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Hierarchical Model Predictive Control for Energy
Management of Power-to-X Systems

Oguzhan Kaya, Els van der Roest, Dirk Vries, Tamas Keviczky

Abstract—This paper presents the application of Hierarchical
Model Predictive Control (HMPC) as an energy management
framework for a multi-timescale mixed-energy system, i.e.,
Power-to-X (PtX). The goal of the energy managing controller
is to minimize an economic objective by determining the energy
flows within the system. HMPC enables a long-term scheduling
solution to anticipate ahead of the seasonal energy mismatches
occurring in PtX systems. This paper presents a novel approach
to couple the separate control layers in the hierarchy by heuristic
assignment to fully employ the PtX fundamentals in the controller
design. Simulation results based on historical data of the Dutch
energy sector show the suitability of HMPC and its superiority
over a rule-based control approach. The proposed controller may,
however, also be used for any configuration of multi-timescale
mixed-energy systems dealing with temporal energy mismatches.

Index Terms—Multi-Energy Systems, Power to X, Model
Predictive Control, Multi-Time Scale, Economic Dispatch

I. INTRODUCTION

The penetration of renewable energy sources (RES) in the
grid is quickly proceeding due to the global effort to reduce
CO2 emissions. The power generated by RES is heavily
subject to the intermittency of the source, e.g., availability
of solar irradiance. Therefore, there are periods with excess
power availability in the grid, where the excess is curtailed
or exported. On the other hand, there are periods of lack of
production, then power must be imported, or more expensive
and/or polluting units must be deployed to produce electricity.
This intermittent behavior may cause a strain on the future
power grids when more RES are deployed, and bi-directional
flows between residential power producers and the grid will
be more common [1].

Power-to-X (PtX) strategies aim to utilize the excess power
from RES by converting power to another energy carrier, e.g.,
heat. By allowing the transition of power to another energy
carrier, the system is transformed into a so-called multi-energy
system. This formulation allows for optimal scheduling of
energy flows in the system while taking into account the
characteristics of each energy carrier, e.g., storage character-
istics, time-varying costs, or production emissions. Therefore,
the system takes into account the multiple energy carriers’
system characteristics and loads in an integrated way. This
paper considers a neighborhood-sized PtX system that is able
to locally produce and meet the demands of multiple energy
carriers. The underlying power network of such a system
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is generally a grid-connected microgrid. Therefore, control
methods for microgrids are also suitable for PtX systems.

The main challenge of PtX control, as opposed to the control
of microgrids, is finding a way to deal with the temporal
mismatch between energy production and consumption. The
most apparent temporal mismatch happens between power
and heat, where peaks of power generation are expected in
the summer, and in the winter, heat demands would spike.
An Aquifer Thermal Energy Storage (ATES) was included
in this paper for storing thermal energy for multiple months.
Moreover, similarly to microgrid control, an intelligent energy
management system (EMS) is essential in PtX systems to
determine the optimal energy flows while attaining the desired
goal, e.g., an economic one. Some decisions the EMS has to
make are:

• how much of a particular energy carrier should be gen-
erated or produced to meet that energy carriers load at
minimal economic cost (energy dispatch);

• when each generation unit should be started and stopped
(unit commitment);

• whether and how much of a certain energy carrier is
exchanged with an external party, e.g., utility grid;

• how much of a particular energy carrier is stored or taken
from the corresponding storages.

In recent literature, Model Predictive Control (MPC) is widely
applied as an EMS of microgrids. Generally, the EMS deter-
mines set-points for low-level control units to track. Several
works are using the MPC framework to deal with multi-
timescale systems. The multi-layered approach, i.e., Hierar-
chical MPC (HMPC) was used in [2] and [3] as EMS of
microgrids. Moreover, a single-layer approach was given in
[4] for microgrids and [5] used a move-blocking scheme for
heating networks dealing with multiple time scales.

The main contribution of this work is the application of
MPC on PtX systems. Furthermore, the development of an
HMPC controller for the optimized energy management for
PtX systems dealing with temporal energy mismatches is
shown. For the HMPC scheme a novel heuristic controller
coupling based on PtX principles is introduced. Meaning,
the computed reference value from the long-term scheduling
upper-layer controller is proportionally divided by the sum of
the total forecasted solar power. By doing so, the reference is
only changed when there is an excess of power available.

The outline of this paper is as follows. Section II describes
the PtX system considered in this paper, along with modeling
decisions. In Section III an HMPC approach is presented,
and in Section IV case study results are shown to assess the
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controller and compare with a rule-based controller. The paper
is concluded in Section V.

II. POWER-TO-X SYSTEM

We consider a PtX system consisting of a microgrid, district
heating network, and hydrogen and water services. The power
is generated by a local solar farm and the microgrid operates
in grid-connected mode. The energy carriers may be stored
in their corresponding storage unit, whereas thermal energy
can be stored for multiple months in an ATES. The goal
is to design an EMS to minimize the operational expenses
while balancing the local production and consumption of each
energy carrier. Fig. 1 illustrates an energy flow diagram of the
system.

Remark. Electrical demands are not taken into account for the
global energy balance, due to regulations in the Netherlands.

Fig. 1. Energy flow diagram of the PtX system. The energy carriers in the
system are electricity (yellow), thermal energy (red and orange), hydrogen
(green), and water (blue), and are indicated by arrows.

Remark. The notation in this work is as follows. Scalars are
written as lowercase letters, e.g., a, matrices as written in bold
uppercase letters, e.g., A. Moreover, discrete-time instants
are expressed with k and discrete-time sampling intervals are
written as τ . Storage and conversion efficiencies are denoted
as η.

A. Microgrid

1) Battery Energy Storage System Model: The dynamics of
the Battery Energy Storage System (BESS) were adopted from
[6] and are given by the following Mixed-Logical Dynamical
(MLD) system:

xb(k + 1) = xb(k)− (ηdch − ηch)zb(k)τ + ηdchPb(k)τ, (1)
s.t. Eb1δb(k) +Eb2zb(k)τ ≤ Eb3Pb(k)τ +Eb4, (2)

where xb is the BESS state of charge, zb := δbPb the MLD
auxiliary variable, δb the boolean variable indicating the BESS
mode, i.e. charging or discharging and Pb the power exchanged
with the BESS. Details on MLD system matrices, denoted by
E, can be found in [6].

2) External Grid Interaction: The microgrid under consid-
eration will exclusively operate in grid-connected mode. Thus
it is always possible to exchange energy with the external
utility grid. We assume that different prices are governed
for import and export and that these prices are time-varying.
Furthermore, it is assumed that at each time instant the import
price is larger than the exporting price. The variable Cgrid
represents the cost or revenue due to interaction with the utility
grid and is given by:

Cgrid(k) = max(ce,imp(k)Pgrid(k)τ, ce,exp(k)Pgrid(k)τ), (3)

where Pg is the power exchanged with the grid, ce,imp and ce,exp
are the import and export price of electricity and ce,imp ≥ ce,exp.

3) Energy Balance: The energy demands in the system
must be met at each time instant. The following inequality
captures the energy balance:

Epv(k)+
(
Pgrid(k)− Pb(k)− Php(k) (4)

Pel(k)− Pro(k)
)
τ ≥ 0, (5)

where Epv is the generated energy from PV generation, Php
is the power input to the heat pump, Pel power input of the
electrolyzer and Pro the power consumption of the reverse
osmosis system.

B. Heat System

1) Aquifer Thermal Energy Storage Modeling: ATES is a
cost-efficient seasonal storage system that can be used to store
large quantities of thermal energy. In its purest form, two wells
are formed underground as porous formations, also known as
aquifers. The system consists of a hot and cold well to store
hot and cold water depending on the season. The heat from
the stored water in the hot well can be extracted by pumping
the water from the hot well to the cold well through a heat
exchanger. Similarly, heat can be stored by pumping water
from the cold well to the hot well while providing the water
with thermal energy from a heat pump. The ATES dynamical
system is given by:

Sh(k + 1) = ηh(k)Sh(k)− αhua(k)τ, (6)
Sc(k + 1) = ηc(k)Sc(k) + αcua(k)τ, (7)

where the state S denotes the thermal energy content and ua
is the control input corresponding to the pump flow rate of
the system. The subscripts ’h’ and ’c’ denote the hot and cold
well, respectively. The wells are characterized by their storage
efficiencies η and thermal power coefficients α.

2) Heat Pump Modeling: A heat pump is a device that
transfers heat from a low-temperature zone to a higher-
temperature zone using mechanical work. Generally, a heat
pump draws heat from the air, ground or water and uses a
vapor compression refrigeration cycle. We assume the heat is
drawn from water originating from a nearby river. The output
thermal energy of the heat pump delivered at each time step
can be calculated by:

Qhp(k) = COP(k) · Php(k)τ, (8)
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where Qhp is the output thermal energy of the heat pump
and Php is the input power of the heat pump and COP is
the coefficient of performance.

3) District Heating Network Model: At each time instant,
the thermal energy in the district heating system must be equal
or larger than the thermal demand of its users. The following
constraint captures the thermal energy balance:

Qhp(k)−QATES(k)−Qd(k) ≥ 0, (9)

where Qd is the uncertain variable denoting the thermal energy
demand of the system and QATES is the thermal energy
exchange with ATES, i.e., QATES = (αh +αc)uaτ . We assume
that temperature in the wells and the ambient temperature are
constant, which means the system is no longer time-varying.
It is also assumed that we can continue extracting water from
the wells when they are fully depleted. This means we are
extracting water with ambient temperature. The total power
coefficients depend on the flow direction of the pump and
the current thermal energy contents of the well. The ATES
dynamics can be rewritten into a piecewise-affine (PWA)
function. Subsequently, by using HYSDEL [7] in Matlab, (9)
and the PWA ATES dynamics can be transformed into an MLD
system: Now let us define xT

a =
[
Sh Sc

]T
and consider the

following discrict heating network system:

xa(k + 1) = Aa(k)xa(k) +Ba(k)ua(k)τ, (10)
Qhp(k) =Daza(k) +Qd(k), (11)
Ea1xa(k) +Ea2ua(k)τ +Ea3za(k)τ +Ea4δa(k) ≤ Eaff,

(12)

where zTa and δTa denote the vector of auxiliary and binary
variables, respectively. The full MLD system derivation and
MLD system matrices, denoted by E, can be found in [8].

C. Hydrogen and Water Systems
1) Modeling Hydrogen Trades: Similar to the electricity

utility interaction, hydrogen may also be imported or exported.
The hydrogen prices are assumed to be constant, and again the
importing price is larger than the exporting price.

Chy(k) = max(chy,impHtrade(k), chy,expHtrade(k)), (13)

where Chy is the cost or revenue of trading hydrogen, chy,imp
and chy,exp the import and export price of hydrogen, respec-
tively and Htrade is the amount of hydrogen traded.

2) Hydrogen Production and Storage Modeling: A water
electrolysis system is responsible for providing the hydrogen
needed for mobility purposes in the neighborhood. The pro-
duced hydrogen is assumed to be stored directly in a connected
reservoir. We assume that the energy consumption of the
electrolysis system, Pel is a linear function of the produced
hydrogen. Now the hydrogen storage’s dynamics are given
by:

xel(k + 1) = xel(k) +Hel(k) +Htrade(k)−Hd(k), (14)

where xel denotes the state of the electrolyzer’s hydrogen
buffer, Hel the produced hydrogen and Hd the uncertain
hydrogen demand.

3) Water Production and Storage Modeling: Demiwater,
also known as demineralized water is used in the system
for the production of hydrogen and in residential use, e.g.,
dishwashers and washing machines. A high-pressure pump, a
membrane module, and water storage tank form the reverse
osmosis system for the production of demiwater. Generally,
water is pressurized and fed into the system where it is
separated into a low-salinity product (permeate), and a high-
salinity brine (retentate). The demiwater can now either be
used to meet the water demand or stored in a water tank.
Based on the latter introduction, the dynamics of the volume
in the storage tank, xdw is given by:

xdw(k + 1) = xdw(k) + Fro(k)τ − ηhy,dw ·Hel(k)τ − Fd(k),
(15)

where xdw is the storage volume and Fro the produced demi-
water and Fd the demiwater demand.

III. HIERARCHICAL MODEL PREDICTIVE CONTROL
FRAMEWORK

The HMPC framework generally aims to partition the
control of multiple timescales within a system and assign them
to a separate layer in the control hierarchy. In this work, the
proposed HMPC scheme is depicted in Fig. 2 and consists of
two layers.

Upper-Layer MPC

Lower-Layer MPC

Power-to-X 
System

Control inputs

Measurements

Measurements

State 
reference

Fig. 2. HMPC control scheme consisting of the UL-MPC and LL-MPC
controllers.

A. Upper-Layer MPC Design

The Upper-Layer MPC (UL-MPC) controller is designed
for long-term decision making of ATES storage planning and
providing its decision as reference for the Lower-Layer MPC
(LL-MPC). The temporal energy discrepancies are visible over
multiple months, therefore, the sampling time τ u is chosen
to be a month. The upper-layer prediction horizon is N u =
12 months, i.e. a year. The UL-MPC dynamical model only
consists of the heat system (10), (11) and (12). At each time
instant ku the following linear cost function is minimized:

Ju =
N u−1∑
i=0

(Cgrid(k
u + i|ku) + Chy(k

u + i|ku)) , (16)
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subject to system dynamics (10), (11) and (12), state and input
constraints:

xa ≤ xa(k
u + i|ku) ≤ xa ∀i = 0, . . . , N u − 1, (17)

ua ≤ ua(k
u + i|ku) ≤ ua ∀i = 0, . . . , N u − 1, (18)

energy balance:

Epv(k
u + i|ku) + Pgrid(k

u + i|ku)τ u − Php(k
u + i|ku)τ u

− Pel(k
u + i|ku)τ u − Pro(k

u + i|ku)τ u ≥ 0

∀i = 0, . . . , N u − 1, (19)

and mass balances:

Hel(k
u + i|ku)τ u +Htrade(k

u + i|ku)τ u −Hu
d (k

u + i|ku) ≥ 0
(20)

Fro(k
u + i|ku)τ u − ηhy,dw ·Hel(k

u + i|ku)− Fd(k
u + i|ku) ≥ 0

(21)
∀i = 0, . . . , N u − 1

B. Lower-Layer MPC Design

The LL-MPC is the actual EMS of the PtX system providing
hourly set-points to the system. The lower-layer sampling time
is τ l = 1 hour and the prediction horizon is chosen to be
N l = 24 hours. At each time instant kl the following cost
function is minimized:

J l =
N l−1∑
i=0

(
Cgrid(k

l + i|kl) + Chy(k
l + i|kl)

)
+

N l∑
i=0

(
|Sh(k

l + 1 + i|kl)− Sref(k
l + i|kl)|

)
, (22)

subject to storage dynamics (1), (2), (10)-(12), (14) and (15),
state and input constraints, and energy balance constraint:

Epv(k
l + i|kl) + Pgrid(k

l + i|kl)τ l − Pb(k
l + i|kl)τ l (23)

− Php(k
l + i|kl)τ l − Pel(k

l + i|kl)τ l − Pro(k
l + i|kl)τ l ≥ 0

C. Controller Coupling

The UL-MPC generates monthly setpoints for the LL-MPC
by updating the model output, i.e. S∗

h (k
u+1|ku) by applying

the first input of the calculated optimal control sequence in
(10). Two ways to utilize the setpoint are investigated. The
first method is a linear interpolation [9], whereas the second
method consists of heuristic weight assignments. The heuristic
assignment is done by proportionally dividing the setpoint in
a month by the solar power availability when storing heat, and
heating demand when using heat from the storage. In Fig. 3
the working principles of both are methods are shown.

1) Linear Interpolation: The calculation of the reference
sequence by the linear interpolation methods is given by:

Sref(k
l + i|kl)= Sh(k

l|kl)+
i+ 1

720 · ku − kl · (S
∗
h (k

u + 1|ku)− Sh(k
l|kl))

∀i = 0, . . . , N l − 1 (24)
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Fig. 3. ATES thermal energy content for a year (upper figure) and for a few
days in the summer (lower figure).

2) Heuristic Assignment: The heuristic assignment for
months when heat is stored is given by:

Sref(k
l+i|kl) = Sh(k

l|kl)+∑i+1
j=0Epv(k

l + j|kl)

Epv(ku)
· (S∗

h (k
u + 1|ku)− Sh(k

l|kl))

∀i = 0, . . . , N l − 1 (25)

This assignment makes sure that heat is only produced when
there is solar power available. Thus fully employing the
PtX principles of utilizing excess power. Furthermore, the
assignment for months when heat is used from the storage
is given by:

Sref(k
l+i|kl) = Sh(k

l|kl)+∑i+1
j=0Qd(k

l + j|kl)

Qd(ku)
· (Sh(k

l|kl)− S∗
h (k

u + 1|ku))

∀i = 0, . . . , N l − 1 (26)

D. Dealing with Uncertainties

To operate an MPC controller as EMS in real-life appli-
cations one must deal with the uncertainties acting on the
system. In this work we have been introduced to the following
uncertain variables, Epv, Qd, Hd and Fd. Since the LL-MPC
has a prediction horizon of a day, there must be predictions
available for the uncertain variables. We have chosen to use the
’naive’ persistence model, in which we assume that the future
uncertainties are the same as the measurements the day before.
In the deterministic framework, these ’forecasts’ are assumed
to be correct and directly used in the UL-MPC and LL-MPC
control problems, also known as certainty-equivalent MPC
(CEMPC). Moreover, scenario-based MPC (SBMPC) was ap-
plied as described in [10]. Due to the imperfect knowledge of
the future trajectories of the uncertainties, constraint violations
may occur. Where the CEMPC controller cannot guarantee
any constraint satisfaction, the SBMPC approach uses finite
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scenario realizations of the disturbances to guarantee the
satisfaction of constraints with a predefined violation risk.

We assume that the external grid reacts fast enough to
deal with electrical energy imbalances. Furthermore, it is also
assumed that the heat pump’s power setpoint can be adjusted
fast enough to deal with heat balance mismatch. At last,
conservative lower bounds for hydrogen and water storage
units are applied to intercept imbalances.

IV. SIMULATION RESULTS

The HMPC schemes presented in Section III will be as-
sessed in a case study based on historical data of the Dutch
energy sector. A rule-based control law was developed for
benchmark purposes. Moreover, the HMPC optimal control
problem is a Mixed-Integer Linear one. The optimization was
formulated with the YALMIP toolbox [11] and solved with
GUROBI solver in Matlab.

Fig. 4 shows the storage utilization for a few summer days
for the CEMPC controllers. Both HMPC schemes decide to fill
the BESS and water storage during the day when there is an
excess of solar energy. These supplies are then used during the
night. Moreover, in the bottom graph of Fig. 3 the difference
during the day of both HMPC schemes was highlighted, i.e.
constant heat production vs. producing heat when there is solar
power available.
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Fig. 4. Simulation results of storage utilization for a few summer days.

The control strategies will be compared based on the follow-
ing performance indices. The yearly revenue, which is directly
incorporated in the MPC optimization formulation, the carbon-
dioxide emission savings in a year and the amount of heat left
in the ATES hot well at the end of the simulation. These results
for the CEMPC controllers are presented in Table. I. Since
the operational expenses were the only performance index to
be incorporated in the controller design, the best value was
highlighted in the table.

The SBMPC controllers yielded slightly less yearly rev-
enue, with the benefit of less constraint violations. What is
significant to note is that the grid capacity for importing was

TABLE I
PERFORMANCE INDICES OF ASSESSED CONTROL SCHEMES

Control Strategy Rule-Based HMPC HMPC
Control Linear Heuristic

Yearly Revenue in e 9.45 · 104 2.19 · 105 2.22 · 105

Emission Savings in tonnes 7.00 · 102 3.29 · 102 3.73 · 102
Heat Storage in MWh 0.00 0.626 0.626

never exceeded. Hence no adverse penalties on grid capacity
violation were imposed on the controllers. Therefore, it is
important to emphasize that any other PtX configuration may
lead to better performing SBMPC controllers.

V. CONCLUSIONS

This paper presented an HMPC approach for optimizing
the energy flows within a PtX system consisting of multiple
timescales. We have presented two variants of the HMPC
controller, a linear interpolation and heuristic controller cou-
pling. Including heuristics in the HMPC controller coupling
yielded better performance. With improved forecasts, this
controller still has as much as 55% to improve in yearly rev-
enue (CEMPC). Simulations show that the proposed approach
achieves better performance than a rule-based approach.

Future work includes the addition of electrical loads, an
HMPC approach with event-driven updates, improving fore-
casts, and performing a simulation based on the ATES simu-
lation environment MODFLOW.
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