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Abstract

Structural Health Monitoring uses data collected from sensors placed on structures to deter-
mine their operating condition and whether maintenance is required. Often, optimal sensor 
placement strategies are used to find the optimal locations for the identification of their modal 
properties, structural parameters and/or abnormal behaviours under the influence of model 
and measurement uncertainty. An approach that has been frequently used to solve the problem 
of sensor placement is the Bayesian experimental design. This approach chooses the locations 
using the data measured by the sensors to reduce the prior uncertainty of the parameters that 
are being inferred. The Bayesian experimental design minimizes the uncertainty of the param-
eters to be inferred through the use of metrics called utility functions. Most of these metrics are 
based on functions of the posterior distribution. In this paper, the use of three utility functions
(Bayesian D-posterior precision, Bayesian A-posterior precision, and Expected Information 
Gain) is investigated for the problem of sensor placement.

The case study chosen consists of a beam with translational and rotational springs connected 
to the ground subject to an impulsive load. The goal of the analysis is to select the most in-
formative position of a sensor in order to update the distribution of two uncertain physical 
parameters of the beam based on natural frequencies extracted using the Eigensystem Realiza-
tion Algorithm. It is shown that for the case investigated, the three utility functions yield the 
same optimal sensor location.

Keywords: Optimal Sensor Placement, Uncertainty Quantification, Structural Health Moni-
toring. 
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1 INTRODUCTION

Structural Health Monitoring (SHM) often focuses on non-intrusive structure damage detec-
tion [1]. It can be used to provide early warnings on the health status of engineering systems. 
The equipment required for implementing SHM, includes sensors and data acquisition systems. 
The real time information obtained from the sensors has to be post-processed and statistical 
procedures are implemented to detect anomalies and suggest preventive actions [1,2]. Techno-
logical advances in sensor monitoring allow the development of optimal sensor strategies that 
have made SHM cost effective and easier to implement.  

Structural parameters are usually inferred from the sensorial data (such as velocity or accel-
eration measurements), especially the modal parameters (natural frequency, damping ratio and 
mode shape). The inferred parameters are then used to assess the acceptability of the models of 
structures and to evaluate the structures’ condition. For some cases, local forms of damage may 
be identified by a shift in the modal properties [3]. The position of the sensor can strongly 
influence the inference on the structural parameters. This has led to the widespread develop-
ment of optimal sensor strategy techniques [4]. Broadly speaking, the sensor placement frame-
work methods can be split into methods based on information theory or non-information 
methods [4]. The non-information-based methods are not discussed in this paper, however, 
more information on these techniques can be found in [4]. Work based on information theory 
heavily relies on the application and development of the general Bayesian framework [5]. This 
framework was proposed for system identification in [5,6] and it has been consequently ex-
tended to the problem of sensor placement [7–10]. The main objective is the selection of the 
location and number of sensors that maximises the information needed to estimate the uncertain 
parameters [8]. The research challenges linked to these approaches are the definition of the 
metric to be used to assess the different configurations of sensors (number and location of the 
sensors) and the choice of the most adequate optimisation technique [11,12].  

In this paper a Bayesian experimental design framework [13] is used to solve the sensor 
placement problem. Within this framework, the number and locations of the sensors are chosen 
by using the data obtained from the sensors to reduce the prior uncertainty on the parameters to 
be inferred. Therefore, the framework’s focus is the minimization of the uncertainty of certain 
physical parameters of interest to the practitioner by comparing different metrics, the so-called 
utility functions. Two physical parameters of a beam attached to ground using translational and 
rotational springs subject to an impulsive load have to be inferred by using a single sensor. The 
beam is investigated by building a Finite Element model. Numerical simulations of the dynamic 
response (velocity signal) at different locations are used to obtain numerical ‘measurements’ of 
possible sensor locations. An intermediate step requires the post-processing of the numerical 
‘measurements’ to obtain the modal parameters that are subsequently used as the data used to 
reduce the model parametric uncertainty via Bayesian model updating. This is achieved by us-
ing the Eigensystem Realization Algorithm. Model updating is then used to obtain the posterior 
probability density function of the parameters to be inferred, having assigned a uniform prior 
distribution and applying Monte Carlo sampling-based strategies. The obtained posterior is 
used to evaluate a utility function that is then used to select the optimal sensor location. Three 
utility functions are investigated.  

2 BAYESIAN OPTIMAL DESIGN FRAMEWORK

Bayesian optimal design [13] allows the designation of resources required to obtain information 
for reduction of systematic error, inference of unknown parameters (i.e., reduction of prior un-
certainty), obtaining future predictions and the comparison of models chosen to represent a 
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system [13]. The framework’s objective is the maximisation of the information obtained from 
a set of measurements for the inference of the unknown parameters of the model used to de-
scribe the physical system [13]. The choice of the optimal design improves parameter inference 
and reduces the experimental costs. 
Lindley proposed a unifying theory of Bayesian optimal design in [14]. The definition of the 
best possible design given a set of objectives and restrictions is described by a utility function. 
The maximization of this function is used to choose the possible design that measures how well 
the set of objectives and restrictions are obeyed [15].  
One of the major challenges in Bayesian optimal design methods is the reduction of their high 
computational cost incurred in the calculation of their utility functions [13]. This is because the 
utility functions require the knowledge of the posterior distribution of the parameters to be in-
ferred. These distributions are dependent on the set of measurements available and therefore 
are different when different designs are considered.  

2.1 Bayesian Framework

Probability density functions are used to model the uncertain model parameters in the Bayesian 
inference framework [5,16]. The prior knowledge on the uncertain parameters before any meas-
urements or data is obtained, is described by the prior density function ( )P . The likelihood 
function ( | )p y , is normally assumed to follow a specific distribution (e.g., Gaussian). The 

( | )p y  measures the degree of suitability of the model to justify the obtained measurements. 
The denominator ( )p y  of eq.(1) below is the evidence pdf and normalizes the pdf of the pos-
terior. If the above described pdfs are known, the eq.(1) can be used to calculate the so-called 
posterior distribution ( | )p y : 

( ) ( | )( | )
( )

p pp
p

yy
y

(1) 

The posterior distribution obtained can then be used to determine the utility function. Hence, it 
is important to obtain accurate estimations of both location (median or mean) and scale (inter-
quartile range or standard deviation) of the posterior [13]. Most frequently, it is not possible to 
express the posterior distributions with a closed form, so computational methodologies are used 
to obtain samples from the posterior or to approximate it [16–21]. In this work, the sampling-
based model updating techniques are used. Specifically, the Sequential Monte Carlo (SMC) [16] 
sampling and the Transitional Markov Chain Monte Carlo (TMCMC) [20] are chosen to infer 
the two physical parameters of the case study investigated. 

2.2 Bayesian Utility Functions

Many different utility functions have been developed for inferring parameters of a model 
[13]. Metrics that quantify the performance of experiments are obtained by using a set of utility 
functions that are maximized (or minimized) with the objective of identifying the optimal ex-
periment [13]. Three utility functions are reviewed in what follows.  

A well-known utility function is expressed as the inverse of the determinant of the posterior 
covariance matrix [13]. This utility function also known as the Bayesian D-posterior precision 
maximises the posterior precision of the model parameters to be inferred and it is given by [13]: 
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1( , )
det(cov( , ))DU d y

| d y
(2) 

Where d is the vector that represents the experimental design to be optimized (e.g. the sen-
sor positions for a given number of sensors). 

Another useful utility function similar to the Bayesian D-posterior precision is given by the 
inverse of the trace of the posterior covariance matrix [15]. This utility function also known as 
the ‘Bayesian A-posterior precision’ maximises the marginal posterior precision of the model 
parameters to be inferred and it is given by [15]:  

1( , )
(cov( , ))AU

trace
d y

| d y
(3) 

Alternatively, the utility function may be expressed as the expected Kullback–Leibler (KL) 
divergence from the posterior distribution to the prior distribution [14]. The expected KL di-
vergence utility function is also known as Expected Information Gain (EIG) over the parameters 
to be inferred [22], and it is expressed as:  

|
( ) | logEIG y KL

Y Q

p
U E D p p p p d d

py

y
d y y y  (4) 

Where yy is the expectation with respect to the measurements y , KLD p py  is the KL-

divergence from the posterior distribution to the prior distribution, and are the support of 
the measurements y  and the parameters to be inferred respectively. 

The EIG can be interpreted as a non-linear generalization of the Bayesian D-optimal utility 
function [23]. It has been found [24] that this metric can be approximated using a Monte Carlo 
approach: 

1

1( ) ln | , ln |
outN

i i i

iout

U p p
N

1( ) 1U
N

d y d y d (5) 

1

1| | ,
inN

i i j

jin

p p
N

y d y d (6) 

Where outN  is the number of samples used in the outer loop and inN  is the number of samples 
used in the inner loop of the Monte Carlo approximations. The samples are obtained from the 
prior distribution and the likelihood is evaluated for these samples. 

The number of likelihood function evaluations can be reduced if in outN N N , so that 
[24,25]: 

1 1

1 1ˆ ( ) ln | , ln | ,
N N

i i i j

i j
U p p

N N
d y d y d  (7) 

However, this result is a biased estimate of the EIG [24,25]. A large number of samples may 
be required if the prior assumed has a large support at regions of low probability density, as this 
results in arithmetic underflow [26]. 
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Another way to calculate the EIG is by calculating the difference between the differential 
entropy of the prior h  and the differential entropy of the posterior |h y,d [15]:

,2 ( ) , |EIGU h hd y y,d (8) 

The calculation of the differential entropy using samples from the posterior distribution can 
be approximated using the recursive copula splitting approach given in [27].  

3 NUMERICAL RESULTS

A beam connected to the ground via two sets of translational and rotational spring positioned 
along the length of the beam, as shown on fig.1, is investigated in this paper. This simple case 
study has been chosen as it can represent a variety of practical situations where a component is 
attached to some fixtures, but there are uncertainties that may due to its assembly, boundary 
conditions and/or manufacture. In particular, in this case, the location of the first set of springs 
and the magnitude of the rotational spring are investigated. A prior distribution is assigned to 
each of these two parameters. The goal of the analysis is to select the most informative position 
of a sensor in order to update the distribution of these two uncertain parameters. The utility 
functions defined in section 2 are used to assess the optimal position of the sensor. 

Figure 1: Beam attached to ground by translational and rotational springs. 

The following geometric and material properties were used: L (length)=0.6m; b 
(base)=0.04m; h (height)=0.003m; ρ (density) =8000kg/m3; E (Young’s modulus) =100GPa; 
k1 (translational spring stiffness) = 1kN/m; k2 (rotational spring stiffness) = 101.7Nm/rad; L1
(length to springs) = 0.181m; L2 (length to springs) = 0.4m. Modal damping was introduced 
into the system (η=0.01 for all modes).  A force F (triangular pulse of length 10ms and maxi-
mum amplitude of 50N) applied at length L is used to excite the beam.  The parameters to be 
inferred are the stiffness 2k  of both rotational springs and the location 1L  of the first rotational 
spring. 

A Finite Element (FE) model is used to calculate the transversal velocity signals of the beam 
at several locations, to investigate the effects of the position of a single sensor on the utility 
functions.  In particular, a 2-dimensional Euler-Bernoulli beam model is considered. This is 
discretized uniformly using 200 Euler-Bernoulli beam FEs with 2 degrees of freedom per node. 
Moreover, to simulate experimental conditions, for each transversal velocity signal measure at 
each node point, ten different realizations are created contaminating each signal using a white 
Gaussian noise with a noise to signal ratio (rms) of 5%.  
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The numerically contaminated velocity signals obtained at each possible sensor location 
(where the locations available are the ones at each node of the FE system) are post-processed 
using the Eigensystem Realization Algorithm (ERA) [28] to calculate the modal properties. 
Therefore, it was required to apply ERA 200 times to cover all the possible sensor locations in 
the system. These modal properties are then used as the data observed in the likelihood function. 
The likelihood function is then approximated by using the kernel smoothing function 
(ksdensity function of MATLAB [29]) on the set of modal properties obtained from ERA 
using the 10 different realizations of the contaminated velocity signals for each possible sensor 
location. Uniform priors were used for both the stiffness (100Nm/rad to 103 Nm/rad) of the 
rotational springs and location (0.17m to 0.19m) of the rotational spring. The joint posterior 
distribution of 2k  and 1L  is calculated using two Bayesian model updating techniques [16]: Se-
quential Monte Carlo (SMC) sampling and the Transitional Markov Chain Monte Carlo 
(TMCMC). In the SMC sampling approach [16] the samples obtained from the prior were re-
used in all possible sensor locations to reduce the amount of forward simulations needed and to 
investigate how the bias resulting from this approach could affect the calculation of the utility 
functions. The results obtained with this implementation of SMC were compared with the result 
obtained using the unbiased TMCMC [20] that required new simulations each time a possible 
sensor location was considered. While SMC required 20,000 forward simulations to obtain ac-
ceptable estimations of the posterior distribution, the TMCMC required only 6,000 simulations 
but each time a new sensor position was considered the forward simulations could not be reused. 

Figures 2, 3 show the precision values obtained for the Bayesian D-posterior precision and 
Bayesian A-posterior precision utility functions as a function of a sensor location along the 
length of the beam when using SMC and TMCMC.  

Figure 2: Bayesian D-posterior precision values vs sensor location. 
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Figure 3: Bayesian A-posterior precision values vs sensor location. 

The results obtained with the EIG utility function are shown in figure 4. These results were 
obtained by using the recursive copula splitting approach from [27] as using the Monte Carlo 
approximation shown in eq.(7) resulted in evaluating likelihoods at supports of low probability 
density which lead to arithmetic underflow. 

Figure 4: Expected information gain vs sensor location. 

It can be observed that the three utility functions used have identified the same best sensor 
location - that is 0.106m. Locations where the utility values were low were close to nodal points 
and hence the modal properties resulting from ERA were less accurate. For this beam, the re-
sults obtained using the three different utility functions investigated, have been found to be 
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similar. However, it is expected that if a large number of physical parameters would have been 
inferred, the utility functions may have shown dissimilar results as the sensor location that max-
imises the joint posterior precision may have not been the same as the sensor location that 
maximises the marginal posterior precision. 

It was also shown that for this case study the SMC and TMCMC provide similar results. The 
discrepancies found in the values of the utility function are largely due to the bias introduced 
by reusing samples from the prior and the choice of using a sequential importance sampling 
algorithm instead of a sequential importance resampling algorithm. If a sequential importance 
resampling algorithm had been chosen a lower bias would have been introduced in exchange 
for a higher computational cost.   

4 CONCLUSIONS 

The optimal sensor placement for the identification of two physical parameters of a beam 
attached to ground by translational and rotational springs has been investigated by considering 
three utility functions: Bayesian D-posterior precision and Bayesian A-posterior precision, and 
Expected Information Gain. It was shown that these utility functions led to the same best sensor 
location. As expected, poor values of the utility function were found for locations close to nodal 
points, as the modal properties estimated by ERA were less accurate. This result is expected as 
the measurements obtained at nodal points would not have as much information as other points 
along the beam system. 

The utility functions chosen require the calculation of the posterior distribution. Therefore, 
the computational cost is reliant on the Bayesian inference technique being used. However, the 
choice of the inference technique usually shows a trade-off between computational cost and 
accuracy. Reusing samples, as in SMC techniques, may limit the amount of likelihood evalua-
tions but this is at the risk of not evaluating samples close to regions of high probability densities. 
However, it was found that SMC and TMCMC lead to the same results for the case under 
investigation. The current challenge for the Bayesian optimal design approach would be the 
development of a fast inference technique that estimates the posterior at a limited computational 
cost. 
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