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Learning Optimal Controllers for Linear Systems
With Multiplicative Noise via Policy Gradient

Benjamin Gravell , Graduate Student Member, IEEE, Peyman Mohajerin Esfahani ,
and Tyler Summers , Member, IEEE

Abstract—The linear quadratic regulator (LQR) problem
has reemerged as an important theoretical benchmark for
reinforcement learning-based control of complex dynami-
cal systems with continuous state and action spaces. In
contrast with nearly all recent work in this area, we con-
sider multiplicative noise models, which are increasingly
relevant because they explicitly incorporate inherent uncer-
tainty and variation in the system dynamics and thereby im-
prove robustness properties of the controller. Robustness
is a critical and poorly understood issue in reinforcement
learning; existing methods which do not account for uncer-
tainty can converge to fragile policies or fail to converge at
all. Additionally, intentional injection of multiplicative noise
into learning algorithms can enhance robustness of poli-
cies, as observed in ad hoc work on domain randomization.
Although policy gradient algorithms require optimization of
a nonconvex cost function, we show that the multiplicative
noise LQR cost has a special property called gradient dom-
ination, which is exploited to prove global convergence of
policy gradient algorithms to the globally optimum control
policy with polynomial dependence on problem parame-
ters. Results are provided both in the model-known and
model-unknown settings where samples of system trajec-
tories are used to estimate policy gradients

Index Terms—Gradient methods, noise, optimal control,
reinforcement learning, stochastic systems, uncertain sys-
tems.

I. INTRODUCTION

R EINFORCEMENT learning-based control has recently
achieved impressive successes in games [1] and simulators

[2]. But these successes are significantly more challenging to
translate to complex physical systems with continuous state and
action spaces, safety constraints, and non-negligible operation
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and failure costs that demand data efficiency. An intense and
growing research effort is creating a large array of models,
algorithms, and heuristics for approaching the myriad of chal-
lenges arising from these systems. To complement a dominant
trend of more computationally focused work, the canonical
linear quadratic regulator (LQR) problem in control theory has
reemerged as an important theoretical benchmark for learning-
based control [3], [4]. Despite its long history, there remain
fundamental open questions for LQR with unknown models,
and a foundational understanding of learning in LQR problems
can give insight into more challenging problems.

Almost all recent work on learning in LQR problems has
utilized either deterministic or additive noise models [3]–[14],
but, here, we consider multiplicative noise models. In control
theory, multiplicative noise models have been studied almost
as long as their deterministic and additive noise counterparts
[15], [16], although this area is somewhat less developed and
far less widely known. We believe the study of learning in
LQR problems with multiplicative noise is important for three
reasons. First, this class of models is much richer than deter-
ministic or additive noise while still allowing exact solutions
when models are known, which makes it a compelling addi-
tional benchmark [17]–[19]. Second, they explicitly incorporate
model uncertainty and inherent stochasticity, thereby improving
robustness properties of the controller. Robustness is a critical
and poorly understood issue in reinforcement learning; existing
methods that do not account for uncertainty can converge to
fragile policies or fail to converge at all [18], [20], [21]. Addition-
ally, intentional injection of multiplicative noise into learning
algorithms is known to enhance robustness of policies from ad
hoc work on domain randomization [22]. Third, in emerging
difficult-to-model complex systems where learning-based con-
trol approaches are perhaps most promising, multiplicative noise
models are increasingly relevant; examples include networked
systems with noisy communication channels [23], [24], modern
power networks with large penetration of intermittent renew-
ables [25], [26], turbulent fluid flow [27], and neuronal brain
networks [28].

A. Related Literature

Multiplicative noise LQR problems have been studied in
control theory since the 1960s [15]. Since then, a line of re-
search parallel to deterministic and additive noise has devel-
oped, including basic stability and stabilizability results [17],
semidefinite programming formulations [29]–[31], robustness
properties [16], [19], [32]–[34], and numerical algorithms [35].

0018-9286 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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This line of research is less widely known perhaps because
much of it studies continuous time systems, where the heavy
machinery required to formalize stochastic differential equations
is a barrier to entry for a broad audience. Multiplicative noise
models are well-poised to offer data-driven model uncertainty
representations and enhanced robustness in learning-based con-
trol algorithms and complex dynamical systems and processes.
A related line of research that has seen recent activity is on
learning optimal control of Markovian jump linear systems with
unknown dynamics and noise distributions [36], [37], which,
under certain assumptions, is a special case of the multiplicative
noise system we analyze in this article.

In contrast to classical work on system identification and
adaptive control, which has a strong focus on asymptotic results,
more recent work has focused on nonasymptotic analysis using
newly developed mathematical tools from statistics and machine
learning. There remain fundamental open problems for learning
in LQR problems, with several addressed only recently, includ-
ing nonasymptotic sample complexity [4], [10], regret bounds
[8], [11], [13], and algorithmic convergence [5]. Alternatives
to reinforcement learning include other data-driven model-free
optimal control schemes [38], [39] and those leveraging the be-
havioral framework [40], [41]. Subspace identification methods
offer a model-based generalization to the output feedback setting
[42].

B. Our Contributions

In Section II, we formulate the multiplicative noise LQR prob-
lem and motivate its study via a connection to robust stability.
We then give several fundamental results for policy gradient
algorithms on linear quadratic problems with multiplicative
noise. Our main contributions are as follows, which can be
viewed as a generalization of the recent results of Fazel et al.
[5] for deterministic LQR to multiplicative noise LQR.

1) In Section III-A, we show that although the multiplicative
noise LQR cost is generally nonconvex, it has a special
property called gradient domination, which facilitates its
optimization (Lemmas 3.1 and 3.3).

2) In particular, in Section IV, the gradient domination
property is exploited to prove global convergence of
three policy gradient algorithm variants (namely, exact
gradient descent, “natural gradient descent,” and Gauss–
Newton/policy iteration) to the globally optimum control
policy with a rate that depends polynomially on problem
parameters (Theorems 4.1, 4.2, and 4.3).

3) Furthermore, in Section V, we show that a model-free
policy gradient algorithm, where the gradient is estimated
from trajectory data rather than computed from model pa-
rameters, also converges globally (with high probability)
with an appropriate exploration scheme and sufficiently
many samples (polynomial in problem data) (Theorem
5.1).

In comparison with the deterministic dynamics studied by [5],
we make the following novel technical contributions.

1) We quantify the increase in computational burden of pol-
icy gradient methods due to the presence of multiplicative
noise, which is evident from the bounds developed in

Appendixes A and B. The noise acts to reduce the step
size and thus convergence rate and increases the required
number of samples and rollout length in the model-free
setting.

2) A covariance dynamics operator FK is established for
multiplicative noise systems with a more complicated
form than the deterministic case. This necessitated a more
careful treatment and novel proof by induction and term
matching argument in the proof of Lemma 7.4.

3) Several restrictions on the algorithmic parameters which
are necessary for convergence, which were neglected by
[5], are established and treated.

4) An important restriction on the support of the multiplica-
tive noise distribution, which is naturally absent in [5], is
established in the model-free setting.

5) A matrix Bernstein concentration inequality is stated ex-
plicitly and used to give explicit bounds on the algorithmic
parameters in the model-free setting in terms of problem
data.

6) We provide much more extensive numerical results and
discussion, including an open-source code implementa-
tion and the use of backtracking line search.

7) When the multiplicative variances αi, βj are all zero, the
assertions of Theorems 4.1, 4.2, 4.3, and 5.1 recover the
same step sizes and convergence rates of the deterministic
setting reported by [5].

Thus, policy gradient algorithms for the multiplicative noise
LQR problem enjoy the same global convergence properties as
deterministic LQR, while significantly enhancing the resulting
controller’s robustness to variations and inherent stochasticity
in the system dynamics, as demonstrated by our numerical
experiments in Section VI.

To the best of our knowledge, the present article is the first
work to consider and obtain global convergence results using
reinforcement learning algorithms for the multiplicative noise
LQR problem. Our approach allows the explicit incorporation
of a model uncertainty representation that significantly improves
the robustness of the controller compared to deterministic and
additive noise approaches.

II. OPTIMAL CONTROL OF LINEAR SYSTEMS WITH

MULTIPLICATIVE NOISE AND QUADRATIC COSTS

We consider the infinite-horizon linear quadratic regulator
problem with multiplicative noise (LQRm)

minimize
π∈Π

C(π) : = E
x0,{δti},{γtj}

∞∑
t=0

(xᵀ
tQxt + uᵀ

tRut) (1)

subject to xt+1 = (A+

p∑
i=1

δtiAi)xt + (B +

q∑
j=1

γtjBj)ut

where xt ∈ Rn is the system state, ut ∈ Rm is the control
input, the initial state x0 is distributed according to P0 with
covariance Σ0 : =Ex0

[x0x
ᵀ
0 ], Σ0 � 0, and Q � 0 and R � 0.

The dynamics are described by a dynamics matrix A ∈ Rn×n

and input matrix B ∈ Rn×m and incorporate multiplicative
noise terms modeled by the i.i.d. (across time), zero-mean,
mutually independent scalar random variables δti and γtj ,
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which have variances αi and βj , respectively. The matrices
Ai ∈ Rn×n and Bi ∈ Rn×m specify how each scalar noise
term affects the system dynamics and input matrices. Alterna-
tively, suppose Ā and B̄ are zero-mean random matrices with
a joint covariance structure1 over their entries governed by the
covariance matrices ΣA : =E[vec(Ā)vec(Ā)ᵀ] ∈ Rn2×n2

and
ΣB : =E[vec(B̄)vec(B̄)ᵀ] ∈ Rnm×nm. Then it suffices to take
the variances αi and βj and matrices Ai and Bj as the eigen-
values and (reshaped) eigenvectors of ΣA and ΣB , respectively,
after a projection onto a set of orthogonal real-valued vectors
[43]. The goal is to determine a closed-loop state feedback policy
π∗ with ut = π∗(xt) from a set Π of admissible policies which
solves the optimization in (1).

We assume that the problem data A, B, αi, Ai, βj , and Bj

permit existence and finiteness of the optimal value of the prob-
lem, in which case the system is called mean-square stabilizable
and requires mean-square stability of the closed-loop system
[17], [44]. The system in (1) is called mean-square stable if
limt→∞ Ex0,δ,γ [xtx

ᵀ
t ] = 0 for any given initial covariance Σ0,

where, for brevity, we notate expectation with respect to the
noises E{δti},{γtj} as Eδ,γ . Mean-square stability is a form of ro-
bust stability, implying stability of the mean (i.e., limt→∞ Ext =
0 ∀ x0) as well as (in the absence of additive noise) almost-sure
stability (i.e., limt→∞ xt = 0 almost surely) [17]. Mean-square
stability requires stricter and more complicated conditions than
stabilizability of the nominal system (A,B) [17], which are
discussed in the sequel. This essentially can limit the size of
the multiplicative noise covariance [18], which can be viewed
as a representation of uncertainty in the nominal system model
or as inherent variation in the system dynamics.

A. Control Design With Known Models: Value Iteration

Dynamic programming can be used to show that the optimal
policy π∗ is linear state feedback ut = π∗(xt) = K∗xt, where
K∗ ∈ Rm×n denotes the optimal gain matrix. When the control
policy is linear state feedback ut = π(xt) = Kxt, with a very
slight abuse of notation the cost becomes

C(K) = Ex0,{δti},{γtj}

∞∑
t=0

xᵀ
t (Q+KᵀRK)xt.

Dynamic programming further shows that the result-
ing optimal cost is quadratic in the initial state, i.e.,
C(K∗) = Ex0

xᵀ
0Px0 = Tr(PΣ0), where P ∈ Rn×n is a sym-

metric positive definite matrix [21]. Note that the optimal con-
troller does not directly observe the noise variables δti, γtj .
When the model parameters are known, there are several ways to
compute the optimal feedback gains and corresponding optimal
cost. The optimal cost is given by the solution of the generalized
algebraic Riccati equation (GARE)

P = Q+AᵀPA+

p∑
i=1

αiA
ᵀ
i PAi

1We assume Ā and B̄ are independent for simplicity, but it is straightforward
to include correlations between the entries of Ā and B̄ into the model.

−AᵀPB

⎛⎝R+BᵀPB +

q∑
j=1

βjB
ᵀ
j PBj

⎞⎠−1 BᵀPA.

(2)
This is a special case of the GARE for optimal static out-
put feedback given in [19] and can be solved via the value
iteration

Pk+1 = Q+AᵀPkA+

p∑
i=1

αiA
ᵀ
i PkAi

−AᵀPkB

⎛⎝R+BᵀPkB+

q∑
j=1

βjB
ᵀ
j PkBj

⎞⎠−1BᵀPkA

with P0 = Q, or via semidefinite programming formulations
[29]–[31], or via more exotic iterations based on the Smith
method and Krylov subspaces [45], [46]. The associated optimal
gain matrix is

K∗ = −
(
R+BᵀPB +

q∑
j=1

βjB
ᵀ
j PBj

)−1
BᵀPA.

It was verified in [17] that the existence of a positive definite
solution to the GARE (2) is equivalent to mean-square stabiliz-
ability of the system, which depends on the problem data A, B,
αi,Ai, βj , andBj ; in particular, mean-square stability generally
imposes upper bounds on the variances αi and βj [18], though
these may be infinite depending on the structure of A, B, Ai, Bj

[17]. At a minimum, uniqueness and existence of a solution to the
GARE (2) requires the standard conditions for uniqueness and
existence of a solution to the standard ARE, namely of (A,B)
stabilizable and (A,Q1/2) detectable.

Although (approximate) value iteration can be implemented
using sample trajectory data, policy gradient methods have been
shown to be more effective for approximately optimal control
of high-dimensional stochastic nonlinear systems, e.g., those
arising in robotics [47]. This motivates our following analysis
of the simpler case of stochastic linear systems wherein we show
that policy gradient indeed facilitates a data-driven approach for
learning optimal and robust policies.

B. Control Design With Known Models: Policy Gradient

Consider a fixed linear state feedback policy ut = Kxt.
Defining the stochastic system matrices Ã = A+

∑p
i=1 δtiAi ,

and B̃ = B +
∑q

j=1 γtjBj , the (deterministic) nominal closed-
loop state transition matrix AK = A+BK, the stochastic
closed-loop state transition matrix ÃK = Ã+ B̃K, and the
closed-loop state-cost matrix QK = Q+KᵀRK, the closed-
loop dynamics become xt+1 = ÃKxt. A gainK is mean-square
stabilizing if the closed-loop system is mean-square stable. De-
note the set of mean-square stabilizing K as K. If K ∈ K, then
the cost can be written as C(K) = Ex0

xᵀ
0PKx0 = Tr(PKΣ0),

where PK is the unique positive semidefinite solution to the
generalized Lyapunov equation

PK = QK +Aᵀ
KPKAK

+

p∑
i=1

αiA
ᵀ
i PKAi +

q∑
j=1

βjK
ᵀBᵀ

j PKBjK. (3)
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We define the state covariance matrices as Σt : =Ex0,δ,γ [xtx
ᵀ
t ]

and the infinite-horizon aggregate state covariance matrix
ΣK : =

∑∞
t=0 Σt. If K ∈ K, then ΣK also satisfies a dual gen-

eralized Lyapunov equation

ΣK = Σ0 +AKΣKAᵀ
K

+

p∑
i=1

αiAiΣKAᵀ
i +

q∑
j=1

βjBjKΣKKᵀBᵀ
j . (4)

Vectorization and Kronecker products can be used to convert (3)
and (4) into systems of linear equations. Alternatively, iterative
methods have been suggested for their solution [45], [46]. The
state covariance dynamics are captured by two closed-loop
finite-dimensional linear operators which operate on a symmet-
ric matrix X

TK(X) : = E
δ,γ

∞∑
t=0

Ãt
KXÃᵀt

K ,

FK(X) : = E
δ,γ

ÃKXÃᵀ
K = AKXAᵀ

K

+

p∑
i=1

αiAiXAᵀ
i +

q∑
j=1

βjBjKX(BjK)ᵀ.

Thus, FK (without an argument) is a linear operator whose
matrix representation is

FK : =AK ⊗AK +

p∑
i=1

αiAi ⊗Ai +

q∑
j=1

βj(BjK)⊗ (BjK).

The Σt evolve according to the dynamics

Σt+1 = FK(Σt) ⇔ vec(Σt+1) = FK vec(Σt).

We define the t-stage of FK(X) as

F t
K(X) := FK(F t−1

K (X)) with F0
K(X) = X

which gives the natural characterization

ΣK = TK(Σ0) =

∞∑
t=0

F t
K(Σ0). (5)

We then have the following lemma.
Lemma 2.1 (Mean-Square Stability): A gain K is mean-

square stabilizing if and only if the spectral radius ρ(FK) < 1.
Proof: Mean-square stability implies lim

t→∞
E[xtx

ᵀ
t ] = 0,

which, for linear systems, occurs only when ΣK is finite, which,
by (5), is equivalent to ρ(FK) < 1. �

Recalling the definition ofC(K) and (4), along with the basic
observation thatK /∈ K induces infinite cost, gives the following
characterization of the cost:

C(K) =

{
Tr(QKΣK) = Tr(PKΣ0) if K ∈ K
∞ otherwise.

The evident fact that C(K) is expressed as a closed-form
function, up to a Lyapunov equation, of K leads to the idea of
performing gradient descent on C(K) (i.e., policy gradient) via
the update K ← K − η∇C(K) to find the optimal gain matrix.
However, two properties of the LQR cost functionC(K) compli-
cate a convergence analysis of gradient descent. First, C(K) is
extended valued since not all gain matrices provide closed-loop
mean-square stability, and so it does not have (global) Lipschitz
gradients. Second, and even more concerning,C(K) is generally
nonconvex in K (even for deterministic LQR problems, as

observed by Fazel et al. [5]); so it is unclear if and when gradient
descent converges to the global optimum or if it even converges
at all. Fortunately, as in the deterministic case, we show that the
multiplicative LQR cost possesses further key properties that
enable proof of global convergence despite the lack of Lipschitz
gradients and nonconvexity.

C. From Stochastic to Robust Stability

Additional motivation for designing controllers which stabi-
lize a stochastic system in mean-square is to ensure robustness of
stability of a nominal deterministic system to model parameter
perturbations. Here we state a condition which guarantees robust
deterministic stability for a perturbed deterministic system given
mean-square stability of a stochastic single-state system with
multiplicative noise where the noise variance and parameter
perturbation size are related.

Example 2.2 (Robust Stability): Suppose the stochastic
closed-loop system

xt+1 = (a+ δt)xt (6)

where a, xt, δt are scalars with E[δ2t ] = α is mean-square stable.
Then, the perturbed deterministic system

xt+1 = (a+ φ)xt (7)

is stable for any constant perturbation |φ| ≤
√
a2 + α− |a|.

Proof: By the bound on φ and triangle inequality, we have
ρ(a+ φ) = |a+ φ| ≤ |a|+ |φ| ≤

√
a2 + α. From Lemma 2.1,

mean-square stability of (6) implies
√

ρ(F) =
√
a2 + α < 1

and, thus, ρ(a+ φ) < 1, proving stability of (7). �
Although this is a simple example, it demonstrates that the

robustness margin increases monotonically with the multiplica-
tive noise variance. We also see that when α = 0, the bound
collapses so that no robustness is guaranteed, i.e., when |a| → 1.
This result can be extended to multiple states, inputs, and noise
directions, but the resulting conditions become considerably
more complex [19], [34]. We now proceed with developing
methods for optimal control.

III. GRADIENT DOMINATION AND OTHER PROPERTIES

OF THE MULTIPLICATIVE NOISE LQR COST

In this section, we demonstrate that the multiplicative noise
LQR cost function is gradient dominated, which facilitates
optimization by gradient descent. Gradient dominated functions
have been studied for many years in the optimization literature
[48] and have recently been discovered in deterministic LQR
problems by [5]. Proofs of the technical results are condensed
here for brevity but are available in more verbose form in our
article [49].

A. Multiplicative Noise LQR Cost Is Gradient Dominated

First, we give the expression for the policy gradient of the
multiplicative noise LQR cost. For brevity, define

RK : =R+BᵀPKB +

q∑
j=1

βjB
ᵀ
j PKBj

EK : =RKK +BᵀPKA.

Lemma 3.1 (Policy Gradient Expression):
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The policy gradient is given by

∇KC(K) = 2EKΣK = 2(RKK +BᵀPKA)ΣK .

Proof: Substituting the RHS of the generalized Lyapunov
equation (3) into the cost C(K) = Tr(PKΣ0) yields

C(K) = Tr(QKΣ0) + Tr(Aᵀ
KPKAKΣ0)

+ Tr

(
p∑

i=1

αiA
ᵀ
i PKAiΣ0

)

+Tr

⎛⎝ q∑
j=1

βjK
ᵀBᵀ

j PKBjKΣ0

⎞⎠.
Taking the gradient with respect to K and using the product rule
and rules for matrix derivatives, we obtain

∇KC(K) = ∇K Tr(PKΣ0)

= ∇
˜K

[
Tr(Q

˜KΣ0) + Tr(Aᵀ
˜K
PKA

˜KΣ0)

+ Tr

(
p∑

i=1

αiA
ᵀ
i PKAiΣ0

)
+Tr

⎛⎝ q∑
j=1

βjK̃
ᵀBᵀ

j PKBjK̃Σ0

⎞⎠⎤⎦
+∇K̄

[
Tr(Aᵀ

KPK̄AKΣ0)

+ Tr

(
p∑

i=1

αiA
ᵀ
i PK̄AiΣ0

)
+Tr

⎛⎝ q∑
j=1

βjK
ᵀBᵀ

j PK̄BjKΣ0

⎞⎠⎤⎦
= 2(RKK +BᵀPKA)Σ0 +∇K̄ Tr(PK̄FK(Σ0))

= 2(RKK +BᵀPKA)Σ0 +∇K Tr(PKΣ1)

where the tilde on K̃ and overbar on K are used to denote the
terms being differentiated. Applying this gradient formula recur-
sively to the last term in the last line (namely ∇K̄ Tr(PK̄Σ1))
and recalling the definition of ΣK completes the proof. See [49]
for detailed intermediate steps. �

For brevity, the gradient is implied to be with respect to the
gains K in the rest of this article, i.e., ∇K denoted by ∇. Now,
we must develop some auxiliary results before demonstrating
gradient domination. Throughout ‖Z‖ and ‖Z‖F are the spectral
and Frobenius norms, respectively, of a matrix Z, and σ(Z) and
σ(Z) are the minimum and maximum singular values of a matrix
Z. The value function VK(x), evaluated at the initial condition
of the process xt (i.e., x0), is defined as

VK(x) : =Eδ,γ

∞∑
t=0

xᵀ
tQKxt given x0 = x

which relates to the cost asC(K) = Ex0
VK(x0). The advantage

function is defined as

AK(x, u) : =xᵀQx+ uᵀRu+ E
δ,γ

VK(Ãx+ B̃u)− VK(x)

where the expectation is taken with respect to the variables Ã and
B̃. The advantage function can be thought of as the difference
in cost (“advantage”) when starting in state x of taking an action

u for one step instead of the action generated by policy K. We
also define the state, input, and cost sequences

{xt}K,x : ={x, ÃKx, Ã2
Kx, ..., Ãt

Kx, ...}
{ut}K,x : =K{xt}K,x

{ct}K,x : ={xt}ᵀK,xQK{xt}K,x.

Throughout the proofs, we will consider pairs of gains K and
K ′ and their difference Δ:=K ′ −K.

Lemma 3.2 (Value Difference): Suppose K and K ′ gen-
erate the (stochastic) state, action, and cost sequences
{xt}K,x, {ut}K,x, {ct}K,x, and {xt}K ′,x, {ut}K ′,x, {ct}K ′,x.
Then the value difference and advantage satisfy

VK ′(x)− VK(x) = E
δ,γ

∞∑
t=0

AK ({xt}K ′,x, {ut}K ′,x)

AK(x,K ′x) = 2xᵀΔᵀEKx+ xᵀΔᵀRKΔx.

Proof: The proof follows the “cost-difference” lemma in [5]
exactly substituting versions of value and cost functions, etc.,
which take expectation over the multiplicative noise. �

Next, we see that the multiplicative noise LQR cost is gradient
dominated.

Lemma 3.3 (Gradient Domination):
The LQR-with-multiplicative-noise cost C(K) satisfies the

gradient domination condition

C(K)− C(K∗) ≤ ‖ΣK∗‖
4σ(R)σ(Σ0)

2 ‖∇C(K)‖2F .

Proof: We start with the advantage expression

AK(x,K ′x) = 2xᵀΔᵀEKx+ xᵀΔᵀRKΔx

= 2Tr[xxᵀΔᵀEK ] + Tr[xxᵀΔᵀRKΔ].

Next, we rearrange and complete the square

AK(x,K ′x) = Tr [xxᵀ (ΔᵀRKΔ+ 2ΔᵀEK)]

= Tr
[
xxᵀ(Δ +R−1K EK)ᵀRK(Δ +R−1K EK)

]
− Tr

[
xxᵀEᵀ

KR−1K EK

]
.

Since RK � 0, we have

AK(x,K ′x) ≥ −Tr
[
xxᵀEᵀ

KR−1K EK

]
(8)

with equality only when Δ = −R−1K EK .
Let the state and control sequences associated with the optimal

gain K∗ be {xt}K∗,x and {ut}K∗,x respectively. We now obtain
an upper bound for the cost difference by writing the cost
difference in terms of the value function as

C(K)− C(K∗) = E
x0

[V (K,x0)]− E
x0

[V (K∗, x0)]

= E
x0

[V (K,x0)− V (K∗, x0)] .

Using the first part of the value-difference Lemma 3.2 and
negating, we obtain

C(K)− C(K∗) = −E
x0

[ ∞∑
t=0

AK ({xt}K∗,x, {ut}K∗,x)

]

≤ E
x0

[ ∞∑
t=0

Tr

[
{xt}K∗,x{xt}ᵀK∗,xE

ᵀ
KR−1K EK

]]
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= Tr

[
ΣK∗Eᵀ

KR−1K EK

]
where the second step used the advantage inequality in (8). Now
using |Tr(Y Z)| ≤ ‖Y ‖|Tr(Z)|, we obtain

C(K)− C(K∗) ≤ ‖ΣK∗‖Tr
[
Eᵀ

KR−1K EK

]
≤ ‖ΣK∗‖‖R−1K ‖Tr

[
Eᵀ

KEK

]
(9)

where the first and second inequalities will be used later in
the Gauss–Newton and gradient descent convergence proofs,
respectively. Combining ‖RK‖ ≥ ‖R‖ = σ(R) ≥ σ(R) with
‖Z−1‖ ≥ ‖Z‖−1, we obtain

C(K)− C(K∗) ≤ ‖ΣK∗‖
σ(R)

Tr [Eᵀ
KEK ] (10)

which will be used later in the natural policy gradient descent
convergence proof. Now we rearrange and substitute in the
policy gradient expression 1

2∇C(K)(ΣK)−1 = EK

C(K)−C(K∗) ≤ ‖ΣK∗‖
4σ(R)

Tr
[
(∇C(K)Σ−1K )ᵀ(∇C(K)Σ−1K )

]
≤ ‖ΣK∗‖

4σ(R)
‖(Σ−1K )ᵀΣ−1K ‖Tr [∇C(K)ᵀ∇C(K)]

≤ ‖ΣK∗‖
4σ(R)σ(ΣK)2

Tr [∇C(K)ᵀ∇C(K)]

where the last step used the definition and submultiplicativity
of spectral norm. Using ΣK = E

x0

[
∑∞

t=0 xtx
ᵀ
t ] � E

x0

[x0x
ᵀ
0 ] =

Σ0 ⇒ σ(ΣK) < σ(Σ0) completes the proof. �
The gradient domination property gives the following station-

ary point characterization.
Corollary 3.4: If ∇C(K) = 0, then either K = K∗ or

rank(ΣK) < n.
In other words, so long as ΣK is full rank, stationarity is

both necessary and sufficient for global optimality, as for convex
functions. Note that it is not sufficient to just have multiplicative
noise in the dynamics with a deterministic initial state x0 to
ensure that ΣK is full rank. To see this, observe that if x0 = 0
and Σ0 = 0, then ΣK = 0, which is clearly rank deficient. By
contrast, additive noise is sufficient to ensure thatΣK is full rank
with a deterministic initial statex0, although we will not consider
this setting. Using a random initial state with Σ0 � 0 ensures
rank(ΣK) = n, and, thus,∇C(K) = 0 implies K = K∗.

Although the gradient of the multiplicative noise LQR cost
is not globally Lipschitz continuous, it is locally Lipschitz
continuous over any subset of K. Gradient domination is then
sufficient to show that policy gradient descent will converge
to the optimal gains at a linear rate (a short proof for globally
Lipschitz functions is given in [50]). We prove convergence of
policy gradient to the optimum feedback gain by bounding the
local Lipschitz constant in terms of the problem data, which
bounds the maximum step size and the convergence rate.

B. Additional Setup Lemmas

Lemma 3.5 (Almost-Smoothness): The LQR-with-
multiplicative-noise cost C(K) satisfies the almost-smoothness

expression

C(K ′)− C(K) = 2Tr [ΣK ′ΔᵀEK ] + Tr [ΣK ′ΔᵀRKΔ] .

Proof: As in the gradient domination proof, we express the
cost difference in terms of the advantage by taking expectation
over the initial states to obtain

C(K ′)− C(K) = E
x0

[ ∞∑
t=0

AK ({xt}K ′,x , {ut}K ′,x)

]
.

From the value difference lemma for the advantage, we have

AK(x,K ′x) = 2xᵀΔᵀEKx+ xᵀΔᵀRKΔx.

Noting that {ut}K ′,x = K ′x, we obtain C(K ′)− C(K) =

E
x0

[ ∞∑
t=0

2{xt}ᵀK ′,xΔ
ᵀEK{xt}K ′,x

+ {xt}ᵀK ′,xΔ
ᵀRKΔ{xt}K ′,x)

]
.

Using the definition of ΣK ′ completes the proof. �
Lemma 3.6 (Cost Bounds): We always have

‖PK‖ ≤
C(K)

σ(Σ0)
and ‖ΣK‖ ≤

C(K)

σ(Q)
.

Proof: The proof follows that in [5] exactly. �

IV. GLOBAL CONVERGENCE OF POLICY GRADIENT IN

THE MODEL-BASED SETTING

In this section, we show that the policy gradient algorithm and
two important variants for multiplicative noise LQR converge
globally to the optimal policy. In contrast with [5], the policies
we obtain are robust to uncertainties and inherent stochastic
variations in the system dynamics. We analyze three policy
gradient algorithm variants as follows:

Gradient: Ks+1 = Ks − η∇C(Ks)
Natural Gradient: Ks+1 = Ks − η∇C(Ks)Σ

−1
Ks

Gauss–Newton: Ks+1 = Ks − ηR−1Ks
∇C(Ks)Σ

−1
Ks

.
The more elaborate natural gradient and Gauss–Newton vari-

ants provide superior convergence rates and simpler proofs. A
development of the natural policy gradient is given in [5] build-
ing on ideas from [51]. The Gauss–Newton step with step size
1/2 is identical to policy iteration, first studied for deterministic
LQR in [52]. This was extended to a model-free setting using
policy iteration and Q-learning in [6]. For multiplicative noise
LQR, we have the following results, which are not optimized
for tightness; step sizes satisfying the bounds can become too
small to be practically useful. Rather, our goal is to find algorithm
settings that give guaranteed convergence. In practice, much less
conservative constant and adaptive step sizes can be used, as
shown in Section VI.

A. Gauss–Newton Descent

Theorem 4.1 (Gauss–Newton Convergence): Using the
Gauss–Newton step

Ks+1 = Ks − ηR−1Ks
∇C(Ks)Σ

−1
Ks
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with step size0 < η ≤ 1
2 gives global convergence to the optimal

gain matrix K∗ at a linear rate described by
C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(Σ0)

‖ΣK∗‖ .

Proof: The next-step gain matrix difference is

Δ = Ks+1 −Ks = −ηR−1Ks
∇C(Ks)Σ

−1
Ks

= −2ηR−1Ks
EKs

.

Using the almost-smoothness Lemma 3.5 and substituting in
the next-step gain matrix difference, we obtain

C(Ks+1)− C(Ks)

= 2Tr
[
ΣKs+1

ΔᵀEKs

]
+Tr

[
ΣKs+1

ΔᵀRKs
Δ
]

= 2Tr
[
ΣKs+1

(−2ηR−1Ks
EKs

)ᵀEKs

]
+Tr

[
ΣKs+1

(−2ηR−1Ks
EKs

)ᵀRKs
(−2ηR−1Ks

EKs
)
]

= 4(−η + η2) Tr
[
ΣKs+1

Eᵀ
Ks

R−1Ks
EKs

]
.

By hypothesis, we require 0 ≤ η ≤ 1
2 ; so we have

C(Ks+1)− C(Ks) ≤ −2ηTr
[
ΣKs+1

Eᵀ
Ks

R−1Ks
EKs

]
≤ −2ησ(ΣKs+1

) Tr
[
Eᵀ

Ks
R−1Ks

EKs

]
≤ −2ησ(Σ0) Tr

[
Eᵀ

Ks
R−1Ks

EKs

]
.

Recalling and substituting in (9), we obtain

C(Ks+1)− C(Ks) ≤ −2η
σ(Σ0)

‖ΣK∗‖ (C(Ks)− C(K∗)) .

Adding C(Ks)− C(K∗) to both sides and rearranging com-
pletes the proof. �

B. Natural Policy Gradient Descent

Theorem 4.2 (Natural Policy Gradient Convergence): Using
the natural policy gradient step

Ks+1 = Ks − η∇C(Ks)Σ
−1
Ks

(11)

with step size 0 < η ≤ cnpg where

cnpg : =
1

2

(
‖R‖+

⎛⎝‖B‖2 + q∑
j=1

βj‖Bj‖2
⎞⎠ C(K0)

σ(Σ0)

)−1
gives global convergence to the optimal gain matrix K∗ at a
linear rate described by

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)

‖ΣK∗‖ .

Proof: First, we bound the one-step progress, where the step
size depends explicitly on the current gain Ks. Using the update
(11), the next-step gain matrix difference is

Δ = Ks+1 −Ks = −η∇C(Ks)Σ
−1
Ks

= −2ηEKs
.

Using Lemma 3.5 and substituting, we obtain

C(Ks+1)− C(Ks)

= 2Tr
[
ΣKs+1

ΔᵀEKs

]
+Tr

[
ΣKs+1

ΔᵀRKs
Δ
]

= 2Tr
[
ΣKs+1

(−2ηEKs
)ᵀEKs

]
+Tr

[
ΣKs+1

(−2ηEKs
)ᵀRKs

(−2ηEKs
)
]

= −4ηTr
[
ΣKs+1

Eᵀ
Ks

EKs

]
+ 4η2 Tr

[
ΣKs+1

Eᵀ
Ks

RKs
EKs

]

≤ 4(−η + η2‖RKs
‖) Tr

[
ΣKs+1

Eᵀ
Ks

EKs

]
.

If we choose step size 0 < η ≤ 1
2‖RKs‖

, then

C(Ks+1)− C(Ks) ≤ −2ηTr
[
ΣKs+1

Eᵀ
Ks

EKs

]
≤ −2ησ(ΣKs+1

) Tr
[
Eᵀ

Ks
EKs

]
≤ −2ησ(Σ0) Tr

[
Eᵀ

Ks
EKs

]
.

Recalling and substituting (10), we obtain

C(Ks+1)− C(Ks)

≤ −2ησ(Σ0)
σ(R)

‖ΣK∗‖ (C(Ks)− C(K∗)) .

AddingC(Ks)− C(K∗) to both sides and rearranging gives the
one step progress bound

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)

‖ΣK∗‖ . (12)

Next, using the cost bound in Lemma 3.6, the triangle inequality,
and submultiplicativity of spectral norm, we have

1

‖RK‖
=

1

‖R+BᵀPKB +
∑q

j=1 βjB
ᵀ
j PKBj‖

≥ 1

‖R‖+ (‖B‖2 +
∑q

j=1 βj‖Bj‖2)‖PK‖

≥ 1

‖R‖+ (‖B‖2 +
∑q

j=1 βj‖Bj‖2) C(K)
σ(Σ0)

.

Accordingly, choosing the step size as 0 < η ≤ cnpg ensures that
(12) holds at the first step. This ensures that C(K1) ≤ C(K0)
which, in turn, ensures

η ≤ 1

‖R‖+ (‖B‖2 +
∑q

j=1 βj‖Bj‖2)C(K0)
σ(Σ0)

≤ 1

‖R‖+ (‖B‖2 +
∑q

j=1 βj‖Bj‖2)C(K1)
σ(Σ0)

≤ 1

‖RK1
‖

which allows (12) to be applied at the next step as well. Pro-
ceeding inductively by applying (12) at each successive step
completes the proof. �

C. Policy Gradient Descent

Theorem 4.3 (Policy Gradient Convergence): Using the pol-
icy gradient step

Ks+1 = Ks − η∇C(Ks)

with step size 0 < η ≤ cpg gives global convergence to the
optimal gain matrix K∗ at a linear rate described by

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)
2

‖ΣK∗‖
where cpg is a polynomial in the problem data A, B, αi, βj , Ai,
Bj , Q, R, Σ0, K0 given in the proof in Appendix A.

Proof: The proof is developed in Appendix A. �
The proofs for these results explicitly incorporate the effects

of the multiplicative noise terms δti and γtj in the dynamics. For
the policy gradient and natural policy gradient algorithms, we
show explicitly how the maximum allowable step size depends
on problem data and, in particular, on the multiplicative noise
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Algorithm 1: Model-Free Policy Gradient Estimation.
Input: Gain matrix K, number of samples nsample, rollout

length �, exploration radius r
1: for i = 1, . . . , nsample do
2: Generate a sample gain matrix K̂i = K + Ui, where

Ui is drawn uniformly at random over matrices with
Frobenius norm r;

3: Generate a sample initial state x
(i)
0 ∼ P0;

4: Simulate the closed-loop system for � steps according
to the stochastic dynamics in (1) starting from x

(i)
0 with

u
(i)
t = K̂ix

(i)
t , yielding the state sequence {x(i)

t }t=�
t=0;

5: Collect the empirical finite-horizon cost estimate
Ĉi : =

∑�
t=0 x

(i)
t

ᵀ
(Q+ K̂ᵀ

i RK̂i)x
(i)
t ;

6: end for
Output: Gradient estimate ∇̂C(K) : = 1

nsample

∑nsample

i=1
mn
r2 ĈiUi

terms. Compared to deterministic LQR, the multiplicative noise
terms decrease the allowable step size and thereby decrease
the convergence rate; specifically, the state-multiplicative noise
increases the initial cost C(K0) and the norms of the covari-
ance ΣK∗ and cost PK , and the input-multiplicative noise also
increases the denominator term ‖B‖2 +

∑q
j=1 βj‖Bj‖2. This

means that the algorithm parameters for deterministic LQR in [5]
may cause failure to converge on problems with multiplicative
noise. Moreover, even the optimal policies for deterministic
LQR may actually destabilize systems in the presence of small
amounts of multiplicative noise uncertainty, indicating the pos-
sibility for a catastrophic lack of robustness; observe the results
of the example in Section VI-A. The results and proofs also differ
from that of [5] because the more complicated mean-square sta-
bility must be accounted for and because generalized Lyapunov
equations must be solved to compute the gradient steps, which
requires specialized solvers.

V. GLOBAL CONVERGENCE OF POLICY GRADIENT IN

THE MODEL-FREE SETTING

The results in the previous section are model-based; the policy
gradient steps are computed exactly based on knowledge of the
model parameters. In the model-free setting, the policy gradient
is estimated to arbitrary accuracy from sample trajectories with
a sufficient number of sample trajectories nsample of sufficiently
long horizon length � using gain matrices randomly selected
from a Frobenius-norm ball around the current gain of suffi-
ciently small exploration radius r. We show for multiplicative
noise LQR that with a finite number of samples polynomial
in the problem data, the model-free policy gradient algorithm
still converges to the globally optimal policy, despite small
perturbations on the gradient.

In the model-free setting, the policy gradient method proceeds
as before except that at each iteration, Algorithm 1 is called
to generate an estimate of the gradient via the zeroth-order
optimization procedure described by Fazel et al. [5].

Theorem 5.1 (Model-Free Policy Gradient Convergence): Let
ε and μ be a given small tolerance and probability, respectively,
and N be the number of gradient descent steps taken. Suppose

that the distribution of the initial states is bounded such that
x0 ∼ P0 implies ‖xi

0‖ ≤ L0 almost surely for any given real-
ization xi

0 of x0. Suppose additionally that the distribution of the
multiplicative noises is bounded such that the following inequal-
ity is satisfied almost surely for any given realized sequence xi

t

of xt with a positive scalar z ≥ 1
�−1∑
t=0

(
xi
t
ᵀ
Qxi

t + ui
t
ᵀ
Rui

t

)
≤ z E

δ,γ

[
�−1∑
t=0

(xᵀ
tQxt + uᵀ

tRut)

]
under the closed-loop dynamics with any gain such thatC(K) ≤
2C(K0). Suppose the step size η is chosen according to the
restriction in Theorem 4.3 and at every iteration, the gradient
is estimated according to the finite-horizon procedure in Al-
gorithm 1 where the number of samples nsample, rollout length
�, and exploration radius r are chosen according to the fixed
polynomials of the problem data A, B, αi, βj , Ai, Bj , Q, R,
Σ0,K0,L0, and z which are all defined in the proofs in Appendix
VIII. Then, with high probability of at least 1− μ, performing
gradient descent results in convergence to the global optimum
over all N steps: at each step, either progress is made at the
linear rate

C(Ks+1)− C(K∗)

C(Ks)− C (K∗)
≤ 1− η

σ(R)σ(Σ0)
2

‖ΣK∗‖
or convergence has been attained with C(Ks)− C(K∗) ≤ ε.

Proof: The proof is developed in Appendix VIII. �
From a sample complexity standpoint, it is notable that the

number of samples nsample, rollout length �, and exploration
radius r in Theorem 5.1 are polynomial in the problem data
A, B, αi, βj , Ai, Bj , Q, R, Σ0, C(K0). The constant z imposes
a bound on the multiplicative noise, which is naturally absent
in [5]. Note that z ≥ 1 since any upper bound of a scalar
distribution with finite support must be equal to or greater than
the mean. In general, this implicitly requires the noises to have
bounded support. Such an assumption is qualitatively the same
as the condition imposed on the initial states. These assumptions
are reasonable; in a practical setting with a physical system, the
initial state and noise distributions will have finite support. There
is no restriction on how large the support is, only that it is not
unbounded. Also note that the rate is halved compared with the
model-based case of Theorem 4.3; this is because the “other
half” is consumed by the error between the estimated and true
gradient.

VI. NUMERICAL EXPERIMENTS

In this section, we present results for three systems.
1) Section VI-A shows that “optimal” control that ignores

actual multiplicative noise can lead to loss of mean-square
stability.

2) Section VI-B shows the efficacy of the policy gradient
algorithms on a networked system.

3) Section VI-C shows the increased difficulty of estimating
the gradient from sample data in the presence of multi-
plicative noise.

All systems we consider permit a solution to the GARE (2).
The bounds on the step size, number of rollouts, and rollout
length given by the theoretical analysis can be rather conserva-
tive. For practicality, we selected the constant step size, number
of rollouts, rollout length, and exploration radius according to a

Authorized licensed use limited to: TU Delft Library. Downloaded on January 13,2022 at 09:27:58 UTC from IEEE Xplore.  Restrictions apply. 



GRAVELL et al.: LEARNING OPTIMAL CONTROLLERS FOR LINEAR SYSTEMS WITH MULTIPLICATIVE NOISE VIA POLICY GRADIENT 5291

Fig. 1. Relative LQRm cost error C(K)−C(K∗)
C(K∗) versus iteration during

policy gradient descent on the four-state, one-input suspension example
system.

grid search over reasonable values. Additionally, we investigated
the use of backtracking line search to adaptively select the step
size (see, e.g., [53]). Throughout the simulations, we computed
the baseline optimal cost C(K∗) by solving the GARE (2) to
high precision via value iteration. Python code which imple-
ments the algorithms and generates the figures reported in this
article can be found in the GitHub repository2. The code was
run on a desktop PC with a quad-core Intel i7 6700K 4.0-GHz
CPU, 16-GB RAM; no GPU computing was utilized.

A. Importance of Accounting for Multiplicative Noise

We first considered an open-loop mean-square unstable sys-
tem with four states and one input representing an active two-
mass suspension converted from continuous to discrete time
using a standard bilinear transformation, with parameters

A =

⎡⎢⎢⎢⎣
+0.261 +0.315 +0.093 −0.008
−2.955 +0.261 +0.373 −0.033
+1.019 +0.255 −0.853 +0.011

−3.170 −0.793 −4.902 −0.146

⎤⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎣
0.133

0.532

0.161

2.165

⎤⎥⎥⎥⎦
Q = I4, R = I1, [Ai]y,z =

{
1 if z = i,

0 otherwise,
B1 = 14×1

{αi} = {0.017, 0.017, 0.017, 0.017}, β1 = 0.035.

We performed model-based policy gradient descent; at each
iteration, gradients were calculated by solving generalized Lya-
punov equations (3) and (4) using the problem data. The gains
Km and K� represent iterates during optimization of (“training”
on) the LQRm and LQR cost (with the multiplicative noise
variances set to zero), respectively. We performed the optimiza-
tion starting from the same feasible initial gain, which was
generated by perturbing the exact solution of the GARE such
that the LQRm cost under the initial control was approximately
10 times that of the optimal control. The step size was chosen
via backtracking line search. The optimization stopped once the
Frobenius norm of the gradient fell below a small threshold.
The plot in Fig. 1 shows the “testing” cost of the gains at
each iteration evaluated on the LQRm cost (with multiplicative
noise). From this figure, it is clear that Km minimized the
LQRm as desired. When there was high multiplicative noise,
the noise-ignorant controllerK� actually destabilized the system

2Online available: https://github.com/TSummersLab/polgrad-multinoise/

in the mean-square sense; this can be seen as the LQRm cost
exploded upwards to infinity after iteration 10. In this sense, the
multiplicative noise-aware optimization is generally safer and
more robust than noise-ignorant optimization, and in examples
like this is actually necessary for mean-square stabilization.

B. Policy Gradient Methods Applied to a Network

Many practical networked systems can be approximated by
diffusion dynamics with losses and stochastic diffusion con-
stants (edge weights) between nodes; examples include heat flow
through uninsulated pipes, hydraulic flow through leaky pipes,
information flow between processors with packet loss, electrical
power flow between generators with resistant electrical power
lines, etc. A derivation of the discrete-time dynamics of this
system is given in [43]. We considered a particular four-state,
four-input system, and open-loop mean-square stable with the
following parameters:

A =

⎡⎢⎢⎢⎣
0.795 0.050 0.100 0.050

0.050 0.845 0.050 0.050

0.100 0.050 0.695 0.150

0.050 0.050 0.150 0.745

⎤⎥⎥⎥⎦
B = Q = R = Σ0 = I4

{αi} = {0.005, 0.015, 0.010, 0.015, 0.005, 0.020}
{βj} = {0.050, 0.150, 0.050, 0.100}

[Ai]y,z =

⎧⎪⎨⎪⎩
+1if{ci=y & di=y}or{ci=z & di=z}
−1if{ci=z & di=y}or{ci=y & di=z}
0 otherwise.

[Bj ]y,z =

{
+1 if j = y = z

0 otherwise.

{(ci, di)} = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.
This system is open-loop mean-square stable; so we initialized
the gains to all zeros for each trial. We performed policy op-
timization using the model-free gradient, and the model-based
gradient, model-based natural gradient, and model-based Gauss-
Newton step directions on 20 unique problem instances using
two step size schemes.

1) Backtracking Line Search: Step sizes η were chosen
adaptively at each iteration by backtracking line search with pa-
rameters α = 0.01, β = 0.5 (see [53] for a description), except
for Gauss–Newton which used the optimal constant step size of
1/2. Model-free gradients and costs were estimated with 100 000
rollouts per iteration. We ran a fixed number, 20, of iterations
chosen such that the final cost using model-free gradient descent
was no more than 5% worse than optimal.

2) Constant Step Size: Step sizes were set to constants
chosen as large as possible without observing infeasibility or
divergence, which, on this problem instance, was η = 5× 10−5

for gradient, η = 2× 10−4 for natural gradient, and η = 1/2 for
Gauss–Newton step directions. Model-free gradients were esti-
mated with 1000 rollouts per iteration. We ran a fixed number,
20 000, of iterations chosen such that convergence was achieved
with all step directions.
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Fig. 2. Relative cost error C(K)−C(K∗)
C(K∗) versus iteration during policy

gradient methods on a four-state, four-input lossy diffusion network with
multiplicative noise using (a) backtracking line search and (b) constant
step sizes.

In both cases, sample gains were chosen for model-free gra-
dient estimation with exploration radius r=0.1 and the rollout
length was set to �=20. The plots in Fig. 2 show the relative
cost over the iterations; for the model-free gradient descent, the
bold centerline is the mean of all trials and the shaded region is
between the 10th and 90th percentile of all trials. Using back-
tracking line search, it is evident that in terms of convergence,
the Gauss–Newton step was extremely fast, and both the natural
gradient and model-based gradient were slightly slower but still
quite fast. The model-free policy gradient converged to a reason-
able neighborhood of the minimum cost quickly but stagnated
with further iterations; this is a consequence of the inherent
gradient and cost estimation errors that arise due to random
sampling and the multiplicative noise. Using constant step sizes,
we were forced to take small steps due to the steepness of the cost
function near the initial gains, slowing overall convergence using
the gradient and natural gradient methods. Here we observed
that Gauss–Newton again converged most quickly, followed by
natural gradient and lastly the gradient methods. The smaller step
size also allowed us to use far fewer samples in the model-free
setting, where we observed somewhat faster initial cost decrease
with eventual stagnation around 10−2, or 1%, relative error,
which represents excellent control performance. All algorithms
exhibited convergence to the optimum, confirming the asserted
theoretical claims.

C. Gradient Estimation

Multiplicative noise can significantly increase the variance
and sample complexity of cost gradient estimates relative to
the noiseless case, which is novelly reflected in the theoretical

Fig. 3. Relative gradient estimation error versus number of rollouts for
(13).

analysis for the number of rollouts and rollout length. To
demonstrate this empirically, we evaluated the relative gradient
estimation error versus number of rollouts for the system

xt+1 =

([
0.8 0.1

0.1 0.8

]
+ δt

[
0 1

1 0

]
+

[
1

0

]
K

)
xt (13)

with K = 0, Q = Σ0 = I2, R = 1, δt ∼ N (0, 0.1), rollout
length l = 40, exploration radius r = 0.2, averaged over 10
gradient estimates. The results are plotted in Fig. 3. To achieve
the same gradient estimate error of 10%, the system with mul-
tiplicative noise required 200× the number of rollout samples
(108) as when there was no noise (5× 105).

VII. CONCLUSION

We have shown that policy gradient methods in both model-
based and model-free settings give global convergence to the
globally optimal policy for LQR systems with multiplicative
noise. These techniques are directly applicable for the design of
robust controllers of uncertain systems and serve as a benchmark
for data-driven control design. Our ongoing work is exploring
ways of mitigating the relative sample inefficiency of model-free
policy gradient methods by leveraging the special structure of
LQR models and Nesterov-type acceleration, and exploring al-
ternative system identification and adaptive control approaches.
We are also investigating other methods of building robustness
throughH∞ and dynamic game approaches. Another extension
relevant to networked control systems is enforcing sparse struc-
ture constraints on the gain matrix via projected policy gradient
as suggested in [54].

APPENDIX A
MODEL-BASED POLICY GRADIENT DESCENT

Throughout the proofs, please see the supplemental document
[49] for additional details. The proof of convergence using gradi-
ent descent proceeds by establishing several technical lemmas,
bounding the infinite-horizon covariance ΣK , then using that
bound to limit the step size, and finally obtaining a one-step
bound on gradient descent progress and applying it inductively
at each successive step.

We begin with a bound on the induced operator norm of TK .
Lemma A.1 (TK Norm Bound): The following bound holds

for any mean-square stabilizing K:

‖TK‖ : = sup
X

‖TK(X)‖
‖X‖ ≤ C(K)

σ(Σ0)σ(Q)
.
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Proof: The proof follows that given in [5] using our definition
of TK . �

Lemma A.2 (FK Perturbation): Consider a pair of mean-
square stabilizing gain matrices K and K ′. The following FK

perturbation bound holds:

‖FK ′ − FK‖ ≤ 2‖A+BK‖‖B‖‖Δ‖+ hB‖B‖‖Δ‖2

where hB : = ‖B‖−1
⎛⎝‖B‖2 + q∑

j=1

βj‖Bj‖2
⎞⎠ .

Proof: Let Δ′ = −Δ. For any matrix X , we have

(FK −FK ′)(X) = E
δ,γ

[
ÃKXÃᵀ

K − ÃK ′XÃᵀ
K ′

]
= E

δ,γ

[
ÃKX(B̃Δ′)ᵀ + (B̃Δ′)XÃᵀ

K − (B̃Δ′)X(B̃Δ′)ᵀ
]

= AKX(BΔ′)ᵀ + (BΔ′)XAᵀ
K − E

γtj

[
(B̃Δ′)X(B̃Δ′)ᵀ

]
= AKX(BΔ′)ᵀ + (BΔ′)XAᵀ

K

− (BΔ′)X(BΔ′)ᵀ −
q∑

j=1

βj(BjΔ
′)X(BjΔ

′)ᵀ. (14)

The operator norm ‖FK ′ − FK‖ is

‖FK ′ − FK‖ = ‖FK −FK ′ ‖ = sup
X

‖(FK −FK ′)(X)‖
‖X‖ .

Applying submultiplicativity of spectral norm to (14) and noting
that ‖Δ′‖ = ‖Δ‖ completes the proof. �

Lemma A.3 (TK Perturbation): If K and K ′ are mean-square
stabilizing and ‖TK‖‖FK ′ − FK‖ ≤ 1

2 , then

‖(TK ′ − TK)(Σ)‖ ≤ 2‖TK‖‖FK ′ − FK‖‖TK(Σ)‖

≤ 2‖TK‖2‖FK ′ − FK‖‖Σ‖.
Proof: The proof follows [5] using our modified definitions

of TK and FK . �
Lemma A.4 (ΣK Trace Bound): If ρ(FK) < 1, then

Tr (ΣK) ≥ σ(Σ0)

1− ρ(FK)
.

Proof: We have by (5) that

Tr(ΣK) = Tr(TK(Σ0)) =

∞∑
t=0

Tr(F t
K(Σ0)).

Since Σ0 � σ(Σ0)I , we know the tth term satisfies the inequal-
ity F t

K(Σ0) ≥ σ(Σ0)F t
K(I); so we have

Tr(ΣK) ≥ σ(Σ0)

∞∑
t=0

Tr(F t
K(I)). (15)

We have a generic inequality for a sum of n matrices Mi

Tr

[
n∑
i

MiM
ᵀ
i

]
=

n∑
i

Tr [MiM
ᵀ
i ] =

n∑
i

‖Mi‖2F

=

n∑
i

‖Mi ⊗Mi‖F ≥
∥∥∥∥∥

n∑
i

Mi ⊗Mi

∥∥∥∥∥
F

(16)

where the last step is due to the triangle inequality. Recalling the
definitions ofF t

K(I) andF t
K , we see they are of the form of the

LHS and RHS in (16) with all terms matched between F t
K(I)

and F t
K so that the inequality in (16) holds; this can be seen by

starting with t = 1 and incrementing t up by 1 which will give
(1 + p+ q)t terms which are all matched. Thus

Tr[F t
K(I)] ≥ ‖F t

K‖F ≥ ρ(FK)t.

Continuing from (15), we have

Tr(ΣK) ≥ σ(Σ0)

∞∑
t=0

ρ(FK)t.

By hypothesis ρ(FK) < 1, and taking the sum of the geometric
series completes the proof. �

Lemma A.5 (ΣK Perturbation): If K is mean-square stabi-
lizing and ‖Δ‖ ≤ hΔ(K) where hΔ(K) is the polynomial

hΔ(K) : =
σ(Q)σ(Σ0)

4hBC(K) (‖AK‖+ 1)

then the associated state covariance matrices satisfy

‖ΣK ′ −ΣK‖ ≤ 4

(
C(K)

σ(Q)

)2 ‖B‖(‖AK‖+ 1)

σ(Σ0)
‖Δ‖ ≤ C(K)

σ(Q)
.

Proof: First, since K is mean-square stabilizing and ‖Δ‖ ≤
hΔ(K), then K ′ is also mean-square stabilizing. This follows
from an analogous argument in [5] by characterizing mean-
square stability in terms of ρ(FK) rather than ρ(AK) and using
Lemma 7.4. The rest of the proof follows [5] by using the
condition on ‖Δ‖, ‖ΣK‖ ≥ σ(Σ0), and Lemmas 3.6, 7.1, and
7.3. Details are available in [49]. �

Now we bound the one step progress of policy gradient where
we allow the step size to depend explicitly on the current gain
matrix iterate Ks.

Lemma A.6 (Gradient Descent, One-Step): Using the policy
gradient step update Ks+1 = Ks − η∇C(Ks) with step size

0 < η ≤ 1

16
min

{ (
σ(Q)σ(Σ0)

C(K)

)2
hB‖∇C(K)‖(‖AK‖+ 1)

,
σ(Q)

C(K)‖RK‖

}
gives the one step progress bound

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)
2

‖ΣK∗‖ .

Proof: The gradient update yields Δ = −2ηEKs
ΣKs

.
Putting this into Lemma 3.5 gives

C(Ks+1)− C(Ks)

= 2Tr
[
ΣKs+1

ΔᵀEKs

]
+Tr

[
ΣKs+1

ΔᵀRKs
Δ
]

≤ −4ηTr
[
ΣKs

ΣKs
Eᵀ

Ks
EKs

]
+ 4η

‖ΣKs+1
− ΣKs

‖
σ(ΣKs

)
Tr
[
Σᵀ

Ks
Eᵀ

Ks
EKs

ΣKs

]
+ 4η2‖ΣKs+1

‖‖RKs
‖Tr

[
ΣKs

ΣKs
Eᵀ

Ks
EKs

]
≤ −η

(
1− ‖ΣKs+1

− ΣKs
‖

σ(Σ0)
− η‖ΣKs+1

‖‖RKs
‖
)

× 4
σ(R)σ(Σ0)

2

‖ΣK∗‖ (C(Ks)− C(K∗))

where the last step is due to σ(Σ0) ≤ σ(ΣKs
) and Lemma 3.3.

Note that the assumed condition on the step size ensures that the
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gain matrix difference satisfies the condition for Lemma A.5 as
follows:

‖Δ‖ = η‖∇C(Ks)‖

≤ 1

16

(
σ(Q)σ(Σ0)

C(Ks)

)2 ‖∇C(Ks)‖
hB‖∇C(Ks)‖(‖AKs

‖+ 1)

≤ 1

4

(
σ(Q)σ(Σ0)

C(Ks)

)2
1

hB(‖AKs
‖+ 1)

≤ hΔ(K)

where the last inequality is due to Lemma 3.6. Thus, we can
indeed apply Lemma A.5, by which we have
‖ΣKs+1

− ΣKs
‖

σ(Σ0)
≤ 4C(Ks)

2

σ(Q)2σ(Σ0)2
‖B‖(‖AKs

‖+ 1)‖Δ‖ ≤ 1

4

where the last inequality is due to using the substitution
‖Δ‖ = η‖∇C(Ks)‖ and the hypothesized condition on η. Us-
ing this and Lemma 3.6, we have

‖ΣKs+1
‖ ≤ ‖ΣKs+1

− ΣKs
‖+ ‖ΣKs

‖

≤ σ(Σ0)

4
+

C(Ks)

σ(Q)
≤ ‖ΣKs+1

‖
4

+
C(Ks)

σ(Q)
.

Solving for ‖ΣKs+1
‖ gives ‖ΣKs+1

‖ ≤ 4
3
C(Ks)
σ(Q) ; so

1− ‖ΣKs+1
− ΣKs

‖
σ(Σ0)

− η‖ΣKs+1
‖‖RKs

‖

≥ 1− 1

4
− η

4

3

C(Ks)

σ(Q)
‖RKs

‖ ≥ 1− 1

4
− 4

3
· 1
16

=
2

3
≥ 1

2

where the second-to-last inequality used the hypothesized con-
dition on η. Therefore

C(Ks+1)− C(Ks)

C(Ks)− C(K∗)
≤ −2ησ(R)σ(Σ0)

2

‖ΣK∗‖ .

Adding 1 to both sides completes the proof. �
Lemma A.7 (Cost Difference Lower Bound): The following

cost difference inequality holds:

C(K)− C(K∗) ≥ σ(Σ0)

‖RK‖
Tr(Eᵀ

KEK).

Proof: The proof follows that for an analogous condition
located in the gradient domination lemma in [5]. �

Lemma A.8: The following inequalities hold:

‖∇C(K)‖ ≤ ‖∇C(K)‖F ≤ h1(K) and ‖K‖ ≤ h2(K)

where h0(K), h1(K), and h2(K) are the polynomials

h0(K) : =

√
‖RK‖(C(K)− C(K∗))

σ(Σ0)
,

h1(K) : = 2
C(K)h0(K)

σ(Q)
, h2(K) : =

h0(K) + ‖BᵀPKA‖
σ(R)

.

Proof: The proof follows [5] with RK defined here. �
We now give the parameter and proof of global convergence

of policy gradient descent in Theorem 4.3.
Theorem A.9 (Policy Gradient Convergence): Consider the

assumptions and notations of Theorem 4.3 and define

cpg : =
1

16
min

{ (
σ(Q)σ(Σ0)

C(K0)

)2
hBh1(‖A‖+h2‖B‖+1)

,
σ(Q)

C(K0)‖RK‖

}
h1 : = maxK h1(K) subject to C(K) ≤ C(K0)

h2 : = maxK h2(K) subject to C(K) ≤ C(K0),

‖RK‖ : = maxK ‖RK‖ subject to C(K) ≤ C(K0).

Then the claim of Theorem 4.3 holds.
Proof: We have by Weyl’s inequality for singular values [49],

submultiplicativity of spectral norm, and Lemma 7.8 that

‖B‖‖∇C(K)‖(‖A+BK‖+ 1)

≤ ‖B‖‖∇C(K)‖(‖A‖+ ‖B‖‖K‖+ 1)

≤ ‖B‖h1(K)(‖A‖+ ‖B‖h2(K) + 1).

Thus, by choosing 0 < η ≤ cpg, we satisfy the requirements for
Lemma 7.6 at s = 1, which implies that progress is made at
s = 1, i.e., thatC(K1) ≤ C(K0) according to the rate in Lemma
7.6. Proceeding inductively and applying Lemma 7.6 at each step
completes the proof. �

Remark A.10: The quantitiesh1,h2, and ‖RK‖may be upper
bounded by quantities that depend only on problem data and
C(K0), e.g., using the cost bounds in Lemma 3.6, which we
omit for brevity; so a conservative minimum step size η may be
computed exactly.

APPENDIX B
MODEL-FREE POLICY GRADIENT DESCENT

This lemma shows that C(K) and ΣK can be estimated with
arbitrarily high accuracy as the rollout length � increases.

Lemma B.1 (Approximating C(K) and ΣK With Infinitely
Many Finite Horizon Rollouts): Suppose K gives finite C(K).
Define the finite-horizon estimates

Σ
(�)
K : =E

[
�−1∑
i=0

xix
ᵀ
i

]
, C(�)(K) : =E

[
�−1∑
i=0

xᵀ
i Qxi + uᵀ

i Rui

]
where expectation is with respect to x0, {δti}, {γtj}. Let ε be an
arbitrary small constant. Then the following hold:

� ≥ h�(ε) : =
n · C2(K)

εσ(Σ0)σ2(Q)
⇒ ‖Σ(�)

K − ΣK‖ ≤ ε

� ≥ h�(ε) : =h�(ε)‖QK‖ ⇒ |C(�)(K)− C(K)| ≤ ε.

Proof: The proof follows [5] exactly using suitably modified
definitions of C(K), TK , FK . �

Next we bound cost and gradient perturbations in terms of
gain matrix perturbations and problem data. Using the same
restriction as in Lemma A.5, we have Lemmas B.2 and B.3.

Lemma B.2 (C(K)Perturbation): If‖Δ‖ ≤ hΔ(K), then the
cost difference is bounded as

|C(K ′)− C(K)| ≤ hcost(K)C(K)‖Δ‖
where hcost(K) is the polynomial

hcost(K) : =
4Tr(Σ0)‖R‖
σ(Σ0)σ(Q)

(
‖K‖+ hΔ(K)

2
+ ‖B‖‖K‖2

× (‖AK‖+ 1)
C(K)

σ(Σ0)σ(Q)

)
.

Proof: The proof follows [5] using suitably modified def-
initions of C(K), TK , FK ; however, compared with [5], we
terminate the proof bound earlier so as to avoid a degenerate
bound in the case of K = 0, and we also correct typographical
errors. Note that ‖Δ‖ has a more restrictive upper bound due to
the multiplicative noise. �
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Lemma B.3 (∇C(K) Perturbation): If ‖Δ‖ ≤ hΔ(K), then
the policy gradient difference is bounded as

‖∇C(K ′)−∇C(K)‖ ≤ hgrad(K)‖Δ‖
and ‖∇C(K ′)−∇C(K)‖F ≤ hgrad(K)‖Δ‖F
where hgrad(K) : =

4

(
C(K)

σ(Q)

)[
‖R‖+ ‖B‖ (‖A‖+ hB(‖K‖+ hΔ(K)))

×
(
hcost(K)C(K)

Tr(Σ0)

)
+ hB‖B‖

(
C(K)

σ(Σ0)

)]

+ 8

(
C(K)

σ(Q)

)2(‖B‖(‖AK‖+ 1)

σ(Σ0)

)
h0(K).

Proof: The proof generally follows [5] using Lemmas A.5,
B.2, and 7.7 with RK and EK modified appropriately, with
details available in [49]. �

As in [5], in the model-free setting, we apply Frobenius-norm
ball smoothing to the cost. Let Sr be the uniform distribution
over all matrices with Frobenius norm r (the boundary of the
ball), and Br be the uniform distribution over all matrices with
Frobenius norm at most r (the entire ball). The smoothed cost is

Cr(K) = EU∼Br
[C(K + U)]

where U is a random matrix with the same dimensions as K and
Frobenius norm r. The following lemma shows that the gradient
of the smoothed function can be estimated just with an oracle of
the function value.

Lemma B.4 (Zeroth-Order Gradient Estimation): The gradi-
ent of the smoothed cost is related to the unsmoothed cost by

∇Cr(K) =
mn

r2
EU∼Sr

[C(K + U)U ].

Proof: The result is proved in [55, Lemma 2.1]. �
Lemma B.4 shows that the gradient of the smoothed cost can

be found exactly with infinitely many infinite-horizon rollouts.
Much of the remaining proofs goes toward showing that the error
between the gradient of the smoothed cost and the unsmoothed
cost, the error due to using finite-horizon rollouts, and the
error due to using finitely many rollouts can all be bounded by
polynomials of the problem data. As noted by [5] the reason for
smoothing in a Frobenius norm ball rather than over a Gaussian
distribution is to ensure stability and finiteness of the cost of
every gain within the smoothing domain, although now in the
multiplicative noise case, we must be even more restrictive about
our choice of perturbation on K because we require not only
mean stability but also mean-square stability.

We now give a Bernstein inequality for random matrices; this
allows us to bound the difference between the sample average
of a random matrix and its expectation.

Lemma B.5 (Matrix Bernstein Inequality):
Let {Zi}Ni=1 be a set of N independent random

matrices of dimension d1 × d2 with E[Zi] = Z,
‖Zi − Z‖ ≤ RZ almost surely, and maximum variance
max(‖E(ZiZ

ᵀ
i )− ZZᵀ‖, ‖E(Zᵀ

i Zi)− ZᵀZ‖) ≤ σ2
Z , and

sample average Ẑ := 1
N

∑N
i=1 Zi. Let a small tolerance ε ≥ 0

and small probability 0 ≤ μ ≤ 1 be given. If

N ≥ 2min(d1, d2)

ε2

(
σ2
Z +

RZε

3
√
min(d1, d2)

)
log

[
d1 + d2

μ

]

then P [‖Ẑ − Z‖F ≤ ε] ≥ 1− μ.
Proof: The lemma follows readily from the matrix Bernstein

inequality in [56] by simple variable substitutions, rearrange-
ment, and the bound ‖M‖F ≤

√
min(d1, d2)‖M‖. �

Lemma B.6 (Estimating∇C(K) With Finitely Many Infinite-
Horizon Rollouts): Given an arbitrary tolerance ε and probabil-
ity μ, suppose the exploration radius r is chosen as

r ≤ hr

( ε
2

)
: =min

{
hΔ(K),

1

hcost(K)
,

ε

2hgrad(K)

}
and the number of samples nsample of Ui ∼ Sr is chosen as

nsample ≥ hsample

( ε
2
, μ
)

: =
8min(m,n)

ε2

(
σ2
̂∇ +

R
̂∇ε

6
√
min(m,n)

)
log

[
m+ n

μ

]

R
̂∇ :=

2mnC(K)

r
+

ε

2
+ h1(K)

σ2
̂∇ :=

(
2mnC(K)

r

)2

+
( ε
2
+ h1(K)

)2
.

Then, with high probability of at least 1− μ, the estimate

∇̂C(K) =
1

nsample

nsample∑
i=1

mn

r2
C (K + Ui)Ui

satisfies the error bound ‖∇̂C(K)−∇C(K)‖F ≤ ε.
Proof: First note that ‖K ′ −K‖F = ‖Δ‖F = ‖U‖F = r.

We break the difference between estimated and true gradient
∇̂C(K)−∇C(K) into two terms as

(∇Cr(K)−∇C(K)) +
(
∇̂C(K)−∇Cr(K)

)
. (17)

Since r ≤ hΔ(K), we see that Lemmas B.2 and B.3 hold. By
enforcing the bound r ≤ 1

hcost(K) , by Lemma B.2 and noting that
‖Δ‖ ≤ ‖Δ‖F , we have

|C(K+U)− C(K)| ≤ C(K)→ C(K+U) ≤ 2C(K).
(18)

This ensures stability of the system under the perturbed gains so
that C(K + U) is well-defined. For the first term ∇Cr(K)−
∇C(K), by enforcing r ≤ ε

2hgrad(K) , by Lemma B.3, we have

‖∇C(K + U)−∇C(K)‖F ≤
ε

2
.

Since∇Cr(K) is the expectation of∇C(K + U), by the trian-
gle inequality, we have

‖∇Cr(K)−∇C(K)‖F ≤
ε

2
. (19)

For the second term ∇̂C(K)−∇Cr(K), we work toward using
the matrix Bernstein inequality and adopt the notation of the
associated lemma. First note that by Lemma B.4, we have
Z := ∇Cr(K) = E[∇̂C(K)]. Each individual sample Zi :=
(mn

r2 )C(K + Ui)Ui has the bounded Frobenius norm

‖Zi‖F =
∥∥∥(mn

r2

)
C(K + Ui)Ui

∥∥∥
F
=

mnC(K + Ui)‖Ui‖F
r2

=
mnC(K + Ui)r

r2
=

mnC(K + Ui)

r
≤ 2mnC(K)

r
.
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Next, from (19) and Lemma 7.8, we have

‖Z‖F = ‖∇Cr(K)‖F ≤
ε

2
+ ‖∇C(K)‖F ≤

ε

2
+ h1(K).

So by the triangle inequality, each sample difference has the
bounded Frobenius norm

‖Zi − Z‖F ≤ ‖Zi‖F + ‖Z‖F ≤
2mnC(K)

r
+

ε

2
+ h1(K).

Using (18) and ‖Ui‖F ≤ r, the variance of the differences is
likewise bounded as

‖E(ZiZ
ᵀ
i )− ZZᵀ‖ ≤ ‖E(ZiZ

ᵀ
i )‖F + ‖ZZᵀ‖F

≤ max
Zi

(‖Zi‖F )2 + ‖Z‖2F

≤
(
2mnC(K)

r

)2

+
( ε
2
+ h1(K)

)2
.

An identical argument holds for ‖E(Zᵀ
i Zi)− ZᵀZ‖; so the

assumed choice of σ2
̂∇ is valid. Thus, using the assumed number

of samples nsample ≥ hsample satisfies the condition of the matrix
Bernstein inequality, and thus with high probability of at least
1− μ, we have

‖∇̂C(K)− E[∇̂C(K)]‖F = ‖∇̂C(K)−∇Cr(K)‖F ≤
ε

2
.

Adding the bounds on the two terms in (17) and using the triangle
inequality completes the proof. �

Lemma B.7 (Estimating∇KC(K)With Finitely Many Finite-
Horizon Rollouts): Given an arbitrary tolerance ε and probabil-
ity μ, suppose the exploration radius r is chosen as

r ≤ hr

( ε
4

)
= min

{
hΔ(K),

1

hcost(K)
,

ε

4hgrad(K)

}
and the rollout length � is chosen as

� ≥ h�

( rε

4mn

)
=

4mn2C2(K)
(
‖Q‖+ ‖R‖‖K‖2

)
rεσ(Σ0)σ2(Q)

.

Suppose that the distribution of the initial states is such thatx0 ∼
P0 implies ‖xi

0‖ ≤ L0 almost surely for any given realization
xi
0 of x0. Suppose additionally that the multiplicative noises

are distributed such that the following bound is satisfied almost
surely under the closed-loop dynamics with any gain K + Ui

where ‖Ui‖ ≤ r for any given realized sequence xi
t of xt with

a positive scalar z ≥ 1
�−1∑
t=0

(
xi
t
ᵀ
Qxi

t + ui
t
ᵀ
Rui

t

)
≤ z E

δ,γ

[
�−1∑
t=0

(xᵀ
tQxt + uᵀ

tRut)

]
.

Suppose the number nsample of Ui ∼ Sr is chosen as

nsample ≥ hsample,trunc

(
ε

4
, μ,

L2
0

σ(Σ0)
, z

)
: =

32min(m,n)

ε2

(
σ2
∇ +

R
̂∇ε

12
√

min(m,n)

)
log

[
m+ n

μ

]
where

R
˜∇ :=

2mnzL2
0C(K)

rσ(Σ0)
+

ε

2
+ h1(K)

σ2
˜∇ :=

(
2mnzL2

0C(K)

rσ(Σ0)

)2

+
( ε
2
+ h1(K)

)2
.

The finite-horizon estimate of the cost is defined as

Ĉ (K + Ui) : =

�−1∑
t=0

(
xi
t
ᵀ
Qxi

t + ui
t
ᵀ
Rui

t

)

under the closed-loop dynamics with gain K + Ui. Then with
high probability of at least 1− μ, the estimated gradient

∇̃C(K) : =
1

nsample

nsample∑
i=1

mn

r2
Ĉ (K + Ui)Ui

satisfies the error bound ‖∇̃C(K)−∇C(K)‖F ≤ ε.
Proof: Similar to before, we break the difference between

estimated and true gradient into three terms as

∇̃C(K)−∇C(K) = (∇̃ − ∇′) + (∇′ − ∇̂) + (∇̂ − ∇)

where ∇′C(K) =
1

nsample

nsample∑
i=1

mn

r2
C(�) (K + Ui)Ui

and ∇̂C(K) is defined as in Lemma B.6. The third term is
handled by Lemma B.6. Note that since ‖xi

0‖ ≤ L0, we have

σ(Σ0) ≤ σ(Σ0) ≤ L2
0 so L2

0

σ(Σ0)
≥ 1. Similarly, z ≥ 1, and thus

hsample,trunc

(
ε

4
, μ,

L2
0

σ(Σ0)
, z

)
≥ hsample

( ε
4
, μ
)
.

Therefore, the choice of r and nsample satisfy the conditions of
Lemma B.6; so with high probability of at least 1− μ

‖∇̂C(K)−∇C(K)‖F ≤
ε

4
. (20)

For the second term, by using the choices � ≥ h�(
rε

4mn ) and
C(K + Ui) ≤ 2C(K), Lemma B.1 holds and implies that∥∥∥C(�) (K + Ui)− C (K + Ui)

∥∥∥
F
≤ rε

4mn
.

By the triangle inequality, submultiplicativity, and ‖Ui‖F ≤ r∥∥∥∥∥ 1

nsample

nsample∑
i=1

mn

r2

[
C(�) (K + Ui)− C (K + Ui)

]
Ui

∥∥∥∥∥
F

= ‖∇′KC(K)− ∇̂C(K)‖F ≤
ε

4
. (21)

For the first term, ‖xi
0‖ ≤ L0 implies L2

0

σ(Σ0)
Σ0 � xi

0x
i
0
ᵀ. Apply-

ing this to the cost, summing over time and using the assumed
restriction on the multiplicative noise, we have

2zL2
0C(K)

σ(Σ0)
≥ zL2

0

σ(Σ0)
C(K + Ui)

≥ z E
δ,γ

[ ∞∑
t=0

(
xi
t
ᵀ
Qxi

t + ui
t
ᵀ
Rui

t

)]

≥
�−1∑
t=0

(
xi
t
ᵀ
Qxi

t + ui
t
ᵀ
Rui

t

)
.

Using this and an argument identical to Lemma B.6, each sample
Zi := (mn

r2 )Ĉ(K + Ui)Ui has bounded Frobenius norm

‖Zi‖F =
∥∥∥(mn

r2

)
Ĉ(K + Ui)Ui

∥∥∥
F
≤ 2mnzL2

0C(K)

rσ(Σ0)
.

By (20) and (21), we have for Z := E[∇̃C(K)] = ∇′KC(K)

‖Z‖F = ‖∇′KC(K)‖F ≤
ε

4
+ ‖∇̂C(K)‖F

≤ ε

4
+

ε

4
+ ‖∇KC(K)‖F ≤

ε

2
+ h1(K).

Using arguments identical to Lemma B.6, we obtain the bounds
on the sample difference R

˜∇ = ‖Zi − Z‖F and variance σ2
˜∇
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given in the assumption. Thus, the polynomialhsample,trunc is large
enough so that the matrix Bernstein inequality implies

‖∇̃C(K)−∇′KC(K)‖F ≤
ε

4
with high probability 1− μ. Adding the three terms together and
using the triangle inequality completes the proof. �

We now give the parameters and proof of high-probability
global convergence in Theorem 5.1.

Theorem B.8 (Model-Free Policy Gradient Convergence):
Consider the assumptions and notations of Theorem 5.1 where
the number of samples nsample, rollout length �, and exploration
radius r are chosen according to the fixed quantities

r ≥ hr,GD : =hr

(
ε′

4

)
, � ≥ h�,GD : =h�

(
rε′

4mn

)
nsample ≥ hsample,GD : =hsample,trunc

(
ε′

4
,
μ

N
,

L2
0

σ(Σ0)
, z

)
where

ε′ : =min

{
σ(Σ0)

2σ(R)

‖ΣK∗‖C(K0)hcost
· ε, hΔ

η

}
hcost : =max

K
hcost(K) subject to C(K) ≤ 2C(K0)

hΔ : =min
K

hΔ(K) subject to C(K) ≤ 2C(K0).

Then the claim of Theorem 5.1 holds.
Proof: The proof follows [5] using the polynomials defined

in our theorem. The last part of the proof is the same as
in Theorem 4.3. As noted by [5], the monotonic decrease in
the function value during gradient descent and the choice of
exploration radius r are sufficient to ensure that all cost val-
ues encountered throughout the entire algorithm are bounded
by 2C(K0), ensuring that all polynomial quantities used are

bounded as well. We also require ε′ ≤ hΔ

η in order for ‖Δ‖ =
η‖∇̃C(K)−∇KC(K))‖ to satisfy the condition of Lemma
B.2, which was neglected by [5]. �

Remark B.9: As in Remark 7.10, the quantities hcost and hΔ

may be upper (lower) bounded by quantities that depend on
problem data and C(K0); so a conservative minimum explo-
ration radius r, number of rollouts nsample, and rollout length �
can be computed exactly in terms of problem data. Looking back
across the terms that feed into the step size, number of rollouts,
rollout length, and exploration radius, we see C(K), ‖ΣK‖,
‖PK‖, and ‖B‖2 +

∑q
j=1 βj‖Bj‖2 are necessarily greater with

state- and/or input-dependent multiplicative noise, and, thus, the
algorithmic parameters are worsened by the noise.
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