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Continuous-Time Accelerated Methods via a
Hybrid Control Lens

Arman Sharifi Kolarijani , Peyman Mohajerin Esfahani , and Tamás Keviczky

Abstract—Treating optimization methods as dynamical
systems can be traced back centuries ago in order to com-
prehend the notions and behaviors of optimization meth-
ods. Lately, this mindset has become the driving force to
design new optimization methods. Inspired by the recent
dynamical system viewpoint of Nesterov’s fast method, we
propose two classes of fast methods, formulated as hybrid
control systems, to obtain prespecified exponential conver-
gence rate. Alternative to the existing fast methods, which
are parametric-in-time second-order differential equations,
we dynamically synthesize feedback controls in a state-
dependent manner. Namely, in the first class, the damping
term is viewed as the control input, while in the second
class the amplitude with which the gradient of the objective
function impacts the dynamics serves as the controller.
The objective function requires to satisfy the so-called
Polyak–Łojasiewicz inequality, which effectively implies no
local optima and a certain gradient-domination property.
Moreover, we establish that both hybrid structures possess
Zeno-free solution trajectories. We finally provide a mech-
anism to determine the discretization step size to attain an
exponential convergence rate.

Index Terms—Dynamical systems, fast optimization
methods, feedback control, hybrid control systems.

I. INTRODUCTION

THERE is a renewed surge of interest in gradient-based
algorithms in many computational communities such as

machine learning and data analysis. The following nonexhaus-
tive list of references indicates typical application areas: cluster-
ing analysis [1], neuro-computing [2], statistical estimation [3],
support vector machines [4], signal and image processing [5],
and networked-constrained optimization [6]. This interest pri-
marily stems from low computational and memory loads of these
algorithms (making them exceptionally attractive in large-scale
problems where the dimension of decision variables can be
enormous). As a result, a deeper understating of how these
algorithms function has become a focal point of many studies.

Manuscript received July 19, 2018; revised July 23, 2019 and May
9, 2019; accepted September 28, 2019. Date of publication October
2, 2019; date of current version July 28, 2020. Recommended by As-
sociate Editor R. M. Jungers. (Corresponding author: Arman Sharifi
Kolarijani.)

The authors are with the Delft Center for Systems and Con-
trol, Delft University of Technology, 2628 CD Delft, The Netherlands
(e-mail: a.sharifikolarijani@tudelft.nl; p.mohajerinesfahani; t.keviczky@
tudelft.nl).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2945287

One research direction that has been recently revitalized is
the application of ordinary differential equations (ODEs) to the
analysis and design of optimization algorithms. Consider an
iterative algorithm that can be viewed as a discrete dynamical
system, with the scalar s as its step size. As s decreases, one can
observe that the iterative algorithm in fact recovers a differential
equation, e.g., in the case of gradient descent method applied
to an unconstrained optimization problem minX∈Rn f(X), one
can inspect that

Xk+1 = Xk − s∇f(Xk) � Ẋ(t) = −∇f(X(t))

where f : Rn → R is a smooth function, X is the decision
variable, k ∈ Z≥0 is the iteration index, and t ∈ R≥0 is the time.
The main motivation behind this line of research has to do with
well-established analysis tools in dynamical systems described
by differential equations.

The slow rate of convergence of the gradient descent algo-
rithm (O( 1t ) in continuous and O( 1k ) in discrete time), limits
its application in large-scale problems. In order to address this
shortcoming, many researchers resort to the following class of
second-order ODEs, which is also the focus of this paper:

Ẍ(t) + γ(t)Ẋ(t) +∇f(X(t)) = 0. (1)

Increasing the order of the system dynamics interestingly helps
improve the convergence rate of the corresponding algorithms to
O( 1

k2 ) in the discrete-time domain or toO( 1
t2 ) in the continuous-

time domain. Such methods are called momentum, accelerated,
or fast gradient-based iterative algorithms in the literature. The
time-dependent function γ : R≥0 → R>0 is a damping or a vis-
cosity term, which has also been referred to as the asymptotically
vanishing viscosity since limt→∞ γ(t) = 0 [7].

A. Chronological Developments of Fast Algorithms

It is believed that the application of (1) to speed-up opti-
mization algorithms is originated from [8] in which Polyak was
inspired by a physical point of view (i.e., a heavy-ball moving in
a potential field). Later on, Nesterov introduced his celebrated
accelerated gradient method in [9] using the notion of “esti-
mate sequences” and guaranteeing convergence rate of O( 1

k2 ).
Despite several extensions of Nesterov’s method [10]–[12], the
approach has not yet been fully understood. In this regard, many
have tried to study the intrinsic properties of Nesterov’s method
such as [13]–[16]. Recently, Su et al. [17] and in detail [18]
surprisingly discovered that Nesterov’s method recovers (1)
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in its continuous limit, with the time-varying damping term
γ(t) = 3

t .

B. A Dynamical Systems Perspective

Based on the observation suggested by [17], several novel fast
algorithms have been developed. Inspired by the mirror descent
approach [19], the ODE (1) has been extended to non-Euclidean
settings using the Bregman divergence in [20]. Then, Wibisono
et al. [21] further generalized the approach in [20] to higher order
methods using instead the Bregman Lagrangian. Following [21],
a “rate matching” Lyapunov function is proposed in [22] with
its monotonicity property established for both continuous and
discrete dynamics. Recently, Lessard et al. [16] made use of
an interesting semidefinite programming framework developed
in [15] and use tools from robust control theory to analyze the
convergence rate of optimization algorithms. More specifically,
the authors exploit the concept of integral quadratic constraints
(IQCs) [23] to design iterative algorithms under the strong
convexity assumption. Later, Fazlyab et al. [24] extend the
results of IQC-based approaches to quasi-convex functions. Hu
and Lessard [25] used dissipativity theory [26] along with the
IQC-based analysis to construct Lyapunov functions enabling
rate analyses. In [27], the ODE (1) is amended with an extra
Hessian-driven damping β∇2f(X(t)) for some positive scalar
β. It is shown that the proposed dynamics can be generalized to
the case of lower semicontinuous functions via an appropriate
reparameterization of the dynamics. Krichene et al. [28] pro-
posed an averaging approach to construct a broad family of fast
mirror descent methods. They also introduce a state dependent,
heuristic method to adaptively update the averaging function.

C. Restarting Schemes

A characteristic feature of fast methods is the nonmonotonic-
ity in the suboptimality measure f − f ∗, where f ∗ refers to the
optimal value of function f . The reason behind such an undesir-
able behavior can be intuitively explained in two ways: first, a
momentum-based argument indicating as the algorithm evolves,
the algorithm’s momentum gradually increases to a level that it
causes an oscillatory behavior [29], and second, an acceleration-
based argument indicating that the asymptotically vanishing
damping term becomes so small that the algorithm’s behavior
drifts from an overdamped regime into an underdamped regime
with an oscillatory behavior [18]. To prevent such an undesirable
behavior in fast methods, an optimal fixed restart interval is
determined in terms of the so-called condition number of func-
tion f such that the momentum term is restarted to a certain
value (see, e.g., [10], [12], [30]–[32]). It is worth mentioning
that [29] proposes two heuristic adaptive restart schemes. It is
numerically observed that such restart rules practically improve
the convergence behavior of a fast algorithm.

D. Regularity for Exponential Convergence

Generally speaking, exponential convergence rate and the
corresponding regularity requirements of the function f are two
crucial metrics in fast methods. In what follows, we discuss about
these metrics for three popular fast methods in the literature.

(Notice that these fast methods are in general designed for wider
classes of functions and not limited to the specific cases reported
below.) When the objective functions are strongly convex with
a constant σf and their gradient is Lipschitz with a constant Lf ,
[18] proposes the “speed restarting” scheme

sup

{
t > 0 : ∀τ ∈ (0, t),

d‖Ẋ(τ)‖2
dτ

> 0

}

to achieve the convergence rate of

f(X(t))− f ∗ ≤ d1e
−d2t‖X(0)−X∗‖2.

The positive scalars d1 and d2 depend on the constants σf and
Lf . Assuming the convexity of the function f with a certain
choice of parameters in their “ideal scaling” condition, [21] uses
the dynamics

Ẍ(t) + cẊ(t)

+ c2ect
(
∇2h(X(t) +

1

c
Ẋ(t))

)−1
∇f(X(t)) = 0

and guarantees the convergence rate of O(e−ct) for some pos-
itive scalar c, where the function h is a distance generating
function. Under uniform convexity assumption with a constant
νf , it is further shown that

f(X(t))− f ∗ ≤ (f(X(0))− f ∗)e−νf
1

p−1 t.

where p− 1 is the order of smoothness of f . Wilson et al. [22]
introduced the Lyapunov function

E(t) = eβ(t)
(
f(X(t))− f ∗ +

σf

2
‖X∗ − Z(t)‖2

)
to guarantee the rate of convergence

E(t) ≤ E(0)e−
∫
β̇(s)ds

where Z(t) = X(t) + 1
β̇(t)

Ẋ, Ż(t) = −Ẋ(t)− 1
σf

β̇(t)∇f(X
(t)), and β(t) is a user-defined function.

E. Statement of Hypothesis

Much of the references reviewed previously (excluding,
e.g., [27] and [28]) primarily deal with constructing a time-
dependent damping term γ(t) that is sometimes tied to a
Lyapunov function. Furthermore, due to underlying oscillatory
behavior of the corresponding second-order ODE, researchers
utilize restarting schemes to overwrite the steady-state non-
monotonic regime with the transient monotonic regime of the
dynamics. In general, notice that these schemes are based on
time-dependent schedulers.

With the abovementioned argument in mind, let us view an
algorithm as a unit point mass moving in a potential field caused
by an objective function f under a parametric (or possibly
constant) viscosity, similar to the second-order ODE (1). In this
view, we aim to address the following two questions.

Is it possible to
I) synthesize the damping term γ as a state-dependent term

(i.e., γ(X, Ẋ)), or
II) dynamically control the magnitude of the potential force
∇f(X)
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such that the underlying properties of the optimization algorithm
are improved?

F. Contribution

In this paper, we answer these questions by amending the
second-order ODE (1) in two ways as follows:

I) Ẍ(t) + uI(X(t), Ẋ(t))Ẋ(t) +∇f(X(t)) = 0,
II) Ẍ(t) + Ẋ(t) + uII(X(t), Ẋ(t))∇f(X(t)) = 0,

where the indices indicate to which question each structure
is related to in the abovementioned hypothesis. Evidently, in
the first structure, the state-dependent input uI replaces the
time-dependent damping γ in (1). While in the second structure,
the feedback input uII dynamically controls the magnitude with
which the potential force enters the dynamics (we assume for
simplicity of exposition that γ(t) = 1, however, one can modify
our proposed framework and following a similar path develop
the corresponding results for the case γ(t) �= 1). Let f be a
twice differentiable function that satisfies the so-called Polyak–
Łojasiewicz (PL) inequality [see Assumption (A2)]. Given a
positive scalar α, we seek to achieve an exponential rate of
convergence O(e−αt) for an unconstrained, smooth optimiza-
tion problem in the suboptimality measure f(X(t))− f ∗. To
do so, we construct the state-dependent feedback laws for each
structure as follows:

uI(X(t), Ẋ(t)) :=

α+
‖∇f(X(t))‖2 − 〈∇2f(X(t))Ẋ(t), Ẋ(t)〉

〈∇f(X(t)),−Ẋ(t)〉
uII(X(t), Ẋ(t)) :=

〈∇2f(X(t))Ẋ(t), Ẋ(t)〉+(1−α)〈∇f(X(t)),−Ẋ(t)〉
‖∇f(X(t))‖2 .

Motivated by restarting schemes, we further extend the class
of dynamics to hybrid control systems (see Definition II.1 for
further details) in which both of the abovementioned ODE
structures play the role of the continuous flow in their respective
hybrid dynamical extension. We next suggest an admissible
control input range [umin, umax] that determines the flow set
of each hybrid system. Based on the model parameters α, umin,
andumax, we then construct the jump map of each hybrid control
system by the mapping (X�,−β∇�f(X))� guaranteeing that
the range space of the jump map is contained in its respective
flow set. Notice that the velocity restart schemes take the form
of Ẋ = −β∇f(X).

This paper extends the results of [33] in several ways, which
are summarized as follows.

1) We synthesize a state-dependent gradient coefficient
(uII(x)) given a prescribed control input bound and a
desired convergence rate (see Theorem III.4). This is a
complementary result to our earlier study [30], which
is concerned with a state-dependent damping coefficient
(uI(x)). Notice that the state-dependent feature of our
proposed dynamical systems differs from commonly
time-dependent methodologies in the literature.

2) We derive a lower bound on the time between two consec-
utive jumps for each hybrid structure. This ensures that the

constructed hybrid systems admit the so-called Zeno-free
solution trajectories. It is worth noting that the regular-
ity assumptions required by the proposed structures are
different (see Theorems III.2 and III.5).

3) The proposed frameworks are general enough to include
a subclass of nonconvex problems. Namely, the critical
requirement is that the objective function f satisfies the
PL inequality [see Assumption (A2)], which is a weaker
regularity assumption than the strong convexity that is of-
ten assumed in this context for exponential convergence.

4) We utilize the forward-Euler method to discretize both
hybrid systems (i.e., obtain optimization algorithms). We
further provide a mechanism to compute the step size
such that the corresponding discrete dynamics have an
exponential rate of convergence (see Theorem III.11).

The remainder of this paper is organized as follows. In
Section II, the mathematical notions are represented. The main
results of the paper are introduced in Section III. Section IV
contains the proofs of the main results. We introduce a numer-
ical example in Section V. This paper is finally concluded in
Section VI.

Notations: The sets Rn and Rm×n denote the n-dimensional
Euclidean space and the space of m× n dimensional matrices
with real entries, respectively. For a matrix M ∈ Rm×n, M�

is the transpose of M , M � 0 (≺ 0) refers to M positive
(negative) definite, M � 0 (� 0) refers to M positive (negative)
semidefinite, and λmax(M) denotes the maximum eigenvalue
of M . The n× n identity matrix is denoted by In. For a vector
v ∈ Rn and i ∈ {1, . . . , n}, vi represents the ith entry of v and
‖v‖ :=√Σn

i=1 v2
i is the Euclidean 2-norm of v. For two vectors

x, y ∈ Rn, 〈x, y〉 := x�y denotes the Euclidean inner product.
For a matrix M , ‖M‖ :=√λmax(M�M) is the induced 2-norm.
Given the set S ⊆ Rn, ∂S, and int(S) represent the boundary
and the interior of S, respectively.

II. PRELIMINARIES

We briefly recall some notions from hybrid dynamical systems
that we will use to develop our results. We state the standing
assumptions related to the optimization problem to be tackled in
this paper. The problem statement is then introduced. We adapt
the following definition of a hybrid control system from [34]
that is sufficient in the context of this paper.

Definition II.1 (Hybrid control system): A time-invariant
hybrid control system H comprises a controlled ODE and a
jump (or a reset) rule introduced as{

ẋ = F (x, u(x)), x ∈ C
x+ = G(x), otherwise

(H)

where x+ is the state of the hybrid system after a jump, the
function u : Rn → Rm denotes a feedback signal, the function
F : Rn ×Rm → Rn is the flow map, the set C ⊆ Rn is the flow
set, and the function G : ∂C → int(C) represents the jump map.

Notice that the jump map G(x) will be activated as soon as
the state x reaches the boundary of the flow set C, that is ∂C. In
hybrid dynamical systems, the notion of Zeno behavior refers
to the phenomenon that an infinite number of jumps occur in
a bounded time interval. We then call a solution trajectory of
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a hybrid dynamical system Zeno free, if the number of jumps
within any finite time interval is bounded. The existence of a
lower bound on the time interval between two consecutive jumps
suffices to guarantee the Zeno freeness of a solution trajectory
of a hybrid control system. Nonetheless, there exist solution
concepts in the literature that accept Zeno behaviors (see for
example [34]–[37] and the references therein).

Consider the following class of unconstrained optimization
problems:

f ∗ := min
X∈Rn

f(X) (2)

where f : Rn → R is an objective function.
Assumption II.2 (Regularity assumptions): We stipulate that

the objective function f : Rn → R is twice differentiable and
fulfills the following:

1) (Bounded Hessian): The Hessian of function f , denoted
by∇2f(x), is uniformly bounded, i.e.,

−
fIn � ∇2f(x) � LfIn (A1)

where 
f and Lf are nonnegative constants.
2) (Gradient dominated): The function f satisfies the PL

inequality with a positive constant μf , i.e., for every x in
Rn, we have

1

2
‖∇f(x)‖2 ≥ μf (f(x)− f ∗) (A2)

where f ∗ is the minimum value of f on Rn.
3) (Lipschitz Hessian): The Hessian of the function f is

Lipschitz, i.e., for every x, y in Rn, we have∥∥∇2f(x)−∇2f(y)
∥∥ ≤ Hf‖x− y‖ (A3)

where Hf is a positive constant.
We now formally state the main problem to be addressed in

this paper.
Problem II.3: Consider the unconstrained optimization

problem (2) where the objective function f is twice differen-
tiable. Given a positive scalar α, design a fast gradient-based
method in the form of a hybrid control system (H) with α-
exponential convergence rate, i.e., for any initial conditionX(0)
and any t ≥ 0, we have

f(X(t))− f ∗ ≤ e−αt(f(X(0))− f ∗)

where {X(t)}t≥0 denotes the solution trajectory of the sys-
tem (H).

Remark II.4 (Lipschitz gradient): Since the function f is
twice differentiable, Assumption (A1) implies that the function
∇f is also Lipschitz with a positive constant Lf , i.e., for every
x, y in Rn, we have∥∥∇f(x)−∇f(y)∥∥ ≤ Lf‖x− y‖. (3)

We now collect two remarks underlining some features of the
set of functions that satisfy (A2).

Remark II.5 (PL functions and invexity): The PL inequality
in general does not imply the convexity of a function but rather
the invexity of it. The notion of invexity was first introduced
by [38]. The PL inequality (A2) implies that the suboptimality
measure f − f ∗ grows at most as a quadratic function of ∇f .

Remark II.6 (Nonuniqueness of stationary points): While
the PL inequality does not require the uniqueness of the
stationary points of a function (i.e., {x : ∇f(x) = 0}), it
ensures that all stationary points of the function f are global
minimizers [39].

We close our preliminary section with a couple of popular
examples borrowed from [40].

Example 1 (PL functions): The composition of a strongly
convex function and a linear function satisfies the PL inequality.
This class includes a number of important problems such as least
squares, i.e., f(x) = ‖Ax− b‖2 (obviously, strongly convex
functions also satisfy the PL inequality). Any strictly convex
function over a compact set satisfies the PL inequality. As
such, the log-loss objective function in the logistic regression,
i.e., f(x) = Σn

i=1 log(1 + exp(bia�i x)), locally satisfies the PL
inequality.

III. MAIN RESULTS

In this section, the main results of this paper are provided.
We begin with introducing two types of structures for the hybrid
system (H) motivated by the dynamics of fast gradient meth-
ods [18]. Given a positive scalar α, these structures, indexed
by I and II, enable achieving the rate of convergence O(e−αt)
in the suboptimality measure f(x1(t))− f ∗. We then collect
multiple remarks highlighting the shared implications of the two
structures along with a naive type of time discretization for these
structures. The technical proofs are presented in Section IV. For
notational simplicity, we introduce the notation x = (x1, x2)
such that the variablesx1 andx2 represent the system trajectories
X and Ẋ , respectively.

A. Structure I: State-Dependent Damping Coefficient

The description of the first structure follows. We start with
the flow map FI : R2n ×R→ R2n defined as

FI(x, uI(x)) =

(
x2

−∇f(x1)

)
+

(
0

−x2

)
uI(x). (4a)

Notice that FI(·, ·) is the state-space representation of a second-
order ODE. The feedback law uI : R2n → R is given by

uI(x) = α+
‖∇f(x1)‖2 − 〈∇2f(x1)x2, x2〉

〈∇f(x1),−x2〉 . (4b)

Intuitively, the control input uI(x) is designed such that
the flow map FI(x, uI(x)) renders a level set σ(t) := 〈∇
f(x1(t)), x2(t)〉+ α(f(x1(t))− f ∗) invariant, i.e., d

dtσ(t) =
0. Next, the candidate flow set CI ⊂ R2n is characterized by
an admissible input interval [uI uI], i.e.,

CI =
{
x ∈ R2n : uI(x) ∈ [uI, uI]

}
(4c)

where the interval bounds uI, uI represent the range of admis-
sible control values. Notice that the flow set CI is the domain in
which the hybrid system (H) can evolve continuously. Finally,
we introduce the jump map GI : R2n → R2n parameterized by
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a constant βI

GI(x) =

(
x1

−βI∇f(x1)

)
. (4d)

The parameter βI ensures that the range space of the jump map
GI is a strict subset of int(CI). By construction, one can inspect
that any neighborhood of the optimizer x∗1 has a nonempty
intersection with the flow set CI. That is, there always exist paths
in the set CI that allow the continuous evolution of the hybrid
system to approach arbitrarily close to the optimizer.

We are now in a position to formally present the main results
related to the structure I given in (4). For the sake of complete-
ness, we borrow the first result from [33]. This theorem provides
a framework to set the parameters uI, uI, and βI in (4c) and
(4d) in order to ensure the desired exponential convergence rate
O(e−αt).

Theorem III.1 (Continuous-time convergence rate - I): Con-
sider a positive scalar α and a smooth function f : Rn → R
satisfying Assumptions (A1) and (A2). Then, the solution tra-
jectory of the hybrid control system (H) with the respective
parameters (4) starting from any initial condition x1(0) satisfies

f
(
x1(t)

)− f ∗ ≤ e−αt
(
f
(
x1(0)

)− f ∗
)
∀t ≥ 0 (5)

if the scalars uI, uI, and βI are chosen such that

uI < α+ β−1I − LfβI (6a)

uI > α+ β−1I + 
fβI (6b)

α ≤ 2μfβI. (6c)

The next result establishes a key feature of the solution
trajectories generated by the dynamics (H) with the respective
parameters (4), that the solution trajectories are indeed Zeno
free.

Theorem III.2 (Zeno-free hybrid trajectories-I): Consider a
smooth function f : Rn → R satisfying Assumption II.2, and
the corresponding hybrid control system (H) with the respec-
tive parameters (4) satisfying (6). Given the initial condi-
tion (x1(0),−βI∇f(x1(0))) the time between two consecutive
jumps of the solution trajectory, denoted by τI, satisfies for any
scalar r > 1

τI ≥ log

⎛
⎝min

{
a1

a2 + a3
∥∥∇f(x1(0)

)∥∥ + 1, r

}1/δ
⎞
⎠ (7)

where the involved constants are defined as

C :=
(uI − α) +

√
(uI − α)2 + 4Lf

2
(8a)

δ := C +max{uI,−uI} (8b)

Lf := max{
f , Lf} (8c)

a1 := min{uI − (α+ β−1I + 
fβI),

(α+ β−1I − LfβI)− uI} (8d)

a2 := rLfδ
−1(rβIC + 1) + β−1I + (r2 + r + 1)βILf (8e)

a3 := r3β2
IHfδ

−1. (8f)

Consequently, the solution trajectories are Zeno free.
Remark III.3 (Nonuniform interjumps - I): Notice that The-

orem III.2 suggests a lower bound for the interjump interval
τI that depends on ‖∇f(x1)‖. In light of the fact that the
solution trajectories converge to the optimal solutions, and as
such ∇f(x1) tends to zero, one can expect that the frequency
at which the jumps occur reduces as the hybrid control system
evolves in time.

B. Structure II: State-Dependent Potential Coefficient

In this section, we first provide the structure II for the hybrid
control system (H). We skip the details of differences with the
structure I and differ it to Sections III-C and IV. Consider the
flow map FII : R2n ×R→ R2n given by

FII

(
x, uII(x)

)
=

(
x2

−x2

)
+

(
0

−∇f(x1)

)
uII(x) (9a)

and the feedback law uII : R2n → R given by

uII(x) =
〈∇2f(x1)x2, x2〉+ (1− α)〈∇f(x1),−x2〉

‖∇f(x1)‖2 . (9b)

Notice that here the input uII(x) is derived along the same lines
as in structure I. The feedback input uII(x) is synthesized such
that the level set σ(t) := 〈∇f(x1(t)), x2(t)〉+ α(f(x1(t))−
f ∗) remains constant as the dynamics x evolve based on the
flow map FII(x, uII(x)). The candidate flow set CII ⊂ R2n is
parameterized by an admissible interval [uIIuII] as follows:

CII =
{
x ∈ R2n : uII(x) ∈ [uII, uII]

}
. (9c)

Parameterized in a constant βII, the jump map GII : R2n →
R2n is given by

GII(x) =

(
x1

−βII∇f(x1)

)
. (9d)

Theorem III.4 (Continuous-time convergence rate-II): Con-
sider a positive scalar α and a smooth function f : Rn → R
satisfying Assumptions (A1) and (A2). Then, the solution tra-
jectory of the hybrid control system (H) with the respective
parameters (9) starting from any initial condition x1(0) satisfies
the inequality (5), if the scalars uII, uII, and βII are chosen such
that

uII < −
fβ2
II + (1− α)βII (10a)

uII > Lfβ
2
II + (1− α)βII (10b)

α ≤ 2μfβII. (10c)

Theorem III.5 (Zeno-free hybrid trajectories-II): Consider a
smooth function f : Rn → R satisfying Assumptions (A1) and
(A2), and the hybrid control system (H) with the respec-
tive parameters (9) satisfying (10). Given the initial condition
(x1(0),−βII∇f(x1(0))) the time between two consecutive
jumps of the solution trajectory, denoted by τII, satisfies for
any scalar r ∈ (0, 1)

τII ≥ min
{
rω−1, δ(b1 + b2)

−1} (11)
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where the involved scalars are defined as

δ := min
{
uII − (Lfβ

2
II + (1− α)βII),

(−
fβ2
II + (1− α)βII)− uII

}
U := max{uII,−uII}
Lf := max{
f , Lf}
ω := Lf (β

2
II + βIIU)

1
2

b1 :=
2LfβII

(
U + ω(βII + U)

)
(1− r)3

b2 := |α− 1| 2ωβII

(1− r)3
+ |α− 1|αβII(1 + r).

Thus, the solution trajectories are Zeno free.
Remark III.6 (Uniform interjumps-II): Notice that unlike

Theorem III.2, the derived lower bound for the interjump in-
terval τII is uniform in the sense that the bound is independent
of ‖∇f(x1)‖. Furthermore, the regularity requirement on the
function f is weaker than the one used in Theorem III.2, i.e., the
function f is not required to satisfy the Assumption (A3).

Notice that the main differences between the structures (4)
and (9) lie in the flow maps and the feedback laws. On the other
hand, these structures share the key feature of enabling an α-
exponential convergence rate for the hybrid system (H) through
their corresponding control inputs. The reason explaining the
aforementioned points is deferred until later in Section IV.

C. Further Discussions

In what follows, we collect several remarks regarding the
common features of the proposed structures. Then, we apply the
forward-Euler method of time discretization to these structures
of the hybrid control system (H). The proposed discretizations
guarantee an exponential rate of convergence in the suboptimal-
ity measure f(xk

1)− f ∗, where k is the iteration index.
Remark III.7 (Weaker regularity than strong convexity): The

PL inequality is a weaker requirement than strong convexity.
Notice that although the class of functions that satisfy the PL
inequality are in general nonconvex, the set of minimizers of
such functions should still be a convex set.

Remark III.8 (Hybrid embedding of restarting): The hybrid
frameworks intrinsically capture restarting schemes through the
jump map. The schemes are a weighted gradient where the
weight factor βI or βII is essentially characterized by the given
data α, μf , 
f , and Lf . One may inspect that the constant βI

or βII can be in fact introduced as a state-dependent weight
factor to potentially improve the performance. Nonetheless, for
the sake of simplicity of exposition, we do not pursue this level
of generality in this paper.

Remark III.9 (Second-order information): Although our
proposed frameworks require second-order information, i.e.,
the Hessian ∇2f , this requirement only appears in a mild form
as an evaluation in the same spirit as the modified Newton
step proposed in [41]. Furthermore, we emphasize that our
results still hold true if one replaces ∇2f(x1) with its upper

bound LfIn following essentially the same analysis. For further
details, we refer the reader to the proof of Theorem III.4.

Remark III.10 (Fundamental limits on control input):
An implication of Theorem III.4 is that if the desired
convergence rate α > (

2μf

2μf+�f
), it is then required to choose

uII < 0, indicating that the system may need to receive
energy through a negative damping. On a similar note,
Theorem III.1 asserts that the upper bound requires uI > α,
and if α > (

2μf√
max{Lf−2μf ,0}

), we then have to set uI < 0 [33,

Remark 3.4].

D. Discrete-Time Dynamics

In the next result, we show that if one applies the forward-
Euler method on the two proposed structures properly, the re-
sulting discrete-time hybrid control systems possess exponential
convergence rates. Suppose i ∈ {I, II} and let us denote by s the
time-discretization step size. Consider the discrete-time hybrid
control system

xk+1 =

{
Fd,i(x

k, ud,i(x
k)), xk ∈ Cd,i

Gd,i(x
k), otherwise

(12)

where Fd,i, Gd,i, and Cd,i are the flow map, the jump map, and
the flow set, respectively. The discrete flow map Fd,i : R2n ×
R→ R2n is given by

Fd,i

(
xk, ud,i(x

k)
)
= xk + sFi

(
xk, ui(x

k)
)
, i ∈ {I, II}

(13a)

where Fi and ui are defined in (4a) and (4b), or (9a) and (9b)
based on the considered structure i. The discrete flow set Cd,i ⊂
R2n is defined as

Cd,i =
{
(xk

1 , x
k
2) ∈ R2n :

c1‖xk
2‖2 ≤ ‖∇f(xk

1)‖2 ≤ c2〈∇f(xk
1),−xk

2〉
}
(13b)

and, c1 and c2 are two positive scalars. The discrete jump
map Gd,i : R2n → R2n is given by Gd,i(x

k) = ((xk)�,−β
∇�f(xk))�.

It is evident in the flow sets Cd,i of the discrete-time dynamics
that these sets are no longer defined based on admissible input
intervals. The reason has to do with the difficulties that arise
from appropriately discretizing the control inputs uI and uII.
Nonetheless, the next result guarantees exponential rate of con-
vergence of the discrete-time control system (12) with either of
the respective structure I or II, by introducing a mechanism to
set the scalars c1, c2, and β.

Theorem III.11 (Stable discretization-I and II): Consider a
smooth function f : Rn → R satisfying Assumptions (A1) and
(A2). The solution trajectory of the discrete-time hybrid control
system (12) with the respective structure i ∈ {I, II} and starting
from any initial condition x0

1, satisfies

f(xk+1
1 )− f ∗ ≤ λ(s, c1, c2, β)

(
f(xk

1)− f ∗
)

(14)

with λ(s, c1, c2, β) ∈ (0, 1) given by

λ(s, c1, c2, β) := 1 + 2μf

(
− s

c2
+

Lf

2c1
s2
)

(15)
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Algorithm 1: Sate-dependent Fast Gradient Method.

Input: data x0
1, 
f , Lf , μf , α ∈ R+, kmax ∈ N+,

i ∈ {I, II}
Set:
√
c1 = c2 = β−1 = Lfs, x0

2 = −β∇f(x0
1)

x0 = (x0
1, x

0
2)

for k = 1 to kmax do
if c1‖xk

2‖2 ≤ ‖∇f(xk
1)‖2 ≤ c2〈∇f(xk

1),−xk
2〉 then

xk+1 ← Fd,i(x
k)

else
xk+1 ← Gd,i(x

k)
end if

end for

if the parameters s, c1, c2, and β satisfy
√
c1 ≤ c2 (16a)

β2c1 ≤ 1 ≤ βc2 (16b)

c2Lfs < 2c1. (16c)

Remark III.12 (Naive discretization): We would like to em-
phasize that the exponential convergence of the proposed dis-
cretization method solely depends on the dynamics x1 and the
properties of the objective function f . Thus, we deliberately
avoid labeling the scalars c1, c2, and β by the structure index
i. Crucially, the structures of the control laws do not impact
the relations (16) in Theorem III.11 (see Section IV-D for more
details). In light of the abovementioned facts, we believe that a
more in-depth analysis of the dynamics along with the control
structures may provide a more intelligent way to improve the
discretization result of Theorem III.11.

Corollary III.13 (Optimal guaranteed rate): The optimal
convergence rate guaranteed by Theorem III.11 for the
discrete-time dynamics is λ∗ := (1− μf

Lf
) and

√
c∗1 = c∗2 =

1

β∗
= Lfs

∗.

The pseudocode to implement the abovementioned corollary
is presented in Algorithm 1 using the discrete-time dynam-
ics (12) with the respective parameters I or II.

Remark III.14 (Gradient-descent rate matching): Notice
that the rate 1− μf

Lf
in Corollary III.13 is equal to the rate

guaranteed by the gradient descent method for functions that
satisfy the PL inequality (A2) (see, e.g., [40]). This is in fact
another inefficiency indicator of a straightforward application
of the forward-Euler method on the continuous-time hybrid
control systems that are proposed in this paper. Moreover, it
is worth emphasizing that Nesterov’s fast method achieves the
optimal rate 1−

√
σf
Lf

for strongly convex functions with the

strong convexity constant σf [10].

IV. TECHNICAL PROOFS

A. Proof of Theorem III.2

In this section, we first set the stage by providing two interme-
diate results regarding the properties of dynamics of the hybrid

control system (H) with the respective parameters (4). We then
employ these facts to formally state the proof of Theorem III.2.
The next lemma reveals a relation between∇f(x1) andx2 along
the trajectories of the hybrid control system. In this section, for
the sake of brevity, we denote x1(t) and x1(0) by x1 and x1,0,
respectively. We adapt the same change of notation for x2 and
x, as well.

Lemma IV.1 (Velocity lower bound): Consider the
continuous-time hybrid control system (H) with the respective
parameters (4) satisfying (6) where the function f satisfies
Assumptions (A1) and (A2). Then, we have∥∥∇f(x1)

∥∥ ≤ C‖x2‖ (17)

where C is given by (8a).
Proof: Notice that, by the definition of the control law and

the upper bound condition uI(x) ≤ uI, we have∥∥∇f(x1)
∥∥2 − 〈∇2f(x1)x2, x2〉

≤ (uI − α)〈∇f(x1),−x2〉
≤ (uI − α)

∥∥∇f(x1)
∥∥ · ‖x2‖

where the second inequality follows from the Cauchy–Schwarz
inequality. Since the function f satisfies Assumption (A1), one
can infer that∥∥∇f(x1)

∥∥2 − Lf‖x2‖2 ≤ (uI − α)
∥∥∇f(x1)

∥∥ · ‖x2‖
which in turn can be reformulated into∥∥∇f(x1)

∥∥2
‖x2‖2 − (uI − α)

∥∥∇f(x1)
∥∥

‖x2‖ − Lf ≤ 0. (18)

Defining the variable y := ‖∇f(x1)‖/‖x2‖, the inequality (18)
becomes the quadratic inequality y2 − (uI − α)y − Lf ≤ 0.
Taking into account that y ≥ 0, it then follows from (17) that:

y =

∥∥∇f(x1)
∥∥

‖x2‖ ≤ (uI − α) +
√

(uI − α)2 + 4Lf

2
=: C.

This concludes the proof of Lemma IV.1. �
In the following, we provide a result that indicates the vari-

ation of norms x1 and x2, along the trajectories of the hybrid
control system, are bounded in terms of time while they evolve
according to the continuous mode. Since the hybrid control
system is time invariant, such bounds can be generalized to all
interjump intervals.

Lemma IV.2 (Trajectory growth rate): Suppose that the
same conditions as specified in Lemma IV.1 hold, and the
hybrid control system (H), (4) starts from the initial condition
(x1,0,−βI∇f(x1,0)) for some x1,0 ∈ Rn. Then,

‖x1 − x1,0‖ ≤ δ−1‖x2,0‖(eδt − 1) (19a)

‖x2 − x2,0‖ ≤ ‖x2,0‖(eδt − 1) (19b)

where δ is given by (8b).
Proof: Using the flow dynamics (4a), we obtain

d

dt
‖x2‖ ≤

∥∥∥ d

dt
x2

∥∥∥ ≤ ∥∥∇f(x1)
∥∥+ ∣∣uI(x)

∣∣ · ‖x2‖

≤ (C +max{uI,−uI})‖x2‖ = δ‖x2‖. (20)
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The inequality (20) implies that

‖x2‖ ≤ ‖x2,0‖eδt. (21)

Furthermore, notice that

d

dt
‖x1 − x1,0‖ ≤

∥∥∥∥ d

dt
(x1 − x1,0)

∥∥∥∥ = ‖x2‖.

Integrating the two sides of the abovementioned inequality leads
to

‖x1 − x1,0‖ ≤
∫ t

0

∥∥x2(s)
∥∥ds ≤ ∫ t

0

‖x2,0‖eδsds

=
‖x2,0‖

δ
(eδt − 1)

in which we made use of (21). Hence, the inequality (19a) in
Lemma IV.1 is concluded. Next, we shall establish the inequal-
ity (19b). Note that

d

dt
‖x2 − x2,0‖ ≤

∥∥∥∥ d

dt
(x2 − x2,0)

∥∥∥∥ =

∥∥∥∥ d

dt
x2

∥∥∥∥ ≤ δ
∥∥x2

∥∥
≤ δ‖x2 − x2,0‖+ δ‖x2,0‖.

Applying Grownwall’s inequality [42, Lemma A.1] then leads to
the desired inequality (19b). The claims in Lemma IV.2 follow.�

Proof of Theorem III.2: The proof comprises five steps, and
the key part is to guarantee that during the first interjump interval
the quantity |uI(x)− uI(x,0)| is bounded by a continuous func-
tion φ(t, ‖∇f(x1,0)‖), which is exponential in its first argument
and linear in its second argument. Then, it follows from the
continuity of the function φ that the solution trajectories of the
hybrid control system are Zeno free. �

Step 1: Let us define g(t) := 〈∇f(x1),−x2〉. We now com-
pute the derivative of g(t) along the trajectories of the hybrid
control system (H), (4) during the first interjump interval, i.e.,

d

dt
g(t)

= 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1), uI(x)x2 +∇f(x1)〉
= −〈∇2f(x1)x2, x2〉+

∥∥∇f(x1)
∥∥2 + uI(x)〈∇f(x1), x2〉

= −α〈∇f(x1),−x2〉 = −αg(t).
According to the abovementioned discussion and considering
the initial state x2,0 = −βI∇f(x1,0), it follows that

〈∇f(x1),−x2〉 = βI

∥∥∇f(x1,0)
∥∥2e−αt. (22)

Step 2: The quantity |eαt‖∇f(x1)‖2 − ‖∇f(x1,0)‖2| is
bounded along the trajectories of the hybrid control system (H)
with the respective parameters (4) during the first interjump
interval, i.e.,∣∣∣eαt∥∥∇f(x1)

∥∥2 − ∥∥∇f(x1,0)
∥∥2∣∣∣

=
∣∣∣eαt∥∥∇f(x1)

∥∥2 − (eαt − eαt + 1)
∥∥∇f(x1,0)

∥∥2∣∣∣
(i)
≤ eαt

∣∣∣∥∥∇f(x1)
∥∥2 − ∥∥∇f(x1,0)

∥∥2∣∣∣+(eαt − 1)
∥∥∇f(x1,0)

∥∥2
= eαt

∣∣∣〈∇f(x1)−∇f(x1,0),∇f(x1) +∇f(x1,0)
〉∣∣∣

+ (eαt − 1)
∥∥∇f(x1,0)

∥∥2
(ii)
≤ eαt

∥∥∇f(x1)−∇f(x1,0)
∥∥ · ∥∥∇f(x1) +∇f(x1,0)

∥∥
+ (eαt − 1)

∥∥∇f(x1,0)
∥∥2

(iii)
≤ eαtLf‖x1 − x1,0‖ ·

(
βICeδt + 1

)‖x2,0‖
βI

+
(
eαt − 1

)‖x2,0‖2
β2
I

(iv)
≤ eαtLf

(
eδt − 1

)‖x2,0‖
δ
· (βICeδt + 1

)‖x2,0‖
βI

+
(
eαt − 1

)‖x2,0‖2
β2
I

=

(
Lf

δβI
eαt(βICeδt + 1)(eδt − 1) +

1

β2
I

(eαt − 1)

)
‖x2,0‖2

where we made use of the triangle inequality in the inequality
(i), the Cauchy–Schwarz inequality in the inequality (ii), As-
sumption (A1) and its consequence in Remark II.4 along with
the triangle inequality in the inequality (iii), and the inequality
(19a) in the inequality (iv), respectively.

Step 3: Observe that∣∣eαt〈∇2f(x1)x2, x2〉 − 〈∇2f(x1,0)x2,0, x2,0〉
∣∣

=
∣∣∣eαt〈[∇2f(x1)−∇2f(x1,0) +∇2f(x1,0)

]
x2, x2

〉
− (eαt − eαt + 1

)〈∇2f(x1,0)x2,0, x2,0〉
∣∣∣

=
∣∣∣eαt〈[∇2f(x1)−∇2f(x1,0)

]
x2, x2

〉
+ eαt〈∇2f(x1,0)x2, x2〉 − eαt〈∇2f(x1,0)x2,0, x2,0〉

+
(
eαt − 1

)〈∇2f(x1,0)x2,0, x2,0〉
∣∣∣

(i)
≤ eαt

∣∣∣〈[∇2f(x1)−∇2f(x1,0)
]
x2, x2

〉∣∣∣
+ eαt

∣∣∣〈∇2f(x1,0)x2, x2〉 − 〈∇2f(x1,0)x2,0, x2,0〉
∣∣∣

+
(
eαt − 1

)∣∣∣〈∇2f(x1,0)x2,0, x2,0〉
∣∣∣

(ii)
≤ eαtHf‖x1 − x1,0‖ · ‖x2‖2

+ eαt
∣∣∣〈∇2f(x1,0)

[
x2 − x2,0

]
, x2 + x2,0

〉∣∣∣
+ Lf‖x2,0‖2

(
eαt − 1

)
where the inequality (i) follows from the triangle inequality,
and the inequality (ii) is an immediate consequence of Assump-
tions (A3) and (A1), recalling Lf = max{
f , Lf}. According
to the abovementioned analysis, one can deduce that∣∣eαt〈∇2f(x1)x2, x2〉 − 〈∇2f(x1,0)x2,0, x2,0〉

∣∣
(i)
≤ eαtHf

‖x2,0‖
δ

(
eδt − 1

) · e2δt‖x2,0‖2

+ eαtLf‖x2 − x2,0‖ · ‖x2 + x2,0‖+
(
eαt − 1

)Lf‖x2,0‖2
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(ii)
≤ Hf

δ
e(α+2δ)t

∥∥x2(0)
∥∥3 · (eδt − 1)

+ eαtLf

(
eδt − 1

)‖x2,0‖ ·
(
eδt + 1

)‖x2,0‖
+ Lf‖x2,0‖2

(
eαt − 1

)
=
(
(Hf/δ)e

(α+2δ)t‖x2,0‖ ·
(
eδt − 1

)
+Lf

(
e(α+δ)t + eαt

)(
eδt − 1

)
+ Lf (e

αt − 1)
)
‖x2,0‖2

where we made use of the inequality (19a), the inequality
(19b), and the triangle inequality in the inequality (i), and the
inequality (19b) and the triangle inequality in the inequality (ii),
respectively.

Step 4: We now study the input variation |uI(x)− uI(x,0)|
along the solution trajectories of the hybrid control system (H),
(4) during the first interjump interval. Observe that

∣∣uI(x)− uI(x,0)
∣∣

=

∣∣∣∣∣
∥∥∇f(x1)

∥∥2 − 〈∇2f(x1)x2(t), x2〉
〈∇f(x1),−x2〉

−
∥∥∇f(x1,0)

∥∥2 − 〈∇2f(x1,0)x2,0, x2,0〉
〈∇f(x1,0),−x2,0〉

∣∣∣∣∣
=

∣∣∣∣∣
∥∥∇f(x1)

∥∥2
βI

∥∥∇f(x1,0)
∥∥2e−αt −

〈∇2f(x1)x2, x2〉
βI

∥∥∇f(x1,0)
∥∥2e−αt

−
∥∥∇f(x1,0)

∥∥2
βI

∥∥∇f(x1,0)
∥∥2 +

〈∇2f(x1,0)x2,0, x2,0〉
βI

∥∥∇f(x1,0)
∥∥2

∣∣∣∣∣
(i)
≤ 1

βI

∥∥∇f(x1,0)
∥∥2
∣∣∣eαt∥∥∇f(x1)

∥∥2 − ∥∥∇f(x1,0)
∥∥2∣∣∣

+
1

βI

∥∥∇f(x1,0)
∥∥2

×
∣∣∣eαt〈∇2f(x1)x2, x2

〉− 〈∇2f(x1,0)x2,0, x2,0〉
∣∣∣

(ii)
=

βI

‖x2,0‖2
∣∣∣eαt∥∥∇f(x1)

∥∥2 − ∥∥∇f(x1,0)
∥∥2∣∣∣

+
βI

‖x2,0‖2

×
∣∣∣eαt〈 ∇2f(x1)x2, x2〉 − 〈∇2f(x1,0)x2,0, x2,0〉

∣∣∣
where we made use of the triangle inequality in the inequality
(i) and the relation (22) in the equality (ii), respectively. Based
on the abovementioned discussion, we then conclude that

∣∣uI(x)− uI(x,0)
∣∣

(i)
≤ βI

‖x2,0‖2

×
(
Lf

δβI
eαt
(
βICeδt+1

)(
eδt − 1

)
+

1

β2
I

(
eαt − 1

)) ‖x2,0‖2

+
βI

‖x2,0‖2
(
Hf

δ
e(α+2δ)t‖x2,0‖ ·

(
eδt − 1

)
+ Lf

(
e(α+δ)t + eαt

)(
eδt − 1

)
+ Lf

(
eαt − 1

)) ‖x2,0‖2

(ii)
≤ Lf

δ
eδt(βICeδt + 1)(eδt − 1) +

1

βI
(eδt − 1)

+ βI

(
βIHfδ

−1 · e3δt∥∥∇f(x1,0)
∥∥ · (eδt − 1

)
+ Lf

(
e2δt + eδt

)(
eδt − 1

)
+ Lf

(
eδt − 1

))

=
(
Lfδ

−1 · eδt(βICeδt + 1) +
1

βI
+

β2
IHf

δ
e3δt

∥∥∇f(x1,0)
∥∥

+ βILf (e
2δt + eδt) + βILf

)(
eδt − 1

)
=: φ

(
t,
∥∥∇f(x1,0)

∥∥)
where the inequality (i) follows from the implications of Steps 2
and 3, and the equality (ii) is an immediate consequence of the
relation α < δ and the equality x2,0 = −βI∇f(x1,0).

Step 5: Consider a1 defined in (8d) and recall that uI(x,0) by
design lies inside the input interval [uI, uI]. The quantity a1 is a
lower bound on the distance of uI(x,0) to the boundaries of the
interval [uI, uI]. Thus, the interjump interval τI satisfies

τI ≥ max
{
t ≥ 0 :

∣∣uI(x)− uI(x,0)
∣∣ ≤ a1

}
≥ max

{
t ≥ 0 : φ

(
t,
∥∥∇f(x1,0)

∥∥) ≤ a1

}
where the second inequality is implied by the analysis provided
in Step 4. Consider a positive constant r > 1. One can infer for
every t ∈ [0, δ−1log r] that

φ(t, ‖∇f(x1,0)‖)
≤ (rLfδ

−1(rβIC + 1) + β−1I + r3β2
IHfδ

−1‖∇f(x1,0)‖
+ (r2 + r)βILf + βILf )(e

δt − 1)

= (a2 + a3‖∇f(x1,0)‖)(eδt − 1)

=: φ′(t, ‖∇f(x1,0)‖)

where the constantsa2 anda3 are defined in (8e) and (8f), respec-
tively, and the inequality eδt < r is used. Suppose now τ ′ is the
lower bound of the interjump in (7). Then φ′(τ,′ ‖∇f(x1,0)‖) =
a1, where the constant a1 is defined in (8d). It is straightforward
to establish the assertion made in (7).

In the second part of the assertion, we should show that
the proposed lower bound in (7) is uniformly away from zero
along any trajectories of the hybrid system. To this end, we
only need to focus on the term ‖∇f(x1(t))‖. Recall that
Theorem III.1 effectively implies that limt→∞ ‖∇f(x1(t))‖ =
0, possibly not in a monotone manner though. This observa-
tion allows us to deduce that M := supt≥0 ‖∇f(x1(t))‖ <∞.
Using the uniform boundM , we have a minimum nonzero inter-
jump interval, giving rise to a Zeno-free behavior for all solution
trajectories.
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B. Proof of Theorem III.4

The proof follows a similar idea as in [33, Th. 3.1] but
the required technical steps are somewhat different, leading
to another set of technical assumptions. In the first step, we
begin with describing on how the chosen input uII(x) in (9b)
ensures achieving the desired exponential convergence rate
O(e−αt). Let us define the set Eα := {x ∈ R2n : α

(
f(x1)−

f ∗
)
< 〈∇f(x1),−x2〉}. We demonstrate that as long as a so-

lution trajectory of the continuous flow (9a) is contained in the
set Eα, the function f obeys the exponential decay (5). To this
end, observe that if (x1(t), x2(t)) ∈ Eα

d

dt

(
f
(
x1(t)

)− f ∗
)
=
〈∇f(x1(t)

)
, x2(t)

〉
≤ −α(f(x1)− f ∗

)
.

The direct application of Gronwall’s inequality (see [42,
Lemma A.1]), to the abovementioned inequality yields the de-
sired convergence claim (5). Hence, it remains to guarantee that
the solution trajectory renders the set Eα invariant. Let us define
the quantity

σ(t) := 〈∇f(x1(t)
)
, x2(t)〉+ α

(
f
(
x1(t)

)− f ∗
)
.

By construction, if σ(t) < 0, it follows that (x1(t), x2(t)) ∈ Eα.
As a result, if we synthesize the feedback input uII(x) such that
σ̇(t) ≤ 0 along the solution trajectory of (9a), the value of σ(t)
does not increase, and as such(

x1(t), x2(t)
) ∈ Eα, ∀t ≥ 0 ⇐⇒ (

x1(0), x2(0)
) ∈ Eα.

To ensure nonpositivity property of σ̇(t), note that we have

σ̇(x)

= 〈∇2f(x1)x2, x2〉+ 〈∇f(x1), ẋ2〉+ α〈∇f(x1), x2〉
= 〈∇2f(x1)x2, x2〉+ 〈∇f(x1),−x2 − uII(x)∇f(x1)〉

+ α〈∇f(x1), x2〉
= 〈∇2f(x1)x2, x2〉+ 〈∇f(x1),−x2〉 − uII(x)‖∇f(x1)‖2
− α〈∇f(x1),−x2〉

= 〈∇2f(x1)x2, x2〉+ (1− α)〈∇f(x1),−x2〉
− uII(x)‖∇f(x1)‖2 = 0

where the last equality follows from the definition of the pro-
posed control law (9b). It is worth noting that one can simply
replace the information of the Hessian ∇2f(x1(t)) with the
upper bound Lf and still arrive at the desired inequality (see
also Remark III.9) with regards to the first-order information
oracle. Up to now, we showed that the structure of the control
feedback guarantees the α-exponential convergence. It remains
then to ensure that x(0) ∈ Eα. Consider the initial state x2(0) =
−βII∇f(x1(0)). Notice that

α
(
f
(
x1(0)

)− f ∗
)
≤ α

2μf

∥∥∇f(x1(0)
)∥∥2

=
α

2μfβII
〈−x2(0),∇f

(
x1(0)

)〉
≤ 〈∇f(x1(0)

)
,−x2(0)〉

where in the first line we use the gradient-dominated assump-
tion (A2), and in the last line the condition (10c) is employed.
Suppose (x�1 (0), x

�
2 (0))

� as the jump state x+. It is evident that
the range space of the jump map (9d) lies inside the set Eα. At
last, it is required to show that the jump policy is well-defined
in the sense that the trajectory lands in the interior of the flow
set CI (9c), i.e., the control values also belong to the admissible
set [uII, uII]. To this end, we only need to take into account the
initial control value since the switching law is continuous in the
states and serves the purpose by design. Suppose that x+ ∈ CII,
we then have the sufficient requirements

uII <
−
fβ2

II‖∇f(x+
1 )‖2 + (1− α)βII‖∇f(x+

1 )‖2
‖∇f(x+

1 )‖2
≤ uII(x

+)

≤ Lfβ
2
II‖∇f(x+

1 )‖2 + (1− α)βII‖∇f(x+
1 )‖2

‖∇f(x+
1 )‖2

< uII

where the relations (9b) and (A1) are considered. Factoring out
the term ‖∇f(x+

1 )‖2 leads to the sufficiency requirements given
in (10a) and (10b). Hence, the claim of Theorem III.4 follows.

C. Proof of Theorem III.5

In order to facilitate the argument regarding the proof of
Theorem III.5, we begin with providing a lemma describing
the norm-2 behaviors of 〈∇f(x1),−x2〉, x2, and ∇f(x1). For
the sake of brevity, we employ the same notations used in
Section IV-A, as well.

Lemma IV.3 (Growth bounds): Consider the continuous-
time hybrid control system (H) with the respective parameters
(9) satisfying (10) where the function f satisfies Assump-
tions (A1) and (A2). Suppose the hybrid control system is
initiated from (x1,0, βII∇f(x1,0)) for some x1,0 ∈ Rn. Then,

〈∇f(x1),−x2〉 = βIIe
−αt‖∇f(x1,0)‖2 (23a)

‖x2‖ ≤ D(t)‖∇f(x1,0)‖ (23b)

η(t)‖∇f(x1,0)‖ ≤ ‖∇f(x1)‖ ≤ η(t)‖∇f(x1,0)‖ (23c)

with the time-varying scalars D, η, and η given by

D(t) : =
(
β2
IIe
−2t + βIIU

(
1− e−2t

)) 1
2 (24a)

η(t) : = 1− Lf (β
2
II + βIIU)

1
2 t (24b)

η(t) : = 1 + Lf (β
2
II + βIIU)

1
2 t (24c)

respectively, where U := max{uII,−uII} andLf := max{
f ,
Lf}.

Proof: Considering the flow dynamics (9a) and the feedback
input (9b), one obtains

d

dt
〈∇f(x1),−x2〉

= 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1),−ẋ2〉
= 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1), x2 + uII(x)∇f(x1)〉
= 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1), x2〉+ uII(x)‖∇f(x1)‖2

= 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1), x2〉
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+ 〈∇2f(x1)x2, x2〉 − (1− α)〈∇f(x1), x2〉
= −α〈∇f(x1),−x2〉

and as a result given the initial state (x1,0,−βII∇f(x1,0)), the
equality given in (23a) is valid. We next turn to establish that
(23b) holds. Let us define h(t) = ‖x2‖2. Hence,

d

dt
h(t)

(i)
= 2〈x2,−x2 − uII(x)∇f(x1)〉

= −2‖x2‖2 + 2uII(x)〈∇f(x1),−x2〉
(ii)
= −2h(t) + 2uII(x)βIIe

−αt‖∇f(x1,0)‖2

≤ −2h(t) + 2UβII‖∇f(x1,0)‖2

where we made use of the flow dynamics (9a) in the inequality
(i) and the equation (23a) in the equality (ii). We then use the
Gronwall’s inequality to infer that

‖x2‖2

≤ e−2t‖x2,0‖2 +
∫ t

0

e−2(t−τ)2UβII

∥∥∇f(x1,0)
∥∥2 dτ

= e−2tβ2
II

∥∥∇f(x1,0)
∥∥2 + e−2t2UβII

∥∥∇f(x1,0)
∥∥2 ∫ t

0

e2τdτ

= e−2t
∥∥∇f(x1,0)

∥∥2(β2
IIe
−2t + βIIU

(
1− e−2t

))
=: D2(t)

∥∥∇f(x1,0)
∥∥2

where D(t) is defined in (24a). As a result, the claim in (23b)
holds. The argument to show the last claim in Lemma IV.3 is
discussed now. Let us define g(t) := ‖∇f(x1)‖2. Observe that
d
dtg(t) = 2〈∇2f(x1)x2,∇f(x1)〉, and as a result∣∣∣∣ ddtg(t)

∣∣∣∣
(i)
≤ 2Lf‖x2‖ ·

∥∥∇f(x1)
∥∥ = 2Lf‖x2‖

√
g(t)

(ii)
≤ 2LfD(t)

∥∥∇f(x1,0)
∥∥√g(t)

where the inequalities (i) and (ii) are implied by Assump-
tion (A1) and the inequality (23b), respectively. Hence, we
deduce that

d

dt
g(t) ≥ −2LfD(t)

∥∥∇f(x1,0)
∥∥√g(t)

and as a consequence

dg(t)√
g(t)

≥ −2LfD(t)
∥∥∇f(x1,0)

∥∥dt.
Integrating the two sides of the abovementioned inequality
results in√

g(t)−
√
g(0)

≥ −Lf

∥∥∇f(x1,0)
∥∥ ∫ t

0

D(τ)dτ

= −Lf

∥∥∇f(x1,0)
∥∥ ∫ t

0

(
β2
IIe
−2τ + βIIU

(
1− e−2τ

)) 1
2

dτ

≥ −Lf

∥∥∇f(x1,0)
∥∥ ∫ t

0

(
β2
II + βIIU

) 1
2 dτ

= −Lf

∥∥∇f(x1,0)
∥∥(β2

II + βIIU
) 1

2 t.

Based on the abovementioned analysis and the definition of g(t),
it follows that ∥∥∇f(x1)

∥∥ ≥ η(t)
∥∥∇f(x1,0)

∥∥
where η(t) is given in (24b). Proceeding with a similar approach
to the one presented previously, one can use the inequality

d

dt
g(t) ≤ 2LfD(t)

∥∥∇f(x1,0)
∥∥√g(t)

and infer that ∥∥∇f(x1)
∥∥ ≤ η(t)

∥∥∇f(x1,0)
∥∥

whereη(t) is defined in (24c). Thus, the last claim in Lemma IV.3
also holds. �

Proof of Theorem III.5: We are now in a position to formally
state the proof of Theorem III.5. Consider the parameter δ as
defined in Theorem III.5. Intuitively, this quantity represents a
lower bound on the distance of uII(0) from the endpoints of
the flow set interval. Thus, one can obtain a lower bound on the
interjump interval τII as follows:

τII ≥ sup{t > 0 : |uII(t)− uII(0)| ≤ δ}. (25)

On the other hand, given the structure of uII in (9b)

− 
f‖x2‖2
‖∇f(x1)‖2 + (1− α)

βIIe
−αt‖∇f(x1,0)‖2
‖∇f(x1)‖2

≤ uII(t) ≤
Lf‖x2‖2
‖∇f(x1)‖2 + (1− α)

βIIe
−αt‖∇f(x1,0)‖2
‖∇f(x1)‖2

since the function f satisfies Assumption (A1). In light of
Lemma IV.3 and considering the abovementioned relation, one
can infer that for α ≤ 1, we name Case (i)

e(t) := −
fD(t)2

η(t)2
+ (1− α)

βIIe
−αt

η(t)2

≤ uII(t)

≤ LfD(t)2

η(t)2
+ (1− α)

βIIe
−αt

η(t)2
=: e(t) (26a)

and that for α > 1, we denote by Case (ii)

p(t) := −
fD(t)2

η(t)2
+ (1− α)

βIIe
−αt

η(t)2

≤ uII(t)

≤ LfD(t)2

η(t)2
+ (1− α)

βIIe
−αt

η(t)2
=: p(t). (26b)

According to the abovementioned discussion, we employ (26)
to obtain a lower bound τII instead of using (25). Consider
a time instant t◦ such that t◦ < 1/ω where ω is defined in
Theorem III.5. �
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Case (i) (α ≤ 1): Let us denote supt∈[0,t◦] ė(t) by b1. Observe
that

ė(t) =
2LfβIIe

−2t(−βII + U)(1− ωt)2

(1− ωt)4

+
2ω(1− ωt)LfβII

(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

+ (1− α)
−αβIIe

−αt(1− ωt)2 + 2ω(1− ωt)βIIe
−2t

(1− ωt)4

≤ 2LfβIIUe−2t(1− ωt)2

(1− ωt)4

+
2ω(1− ωt)LfβII

(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

+ (1− α)
2ω(1− ωt)βIIe

−2t

(1− ωt)4

≤ 2LfβII

(
U + ω(βII + U)

)
(1− ωt)3

+ (1− α)
2ωβII

(1− ωt)3

≤ 2LfβII

(
U + ω(βII + U)

)
(1− ωt◦)3

+ (1− α)
2ωβII

(1− ωt◦)3

=: b1

considering (26a). Hence, e(t) ≤ b1t+ e(0) and as a result

τII ≥ max{t ∈ (0, t◦] : b1t+ e(0)− e(0) ≤ δ}
= min{t◦, δ/b1} (27)

by virtue of the fact that b1t+ e(0) is a monotonically in-
creasing function that upper bounds uII(t). Now, let us define
b2 := inft∈(0,t◦] ė(t). Notice that

ė(t)

=
2
fβIIe

−2t(βII − U)(1− ωt)2

(1− ωt)4

− 2ω(1− ωt)
fβII

(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

+ (1− α)
−αβIIe

−αt(1 + ωt)2 − 2ω(1 + ωt)βIIe
−2t

(1 + ωt)4

≥ −2
fβIIe
−2tU(1− ωt)2

(1− ωt)4

− 2ω(1− ωt)
fβII

(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

− (1− α)
αβIIe

−αt(1 + ωt)2 + 2ω(1 + ωt)βIIe
−2t

(1 + ωt)4

≥ −2
fβII

(
U + ω(βII + U)

)
(1− ωt◦)3

− (1− α)
αβII(1 + ωt◦) + 2ωβII

1

=: −b2.

Thus, e(t) ≥ −b2t+ e(0) and as a consequence

τII ≥ max{t ∈ (0, t◦] : e(0)− (−b2t+ e(0)) ≤ δ}
= min{t◦, δ/b2} (28)

because the function−b2t+ e(0) is a monotonically decreasing
function that lower bounds uII(t).

Case (ii) (α > 1): Much of this case follows the same line
of reasoning used in Case (i). We, thus, provide only main
mathematical derivations and refer the reader to the previous
case for the argumentation. Define b3 := supt∈(0,t◦] ṗ(t). One
can deduce from (26b) that

ṗ(t) =
2LfβIIe

−2t(−βII + U)(1− ωt)2

(1− ωt)4

+
2ω(1− ωt)LfβII(βIIe

−2t + U(1− e−2t))
(1− ωt)4

+ (1− α)
−αβIIe

−αt(1 + ωt)2 − 2ω(1 + ωt)βIIe
−2t

(1 + ωt)4

≤ 2LfβII(U + ω(βII + U))

(1− ωt◦)3

+ (α− 1)
αβII(1 + ωt◦) + 2ωβII

1

= : b3.

Hence, p(t) ≤ b4t+ p(0) and as a result

τ ≥ min{t◦, δ/b3}. (29)

Finally, define ṗ(t) := inft∈(0,t◦] p(t) from which it follows that

ṗ(t) =
2
fβIIe

−2t(βII − U)(1− ωt)2

(1− ωt)4

− 2ω(1− ωt)
fβII(βIIe
−2t + U(1− e−2t))

(1− ωt)4

+ (1− α)
−αβIIe

−αt(1− ωt)2 + 2ω(1− ωt)βIIe
−2t

(1− ωt)4

≥ − 2
fβII

(
U + ω(βII + U)

)
(1− ωt◦)3

− (α− 1)
2ωβII

(1− ωt◦)3

=: − b4

considering (26b). Now, since p(t) ≥ −b4t+ p(0), it is implied
that

τII ≥ min{t◦, δ/b4}. (30)

Notice that based on the relations derived in (28)–(30)

τII

≥ min

{
t◦,

2LfβII(U + ω(βII+U))

(1−ωt◦)3 +|α−1| 2ωβII

(1− ωt◦)3

+ |α− 1|αβII(1 + ωt◦)
}
.
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Suppose now for some scalar r ∈ (0, 1), t◦ is chosen such that
t◦ ≤ r

ω . It is evident that

τII

≥ min

{
r

ω
, δ
/(2LfβII

(
U + ω(βII+U)

)
(1− r)3

+|α− 1| 2ωβII

(1−r)3

+ |α− 1|αβII(1 + r)
)}

.

It turns out that the relation (11) in Theorem III.5 is valid and
this concludes the proof.

D. Proof of Theorem III.11

In what follows, we provide the proof for the structure II and
refer the interested reader to [33, Th. 3.7] for the structure I.
We emphasize that the technical steps to establish a stable
discretization for both structures are similar.

According to the forward-Euler method, the velocity ẋ1 and
the acceleration ẋ2 in the dynamics (H) with (9) are discretized
as follows:

xk+1
1 − xk

1

s
= xk

2 (31a)

xk+1
2 − xk

2

s
= −ud,II(x

k)∇f(xk
1)− xk

2 (31b)

where the discrete inputud,II(x
k) = uII(x

k). Now, observe that
the definition of the flow set Cd,II (13b) implies

c1‖xk
2‖2 ≤ ‖∇f(xk

1)‖2 ≤ c2〈∇f(xk
1),−xk

2〉
≤ c2‖∇f(xk

1)‖ · ‖xk
2‖

where the extra inequality follows from the Cauchy–Schwarz
inequality (∀ a, b ∈ Rn, 〈a, b〉 ≤ ‖a‖ · ‖b‖). In order to guaran-
tee that the flow set Cd,II is nonempty the relation (16a) should

hold between the parameters c1 and c2 since √c1≤
‖∇f(xk

1
)‖

‖xk
2
‖ ≤c2.

Next, suppose that the parameters c1, c2, and β satisfy (16b).
Multiplying (16b) by ‖∇f(xk

1)‖, one can observe that the range
space of the jump map Gd,II(x

k) = ((xk)�,−β∇�f(xk))� is
inside the flow set Cd,II (13b). From the fact that the discrete
dynamics (12) evolves respecting the flow set Cd,II defined in
(13b), we deduce

f(xk+1
1 )− f(xk

1)

≤ 〈∇f(xk
1), x

k+1
1 − xk

1〉+
Lf

2
‖xk+1

1 − xk
1‖2

≤ −s〈∇f(xk
1),−xk

2〉+
Lfs

2

2
‖xk

2‖2

< − s

c2
‖∇f(xk

1)‖2 +
Lfs

2

2c1
‖∇f(xk

1)‖2

=

(
− s

c2
+

Lf

2c1
s2
)
‖∇f(xk

1)‖2

≤ 2μf

(
− s

c2
+

Lf

2c1
s2
)
(f(xk

1)− f ∗)

where we made use of the relation (3), the definition (31a),
the relation (13b), and the assumption (A2), respectively. Then,
considering the inequality implied by the first and last terms
given previously and adding f(xk

1)− f ∗ to both sides of the
considered inequality, we arrive at

f(xk+1
1 )− f ∗ ≤ λ(s, c1, c2, β)

(
f(xk

1)− f ∗
)

where λ(s, c1, c2, β) is given by (15). As a result, if the step size
s is chosen such that s < 2c1

c2Lf
then λ(s, c1, c2, β) ∈ (0, 1). The

claim of Theorem III.11 follows.

V. NUMERICAL EXAMPLES

In this section, a numerical example illustrating the re-
sults in this paper is represented. The example is a least
mean square error (LMSE) problem f(X) = ‖AX − b‖2 where
X ∈ R5 denotes the decision variable, A ∈ R50×5 with Lf =
2λmax(A

�A) = 136.9832 and μf = 2λmin(A
�A) = 3.6878,

and b ∈ R50. Since the LMSE function is convex (in our case,
this function is strongly convex), we take 
f = 0. We begin with
providing the results concerning the continuous-time case. Then,
the discrete-time case’s results are shown.

A. Continuous-Time Case

In what follows, we compare the behaviors of the proposed
structures I and II (denoted by Struct I and Struct II, respectively)
with the following fast methods.

1) (NWR): Nesterov’s fast method (1) with γ(t) = 3
t and

without any restarting scheme.
2) (NSR): Nesterov’s fast method (1) with γ(t) = 3

t with the
speed restarting scheme proposed in [18, Sec. 5].

3) (AA-AMD): The adaptive averaging accelerated mir-
ror descent method proposed in [28, Sec. 2] with
the choice of parameters given in [28, Exam-
ple 1], β = 3, and the adaptive heuristic a(t) = 3

t +

sign(max{0,−〈∇f(X(t)), Ẋ(t)〉})× 1
t2 .

4) (HDA): The Hessian driven accelerated method proposed
in [27] with α = 3 and β = 1.

(The notations for some of the parameters involved in the
abovementioned methods are identical, e.g., the parameter β
appears in both AA-AMD and HDA. Notice that these pa-
rameters are not necessarily the same. We refer the reader to
consult with the cited references for more details.) We set the
desired convergence rates αI and αII equal to each other. We
then select βI and βII such that the corresponding flow sets
[uI, uI] and [uII, uII] are relatively close using Theorem III.1
and Theorem III.4, respectively. The corresponding parameters
of Struct I and Struct II are as follows: αI = 0.2, βI = 0.1356,
uI = −14.352, uI = 15.1511; αII = 0.2, βII = 0.0298, uII =
−0.1861, uII = 5.7457.

In Fig. 1(a), the behaviors of the suboptimality measure
f(X(t))− f ∗ of the considered methods are depicted. The
corresponding control inputs of Struct I, Struct II, and NSR
are represented in Fig. 1(b). With regards to Struct I, observe
that the length of interjump intervals is small during the early
stages of simulation. As time progresses and the value of∇f(X)
decreases, the length of interjump intervals relatively increases
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Fig. 1. Continuous-time dynamics of Struct I, Struct II, NSR. (a) Ob-
jective value along system trajectories. (b) State-dependent and time-
varying coefficients.

(echoing the same message conveyed in Theorem III.2). Fur-
thermore, in the case of Struct I where uI plays the role of
damping, the input uI admits a negative range unlike most of
the approaches in the literature.

B. Discrete-Time Case

The discrete-time case’s results are now shown. We employ
Algorithm 1 for Struct I and Struct II.

In Fig. 2(a), we compare these two structures with the discrete-
time methods.

1) (NWR): Algorithm 1 in [29] with q = 0 and tk = 1
Lf

.

2) (NSR): Algorithm 1 in [18] with kmin = 1 and s = 1
Lf

.
3) (AA-AMD): Algorithm 1 in the supplementary material

of [28] with β = βmax = 3.

Fig. 2. Discrete-time dynamics of Struct I, Struct II, NSR. (a) Standard
tuning parameters. (b) Example-based optimal tuning parameters.

4) (NGR): Nesterov’s method with the gradient restarting
scheme proposed in [29, Sec. 3.2] with q = 0 and tk =
1
Lf

.
It is evident that the discrete counterparts of our proposed

structures perform poorly compared to these algorithms, re-
inforcing the assertion of Remark III.12 calling for a smarter
discretization technique. Observe that NGR provides the best
convergence with respect to the other consider methods. In
Fig. 2(b), we depict the best behavior of the considered methods
(excluding NGR) for this specific example. It is interesting that
NGR still outperforms all other methods.

Consider the three methods Struct I, Struct II, and NSR in
Fig. 2(a). The results depicted in Fig. 2(a) correspond to the
standard parameters involved in each algorithm, i.e., the step
size s = 1/Lf for the proposed methods in Corollary III.13,
and the parameter kmin = 1 in NSR. As we saw in Fig. 2(b),
these parameters can also be tuned depending on the application
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Fig. 3. Discrete-time dynamics under different tuning parameters.
(a) NSR. (b) Struct I. (c) Struct II.

at hand. In case of NSR, the role of the parameter kmin is to
prevent unnecessary restarting instants that may degrade the
overall performance. On the other hand, setting kmin > 1 may
potentially cause the algorithm to lose its monotonicity property.
Fig. 3(a) shows how changing kmin affects the performance.
The best performance is achieved by setting kmin = 19 and the
algorithm becomes nonmonotonic for kmin > 19. With regards
to our proposed methods, we observe that if one increases the
step size s, the performance improves, see Fig. 3(b) for Struct
I and Fig. 3(c) for Struct II. Moreover, it is obvious that the
discrete-time couterparts of Struct I and Struct II behave in a
very similar fashion that has to do with the lack of a proper
discretization that can fully exploit the properties of the corre-
sponding feedback input, see Remark III.12.

VI. CONCLUSION

Inspired by a control-oriented viewpoint, we proposed two
hybrid dynamical structures to achieve exponential conver-
gence rates for a certain class of unconstrained optimization
problems, in a continuous-time setting. The distinctive feature
of our methodology is the synthesis of certain inputs in a
state-dependent fashion compared to a time-dependent approach
followed by most results in the literature. Due to the state-
dependency of our proposed methods, the time discretization
of continuous-time hybrid dynamical systems is in fact difficult
(and to some extent even more involved than the time-varying
dynamics that is commonly used in the literature). In this regard,
we have been able to show that one can apply the forward-
Euler method to discretize the continuous-time dynamics and
still guarantee exponential rate of convergence. Thus, a more
in-depth analysis is due. We expect that because of the state de-
pendency of our methods a proper venue to search is geometrical
types of discretization.
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