐻(𝑢) and 𝐻0,𝜏(𝑢) ∶=1

2𝜏𝐻0(𝑢). Furthermore, recall that for 𝑢 ∈ 𝒱[0,1]

𝐻𝜏(𝑢) = GL𝜀,𝜇,𝑓̃(𝑢) −
1
2⟨𝑓̃,𝑀𝑓̃⟩𝒱 +

1
2𝜏⟨𝑢, 𝑄𝜏(𝐴𝑢 − 2𝑓)⟩𝒱

𝐻0,𝜏(𝑢) = GL𝜀(𝑢) +
1
2𝜏⟨𝑢, 𝑄

′
𝜏𝑢⟩𝒱
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where 𝑄𝜏 ∶= 𝜏−2(𝐹𝜏(𝐴)− 𝜏𝐼) (for 𝐹𝜏 defined by Definition 3.2.5), 𝑄′𝜏 ∶= 𝜏−2(𝐼 − 𝜏Δ−
𝑒−𝜏Δ), and 𝑓 ∶= 𝜇 ⊙ 𝑓̃ where ⊙ is the Hadamard product. By Proposition 7.2.3,
Theorem 7.2.4, and Corollary 7.2.5, to prove the result it will suffice to show that

𝐻0,𝜏𝑛 −GL𝜀𝑛 → 0, and

𝐻𝜏𝑛 −GL𝜀𝑛 ,𝜇,𝑓̃ → −
1
2⟨𝑓̃,𝑀𝑓̃⟩𝒱 ,

both uniformly in 𝑛. By the above expressions for 𝐻𝜏 and 𝐻0,𝜏, it therefore suffices
to prove that 12𝜏⟨𝑢, 𝑄

′
𝜏𝑢⟩𝒱 and

1
2𝜏⟨𝑢, 𝑄𝜏(𝐴𝑢 − 2𝑓)⟩𝒱 both tend to zero uniformly as

𝜏 → 0. This was proved in the proof of Proposition 4.5.11.

Note 38. Taking 𝜏 = 𝜀 and considering 𝐽(𝑢) ∶= ⟨1 − 𝑢, 𝑒−𝜏Δ𝑢⟩𝒱, the Lyapunov
functional for the MBO scheme (see [17, Proposition 4.6] and Lemma 4.4.1), we
have that 𝐻0 = 𝐽 and so in 𝒱[0,1]:

Γ − lim
𝜏↓0

1
𝜏 𝐽|𝒱[0,1] = 2TV0 .

This is a special case of the result of [18, Theorem 5.10].

7.3. The Van Gennip et al. [17] definition
In [17], motivated by the variational formulation of MCF in [2], graph MCF was
defined as the minimisation scheme

𝑆𝑛+1 ∈ argmin
𝑆⊆𝑉

TV(𝜒𝑆) +
1
𝛿𝑡 ⟨𝜒𝑆 − 𝜒𝑆𝑛 , (𝜒𝑆 − 𝜒𝑆𝑛)𝑑

Σ𝑛⟩𝒱 (7.3)

where Σ𝑛 ∶= {𝑖 ∈ 𝑉 ∣ ∃𝑗 ∈ 𝑉 s.t. 𝜔𝑖𝑗 > 0 and (𝜒𝑆𝑛)𝑖 ≠ (𝜒𝑆𝑛)𝑗} is the graph boundary
of 𝑆𝑛, and 𝑑Σ𝑛𝑖 is the graph distance from 𝑖 to Σ𝑛, i.e. the length of the shortest
path from 𝑖 to a vertex in Σ𝑛 (see [17, Definition 2.3] for details).

In this section, we will describe two issues with connecting this scheme to the
MBO scheme, one which is very serious and another which is in a sense harmless
but suggests a way forward.

7.3.1. The key issue
Let 𝐺 = (𝑉, 𝐸, 𝜔) be a graph as defined in chapter 2, and for 𝛼 > 0 let 𝐺𝛼 =
(𝑉, 𝑉2, 𝜔𝛼) be the complete graph defined by 𝜔𝛼𝑖𝑗 ∶= 𝜔𝑖𝑗 if 𝑖𝑗 ∈ 𝐸 and 𝜔𝛼𝑖𝑗 ∶= 𝛼
otherwise. This construction is illustrated in Fig. 7.1.

Then Δ𝛼 = Δ+𝒪(𝛼) relative to the limit 𝛼 ↓ 0, so for 𝛼 sufficiently small the AC
flow and MBO scheme will be essentially the same on 𝐺 and 𝐺𝛼. More precisely we
have the following result.

Theorem 7.3.1. Let 𝑢, 𝑢𝛼 , 𝑣, 𝑣𝛼 ∈ 𝒱[0,1],𝑡∈[0,∞) be defined by 𝑢(0) = 𝑢𝛼(0) =∶ 𝑢0,



7.3. The Van Gennip et al. [17] definition

7

169

Figure 7.1: Modification of 𝐺 (left) into 𝐺𝛼 (right); red edges have weight 𝛼.

𝑣(0) = 𝑣𝛼(0) =∶ 𝑣0, and
𝑑𝑢
𝑑𝑡 (𝑡) = −Δ𝑢(𝑡) −

1
𝜀 𝑓(𝑢),

𝑑𝑣
𝑑𝑡 (𝑡) = −Δ𝑣(𝑡),

𝑑𝑢𝛼
𝑑𝑡 (𝑡) = −Δ

𝛼𝑢𝛼(𝑡) −
1
𝜀 𝑓(𝑢𝛼),

𝑑𝑣𝛼
𝑑𝑡 (𝑡) = −Δ

𝛼𝑣𝛼(𝑡),

for 𝑓 ∈ 𝐶0,1([0,∞); 𝒱) (e.g., 𝑓 arising from the gradient of a 𝐶2 double-well po-
tential). Then there exists 𝐶 ≥ 0, independent of 𝛼, such that ||𝑢(𝑡) − 𝑢𝛼(𝑡)||𝒱 ≤
𝒪(𝛼)𝑡𝑒𝐶𝑡 and ||𝑣(𝑡) − 𝑣𝛼(𝑡)||𝒱 ≤ 𝒪(𝛼)𝑡𝑒𝐶𝑡.
Proof. Let 𝐸 ∶= Δ𝛼 − Δ = 𝒪(𝛼). Then

||𝑢(𝑡) − 𝑢𝛼(𝑡)||𝒱 = ||∫
𝑡

0
Δ𝑢(𝑠) − Δ𝛼𝑢𝛼(𝑠) +

1
𝜀 (𝑓(𝑢(𝑠)) − 𝑓(𝑢𝛼(𝑠))) 𝑑𝑠||𝒱

≤ ∫
𝑡

0
(||Δ|| + 1𝜀 ||𝑓||𝐶0,1) ||𝑢(𝑠) − 𝑢𝛼(𝑠)||𝒱 𝑑𝑠 + 𝑡||𝐸|| ||1||𝒱

and so by Grönwall’s integral inequality [5]

||𝑢(𝑡) − 𝑢𝛼(𝑡)||𝒱 ≤ 𝑡||𝐸|| ||1||𝒱𝑒𝑡(||Δ||+
1
𝜀 ||𝑓||𝐶0,1).

The argument for 𝑣, 𝑣𝛼 follows by setting 𝑓 = 0.

Note 39. For the MBO scheme it is possible for this 𝒪(𝛼) difference in the diffused
state to make an 𝒪(1) difference to the MBO update, but it is unlikely as it could
only occur if the diffused state were very close to the threshold value. The SDIE
scheme relaxes MBO’s discontinuous thresholding to a Lipschitz one (see Theorem
4.2.1), avoiding this issue. Note also that the above AC flow doesn’t include the
double-obstacle AC flow that was the main subject of chapter 3, due to the 𝐶0,1
condition on 𝑓 not being satisfied. To derive a similar result for that flow, observe
that by Theorem 3.4.8 the difference between double-obstacle AC flows 𝑢 and 𝑢𝛼
is continuous in 𝛼 except for the contribution of a term of the form

∫
𝑡

0
𝛽(𝑠) − 𝛽𝛼(𝑠) 𝑑𝑠

for 𝛽(𝑠) ∈ ℬ(𝑢(𝑠)) and 𝛽𝛼(𝑠) ∈ ℬ(𝑢𝛼(𝑠)). By Theorem 3.4.4, these terms vary
discontinuously in 𝑢 and 𝑢𝛼, however if 𝑢𝑖(𝑠), (𝑢𝛼(𝑠))𝑖 are both in (0, 1) then 𝛽𝑖(𝑠) =
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(𝛽𝛼(𝑠))𝑖, and if both equal 0 or both equal 1, then (𝛽𝛼(𝑠))𝑖 − 𝛽𝑖(𝑠) = 𝜀(Δ(𝑢𝛼(𝑠) −
𝑢(𝑠))+𝐸𝑢𝛼(𝑠))𝑖. Hence the discontinuity will only produce an 𝒪(1) difference under
specific and limited circumstances.

Now consider the impact of moving from 𝐺 to 𝐺𝛼 on (7.3). If 𝑆𝑛 ∉ {∅, 𝑉},
then by definition the graph boundary Σ𝛼𝑛 = 𝑉 and so 𝑑Σ𝛼𝑛 = 0. Therefore on
𝐺𝛼 the objective function of (7.3) collapses to TV(𝜒𝑆), so we only get solutions
𝑆𝛼𝑛+1 ∈ {∅, 𝑉} which in general will be very different from the behaviour on 𝐺.

In summary, moving from 𝐺 to 𝐺𝛼 we observe an 𝒪(𝛼) change in the building
blocks of the MBO scheme and AC flow, though this can occasionally induce an
𝒪(1) change via discontinuous elements in those flows. By contrast, the change
in MCF is massive, immediately excluding all non-trivial segmentations, no matter
how small 𝛼 is.

7.3.2. A difference betweenMCF and theMBO scheme for large
time steps

There is a less critical but nonetheless illuminating difference between MCF as de-
fined by (7.3) and the MBO scheme. Let us consider the behaviour as 𝛿𝑡 in (7.3)
and 𝜏, the MBO time step, are both taken very large.

From [17, Lemma 2.6(c)], for 𝑢̄ ≠ 1
2 and 𝜏 sufficiently large (depending on 𝑢̄),

we have ||𝑒−𝜏Δ𝑢 − 𝑢̄1||∞ < |𝑢̄ − 1
2 |. It follows that the MBO update of 𝑢 for 𝜏

sufficiently large is 1 if 𝑢̄ > 1
2 and 0 if 𝑢̄ <

1
2 .

Now consider (7.3) for 𝛿𝑡 very large. One can check that the distance term
is bounded above by diam(𝐺)⟨1,1⟩𝒱 where diam(𝐺) is the diameter of 𝐺 (i.e.
the maximal graph distance between vertices of 𝐺), and TV(𝜒𝑆) ≥ min𝑖𝑗∈𝐸 𝜔𝑖𝑗
if 𝑆 ∉ {∅, 𝑉}. Hence for 𝛿𝑡 > diam(𝐺)||1||2𝒱 (min𝑖𝑗∈𝐸 𝜔𝑖𝑗)

−1
, the only possible

minimisers of (7.3) are 𝑆 ∈ {∅, 𝑉}. Since in either case TV(𝜒𝑆) = 0, 𝑆 = ∅ is a
minimiser if and only if 𝑆 = ∅ yields a lower value for the latter term in (7.3) than
𝑆 = 𝑉, i.e. if and only if

⟨𝜒𝑆𝑛 , 𝜒𝑆𝑛𝑑Σ𝑛⟩𝒱 ≤ ⟨1− 𝜒𝑆𝑛 , (1− 𝜒𝑆𝑛)𝑑Σ𝑛⟩𝒱 .
In summary, for sufficiently large time steps we observe the same basic behaviour
between MCF and the MBO scheme, that is, the updates are constantly 0 or con-
stantly 1, but the condition governing which is chosen is different. Although our
chief concern is really for small time steps, as that is when the continuum theory
suggests that the MBO scheme and MCF should be linked, it will be promising if
they also agree in the very large time step case.

7.4. An improved definition
Given the issues with defining graph MCF by (7.3), we seek a new definition. First,
we observe that for 𝑢 ∈ 𝒱{0,1}

⟨𝑢, Δ𝑢⟩𝒱 =
1
2 ∑
𝑖,𝑗∈𝒱

𝜔𝑖𝑗(𝑢𝑖 − 𝑢𝑗)2 =
1
2 ∑
𝑖,𝑗∈𝒱

𝜔𝑖𝑗|𝑢𝑖 − 𝑢𝑗| = TV(𝑢). (7.4)
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As shown in [17, p. 52], (7.4) has a useful consequence: the Lyapunov functional 𝐽0
(see Lemma 4.4.1, note that this is denoted “𝐽” in [17]) for the graph MBO scheme
has the property that

𝐽0(𝜒𝑆) ∶= ⟨1− 𝜒𝑆 , 𝑒−𝜏Δ𝜒𝑆⟩𝒱 = 𝜏 TV(𝜒𝑆) + 𝑅𝑆(𝜏)

where 𝑅𝑆(𝜏) ∶= ∑𝑘≥2(−1)𝑘
𝜏𝑘
𝑘! ⟨𝜒𝑆𝑐 , Δ

𝑘𝜒𝑆⟩𝒱 . Therefore, the MBO update of 𝑆𝑛 ⊆ 𝑉
given by Definition 3.2.1 obeys

𝑆𝑛+1 ∈ argmin
𝑆⊆𝑉

⟨1− 2𝑒−𝜏Δ𝜒𝑆𝑛 , 𝜒𝑆⟩𝒱

= 𝐽(𝜒𝑆) + ⟨𝜒𝑆 − 𝜒𝑆𝑛 , 𝑒−𝜏Δ(𝜒𝑆 − 𝜒𝑆𝑛)⟩𝒱 − ⟨𝜒𝑆𝑛 , 𝑒
−𝜏Δ𝜒𝑆𝑛⟩𝒱

≃ TV(𝜒𝑆) +
𝑅𝑆(𝜏) + ||𝑒−

1
2 𝜏Δ(𝜒𝑆 − 𝜒𝑆𝑛)||2𝒱
𝜏 .

Since 𝑅𝑆(𝜏)/𝜏 = 𝒪(𝜏), this suggests that the following definition of graph MCF:

𝑆𝑛+1 ∈ argmin
𝑆⊆𝑉

TV(𝜒𝑆) +
||𝑒−

1
2 𝜏Δ(𝜒𝑆 − 𝜒𝑆𝑛)||2𝒱

𝜏 (7.5)

might strongly resemble the MBO scheme for small 𝜏. The MCF-like behaviour of
this scheme is captured by the following proposition.

Proposition 7.4.1. For 𝑆𝑛+1 solving (7.5), TV(𝜒𝑆𝑛+1) ≤ TV(𝜒𝑆𝑛), with equality if
and only if 𝑆𝑛+1 = 𝑆𝑛.
Proof. By (7.5),

TV(𝜒𝑆𝑛+1) ≤ TV(𝜒𝑆𝑛+1) +
||𝑒−

1
2 𝜏Δ(𝜒𝑆𝑛+1 − 𝜒𝑆𝑛)||2𝒱

𝜏 ≤ TV(𝜒𝑆𝑛).

Finally, 𝑒−
1
2 𝜏Δ is invertible, so 𝑒−

1
2 𝜏Δ(𝜒𝑆𝑛+1 −𝜒𝑆𝑛) = 0 if and only if 𝜒𝑆𝑛+1 = 𝜒𝑆𝑛 .

We note immediately that (7.5) avoids the key issue from the previous section,
since the objective function is only 𝒪(𝛼) different on 𝐺𝛼. Furthermore, note that
since 𝜒𝑆 − 𝜒𝑆𝑛 ∈ 𝒱[−1,1], it follows that 𝑒

− 12 𝜏Δ(𝜒𝑆 − 𝜒𝑆𝑛) ∈ 𝒱[−1,1] since 𝑒
− 12 𝜏Δ is

a non-negative matrix (see the proof of Theorem 3.2.6, and consider the 𝐴 = Δ
special case). Therefore the latter term in (7.5) is bounded above by ||1||2𝒱/𝜏, and
so for 𝜏 > ||1||2𝒱 (min𝑖𝑗∈𝐸 𝜔𝑖𝑗)

−1
the only possible minimisers are 𝑆 ∈ {∅, 𝑉}. Then

in both cases TV(𝜒𝑆) = 0, and so 𝑆 = ∅ is a minimiser if and only if

||𝑒−
1
2 𝜏Δ𝜒𝑆𝑛 ||2𝒱 ≤ ||𝑒

− 12 𝜏Δ(1− 𝜒𝑆𝑛)||2𝒱 = ||1− 𝑒
− 12 𝜏Δ𝜒𝑆𝑛 ||2𝒱 .

By expanding both sides and simplifying, this is equivalent to (recalling the notation
ℳ(𝑢) ∶= ⟨𝑢,1⟩𝒱 from Definition 3.2.9)

ℳ(𝑒−
1
2 𝜏Δ𝜒𝑆𝑛) = ℳ(𝜒𝑆𝑛) ≤

1
2ℳ(1)
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which is the same condition as for the large 𝜏 MBO update.
We can rewrite (7.5) in a way that makes the connection to the MBO scheme

more explicit. By (7.4) for 𝑢𝑛 ∶= 𝜒𝑆𝑛 and 𝑢 ∶= 𝜒𝑆, (7.5) is equivalent to

argmin
𝑢∈𝒱{0,1}

⟨𝑢, 𝜏Δ𝑢⟩𝒱 + ⟨𝑢 − 𝑢𝑛 , 𝑒−𝜏Δ(𝑢 − 𝑢𝑛)⟩𝒱 ≃ −𝜏2⟨𝑢, 𝑄′𝜏𝑢⟩𝒱 + ||𝑢 − 𝑒−𝜏Δ𝑢𝑛||2𝒱

where 𝑄′𝜏 ∶= 𝜏−2 (𝐼 − 𝜏Δ − 𝑒−𝜏Δ). Thus if we suppress the 𝒪(𝜏2) terms (7.5) has
solution equal to

argmin
𝑢∈𝒱{0,1}

||𝑢 − 𝑒−𝜏Δ𝑢𝑛||2𝒱

which is the MBO thresholding of 𝑒−𝜏Δ𝑢𝑛. Thus up to the influence of 𝒪(𝜏2) terms,
(7.5) corresponds to an MBO update.

However this result, although very promising, may not be as significant as it
might appear. As was demonstrated in [17, Theorem 4.2] (see also section 4.3.2),
the MBO scheme freezes if 𝜏 is taken too small. We now prove a similar pinning
result for (7.5).

Theorem 7.4.2. Suppose that 𝜏 satisfies

𝜏𝑒𝜏||Δ|| <
min𝑖∈𝑉 𝑑𝑟𝑖
TV𝑚𝑎𝑥

(7.6)

where TV𝑚𝑎𝑥 ∶= max𝑆⊆𝑉 TV(𝜒𝑆). Then for all 𝑆′ ⊆ 𝑉, if 𝑆𝑛 = 𝑆′ and 𝑆𝑛+1 solves
(7.5), then 𝑆𝑛+1 = 𝑆′.

Note 40. The condition (7.6) is equivalent to

𝜏 < ||Δ||−1𝑊𝐿 (
||Δ||min𝑖∈𝑉 𝑑𝑟𝑖

TV𝑚𝑎𝑥
)

where 𝑊𝐿 is the Lambert W-function [12], which for 𝑥 ∈ [0,∞) can be defined as
the unique function on [0,∞) satisfying 𝑊𝐿(𝑥)𝑒𝑊𝐿(𝑥) = 𝑥.

Proof. Note first that, since 𝑒−
1
2 𝜏Δ is self-adjoint, the ||𝑒−

1
2 𝜏Δ(𝜒𝑆 − 𝜒𝑆𝑛)||2𝒱 term in

(7.5) is equal to ⟨𝜒𝑆 − 𝜒𝑆𝑛 , 𝑒−𝜏Δ(𝜒𝑆 − 𝜒𝑆𝑛)⟩𝒱. Next, note that 𝑒−𝜏Δ has smallest
eigenvalue 𝑒−𝜏||Δ|| since Δ is positive semi-definite. From these two observations,
it follows that for all 𝑆, 𝑆𝑛 ⊆ 𝑉,

||𝑒−
1
2 𝜏Δ(𝜒𝑆 − 𝜒𝑆𝑛)||2𝒱 ≥ 𝑒−𝜏||Δ||||𝜒𝑆 − 𝜒𝑆𝑛 ||2𝒱 .

Let 𝑆′ be an arbitrary subset of 𝑉, 𝑆𝑛 = 𝑆′, and let 𝒢 denote the objective
function of (7.5). Then by the above inequality, since TV is non-negative it follows
that if 𝑆 ≠ 𝑆′ then

𝒢(𝑆) ≥ 𝜏−1𝑒−𝜏||Δ||||𝜒𝑆 − 𝜒𝑆′ ||2𝒱 ≥ 𝜏−1𝑒−𝜏||Δ||min
𝑖∈𝑉

𝑑𝑟𝑖 .
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Furthermore,
𝒢(𝑆′) = TV(𝜒𝑆′) ≤ TV𝑚𝑎𝑥 .

Therefore, for 𝑆 = 𝑆′ to be the unique minimiser of (7.5), it suffices that

TV𝑚𝑎𝑥 ≤ 𝜏−1𝑒−𝜏||Δ||min
𝑖∈𝑉

𝑑𝑟𝑖

which rearranges to give (7.6).

Hence, for 𝜏 below a certain threshold there is a trivial equivalence between
(7.5) and the MBO scheme. The regime of interest therefore is for 𝜏 above these
thresholds, and so we cannot treat 𝒪(𝜏2) terms as being negligible.

7.5. Future work
In the above, we have given a formal argument for a connection between (7.5)
and the graph MBO scheme. A major direction for future work will be making
this connection rigorous (in particular, establishing this connection for 𝜏 above the
threshold at which (7.5) and the MBO scheme pin, where the 𝒪(𝜏2) terms are not
negligible), and explicitly quantifying the error between these two flows.

A more broad direction will be investigating whether (7.5) “deserves” to be called
an MCF. One explicit way to answer this will be to compare (7.5) to the definition
of graph MCF considered by El Chakik, Elmoataz, and Desquesnes in [13]. We will
briefly describe this other definition, which is motivated by the well-known level-set
formulation of continuum MCF (see e.g. Osher and Sethian [22]). The authors of
[13] define the graph mean curvature3 by

𝐾𝑖(𝑢) ∶=∑
𝑗∈𝑉

𝜔𝑖𝑗
𝑑𝑖

sgn (∇𝑢)𝑖𝑗 ,

and define (respectively) upwind and downwind gradient norms of 𝑢 ∈ 𝒱 by4

||(∇+𝑢)𝑖||
𝑝
𝑝 ∶=∑

𝑗∈𝑉
𝜔𝑖𝑗 |(∇𝑢)+𝑖𝑗|

𝑝
, ||(∇+𝑢)𝑖||∞ ∶=max

𝑗∈𝑉
𝜔𝑖𝑗 |(∇𝑢)+𝑖𝑗| ,

||(∇−𝑢)𝑖||
𝑝
𝑝 ∶=∑

𝑗∈𝑉
𝜔𝑖𝑗 |(∇𝑢)−𝑖𝑗|

𝑝
, ||(∇−𝑢)𝑖||∞ ∶=max

𝑗∈𝑉
𝜔𝑖𝑗 |(∇𝑢)−𝑖𝑗| ,

where superscript + and − denote respectively the positive and negative part op-
erators (i.e. 𝑥+ ∶= max{𝑥, 0} and 𝑥− ∶= −min{𝑥, 0}), and they define graph MCF
as the ODE flow:

𝑑𝑢𝑖
𝑑𝑡 = 𝐾

+
𝑖 (𝑢(𝑡)) ||(∇+𝑢(𝑡))𝑖||𝑝 − 𝐾

−
𝑖 (𝑢(𝑡)) ||(∇−𝑢(𝑡))𝑖||𝑝 (7.7)

3For 𝑢 = 𝜒𝑆 we note a similarity between this definition and [17, Definition 3.2].
4We adapt their notation to align with that of this thesis. Recall from chapter 2 that (∇𝑢)𝑖𝑗 ∶= 𝑢𝑗 − 𝑢𝑖
for 𝑖 and 𝑗 neighbours and (∇𝑢)𝑖𝑗 ∶= 0 otherwise.
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for 𝑝 ∈ [1,∞]. We note that, for 𝑟 = 1, it is easy to see that −𝐾(𝑢) is the gradient
of TV at 𝑢, and that therefore (7.7) monotonically decreases TV along trajectories.5
A topic for future research will be to investigate whether solutions of (7.5) can be
related to trajectories of this ODE.

5We leave the details of this demonstration as an exercise for the reader.
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8
Conclusion

Roads go ever ever on,
Over rock and under tree,

By caves where never sun has shone,
By streams that never find the sea;

Over snow by winter sown,
And through the merry flowers of June,

Over grass and over stone,
And under mountains in the moon.

Roads go ever ever on,
Under cloud and under star.

Yet feet that wandering have gone
Turn at last to home afar.

Eyes that fire and sword have seen,
And horror in the halls of stone
Look at last on meadows green,

And trees and hills they long have known.

J. R. R. Tolkien, The Hobbit
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G raph-based learning is an exciting approach to learning problems. Graphs pro-
vide a natural model for representing interconnected data, and as we have

seen this perspective translates into concrete algorithms which are both efficient
and accurate. Furthermore, the graph context is a fertile mathematical landscape,
with many avenues for deep theoretical exploration. In particular, there are many
fascinating questions that arise in the translation of continuum ideas and methods
into this new framework.

In this thesis, we have made important strides forward on both the theoretical
and applied sides of the “PDEs on graphs” strand of graph-based learning. On the
theory side, we have rigorously proved that graph AC flow (with the double-obstacle
potential) and the graph MBO scheme are linked by our SDIE scheme, and showed
that this link is robust to the inclusion of both mass conservation and fidelity forcing
constraints. We have furthermore proved a wealth of desirable theoretical proper-
ties of these flows/schemes, and it is our belief that this theoretical framework can
be extended in the future to incorporate a wider family of flows, such as multi-class
AC flow and multi-class MBO schemes. We have also made some small headway
towards answering the theoretical question of how mean curvature flow on graphs
should be defined, and whether it too can be linked to the graph MBO scheme and
AC flow. Finding a key flaw in the Van Gennip et al. [5] definition of this flow,
we have suggested an improved definition, and demonstrated a formal similarity
between this newly defined flow and the MBO scheme. This suggests promising re-
search directions of making this formal argument more rigorous, and of connecting
this definition of graph mean curvature flow with other definitions in the literature,
such as El Chakik et al. [4].

On the applications side, we first explored the application of graph PDE methods
to image segmentation. Our primary question was whether our SDIE scheme might
provide a better algorithm than the earlier MBO-based or AC-based segmentation
algorithms of [1, 6]. Whilst for the example we considered the answer to that ques-
tion turned out to unfortunately be no, along the way we investigated a number
of refinements to those earlier algorithms, with the upshot that our algorithm pro-
duced a significantly more accurate segmentation than the segmentations of that
example in previous work. Following this, we then turned to the more complicated
task of reconstruction-segmentation. Traditionally this task would be performed
sequentially, as a reconstruction followed by a segmentation, but a more powerful
technique is to perform both reconstruction and segmentation jointly. We have de-
veloped a novel framework for performing this within the graph context, allowing
for the use of our more sophisticated graph-based segmentation methods over the
more straightforward Chan–Vese methods used in e.g. Corona et al. [3]. This work
is still ongoing, but when it is mature we believe that it will have important appli-
cations in medical imaging, where many tasks (e.g. radiotherapy) involve solving a
reconstruction-segmentation problem.

For our concluding remarks for the future, let us return to that wonderful quote
of Dyson’s, with which this thesis began. For most of this thesis, whether in present-
ing current work or considering work for the future, we have been occupying the
perspective of a frog. Let us now consider the perspective of a bird. Graph-based
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learning is, as we described in the introduction, a field of many strands, one strand
of which has been the focus of this work. A topic for future work will be weaving
these strands together. For example, how are the graph PDE-based classification
methods we have considered connected to the Laplace learning methods of e.g.
[2, 8]? And zooming out even further, graph-based learning is itself but one strand
of the ever-growing tapestry of machine learning. This area is a meeting point of a
great many threads. We have already seen the highly profitable exchange of ideas
between the graph and continuous settings, and this exchange will only become
richer as the graph PDEs and the graph continuum limits strands are further woven
together. Furthermore, in this work we have only briefly touched on how to build
the graph itself: the question of how best to do this for a given application is a
topic which has lately begun to incorporate ideas from deep learning (see e.g. de
Vriendt et al. [7]). In summary, there is a great deal left for one to explore in the
field of graph-based learning, whether one is a bird or a frog.
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