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Distributed Stochastic Reserve Scheduling in AC
Power Systems With Uncertain Generation

Vahab Rostampour , Ole ter Haar, and Tamás Keviczky

Abstract—This paper presents a framework to carry out multi-
area stochastic reserve scheduling (RS) based on an ac optimal
power flow (OPF) model with high penetration of wind power us-
ing distributed consensus and the alternating direction method of
multipliers (ADMM). We first formulate the OPF-RS problem us-
ing semidefinite programming (SDP) in infinite-dimensional spaces
that is in general computationally intractable. Using a novel affine
policy, we develop an approximation of the infinite-dimensional
SDP as a tractable finite dimensional SDP, and explicitly quantify
the performance of the approximation. To this end, we adopt the
recent developments in randomized optimization that allow a pri-
ori probabilistic feasibility guarantees to optimally schedule power
generating units while simultaneously determining the geographi-
cal allocation of the required reserve. We then use the geographical
pattern of the power system to decompose the large-scale system
into a multi-area power network, and provide a consensus ADMM
algorithm to find a feasible solution for both local and overall
multi-area network. Using our distributed stochastic framework,
each area can use its own wind information to achieve local fea-
sibility certificates, while ensuring overall feasibility of the multi-
area power network under mild conditions. We provide numerical
comparisons with a new benchmark formulation, the so-called con-
verted dc (CDC) power flow model, using Monte Carlo simulations
for two different IEEE case studies.

Index Terms—AC power systems, distributed stochastic consen-
sus ADMM, distributed scenario program, distributed stochastic
reserve allocations, multi-area AC power systems, stochastic re-
serve scheduling.

I. INTRODUCTION

POWER transmission system operators (TSOs) aim to find
an economic operating point to satisfy the power demand

and network constraints by solving an optimal power flow (OPF)
problem. TSOs have to deal with increasing degrees of uncer-
tainty due to high penetration of wind power generation. While
wind power has clear environmental advantages, it is a highly
variable and not fully controllable resource. This imposes novel
challenges and tasks for TSOs to avoid blackouts, outages, etc.,
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and highlights the necessity of introducing a new paradigm to
existing TSO functionalities.

The reserve scheduling (RS) task of TSOs deals with day-
ahead scheduling of the reserve power to accommodate pos-
sible mismatches between forecasted and actual wind power.
Stochastic variants of the RS problem, where violations are al-
lowed with a small probability to achieve better performance,
have received a lot of attention in the past few years, see [1]–[4]
and the references therein. A stochastic RS problem is typically
formulated using a lossless DC model based on the assumption
of constant voltage magnitudes and small voltage angles, while
ignoring the active power losses [5]. It is worth mentioning that
these assumptions do not hold in general and may lead to sub-
optimality or even infeasibility when implemented on real-world
systems, especially for networks under a high degree of stress
[6]. Using an AC representation of the power network enables
the stochastic RS formulation to accurately model the effect of
large deviations of wind power from its forecasted value, and to
offer a-priori suitable reserves such that both active and reactive
power, and complex-valued voltage are globally optimal. How-
ever, due to the non-convexity of the OPF problem, identifying
such an optimal operating point of a power system may not be
straightforward. In [7], different reformulations and relaxations
of the AC OPF problem were presented and their connections
were discussed. By means of semidefinite programming (SDP),
in [7] a convex relaxation was provided under the existence of a
rank-one SDP solution to guarantee the recovery of a globally
optimal solution of the power network.

The RS problem incorporating an OPF formulation has
been introduced in [8], where a chance-constrained OPF
problem was formulated. With some modifications, motivated
by practical aspects of the problem, the authors in [8] provided
a theoretical guarantee that the OPF-RS problem yields a
rank-one feasible solution. Using a heuristic Monte Carlo
sampling approach, they showed that the resulting optimization
problem involves an OPF problem for each wind power profile.
Our work in this paper is motivated by [8] to first rigorously
provide theoretical guarantees for the feasibility of physical
constraints, and then, develop a distributed reserve scheduling
framework for the AC model of power network, which is, to best
of our knowledge, has not been addressed in the related works.
Even though the authors in [8] presented a complete day-ahead
OPF-RS formulation with up- and down spinning reserves, the
results in the aforementioned references are limited either to
be heuristic or to a single hourly-based RS with the relaxed
conditions. The major barrier for representing OPF-RS prob-
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lems as a SDP is the necessity of defining a square SDP matrix
variable, which makes the cardinality of scalar variables of the
OPF-RS problem quadratic with respect to the number of buses
in the power network. This may yield a very large-scale SDP
problem for realistic large-scale power networks of interest.

Dealing with a chance-constrained AC OPF problem has re-
cently received a lot of attention in literature, see e.g., [9]–[14].
Our work in this paper differs from the aforesaid references in
two important aspects. We first formulate the AC OPF problem
by considering the uncertain wind power generations. Using
a similar convexification to [7], we incorporate the stochastic
RS into the convexified AC OPF formulation. This results in a
large-scale SDP in infinite-dimensional spaces. We then provide
a systematical approach to move from infinite to semi-infinite
and then to finite-dimensional spaces using a novel affine pol-
icy. Such a policy differs from the existing one in the literature,
see, e.g., [4], [8], [13], [14] and references therein, in technical
and practical aspects, and significantly reduces the worst-case
computational complexity (WCCC). Theoretical results for the
level of the approximation and a priori feasibility certificates
are provided by adopting the recent developments in random-
ized optimization that do not require any prior knowledge of
uncertainty bounds or distributions. The proposed policy en-
joys the property of operational rule of the so-called automatic
generation regulator (AGR) concept in power systems. Affine
policies have been also used for the OPF problem using DC
model of power system, e.g., [15], and most recently, in [16] for
the AGR actions (up- and downspinning reserves).

We next introduce a decomposition technique by leveraging
the geographical pattern in power systems to decompose the
high-dimensional SDP into small-scale SDPs related to each
area of a multi-area power network. We employ recent results in
graph theory to break down the large-scale positive-semidefinite
(PSD) constraints into small-sized constraints. Such a technique
has been also considered in [17] for state estimation problem
in power systems. We then provide a distributed consensus
framework using the alternating direction method of multipli-
ers (ADMM), similarly to [18]–[21], with some modifications
for the AC OPF problem in power system. We extend such
a distributed framework to handle the stochastic RS problem
using the AC OPF model of a multi-area network which has
not, to the best of our knowledge, been considered in litera-
ture. We highlight that such an extension is possible using the
proposed affine policy which overcomes the difficulty of hav-
ing defined a square SDP matrix variable for all possible wind
trajectories, see, e.g., [4], [8], [13], [14], [22]. We also note
that in our proposed distributed stochastic framework, each area
of the power system can have its own measurements of wind
power, while having feasibility guarantees for both local and
overall multi-area power network under mild conditions. Two
different simulation results using IEEE benchmark case studies
are provided to illustrate the functionality of our developments.
We also provide a new benchmark formulation for stochastic
RS using DC model of power system, namely converted DC
(CDC) to demonstrate more realistic comparisons. The main
contributions of this paper are twofold:

1) We provide a novel reformulation of the RS problem us-
ing an AC OPF model of power systems with wind power

generations, leading to an infinite-dimensional SDP which
is in general computationally intractable. We propose
an approximation of the infinite-dimensional SDP with
tractable finite-dimensional SDPs using an affine policy
inspired by practical aspects of the problem. While fi-
nalizing the review process of this paper, a similar affine
policy was simultaneously proposed in [16] using DC
OPF to solve the problem with a similar structure, i.e.,
the uncertainty set is unknown and unbounded. We then
explicitly quantify the exactness of the approximation and
provide a priori probabilistic feasibility guarantees to op-
timally schedule generating units while simultaneously
determining the geographical allocation of the required
reserve. We also provide another formulation of the OPF-
RS problem, similar to [8] with some modifications, and
compare these in terms of WCCC analysis.

2) We develop a distributed stochastic framework to carry
out multi-area RS using an AC OPF model of power net-
works with wind power generations. We provide a tech-
nique to decompose a large-scale finite dimensional SDP
into small-scale problems by exploring the connections
between the properties of a power network and chordal
graphs. A noticeable feature of our distributed setup is
that each local area of the power system may have dif-
ferent local accuracy regarding available wind power and
receives a priori probabilistic feasibility certificates to op-
timally schedule local generating units together with local
allocation of the required reserve. This is based on the re-
cent results in [23]. We then provide consensus ADMM
algorithms for both OPF and OPF-RS problems in a sim-
ilar manner to [20], [21] with some modifications to cope
with stochasticity of the formulations.

II. PROBLEM FORMULATION

A. AC OPF Problem

Consider a power system with a set of buses N , a set of
lines L ⊆ N ×N and a set of generator buses G ⊆ N such
that |N | = Nb and |G| = NG . The set of wind power gener-
ation buses is denoted by F ⊆ N such that |F| = Nw , and
G
⋂
F = ∅ which means there is no wind power at genera-

tor buses1. The set T forms a day-ahead hourly-based horizon
of the RS optimization problem and in this paper |T | = 24.
The vectors p ∈ RNb , q ∈ RNb and s ∈ CNb denote real, re-
active and apparent power, respectively. Superscripts G,D,w
are also used to indicate generated, demanded and wind power,
respectively.

Define the decision variables to be the generator dispatch
pG

t , qG
t ∈ RNG and the complex bus voltages vt ∈ CNb for

each time step t ∈ T . For the sake of brevity, a tilde denotes a
set of variables over all time steps, e.g., ã := {at}t∈T . Using
the rectangular voltage notation: xt := [Re (vt)

� Im (vt)
�]� ∈

R2Nb , we follow [7, Lemma 1] to determine the data-matrices
Yk , Y ∗k , Ylm , Y ∗lm ,Mk . The cost function is the cost of real power
generation, expressed as a second-order polynomial [24], see

1This is considered to streamline the presentation and it is not restrictive for
our proposed framework.
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(1a) below, where the coefficient vectors cqu, cli ∈ RNG
+ corre-

spond to the quadratic and linear cost coefficients, respectively,
and [cqu] represents a diagonal matrix with entries cqu. We now
formulate the AC OPF problem by taking into account the effect
of wind power generation as follows:

minimize
x̃,p̃G ,q̃G

∑

t∈T
(cli)�pG

t + (pG
t )�[cqu]pG

t (1a)

subject to:
1) Power generation limits ∀k ∈ G,∀t ∈ T :

pG
k ≤ pG

k,t ≤ pG
k ,

qG
k ≤ qG

k,t ≤ qG
k .

(1b)

2) Power balance at every bus ∀k ∈ N ,∀t ∈ T :

x�t Ykxt = pG
k,t − pD

k,t + pw
k,t ,

x�t Y ∗k xt = qG
k,t − qD

k,t ,
(1c)

where pw
t := {pw

k,t}k∈F is the wind power, and sD
t :=

{sD
k,t}k∈N is the demanded power such that sD

k,t = pD
k,t +

qD
k,t .

3) Bus voltage limits ∀k ∈ N ,∀t ∈ T :

|vk |2 ≤ x�t Mkxt ≤ |vk |2 . (1d)

4) Lineflow limits ∀(l,m) ∈ L,∀t ∈ T :
(
x�t Ylm xt

)2 +
(
x�t Y ∗lm xt

)2 ≤ |slm |2 ,

which can be reformulated using the Schur-complement
[25] to form a linear matrix inequality constraint, such
that the fourth-order dependence on the voltage vector is
reduced to quadratic terms:

⎡

⎢
⎣

−|slm |2 x�t Ylm xt x�t Y ∗lm xt

x�t Ylm xt −1 0
x�t Y ∗lm xt 0 −1

⎤

⎥
⎦ 	 0 . (1e)

5) Reference bus constraint ∀t ∈ T :

x�t Erefxt = 0, (1f)

where Eref ∈ R2Nb×2Nb is a diagonal matrix from the
standard basis vector eNb +iref ∈ R2Nb , and iref denotes
the reference bus.

Remark 1: The power balance constraints (1c) can be used
to reformulate the real and reactive generator dispatch in terms
of the voltage vector as follows ∀k ∈ N ,∀t ∈ T :

pG
k,t = x�t Ykxt + pD

k,t − pw
k,t , (2a)

qG
k,t = x�t Y ∗k xt + qD

k,t . (2b)

Using this reformulation, one can substitute for pG
k,t and qG

k,t

in (1b) to have ∀k ∈ N ,∀t ∈ T :

pG
k ≤ x�t Ykxt + pD

k,t − pw
k,t ≤ pG

k , (3a)

qG
k ≤ x�t Y ∗k xt + qD

k,t ≤ qG
k , (3b)

where the lower and upper generation limits have been also
extended to N using pG

k = pG
k = 0∀k ∈ {N \G}.

Remark 2: Following Remark 1, one can reformulate the
cost function (1a) using the voltage vector xt :

fx
G (xt ,p

w
t ,pD

t ) :=
∑

k∈G
cli
k

(
x�t Ykxt + pD

k,t − pw
k,t

)

+ cqu
k

((
x�t Ykxt + pD

k,t − pw
k,t

))2
. (4)

It is important to note that this function is of order four with
respect to xt , but it can be also made quadratic.2 To streamline
the presentation, these steps are skipped.

Using x̃, we reformulate the problem (1) in a more compact
form:

OPF(p̃w ) :

{
minimize

x̃

∑
t∈T fx

G (xt ,p
w
t ,pD

t )

subject to (1d), (1e), (1f), (3)
.

OPF(p̃w ) is a quadratically constrained quadratic program
(QCQP) in x̃, and a non-convex optimization problem, since
the data matrices Yk , Y ∗k , Ylm , Y ∗lm are indefinite [7], which is
in fact an NP-hard problem [26] and hard to solve.

It is important to mention that the physical constraints such as
generator on/off, min up and min down time limits, ramping lim-
its, are not taken into consideration. Integrating such constraints
is the topic of our ongoing research, which aims at developing a
unified framework to solve the so-called unit commitment (UC)
together with RS problem using AC OPF model of the power
system.

B. Convexified AC OPF Problem

We can reformulate OPF(p̃w ) as an equivalent problem in
a matrix variable Wt := xtx

�
t ∈ S2Nb using a semi-definite

reformulation (SDR) technique, see, e.g., [7], [27] and the ref-
erences therein. Wt represents the operating state of the network
at time step t, and therefore, it is called the state matrix. We de-
fineW ⊂ S2Nb as the set of feasible operating states constraints,
such that Wt ∈ W , using the following characteristics:

W(pw , sD ) :=
{

W ∈ S2Nb

∣
∣
∣ Tr (ErefW ) = 0

pG
k ≤ Tr (YkW ) + pD

k − pw
k ≤ pG

k , ∀k ∈ N ,

qG
k ≤ Tr (Y ∗k W ) + qD

k ≤ qG
k , ∀k ∈ N ,

|vk |2 ≤ Tr (MkW ) ≤ |vk |2 , ∀k ∈ N ,∀(l,m) ∈ L,

⎡

⎢
⎣

−|slm |2 Tr (Ylm W ) Tr (Y ∗lm W )

Tr (Ylm W ) −1 0

Tr (Y ∗lm W ) 0 −1

⎤

⎥
⎦ 	 0

}
.

(5)

2The cost function can be made linear with the use of the epigraph notation
(see also [25, Section 4.1.3]). The resulting inequality constraint can be con-
verted to a LMI using the Schur complement (see also [25, Section A.5.5]),
which yields a quadratic function of x.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 12,2022 at 13:49:53 UTC from IEEE Xplore.  Restrictions apply. 



1008 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 2, MARCH 2019

Consider now the following formulation as an equivalent
optimization problem to OPF(p̃w ):

minimize
W̃

∑

t∈T
fG (Wt,p

w
t ,pD

t ) (6a)

subject to Wt ∈ W(pw
t , sD

t ), ∀t ∈ T , (6b)

Wt � 0, ∀t ∈ T , (6c)

rank (Wt) = 1, ∀t ∈ T , (6d)

where fG is defined by (4) and Wt = xtx
�
t . Constraints (6c)

and (6d) are introduced to guarantee the exactness of SDR, and
consequently, OPF(p̃w ) and (6) are equivalent.

The optimization problem (6) is non-convex, due to the pres-
ence of rank-one constraint (6d). Removing (6d) relaxes the
problem to an SDP. It has been shown in [7] and later in [28]
that the rank-one constraint can be dropped without affecting the
solution for most power networks. In particular, in [7, Lemma 2]
the authors presented that if the relaxed problem (the SDP prob-
lem without rank-one constraint) has a rank-one solution, then
it must have an infinite number of rank-two solutions. Later, in
[8, Proposition 1], the authors showed that when the convex re-
laxation of the AC OPF problem has solutions with rank at most
two, then, forcing any arbitrary selected entry of the diagonal of
the matrix Wt to be zero results in a rank-one optimal solution.
This condition is practically motivated since the voltage angle
of one of the buses (the reference bus) is often fixed at zero
in practice. We denote by C-OPF(p̃w ) the convexified version
of OPF(p̃w ) problem in W̃ , i.e., Problem (6) with the rank-one
constraint (6d) removed.

In the following proposition, we restate the results in [8,
Proposition 1] to highlight that our developments, in the fol-
lowing parts, build on these results and therefore the obtained
solution for the state variables using our proposed approach is
the rank-one feasible solution.

Proposition 1: If the C-OPF(p̃w ) problem has solutions with
rank at most two, then, forcing any arbitrary selected entry of the
diagonal of matrix Wt to be zero results in a rank-one solution
W ∗

t . Moreover, the corresponding value of the objective function
of the proposed optimization is identical to that of the original
OPF(p̃w ) problem.

It is important to note that guaranteeing the optimality of the
obtained solutions using the proposed approach is not included
in the scope of this paper and it is subject of our ongoing research
work. Instead, in this paper we focus on the topic of feasibility
and deriving probabilistic guarantees for constraint fulfillment
in a distributed setting.

C. Convexified AC OPF Reserve Scheduling Problem

Consider a power network where a TSO aims to solve a
day-ahead AC OPF problem to determine an optimal generator
dispatch for the forecasted wind power trajectory such that: 1)
the equipment in the power system remains safe and 2) the power
balance in the power network is achieved. As a novel feature
in our proposed formulation C-OPF(p̃w ) has a dependency on
p̃w , and thus, it solves the AC OPF problem while taking into
account the actual wind power trajectory p̃w . We here define

the difference between a generic actual wind power realization
and the forecasted wind power as the mismatch wind power
at each time step, e.g. pm

t = pw
t − pw,f

t . Due to the fact that
p̃m := {pm

t }t∈T is a random variable, the following technical
assumption is necessary in order to proceed to the next steps.

Assumption 1: p̃m is defined on some probability space
(P,B(P), P ), where B(·) denotes a Borel σ-algebra, and P
is a probability measure defined over P .

As a top priority of TSOs is to ensure the feasibility and valid-
ity of the power network, we formulate the following problem:

minimize
W̃ f ,W̃

∑

t∈T
fG (Wf

t ,pw,f
t ,pD

t ) (7a)

subject to Wf
t ∈ W(pw,f

t , sD
t ), ∀t ∈ T , (7b)

Wt ∈ W(pw
t , sD

t ), ∀p̃m ∈ P, ∀t ∈ T , (7c)

Wf
t � 0, Wt � 0 ∀t ∈ T , (7d)

where p̃m
t = p̃w − p̃w,f and p̃w,f denotes the forecasted wind

power trajectory, p̃w is a generic wind power trajectory, W̃ f is
related to the state of the network in the case of forecasted wind
power, and W̃ is a generic network state for a generic wind
power trajectory. Constraints (7b) and (7c) ensure feasibility for
every network state, while constraints (7d) enforce PSDness of
the forecasted network state and the generic network state for
all possible wind power trajectories.

As a second task of the TSO, the power balance of the power
network has to be achieved to ensure demand satisfaction even in
the presence of uncertain wind power generation. To address this
issue, the TSO employs reserve power scheduling, using the fact
that a mismatch between actual wind power and forecasted wind
power can be mitigated by the controllable generators [1]. We
can thus express rk,t := pG

k,t − pG,f
k,t where rt = {rk,t}k∈G ∈

RNG denotes the amount of reserve requirement in the power
network. By Substituting pG

k,t = Tr(YkWt) + pD
k,t − pw

k,t and

pG,f
k,t = Tr

(
YkWf

t

)
+ pD

k,t − pw,f
k,t , one can obtain the reserve

power in terms of the network states Wt and Wf
t as follows:

rk,t = Tr
(
Yk

(
Wt −Wf

t

))
. (8)

The elements of rt = {rk,t}k∈NG can be positive and nega-
tive to represent the up- and downspinning reserve powers, re-
spectively, such that they are deployed for a power deficit and
surplus to bring balance to the network and satisfy the demand
[24]. We thus distinguish between up- and downspinning reserve
powers using rds

t , rus
t ∈ RNG such that ∀t ∈ T :

−rds
t ≤ rt ≤ rus

t , 0 ≤ rus
t , 0 ≤ rds

t , (9)

where rus
t and rds

t are enforced to be positive as they only appear
in the reserve cost function. We now consider corresponding
linear up- and downspinning cost coefficients cus, cds ∈ RNG

+
yielding the total reserve cost:

fR (rus
t , rds

t ) := (cus)�rus
t + (cds)�rds

t .

The mismatches between the demanded power and uncertain
generation (wind) induce frequency deviations and activate the
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primary and secondary frequency controller (Automatic Gen-
eration Regulation (AGR)). The existence of an ideal primary
frequency control functionality compensating for any fast time
scale power deviation is assumed. Here, we focus only on the
steady state behavior of the AGR reserve mechanism [4] and de-
fine two vectors dus

t ,dds
t ∈ RNG to distribute the amount of up-

or downspinning reserve powers among the available generators
for each hour t ∈ T . To obtain the optimal control strategies for
AGR, we consider the following equality constraint, ∀pm

t ∈ P ,
∀k ∈ G and ∀t ∈ T :

Tr
(
Yk (Wt −Wf

t )
)

= −dus
k,t min(pm

t , 0)− dds
k,t max(pm

t , 0).

(10)

In order to always negate the wind power mismatch using the
reserve power and bring balance to the power network, we en-
force the sum of the distribution vectors to be equal to one using
the following constraint ∀t ∈ T :

∑

k∈G
dus

k,t = 1 ,
∑

k∈G
dds

k,t = 1 . (11)

Using Ξ :=
{
W̃ f , W̃ , d̃us, d̃ds, r̃us, r̃ds

}
as the set of decision

variables, and combining our previous discussions with the op-
timization problem (7), we are now in the position to formulate
C-OPF(p̃w ) with RS problem as follows:

C-OPF-RS :

⎧
⎨

⎩

min
Ξ

∑
t∈T

(
fG (Wf

t ,pw,f
t ) + fR (rus

t , rds
t )
)

s.t. (7b), (7c), (7d), (10), (11), (9)
.

C-OPF-RS is an uncertain infinite dimensional SDP in the
sense that the dimension of the decision spaces as well as the
number of constraints are both infinite, due to the unknown and
unbounded set P . It is therefore computationally intractable
and in general difficult to solve. In the following section, we
develop an approximation technique to provide a tractable finite
dimensional SDP optimization problem.

III. PROPOSED TRACTABLE REFORMULATION

In this section, we propose two different reformulations for
C-OPF-RS problem, and study conditions under which one can
provide a finite approximation. We approach this goal in two
different ways. We first develop a novel affine policy to trans-
late the problem into semi-infinite dimensional spaces, and then
provide a finite approximation to the semi-infinite SDP using
randomization technique. As a second approach, we directly
employ a randomized technique to provide a finite approxima-
tion for the C-OPF-RS problem. The solution of each of these
methods comes with a priori probabilistic performance certifi-
cates. We finally provide the WCCC analysis for both proposed
methods.

A. Infinite to Semi-Infinite Program: Affine Policy

Consider the proposed equality constraint (10). Since the un-
certain set P is unknown and unbounded, it is straightforward
to see that the dimension of the decision spaces for the vari-
able Wt as well as the number of constraints are both infinite.

To overcome this difficulty, we propose an affine policy to re-
strict the decision space using a conic combination of the generic
network state Wt in C-OPF-RS. Observe that in (10), the net-
work state variable Wt for every realization of the uncertainty
in each time step, can be represented as a linear combination
of the network forecasted state Wf

t and the up- and downspin-
ning reserve distributions. This is also practically inspired by
the AGR mechanism.

Motivated by this observation, we propose a novel
parametrization of the generic network state that encodes
this restriction implicitly. Define Ŵt(pm

t ) ∈ S2Nb to be the
parametrized generic network state p̃m ∈ P,∀t ∈ T in the fol-
lowing form:

Ŵt(pm
t ) := Wf

t + W us
t max(−pm

t , 0) + W ds
t max(pm

t , 0),
(12)

where W us
t ,W ds

t ∈ S2Nb are the coefficient matrix variables for
every t ∈ T . The parametrization of the network state as a conic
combination of PSD matrices is, to the best of our knowledge,
a novel way to make this type of problems more manageable.
While preparing the final version of this work, [16] indepen-
dently proposed a similar affine policy, a so-called surrogate
affine approximation, for DC OPF problem with unknown and
unbounded uncertainty set together with an interesting compar-
ison with the conventional affine policy.

Using the proposed conic parametrization, the generic net-
work state is decomposed into a deterministic component and
two components that scale with the positive or negative un-
certainty. It is worth mentioning that both max(pm

t , 0) and
max(−pm

t , 0) are always non-negative and never simultane-
ously non-zero such that the change in network state is deter-
mined by either W ds

t or W us
t in case of either a wind power

surplus or deficit, respectively. The following theorem can be
considered as the main result of this section to approximate
C-OPF-RS in semi-infinite dimensional spaces.

Theorem 1: Given the proposed affine policy in (12), an
exact approximation of the C-OPF-RS problem can be for-
mulated using the following optimization problem by defin-
ing Ξ̂ :=

{
W̃ f , W̃ us, W̃ ds, r̃us, r̃ds

}
as the new set of decision

variables:

P-OPF-RS :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Ξ̂

∑
t∈T

(
fG (Wf

t ,pw,f
t ) + fR (rus

t , rds
t )
)

s.t. Wf
t ∈ W(pw,f

t , sD
t )

Ŵt(pm
t ) ∈ W(pw,f

t + pm
t , sD

t )

Wf
t � 0, W us

t � 0, W ds
t � 0

−rds
t ≤ rt ≤ rus

t , 0 ≤ rus
t , 0 ≤ rds

t
∑

k∈G Tr (YkW us
t ) = 1

∑
k∈G Tr

(
YkW ds

t

)
= −1

∀p̃m ∈ P, ∀t ∈ T

,

where rt = {rk,t}k∈G should be replaced with

rk,t = −Tr (YkW us
t ) min(pm

t , 0) + Tr
(
YkW ds

t

)
max(pm

t , 0) .

Proof: The proof is provided in the Appendix. �
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The interpretation of Theorem 1 is as follows. Due to the fact
that the formulation in C-OPF-RS follows a linear decision rule
concept as a consequence of the AGR mechanism, C-OPF-RS
and P-OPF-RS are equivalent formulations using the proposed
affine policy (12).

Remark 3: The distribution vectors of reserve power, d̃us, d̃ds

are encoded in W̃ us, W̃ ds, respectively, through the equality
constraints3, and therefore, these can be determined a-posteriori
using the following relations ∀k ∈ G,∀t ∈ T :

dus
k,t = Tr (YkW us

t ) , dds
k,t = −Tr

(
YkW ds

t

)
.

One can also define d̃us, d̃ds as two additional decision vector
and replace the two equality constraints in P-OPF-RS with the
following constraints:

dus
k,t = Tr (YkW us

t ) , dds
k,t = Tr

(
YkW ds

t

)
, (13)

∑

k∈G
dus

k,t = 1 ,
∑

k∈G
dds

k,t = −1 . (14)

The P-OPF-RS problem is a semi-infinite dimensional SDP
due to the uncountable number of constraints corresponding
to the uncertainty set P , which is indeed an unbounded and
unknown uncertainty set. In the following section, we adopt a
randomization technique to approximate the P-OPF-RS problem
and obtain a finite-dimensional SDP. We will also provide a
performance guarantee for the feasibility of constraints in a
probabilistic sense with a high level of confidence.

B. Semi-Infinite to Finite Program: Randomized Approach

We develop a finite approximation to the semi-infinite SDP in
P-OPF-RS problem that is in general hard to solve and known to
be computationally intractable [30]. To overcome this difficulty,
we employ the recent developments in the area of randomized
optimization, leading to a priori probabilistic guarantees for the
feasibility of the obtained solutions.

Recall the randomization technique by assuming to have a
‘sufficient number’ of independent and identically distributed
(i.i.d.) samples of the string of wind power mismatch realizations
p̃m = {pm

t }t∈T , which can be obtained either empirically or by
a random scenario generator. Notice that pm

t at each sampling
time t is not necessarily i.i.d., and in particular, it may have time-
varying distributions and/or be correlated in time. We denote
S := {p̃m,1 , . . . , p̃m,Ns } ∈ PNs as a set of given finite multi-
extraction samples (scenarios) fromP . Consider now a tractable
version of P-OPF-RS using the following finite-dimensional

3These equality constraints cause numerical issues in the solver. Using a com-
mon practice in optimization (see, e.g., [29]), we implement these constraints
by introducing a slack variable u ∈ R2

+ and rewriting each equality constraint
f (a) = b in the form of b − u1 ≤ f (x) ≤ b + u2 . By adding L1-norm of slack
variables as a penalty function into the objective function, u is minimized, es-
sentially pushing f (a) to be equal to b. It is important to highlight that using
such a practical way to implement these equality constraints does not lead to
any kind of relaxations, since they have been evaluated afterwords by checking
the optimized value of the slack variables to confirm that they are sufficiently
small.

SDP optimization problem:

SP-OPF-RS :

⎧
⎨

⎩

minimize
Ξ̂∈X̂

f(Ξ̂)

subject to ĝ(Ξ̂, p̃m,i) ≤ 0 , ∀p̃m,i ∈ S
,

where ĝ(·) is the uncertain constraint function of P-OPF-RS,
and all other constraints for P-OPF-RS are used to construct X̂ ,
a deterministic feasible set for the P-OPF-RS problem.

The key features of the proposed tractable optimization prob-
lem (SP-OPF-RS) are as follows:

� there is no need to know the probability measure P explic-
itly, only the capability of obtaining random scenarios is
enough.

� formal results to quantify the robustness of the obtained
approximations are available. In particular the results fol-
low the so-called scenario approach [31], which allow to
bound a-priori the violation probability of the obtained
solution via SP-OPF-RS.

In the following theorem, we restate the explicit theoretical
bound of [31, Theorem 1] which measures the finite scenario
behavior of SCP.

Theorem 2: Let ε ∈ (0, 1), β ∈ (0, 1) and Ns ≥ N(ε, β, d),
such that

N(ε, β, d) := min

{

N ∈ N
∣
∣
∣

d−1∑

i=0

(
N

i

)

εi(1− ε)N−i ≤ β

}

.

where d is the number of decision variables in P-OPF-RS prob-
lem. If the optimizer (Ξ̂∗) of SP-OPF-RS is applied to P-OPF-
RS, then the original uncertain constraint function ĝ(·) in P-
OPF-RS is satisfied with probability 1− ε and with confidence
level higher than 1− β.

It was shown in [31] that the above bound is tight. The in-
terpretation of Theorem 2 is as follows: when applying Ξ̂∗ in
P-OPF-RS problem, the probability of constraint violation re-
mains below ε with confidence 1− β:

PNs

[
S ∈ PNs : Vio(Ξ̂∗) ≤ ε

]
≥ 1− β,

with

Vio(Ξ̂∗) := P
[
p̃m ∈ P : ĝ(Ξ̂∗, p̃m ) > 0

]
.

Remark 4: One can obtain an explicit expression for the de-
sired number of scenarios Ns as in [32], where it is shown that

given ε, β ∈ (0, 1) then Ns ≥ e
e−1

1
ε

(
d + ln 1

β

)
.

Using the randomization technique explained above, we next
provide an approximation technique to directly translate the
infinite dimensional SDP of the C-OPF-RS problem into a finite
dimensional SDP.

C. Infinite to Finite Program: Direct Approach

Rather than using the affine policy (12) proposed in
(Section III-A) to obtain P-OPF-RS, and then, approximating
P as in (Section III-B) to obtain SP-OPF-RS, one can also
apply directly to the C-OPF-RS problem the randomiza-
tion technique explained in (Section III-B) to formulate a
finite-dimensional SDP. A slightly different idea has been
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TABLE I
WCCC ANALYSIS

also considered in [8] using an ad-hoc manner. To this end,
we recall S := {p̃m,1 , . . . , p̃m,Ns } ∈ PNs as a set of given
finite scenarios and reformulate an approximated version of
C-OPF-RS using the following optimization problem:

SC-OPF-RS :

{
minimize

Ξ̄∈X
f(Ξ̄)

subject to g(Ξ̄, p̃m,i) ≤ 0 , ∀p̃m,i ∈ S
,

where Ξ̄ is the set of decision variables of SC-OPF-RS. It is
important to note that Ξ̄ is not the same set of optimizers (Ξ) of
C-OPF-RS problem. The difference arises due to the equality
constraints in (10) that lead to a new network state variable W̃
for each p̃m,i ∈ S, and therefore,

Ξ̄ :=
{
W̃ f , W̃ 1 , W̃ 2 , . . . , W̃Ns , d̃us, d̃ds, r̃us, r̃ds

}
.

The SC-OPF-RS problem is a finite-dimensional large-scale
SDP, due to the fact that instead of a forecast and a generic
network state, the set of decision variables now has extra Ns

number of matrix variables (network states for all scenarios)
in every time step, and each of the state matrices is also sub-
ject to PSD constraints. The minimum number of scenarios Ns

to guarantee reasonable violation is typically quite large (see
Remark 4). The resulting problem has therefore a high number
of computationally expensive PSD constraints such that it is
indeed computationally demanding.

To illustrate the advantages of SP-OPF-RS compared with
SC-OPF-RS, we now analyze the WCCC for both problem for-
mulations. If the resulting SDP is solved using an interior point
method and a generic computational complexity of SDP for-
mulation [33], [34] can be obtained via O

(
(m2n2 + mn3 +

m3)n1/2 log(1/α)
)

where n is the dimension of the decision
variable and m is the number of constraints. In Table I, the prob-
lem dimensions and the resulting WCCCs are given, where Ns

is assumed to beO(TNG ) for both formulations. It can be seen
that the SP-OPF-RS problem has much lower order of WCCC.
This increase in WCCC can be explained by the Ns repetitions
of the state matrices.4

IV. DISTRIBUTED FRAMEWORK

A. Multi-Area Decomposition

We divide a power network into several control areas, and
collect the indices in A := {1, . . . , Na}. Define Na ⊂ N to be

4This concerns the WCCC for a problem with dense data-matrices, i.e. no
assumption on the structure of the problem. Modern solvers, such as MOSEK
[35], can achieve lower complexities by using sparsity in the problem structure.
Whether or not this is the case for our problem, is outside the scope of this paper.
For all IPM solvers, computational complexity scales logarithmically with 1/α,
and polynomially with m and n, regardless of whether they make use of the
problem structure or not.

the subset of buses corresponding to a control area a ∈ A. Every
bus belongs to exactly one control area, such thatNa ∩Nb = ∅
for all a, b ∈ A, a �= b, and

⋃
a∈A Na = N . Consider now Ba

as the set of neighboring control area indices that are connected
to area a, such that for all a ∈ A:

Ba := {b ∈ A|∃i ∈ Na ,∃j ∈ Nb , (i, j) ∈ L, } .

The lines that interconnect the areas are called tie-lines. These
lines are collected into a tie-line set Ta ⊂ L for all a ∈ A:

Ta := {(i, j) ∈ L|i ∈ Na , j �∈ Na} .

We now define the extended bus set N+
a to expand the bus sets

in each control area by including the endpoints of the tie-lines
connected to that area for every a ∈ A as follows:

N+
a := Na ∪ {j ∈ N | ∃i ∈ Na , (i, j) ∈ Ta} .

We are now ready to decompose the matrix variable W into
sub-matrices corresponding to the extended control areas. Con-
sider Wa ∈ S2|N+

a | as the network state of area a which is con-
structed by extracting a sub-matrix from W using only the rows
and columns that correspond to the buses in N+

a . Denote the
intersection of the extended bus sets by Eab := N+

a ∩N+
b for

every neighboring area b ∈ Ba . Consider now [Wa ]ab as the
sub-matrix extracted from Wa with its rows and columns corre-
sponding to the buses in Eab , and likewise [Wb ]ab the extraction
from Wb that corresponds to the same buses. Note that the order
of the subscript does not change the shared bus set between
extended control areas, and therefore [Wa ]ab and [Wa ]ba refer
to the same extraction from Wa .

Define the local feasibility set denoted withWa(pw , sD ) for
all a ∈ A similar to (5) such that the power constraints are
imposed for all k ∈ Na , the bus voltage constraints for all k ∈
N+

a , and the line flow limits for all (l,m) ∈ (N+
a ×N+

a ) ∩ L.
The data-matrices, Yk , Y ∗k , Ylm , Y ∗lm ,Mk , for each area a ∈ A
are obtained via extracting the columns and rows corresponding
to the buses in N+

a . These partitions of the data-matrices are
denoted with [·]a inWa(pw , sD ) for all a ∈ A.

We now explain how one can decompose a PSD constraint.
Consider a graph G overN , with its edges corresponding to the
set of extended buses {N+

a } for all areas a ∈ A. This means that
every bus in N+

a is connected to all other buses in N+
a with a

single edge to form a maximal clique. This graph is then chordal
[17, Proposition 1] and all maximal cliques of G are captured
by the subsets {N+

a }, under the following assumptions.
Assumption 2: Graph G with all control areas as its nodes

and the tie-lines between the areas as its edges is a tree, i.e. an
acyclic connected graph.

Assumption 3: Every control area a ∈ A has at least one bus
that does not have overlap, i.e. does not have a tie-line connected
to it.

Assumption 2 prevents multi-area power networks to have
cyclic interconnections between their control areas. This can
be achieved due to the fact that power networks are usually
spread out geographically and mostly not intertwined. The typ-
ical number of tie-lines between power networks tends to be
low. Assumption 3 will hold for almost every real-world power
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system, as there tend to be much more buses than tie-lines in
multi-area power networks.

The decomposition is valid if and only if these two assump-
tions hold, thus imposing PSD constraints on the sub-matrices
corresponding to the extended areas, the original matrix will
also be PSD, and can be completed from the local results. This
enables one to split the single PSD constraint into |A| smaller
PSD constraints.

B. Distributed Multi-Area SP-OPF-RS Problem Via ADMM

Our goal now is to decompose the SP-OPF-RS problem.
Given Assumption 2 and Assumption 3, we approach this goal
by imposing the following technical assumption.

Assumption 4: The set of scenarios of wind trajectories S,
as defined in Section III-B, is given to all control areas of the
power network.

The condition in Assumption 4 is enforced due to the fact
that the uncertainty source P is a common uncertainty source
between all control areas, and therefore, the set of scenarios
S has to be common between all control areas. We relax this
condition later in this section.

Consider the following affine policy for the local network
state of each area ∀a ∈ A, ∀p̃m ∈ S, and ∀t ∈ T :

Ŵa,t(pm
t ) := Wf

a,t + max(−pm
t , 0)W us

a,t + max(pm
t , 0)W ds

a,t ,

where Wf
a,t ,W

us
a,t ,W

ds
a,t ∈ S2|N+

a | are related to the sub-matrices

from Wf
t ,W us

t ,W ds
t using only the rows and columns corre-

sponding to the buses in N+
a . Define the local reserve cost per

each time step t ∈ T for all a ∈ A as follows:

fa
R (rus

a,t , r
ds
a,t) :=

∑

k∈Ga

CG
k cusCG

k rus
a,t + cdsCG

k rds
a,t ,

where CG
k is a connection matrix for the generators such

that the (i, j)-th entry is one if generator j is located at the
bus i and zero otherwise. Consider Ξma := {Ξa}∀a∈A where
Ξa =

{
W̃ f

a , W̃ us
a , W̃ ds

a , r̃us
a , r̃ds

a , d̃us
a , d̃ds

a

}
is the set of local de-

cision variables for each control area a ∈ A, and define Θ :={ ˜̄Wf
ab,

˜̄W us
ab ,

˜̄W ds
ab ,

˜̄dus
a , ˜̄dds

a

}
∀b∈Ba , ∀a∈A to be the set of auxiliary

variables. We are now in the position to formulate a multi-area
SP-OPF-RS problem (MASP-OPF-RS) as follows:

min
Ξma,Θ

∑

a∈A

∑

t∈T

(
fa

G (Wf
a,t ,p

w,f
t ) + fa

R (rus
a,t , r

ds
a,t)
)

s.t. Wf
a,t ∈ Wa(pw,f

t , sD
t ) (15a)

Ŵa,t(pm
t ) ∈ Wa(pw,f

t + pm
t , sD

t ) (15b)

Wf
a,t � 0, W us

a,t � 0, W ds
a,t � 0 (15c)

− rds
a,t ≤ ra,t ≤ rus

a,t , 0 ≤ rus
a,t , 0 ≤ rds

a,t (15d)

Tr
(
[Yk ]aW us

a,t

)
= CG

k dus
a,t , ∀k ∈ Ga (15e)

Tr
(
[Yk ]aW ds

a,t

)
= CG

k dds
a,t , ∀k ∈ Ga (15f)

1�dus
a,t = 1, 1�dds

a,t = −1 (15g)

[Wf
a,t ]ab = W̄ f

ab,t , ∀b ∈ Ba (15h)

[W us
a,t ]ab = W̄ us

ab,t , ∀b ∈ Ba (15i)

[W ds
a,t ]ab = W̄ ds

ab,t , ∀b ∈ Ba (15j)

dus
a,t = d̄

us
t , dds

a,t = d̄
ds
t (15k)

∀p̃m ∈ S, ∀t ∈ T , ∀a ∈ A (15l)

where ra,t should be replaced with

CG
k ra,t = − Tr

(
[Yk ]aW us

a,t

)
min(pm

t , 0)

+ Tr
(
[Yk ]aW ds

a,t

)
max(pm

t , 0), ∀k ∈ Ga .

The following proposition is a direct result of [36, Th. 1].
Proposition 2: The optimal objective function value of the

MASP-OPF-RS problem is equal to the optimal objective func-
tion value of the SP-OPF-RS problem.

We now tackle the condition in Assumption 4 to provide
a more flexible multi-area formulation of the MASP-OPF-RS
problem. Define εa ∈ (0, 1) and βa ∈ (0, 1) to be the local
level of constraint violation and the local level of confidence
for each control area a ∈ A, respectively. Each control area
can now build its own set of scenarios of wind power trajecto-
ries Sa := {p̃m,1 , . . . , p̃m,Ns a } such that Nsa

≥ N(εa , βa , da),
where da is the number of decision variables in the control area
a ∈ A, as it is defined in Theorem 2. Using ∀p̃m ∈ Sa instead of
∀p̃m ∈ S in Equation (15l), we develop a more flexible multi-
area formulation of the MASP-OPF-RS problem and relax As-
sumption 4. To quantify the robustness of the obtained solution
via MASP-OPF-RS with Sa ,∀a ∈ A, consider the following
theorem which is the main result of this section.

Theorem 3: Let εa , βa ∈ (0, 1),∀a ∈ A be chosen such that
ε =

∑
a∈A εa ∈ (0, 1) and β =

∑
a∈A βa ∈ (0, 1). If Ξ∗ma :=

{Ξ∗a}∀a∈A is a feasible solution of the MASP-OPF-RS problem
with scenario set Sa for each a ∈ A, then Ξ∗ma is also a feasible
solution of the P-OPF-RS problem with probability higher than
1− ε and with confidence level of at least 1− β.

Proof: Based on an important observation that each control
area a ∈ A can consider a common uncertainty source S as a
local (private) source of uncertainty and build its own (local)
set of scenarios Sa , the proof follows the similar steps as [23,
Theorem 2], that studies the quantification of the feasibility error
with private and common uncertainty sources in a distributed
setup using randomization technique, with some minor modifi-
cations. We provide a complete proof in the Appendix. �

The following corollary is a direct result of Theorem 3. De-
compose the P-OPF-RS problem using the proposed approach
in Section IV-A into the multi-area P-OPF-RS problem (MAP-
OPF-RS). This reformulation is straightforward and therefore it
is omitted for the sake of brevity.

Corollary 1: The local optimal solution Ξ∗a for all a ∈ A
obtained via the MASP-OPF-RS problem is a feasible solution
for the MAP-OPF-RS problem with probability higher than
1− εa and with confidence level of 1− βa .
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We now continue by developing a distributed framework for
the proposed formulation of the MASP-OPF-RS problem in
(15). Define Λf

ab,t ,Λ
us
ab,t ,Λ

ds
ab ∈ S2|Ea b | for all b ∈ Ba , for each

a ∈ A at each time step t ∈ T as the multipliers for the first three
consensus constraints, (15h), (15i), (15j), and λus

a,t , λds
a,t ∈ RNG

for all a ∈ A at each time step t ∈ T for the last two consensus
constraints (15k). We then collect all the multipliers in Γ. One
can denote the local objective function for each control area
a ∈ A as:

fa(Ξa) := fa
G

(
Wf

a,t ,p
w,f
t

)
+ fa

R (rus
a,t , r

ds
a,t) + IWa

(Ξa),

where IWa
(Ξa) is a convex indicator function for all constraints

except the consensus constraints. Consider now the augmented
Lagrangian of the MASP-OPF-RS problem as follows:

L(Ξma,Θ,Γ) =
∑

a∈A

∑

t∈T

{

fa(Ξa)

+
μ

2

∥
∥
∥dus

a,t − d̄
us
t +

λus
a,t

μ

∥
∥
∥

2

2
+

μ

2

∥
∥
∥dds

a,t − d̄
ds
t +

λds
a,t

μ

∥
∥
∥

2

2

+
∑

b∈Ba

(
μ

2

∥
∥
∥[Wf

a,t ]ab − W̄ f
ab,t +

Λf
ab,t

μ

∥
∥
∥

2

F

+
μ

2

∥
∥
∥[W us

a,t ]ab − W̄ us
ab,t +

Λus
ab,t

μ

∥
∥
∥

2

F

+
μ

2

∥
∥
∥[W ds

a,t ]ab − W̄ ds
ab,t +

Λds
ab,t

μ

∥
∥
∥

2

F
+ f(Γ)

)}

,

where f(Γ) indicates terms that are related to the multipliers Γ.
We now describe the steps of the ADMM algorithm as follows:

(1) Update Primal Variables: The multipliers and auxiliary
variables are fixed at their value of the previous iteration. Con-
sider the following minimization problem for all a ∈ A:

Ξ(k+1)
a = arg min

Ξa

∑

t∈T

{

fa(Ξa)

+
μ

2

∥
∥
∥dus

a,t − d̄
us
t +

λus
a,t

μ

∥
∥
∥

2

2
+

μ

2

∥
∥
∥dds

a,t − d̄
ds
t +

λds
a,t

μ

∥
∥
∥

2

2

+
∑

b∈Ba

(
μ

2

∥
∥
∥[Wf

a,t ]ab − W̄ f
ab,t +

Λf
ab,t

μ

∥
∥
∥

2

F

+
μ

2

∥
∥
∥[W us

a,t ]ab − W̄ us
ab,t +

Λus
ab,t

μ

∥
∥
∥

2

F

+
μ

2

∥
∥
∥[W ds

a,t ]ab − W̄ ds
ab,t +

Λds
ab,t

μ

∥
∥
∥

2

F

)}

, (16)

where f(Γ) is omitted, since the minimization is only in Ξa. This
results in |A| number of small-scale SDPs in parallel, which can
be considered the most computationally expensive step.

(2) Update Auxiliary Variables: The resulting Ξ(k+1)
a for all

a ∈ A are used to update the auxiliary variables. The multi-
pliers again are fixed at their previous value. Note that each
area only needs to communicate the part of its local variables

Algorithm 1: Distributed Stochastic MASP-OPF-RS.

1: Initialize: k = 0,Γ(0) = 0,Θ(0) = 0,∀b ∈ Ba ,
∀a ∈ A

2: Fix εa ∈ (0, 1) and βa ∈ (0, 1) , ∀a ∈ A such that

ε =
∑

a∈A
εa ∈ (0, 1), β =

∑

a∈A
βa ∈ (0, 1)

3: Build the set of local scenarios Sa , ∀a ∈ A
4: while not converged do
5: for all a ∈ A do
6: Update Ξ(k+1)

a using (16)
7: Broadcast [Ξ(k+1)

a ]ab to all b ∈ Ba

8: Receive [Ξ(k+1)
a ]ba from all b ∈ Ba

9: Update Θ(k+1) using (17) for all b ∈ Ba

10: Update Γ(k+1) using (18) for all b ∈ Ba

11: k = k + 1
12: end for
13: end while

that have overlap with its neighboring area to update the aux-
iliary variables. If the multipliers are initialized with zero
∀a ∈ A,∀b ∈ Ba , [37, Section 7.1], the update of the auxiliary
variable simplifies to taking the average ∀a ∈ A,∀b ∈ Ba :

W̄
f,(k+1)
ab,t =

1
2

(
[Wf,(k+1)

a,t ]ab + [Wf,(k+1)
b,t ]ba

)
,

W̄
us,(k+1)
ab,t =

1
2

(
[W us,(k+1)

a,t ]ab + [W us,(k+1)
b,t ]ba

)
,

W̄
ds,(k+1)
ab,t =

1
2

(
[W ds,(k+1)

a,t ]ab + [W ds,(k+1)
b,t ]ba

)
,

d̄
us,(k+1)
t =

1
|A|

∑

a∈A
d

us,(k+1)
a,t ,

d̄
ds,(k+1)
t =

1
|A|

∑

a∈A
d

ds,(k+1)
a,t . (17)

(3) Update Multiplier Variables: The multipliers are up-
dated as follows ∀a ∈ A,∀b ∈ Ba :

Λf ,(k+1)
ab,t = Λf ,(k)

ab,t + μ
(
[Wf,(k+1)

a,t ]ab − W̄
f,(k+1)
ab,t

)
,

Λus,(k+1)
ab,t = Λus,(k)

ab,t + μ
(
[W us,(k+1)

a,t ]ab − W̄
f,(k+1)
ab,t

)
,

Λds,(k+1)
ab,t = Λds,(k)

ab,t + μ
(
[W ds,(k+1)

a,t ]ab − W̄
f,(k+1)
ab,t

)
,

λ
us,(k+1)
a,t = λ

us,(k)
a,t + μ

(
d

us,(k+1)
a,t − d̄

us,(k+1)
t

)
,

λ
ds,(k+1)
a,t = λ

ds,(k)
a,t + μ

(
d

ds,(k+1)
a,t − d̄

us,(k+1)
t

)
. (18)

Notice that no information exchange is needed for the update of
the multiplier, since the parts of the state matrix of neighboring
areas have already been communicated in the update of the
auxiliary variables.

Algorithm 1 summarizes the proposed distributed stochas-
tic framework using a consensus ADMM algorithm to solve
the MASP-OPF-RS problem. Consider the energy sequence
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{
ξ(k)

}+∞
k=1 as a measure for convergence of Algorithm 1 as

follows:

ξ(k) =
∑

a∈A

∑

t∈T

{
∥
∥
∥dus

a,t − d̄
us
t

∥
∥
∥

2

2
+
∥
∥
∥dds

a,t − d̄
ds
t

∥
∥
∥

2

2

+
∑

b∈Ba

(

‖[Wf,(k)
a,t ]ab − W̄

f,(k)
ab,t ‖2F

+ ‖[W us,(k)
a,t ]ab − W̄

us,(k)
ab,t ‖2F

+ ‖[W ds,(k)
a,t ]ab − W̄

ds,(k)
ab,t ‖2F

)}

. (19)

If ξ(k) is sufficiently small, all control areas of the power network
have reached consensus on Θ.

We assume that the Slaters constraint qualification [38] holds
for the MASP-OPF-RS problem (15) meaning that the feasible
set of the MASP-OPF-RS has a non-empty interior, and it thus
admits at least one strictly feasible solution. We can now provide
convergence of the proposed consensus ADMM in Algorithm 1.

Theorem 4: Assume that Slater’s condition holds for the
MASP-OPF-RS problem (15), and consider the iterative steps
given in Algorithm 1. Then the following statements hold:

� The residual sequence {ξ(k)} tends to 0 in a non-increasing
way as k goes to +∞, and therefore, we have ∀b ∈ Ba and
for each a ∈ A at each time step t ∈ T :

[Wf,(+∞)
a,t ]ab = [Wf,(+∞)

b,t ]ba = W̄
f,(+∞)
ab ,

[W us,(+∞)
a,t ]ab = [W us,(+∞)

b,t ]ba = W̄
us,(+∞)
ab ,

[W ds,(+∞)
a,t ]ab = [W ds,(+∞)

b,t ]ba = W̄
ds,(+∞)
ab ,

and ∀a ∈ A at each time step t ∈ T :

dus,+∞
a,t = d̄

us,+∞
t , dds,+∞

a,t = d̄
ds,+∞
t .

� The sequence {Ξ(k)
a }∀a∈A converges to an optimal solution

{Ξ∗a}∀a∈A of the MASP-OPF-RS problem (15) as k tends
to +∞.

Proof: The theorem follows from [39] that studies the con-
vergence of a standard ADMM problem. The details are omitted
for brevity. �

V. NUMERICAL STUDY

In this section, we carry out numerical simulation studies to
illustrate the performance of the proposed formulations and dis-
tributed framework. After a short description of the simulation
setup, we present the simulation results in two different parts.
We first provide a simulation study for the IEEE 30-bus power
system using the proposed formulation in the SP-OPF-RS prob-
lem and compare it with the stochastic RS problem using a
DC model of power network. We also develop a new bench-
mark formulation, namely a converted DC (CDC) approach to
have a more sophisticated comparison [40]. As the second part
of simulation results, we construct a realistic multi-area case
study, and then, solve the MASP-OPF-RS problem using the

proposed distributed consensus framework in Section IV. We
also provide a comparison using the SP-OPF-RS problem. It is
important to highlight that the main reason why we focused on
a two-area control power system is due to the fact that the pro-
posed centralized formulation, SP-OPF-RS, is computationally
demanding for larger networks (more than 30 buses is not com-
putationally feasible). Therefore, to allow a complete detailed
comparison, we focused on a 28-bus power network for the cen-
tralized version and two areas each consisting of 14 buses for
the distributed framework.

A. Simulation Setup

We fix ε = 10−2 and β = 10−5 to obtain the number of
required scenarios of wind power trajectories at each hour
Ns = 541 as in Remark 4. To generate trajectories for the wind
power, we follow the approach of [41] together with a data-set
corresponding to the hourly aggregated wind power produc-
tion of Germany over the period 2006-2011. The nominal load
power is obtained from MATPOWER and multiplied with a
time-varying load profile similar to [40]. We perform Monte
Carlo simulations to check the violation probability of the so-
lutions a posteriori for both parts of simulation results. Power
flows of the network are simulated for 10000 new wind power
trajectories using MATPOWER, where the power and voltage
magnitude of generators and all the loads are fixed without im-
posing any constraints. The wind power is implemented as a
negative load on the wind-bus. Afterward, the resulting power
flows and voltage magnitudes are evaluated by means of count-
ing the number of violated constraints. To solve all proposed
formulations, we use Matlab together with YALMIP [42] as an
interface and MOSEK [35] as a solver. All optimizations are
run on a MacBook Pro with a 2, 4 GHz Intel Core i5 processor
and 8 GB of RAM.

B. Simulation Results: Part One

We carried out a simulation study using the 30-bus IEEE
benchmark power system [43], where only a single wind-bus
infeed at bus 10 is considered.

After obtaining a solution, the scheduled generator power (the
generator power based on the forecast wind trajectory) and the
voltage magnitudes are extracted from W̃ f = {Wf

t }t∈T for all
time steps using the following relations ∀k ∈ G,∀t ∈ T :

pG
k,t = Tr

(
YkWf

t

)
+ pD

k,t − pw
k,t , (20a)

qG
k,t = Tr

(
Y ∗k Wf

t

)
+ qD

k,t , (20b)

|vk,t | =
√

Wf
t (k, k) + Wf

t (Nb + k,Nb + k). (20c)

A DC model of the power network is used to solve the OPF-
RS problem as a benchmark approach for comparison purposes.
A detailed description of the DC model can be obtained from
[3] and [4]. The solution of the benchmark program is the
real generator power and distribution vectors for every hour,{

pG,dc
t ,dus,dc

t ,dds,dc
t

}
. One also needs the reactive generator

power and generator voltage magnitudes in order to have a more
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Fig. 1. Schematic overview of optimization and simulation process for the
DC, CDC benchmarks, and the SP-OPF-RS.

Fig. 2. Relative line loading for all hours and scenarios per line for the IEEE
30-bus benchmark case study. The red line represents the median value, edges
of each box correspond to the 25th and 75th percentiles, the whiskers extend to
99% coverage, and the red marks denote the data outliers. The upper plots (a) and
(b) show the Benchmark results, and the lower plot (c) shows the SP-OPF-RS
solutions.

realistic comparison. In [8], the nominal value of such variables
were extracted from the MATPOWER test case for all time steps
and scenarios. This is called the nominal DC solution. This will
result in large violations, since the reactive generator power is
not adapted to the time-varying demand.

We here develop a novel benchmark approach, namely con-
verted DC (CDC), to have a more sophisticated comparison by
solving the following program:

min
W̃

∑

t∈T

∑

k∈G

(
pG,dc

k,t −
(
Tr (YkWt) + pD

k,t − pw,f
k,t

))2

s.t. Wt ∈ W(pw,f
t , sD

t ), ∀t ∈ T ,

Wt � 0 ∀t ∈ T . (21)

The solution to this program is a feasible (AC) network state
W̃ = {Wt}t∈T where the real generator power is as close as
possible to the obtained real generator power from the DC solu-

Fig. 3. Empirical violation level of lineflow limit for different formulations
for the IEEE 30-bus benchmark case study.

Fig. 4. Pictorial overview of the decomposed IEEE 28-bus power system case
study. Triangles, circles, and a star indicate the generator buses, load buses and
the wind bus, respectively. The size of each symbol indicates the respective
generator capacity or load power. The different colors of the buses indicate the
different control areas of the power network, and the shaded areas depict the
extended control areas.

Fig. 5. Effect of varying μ on the convergence of ADMM.

tion. The distribution vectors used in simulation will be equal to
those obtained from the original solution of the DC framework.
A schematic overview of the optimization and simulation pro-
cess to obtain and validate both the benchmark and proposed
formulations is given in Fig. 1.
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Fig. 6. Generator dispatch per hour for centralized and distributed solutions for the 28-bus test case. The grey shaded area corresponds to the total demand per
hour. The numbers correspond to the generator buses, and the lowest part of each bar (green) indicates the wind power per hour.

The relative line loadings for all hours and scenarios are
shown as box plots per line in Fig. 2 for DC, CDC, and SP-OPF-
RS solutions. The relative line loading is defined as the apparent
power flow over a line divided by the line rating ∀(l,m) ∈ L:

|srel
lm | :=

|slm |
|slm |

,

such that a loading higher than 100% corresponds to a violation
of the lineflow limit. The DC benchmark results (Fig. 2a) shows
the biggest violations, followed by the CDC benchmark results
(Fig. 2b). For both benchmark results, line 10, 30, 31, and 35
are violated since the line loadings are overloaded as it is clearly
shown in Fig. 2a-b. The SP-OPF-RS solutions (Fig. 2c) shows
almost no violations for all hours and scenarios.

To further assess the performance of these results, the number
of violating5 network states is counted for each hour, and divided
by the total number of scenarios to be an empirical measure of
the probability on constraint violation per hour (see Fig. 3). As
expected, the DC solution shows a very high level of viola-
tion during the peak hours, t ≥ 8. Although the CDC solution
improves the chance of lineflow limit violation, the theoretical
limit at the peak hours is still not respected. It is important to
notice that the empirical chance of constraint violation for the
SP-OPF-RS results are much below the theoretical limit (5%)
with 0.05% at t = 13 being the highest empirical probability.

We next examine the bus voltage magnitudes. It is observed
that the DC, and the SP-OPF-RS solutions are always within
the limits for all hours and scenarios. However, for the CDC
formulation the bus voltage limits show a violation of 100%
for all hours. This can be explained by the fact that in the
DC framework, the bus voltages are assumed to be constant at
nominal value. When we implement the obtained solution in
the AC framework, it can be seen that this assumption does not
hold. We can thus conclude that for both the DC formulations,
the empirical chance of constraint violation is much above the
theoretical limits once the solution is implemented in the AC

5A network state is violating if at least one of the line limits is not satisfied.

power flow simulations. The a-priori probabilistic guarantees
are deemed valid for the SP-OPF-RS solutions.

C. Simulation Results: Part Two

We construct a two-area power network using two identical
IEEE 14-bus power networks [43], and then connect a tie-line
between bus 5 of the first network and bus 10 of the second
network to create a realistic case study, resulting in an overall 28-
bus power network with two control areas. The extended control
areas are obtained by adding the endpoints of the tie-lines to the
areas such that the buses are grouped in two overlapping sets as
shown in Fig. 4. We formulate the MASP-OPF-RS problem (15)
and then use Algorithm 1 to solve the problem in a distributed
consensus framework using ADMM algorithm and coordinate
the local solutions of the control areas towards convergence.
Algorithm 1 is run until the residual sequence ξ(k) is sufficiently
small, i.e. below 10−2 for each hour, and then, the solutions
of current iterates (k) are used as the optimal solutions. This
happens after 158 iterations. The step size μ is selected using a
heuristic approach and it is fixed to 100 which results in good
performance, while convergence is fast enough (see Fig. 5). We
also formulate the SP-OPF-RS problem for the 28-bus power
network and solve it in a centralized fashion for comparison
purposes.

The resulting dispatch and distribution vectors are extracted
from the final iterates. The generator dispatch is compared with
the centralized solution in Fig. 6. The distributed solution is
almost the same as the centralized solution. The distribution
vectors are displayed in Fig. 7. It can be seen that the results
are quite similar for the centralized and distributed results. The
upspinning reserve is completely provided by the generator with
the lowest cost which is generator number 8. The downspinning
reserve is distributed over the first and second generator for the
distributed solution, but in the centralized approach it is mostly
provided by generator 8. For both the centralized and distributed
solutions, the reserve is distributed over more generators during
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Fig. 7. Graphical display of up- and downspinning reserve distribution vectors per generator and hour for centralized and distributed solutions for the 28-bus
test case. Darker cells correspond to higher contribution to the reserve power.

Fig. 8. Relative bus voltages and line loading for all hours and scenarios per line for the 28-bus test case. The red line represents the median value, edges of each
box correspond to the 25th and 75th percentiles, the whiskers extend to 99% coverage, and the red marks denote the data outliers.

the peak hours, because the dispatch of the generators is higher
in those hours, so less reserve power is available per generator.

We next simulate the resulting solutions with a new set of
10000 wind trajectories to compare the violation levels. The
relative voltage magnitudes per bus, defined as ∀k ∈ N :

|vrel
k | :=

|vk | − |vk |
|vk | − |vk |

,

such that a relative voltage magnitude below 0% corresponds
to a bus voltage which is below the lower limit, and a relative
voltage magnitude greater than 100% indicates a violation of
the upper limit. There is no violation of the voltage magnitude
limits for any of the results for all time steps and scenarios as
shown in Fig. 8a as predicted by our analysis of the developed
methods. The relative line loadings for all hours and trajectories
are shown as box plots per line in Fig. 8b. The number of vio-
lating network states divided by the total number of simulations
returns an empirical measure of the violation probability. Both
the centralized and distributed solutions have a very low viola-
tions probability: at most 0.02% and 0.06% at the peak hours,
respectively. We can therefore conclude that the probabilistic
guarantees are valid for the distributed solution.

VI. CONCLUSION

We developed a framework to carry out a multi-area RS using
an AC OPF model with wind power generation by distributed

consensus using ADMM. The OPF-RS problem is formulated
as a large-scale SDP in infinite-dimensional spaces, and then
a novel affine policy is proposed to provide an approximation
for the infinite-dimensional SDP by a finite-dimensional SDP
together with explicitly quantified performance of the approx-
imation. The proposed methodology bridges the gap between
the DC and AC OPF model of power systems for RS and fur-
nishes the TSOs with a tuning knob associated with the level of
affordable probabilistic security.

Using the geographical pattern of the power system, a tech-
nique to decompose the large-scale system into a multi-area
power network is provided. The consensus ADMM algorithm
is then proposed to find a feasible solution for both local and
overall multi-area network such that at every iteration, each area
of power network solves a small-scale SDP problem, and then
communicates some information to its neighbors to achieve con-
sensus. By deriving a Lyapunov-type non-increasing function,
it is shown that the proposed algorithm converges as long as
Slater’s condition holds. Using our distributed stochastic frame-
work, each area can have its own wind information to achieve
local feasibility certificates, while preserving overall feasibility
of the multi-area power network under mild conditions.

Our theoretical developments have been demonstrated in sim-
ulation studies using IEEE benchmark power systems. The
violation levels for the decomposed and centralized solutions
are checked using power flow simulations to validate our
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decomposition method which allows for distributed solving of
OPF-RS type problems.

Our current work concentrates on the following main direc-
tion. We aim to extend our results to the case where the unit
commitment (UC) formulation is added to the problem, similar
to [22, Ch. 3] and the recent work in [44]. The authors in [44]
proposed an approach to efficiently address OPF-UC problem
based on sparsity-exploiting techniques (Lasserre relaxations
[45]). This can be an immediate extension to our proposed for-
mulation and distributed framework.

APPENDIX

Proof of Theorem 1: P-OPF-RS problem is an inner approx-
imation version of C-OPF-RS problem [46, Definition 12.2.13],
which is exact if we show that the gap between their objec-
tive function values is zero. This can be shown using the fact
that the difference between optimizers Ξ∗ of C-OPF-RS and
the projection of Ξ∗ onto the feasible set of P-OPF-RS is zero,
since C-OPF-RS and P-OPF-RS have clearly similar objective
functions.

In order to show the difference between the optimizers Ξ∗ and
the optimizer Ξ̂∗ (the projection of Ξ∗ onto the feasible set of P-
OPF-RS), we need to establish equivalence between constraints
of both problems using the proposed policy in (12). It is impor-
tant to notice that the proposed affine policy (12) is obtained by
algebraic manipulation of the reserve power definition in (10).

By comparing C-OPF-RS and P-OPF-RS, it is clear that the
first and second constraints in P-OPF-RS are the same as (7b)
and (7c), respectively, where Wt is replaced by Ŵt(pm

t ), fol-
lowing the proposed affine policy in (12). As for the constraint
(7d), we use the following equivalent constraints using a conic
combination concept6 of matrix variables, called coefficient
matrices:

Ŵt(pm
t ) � 0 ←→ Wf

t � 0, W us
t � 0, W ds

t � 0 .

Imposing PSD constraints on the coefficient matrices is equiva-
lent to imposing a PSD constraint on the proposed policy for the
network state in (12), since max(pm

t , 0) ≥ 0 , max(−pm
t , 0) ≥

0 ,∀pm
t ∈ P, together with the fact that any conic combination

of PSD matrices is a PSD matrix [25, Section 2.2.5], thus the
approximated network state Ŵt(pm

t ) is guaranteed to be PSD.
We now examine the definition of reserve power expressed

with the new parametrization Ŵt(pm
t ):

rk,t = pG
k,t − pG,f

k,t = Tr
(
Yk

(
Ŵ (pm

t )−Wf
t

))

= Tr
(
Yk

(
max(−pm

t , 0)W us
t + max(pm

t , 0)W ds
t

))

= −Tr (YkW us
t ) min(pm

t , 0) + Tr
(
YkW ds

t

)
max(pm

t , 0),

where the last equation is similar to the above assertion by
using the linearity of the trace operator and the fact that ∀α ∈
R,max(−α, 0) = −min(α, 0).

The last two constraints are similar to the constraints (11) to
ensure that the reserve powers will always be the exact opposite

6A conic combination is a linear combination with only non-negative coeffi-
cients, see also [25, Section 2.1.5].

of the mismatch power. By summing the previous result over all
generators k ∈ G:

∑

k∈G
rk,t = −

=1
︷ ︸︸ ︷∑

k∈G
Tr (YkW us

t ) min(pm
t , 0)

+

=−1
︷ ︸︸ ︷∑

k∈G
Tr
(
YkW ds

t

)
max(pm

t , 0),

= −min(pm
t , 0)−max(pm

t , 0) = −pm
t .

The proof is completed by noting that W̃ us and W̃ ds are re-
lated to changes in the network state by the distribution of up-
and downspinning reserve power, respectively. Moreover, the
proposed equality constraints are feasible due to fact that Yk is
indefinite for all k ∈ G. �

Proof of Theorem 3: Consider Ξ̂∗ to be the optimizer of the
SP-OPF-RS problem and define Vio(Ξ̂∗) to be the violation
probability of the P-OPF-RS constraints as follows:

Vio(Ξ̂∗) := P
[
p̃m ∈ P : Ξ̂∗ /∈ X̃ (p̃m )

]
, (22a)

where X̃ (p̃m ) is the uncertain feasible region of the P-OPF-
RS problem, and it can be characterized via its constraints.
Following Theorem 2, we have

PNs

[
S ∈ PNs : Vio(Ξ̂∗) ≤ ε

]
≥ 1− β . (22b)

Given Assumption 2 and Assumption 3 together with Propo-
sition 2, the MASP-OPF-RS problem is an exact decomposition
of the SP-OPF-RS problem. This yields the following equiva-
lence relations:

{
Ξ̂∗ := Ξ∗ma = {Ξ∗a}∀a∈A
X̃ (p̃m ) :=

∏
a∈A X̃a(p̃m )

, (23)

where Ξ∗ma = {Ξ∗a}∀a∈A is the set of optimizers of the MASP-
OPF-RS problem with Ξ∗a as the optimizer of each control area
a ∈ A. Moreover, X̃a(p̃m ) represents the uncertain feasible set
of each control area a ∈ A and it can be characterized using
constraints of the MASP-OPF-RS problem for each control area
a ∈ A. To this end, it is necessary to prove that the above state-
ments (22) are still hold under the aforementioned relations
(23). We now break down the proof into two steps. We first
show the results for each control area a ∈ A, and then extend
into a multi-area power system problem.

1) Define Vio(Ξ∗a) to be the violation probability of each
control area a ∈ A for the P-OPF-RS problem as follows:

Vio(Ξ∗a) := P
[
p̃m ∈ P : Ξ∗a /∈ X̃a(p̃m )

]
. (24)

Applying the existing results in Theorem 2 for each control area
a ∈ A, we have

PNs a
[
Sa ∈ PNs a : Vio(Ξ∗a) ≤ εa

]
≥ 1− βa . (25)
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2) Following the relations (23), it is easy to rewrite Vio(Ξ̂∗)
in the following form:

Vio(Ξ̂∗) = Vio(Ξ∗ma) = P

[

p̃m ∈ P : Ξ∗ma /∈
∏

a∈A
X̃a(p̃m )

]

,

It is then sufficient to show that for Ns = maxa∈ANsa
:

PNs

[
S ∈ PNs : Vio(Ξ∗ma) ≥ ε

]
≤ β, (26)

where ε =
∑

a∈A εa ∈ (0, 1) and β =
∑

a∈A βa ∈ (0, 1).
Hence

Vio(Ξ̂∗) = Vio(Ξ∗ma) = P

[

p̃m ∈ P : Ξ∗ma /∈
∏

a∈A
X̃a(p̃m )

]

= P
[
p̃m ∈ P : ∃a ∈ A , Ξ∗a /∈ X̃a(p̃m )

]

= P

[
⋃

a∈A

{
p̃m ∈ P : Ξ∗a /∈ X̃a(p̃m )

}
]

≤
∑

a∈A
P
[
p̃m ∈ P : Ξ∗a /∈ X̃a(p̃m )

]
=
∑

a∈A
Vio(Ξ∗a).

The last statement implies that Vio(Ξ∗ma) ≤
∑

a∈AVio(Ξ∗a), and
thus, we have

PNs
[
S ∈ PNs : Vio(Ξ∗ma) ≥ ε

]

≤ PNs

[

S ∈ PNs :
∑

a∈A
Vio(Ξ∗a) ≥

∑

a∈A
εa

]

= PNs

[
⋃

a∈A

{
Sa ∈ PNs a : Vio(Ξ∗a) ≥ εa

}
]

≤
∑

a∈A
PNs a

[
Sa ∈ PNs a : Vio(Ξ∗a) ≥ εa

]
≤
∑

a∈A
βa = β.

The obtained bounds in the above procedure are the desired
assertions as it is stated in the theorem. The proof is completed
by noting that the feasible set X̃ (p̃m ) =

∏
a∈A X̃a(p̃m ) of the

MASP-OPF-RS has a non-empty interior, and it thus admits at
least one feasible solution Ξ∗ma = {Ξ∗a}∀a∈A. �
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