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Abstract In data-driven inverse optimization an observer aims to learn the preferences
of an agent who solves a parametric optimization problem depending on an exoge-
nous signal. Thus, the observer seeks the agent’s objective function that best explains
a historical sequence of signals and corresponding optimal actions. We focus here on
situations where the observer has imperfect information, that is, where the agent’s
true objective function is not contained in the search space of candidate objectives,
where the agent suffers from bounded rationality or implementation errors, or where
the observed signal-response pairs are corrupted by measurement noise. We formalize
this inverse optimization problem as a distributionally robust program minimizing the
worst-case risk that the predicted decision (i.e., the decision implied by a particular
candidate objective) differs from the agent’s actual response to a random signal. We
show that our framework offers rigorous out-of-sample guarantees for different loss
functions used to measure prediction errors and that the emerging inverse optimiza-
tion problems can be exactly reformulated as (or safely approximated by) tractable
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192 P. Mohajerin Esfahani et al.

convex programs when a new suboptimality loss function is used. We show through
extensive numerical tests that the proposed distributionally robust approach to inverse
optimization attains often better out-of-sample performance than the state-of-the-art
approaches.

Mathematics Subject Classification C15 Stochastic programming · 90C25 Convex
programming · 90C47 Minimax problems

1 Introduction

In inverse optimization an observer aims to learn the preferences of an agent who
solves a parametric optimization problem depending on an exogenous signal. The
observer knows the constraints imposed on the agent’s actions but is unaware of her
objective function. By monitoring a sequence of signals and corresponding actions,
the observer seeks to identify an objective function that makes the observed actions
optimal in the agent’s optimization problem. This learning problem can be cast as
an inverse optimization problem over candidate objective functions. The hope is that
the solution of this inverse problem enables the observer to predict the agent’s future
actions in response to new signals.

Inverse optimization has a wide spectrum of applications spanning several disci-
plines ranging from econometrics and operations research to engineering and biology.
For example, a marketing executive aims to understand the purchasing behavior of
consumers with unknown utility functions by monitoring sales figures [1,7,11], a
transportation planner wishes to learn the route choice preferences of the passengers
in a multimodal transport system by measuring traffic flows [3,15,17,20], or a health-
care manager seeks to design clinically acceptable treatments in view of historical
treatment plans [19]. It is even believed that the behavior of many biological systems
is governed by a principle of optimality with respect to an unknown decision criterion,
which can be inferred by tracking the system [13,39]. Inverse optimization has also
been applied in geoscience [32,42], portfolio selection [10,26], production planning
[40], inventory management [18], network design and control [3,17,20,25] and the
analysis of electricity prices [34].

The main thrust of the early literature on inverse optimization is to identify an
objective function that explains a single observation. In the seminal paper [4] the agent
solves a static (non-parametric) linear program and reveals her optimal decision to the
observer, who then identifies the objective function closest to a prescribed nominal
objective, underwhich the observed decision is optimal. Thismodelwas later extended
to conic programs [26], integer programs [2,24,35,41] and linearly constrained sep-
arable convex programs [43]. Another variant of this problem is considered in [2],
where the observer identifies an admissible objective function for which the optimal
value of the agent’s problem is closest to the observed optimal value corresponding
to the unknown true objective.

This paper focuses on data-driven inverse optimization problems where the agent
solves a parametric optimization problem several times. Accordingly, the observer
has access to a finite sequence of signals and corresponding optimal responses. Using
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this training data, the observer aims to infer an objective function that accurately pre-
dicts the agent’s optimal responses to unseen future signals. As in classical regression,
this learning task could be addressed by minimizing an empirical loss that penalizes
the mismatch between the predicted and true optimal responses to a given signal.
Data-driven inverse optimization problems of this type have only just started to attract
attention, and to the best of our knowledge there are currently only three papers that
study such problems. In [27] the observer seeks an objective function under which all
observed decisions solve the Karush–Kuhn–Tucker (KKT) optimality conditions of
the agent’s convex optimization problem. To this end, the observer minimizes some
norm of the KKT residuals at all observations. A similar goal is pursued in [11], where
the optimality conditions are expressed via variational inequalities that can be reformu-
lated as tractable conic constraints using ideas from robust optimization. This approach
has the additional benefit that it extends to more general inverse equilibrium prob-
lems, which indicates that inverse optimization problems constitute special instances
of mathematical programs with equilibrium constraints. A comprehensive survey of
variational inequalities andmathematical programswith equilibriumconstraints is pro-
vided in [23]. The third paper suggests tominimize the empirical average of the squared
Euclidean distances between the predicted and true observed decisions, in which case
the data-driven inverse optimization problem reduces to a bilevel program [6].

In summary, all existing approaches to data-driven inverse optimization solve an
empirical loss minimization problem over some search space of candidate objectives.
Different approaches mainly differ with respect to the loss functions that capture the
mismatch between predictions and observations. The KKT loss used in [27] quantifies
the extent to which the observed response to some signal violates the KKT conditions
for a fixed candidate objective. Similarly, the first-order loss used in [11] measures the
extent to which an observed response violates the first-order optimality conditions.
Moreover, the predictability loss used in [6] captures the squared distance between an
observed response and the response predicted by a given candidate objective.

In this paper we introduce the new suboptimality loss, which quantifies the degree
of suboptimality of an observed response under a given candidate objective. While
the predictability and suboptimality losses both enjoy a direct physical meaning, the
KKT and first-order losses are generally not as easily interpretable.

Computational experiments in [27] and [11] suggest that empirical loss minimiza-
tion problems under perfect information are likely to correctly identify the agent’s true
objective function if there is sufficient training data and the search space of candidate
objectives is not too large. In any realistic setting, however, the observer is confronted
with imperfect information such as model uncertainty (the agent’s true objective is
not one of the candidate objectives), noisy measurements (the observed signals and
responses are corrupted by measurement errors) or bounded rationality (the agent
settles for suboptimal responses due to cognitive or computational limitations). Due
to overfitting effects, imperfect information can severely impair the predictive power
of a candidate objective obtained via empirical loss minimization. This is simply a
manifestation of the notorious ‘garbage in-garbage out’ phenomenon. As imperfect
information certainly reflects the norm rather than the exception in inverse optimiza-
tion, we propose here a systematic approach to combat overfitting via distributionally
robust optimization. Specifically, inspired by [30] and [37], we use the Wasserstein
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distance to construct a ball in the space of all signal-response-distributions centered at
the empirical distribution on the training samples, and we formulate a distributionally
robust inverse optimization problem that minimizes the worst-case risk of loss for any
combination of a risk measure with a loss function, where the worst case is taken
over all distributions in the Wasserstein ball. If the radius of the Wasserstein ball is
chosen judiciously, we can guarantee that it contains the unknown data-generating
distribution with high confidence, which in turn allows us to derive rigorous out-of-
sample guarantees for the risk of loss of unseen future observations. The proposed
distributionally robust inverse optimization problem can naturally be interpreted as a
regularization of the corresponding empirical loss minimization problem.While regu-
larization is known to improve the out-of-sample performance of numerous estimators
in statistics, it has not yet been investigated systematically in the context of data-driven
inverse optimization.

We highlight the following main contributions of this paper relative to the existing
literature:

• We propose the suboptimality loss as an alternative to the KKT, first-order and
predictability losses. The suboptimality loss admits a direct physical interpreta-
tion (like the predictability loss) and leads to convex empirical loss minimization
problems (like the KKT and first-order losses) whenever the candidate objective
functions admit a linear parameterization. In contrast, empirical predictability loss
minimzation problems constitute NP-hard bilevel programs even for linear candi-
date objectives. We also propose the bounded rationality loss, which generalizes
the suboptimality loss to situationswhere the agent is known to select δ-suboptimal
decision due to bounded rationality.

• We leverage the data-driven distributionally robust optimization scheme with
Wasserstein balls developed in [30] to regularize empirical inverse optimization
problems under imperfect information. As such, the proposed approach offers out-
of-sample guarantees for any combination of risk measures and loss functions. In
contrast, [11] develops out-of-sample guarantees only for the value-at-risk of the
first-order loss, while [27] and [6] discuss no (finite) out-of-sample guarantees at
all.

• We study the tractability properties of the distributionally robust inverse optimiza-
tion problem thatminimizes the conditional value-at-risk of the suboptimality loss.
Weprove that this problem is equivalent to a convex programwhen the search space
consists of all linear functions.We also show that this problem admits a safe convex
approximation when the search space consists of all convex quadratic functions
or all conic combinations of finitely many convex basis functions.

• We argue that the first-order and suboptimality losses can be used as tractable
approximations for the intractable predictability loss, which has desirable statis-
tical consistency properties [6] and is the preferred loss function if the observer
aims for prediction accuracy. We show that if the candidate objective functions are
strongly convex, then the estimators obtained from minimizing the first-order and
suboptimality losses admit out-of-sample predictability guarantees. Moreover, the
predictability guarantee corresponding to the suboptimality loss is stronger than
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Data-driven inverse optimization with imperfect information 195

the one obtained from the first-order loss. Recall that the predictability loss itself
cannot be minimized in polynomial time.

• We show through extensive numerical tests that the proposed distributionally
robust approach to inverse optimization attains often better (lower) out-of-sample
suboptimality and predictability than the state-of-the art approaches in [11] and
[6]. All of our experiments are reproducible, and the underlying source codes are
available at https://github.com/sorooshafiee/InverseOptimization.

The rest of the paper develops as follows. In Sects. 2 and 3 we formalizes the
inverse optimization problem under perfect and imperfect information, respectively.
Section 4 then introduces the distributionally robust approach to inverse optimization,
while Sects. 5 and 6 derive tractable reformulations and safe approximations for dis-
tributionally robust inverse optimization problems over search spaces of linear and
quadratic candidate objectives, respectively. Numerical results are reported in Sect. 7.

Notation The inner product of two vectors s, t ∈ R
m is denoted by

〈
s, t
〉 := sᵀt , and

the dual of a norm ‖ · ‖ on Rm is defined through ‖t‖∗ := sup‖s‖≤1
〈
t, s
〉
. The dual of

a proper (closed, solid, pointed) convex cone C ⊆ R
m is defined as C∗ := {t ∈ R

m :〈
t, s
〉 ≥ 0 ∀s ∈ C}, and the relation s 	C t is interpreted as s−t ∈ C. Similarly, for two

symmetric matrices Q, R ∈ R
m×m the relation Q 	 R (Q 
 R) means that Q − R

is positive (negative) semidefinite. The identity matrix is denoted by I. We denote by
δξ the Dirac distribution concentrating unit mass at ξ ∈ �. The N -fold product of a
distributionP on� is denoted byPN , which represents a distribution on the Cartesian
product �N . The decision variables of an optimization model are always specified
directly under the optimization operator or in the first few lines of the list of constraints.

2 Inverse optimization under perfect information

Consider an agent who first receives a random signal s ∈ S ⊆ R
m and then solves the

following parametric optimization problem:

minimize
x∈X(s)

F(s, x). (1)

Note that both the objective function F : Rm × R
n → R as well as the (multivalued)

feasible set mapping X : Rm ⇒ R
n depend on the signal. We assume that the set of

minimizers X�(s) := argminx∈X(s) F(s, x) is non-empty for every s ∈ S. Consider
also an independent observer who monitors the signal s ∈ S as well as the agent’s
optimal response x ∈ X

�(s). We assume that the observer is ignorant of the agent’s
preferences encoded by the objective function F . Thus, a priori, the observer cannot
predict the agent’s response x to a particular signal s. Throughout the paper we assume
that the observed signal-response pairs ξ := (s, x) are governed by some probability
distributionP supported on � := {(s, x) : s ∈ S, x ∈ X(s)

}
, which can be viewed as

the graph of the feasible set mapping X. Note that the marginal distribution of s under
P captures the frequency of the exogenous signals, while the conditional distribution
of x given s places all probability mass on the argmin set X�(s). Note that, unless
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X
�(s) is a singleton, the exact conditional distribution of x given s depends on the

specific optimization algorithm used by the agent.
In the following we assume that the observer has access to N independent samples

ξ̂i := (̂si , x̂i ) from P, which can be used to learn the agent’s objective function. As
the space of all possible objective functions is vast, the observer seeks to approximate
F by some candidate objective function from within a parametric hypothesis space
F = {Fθ : θ ∈ �}, where � represents a finite-dimensional parameter set. Ideally,
the observer would aim to identify the hypothesis Fθ closest to F , e.g., by solving the
least squares problem

minimize
θ∈�

1

N

N∑

i=1

�θ (̂si , x̂i ), (2)

where �θ (̂si , x̂i ) denotes the identifiability loss as per the following definition.

Definition 2.1 (Identifiability loss) The identifiability loss of model θ is given by

�θ (s, x) := |F(s, x) − Fθ (s, x)|2. (3)

Unfortunately, the identifiability loss of a training sample cannot be evaluated unless
the agent’s objective function F is known. Indeed, the observer is blind to the agent’s
objective values F (̂si , x̂i ) and only sees the signals ŝi and responses x̂i . Thus, the
identifiability loss cannot be used to learn F . It canmerely be used to assess the quality
of a hypothesis Fθ obtained with another method in a synthetic experiment where the
true objective F is known. As two objective functions have the same minimizers
whenever they are related through a strictly monotonically increasing transformation,
however, it is indeed fundamentally impossible to learn F from the available training
data. At best we can learn the set of its minimizers X�(s) for every s.

If a hypothesis Fθ is used in lieu of F , it can be used to predict the agent’s optimal
response to a signal s by solving a variant of problem (1), where F is replaced with Fθ .
In the followingwe defineX�

θ (s) := argminy∈X(s) Fθ (s, y) and refer to any x ∈ X
�
θ (s)

as a response to s predicted by θ . Note that x ∈ X
�
θ (s) if and only if the response x

to s can be explained by model θ . In order to assess the quality of a candidate model
θ , the observer should now check whether X�

θ (s) ≈ X
�(s) with high probability over

s ∈ S. This can be achieved by solving an empirical loss minimization problem of the
form (2) with a loss function that satisfies �θ (s, x) = 0 if x ∈ X

�
θ (s) and �θ (s, x) > 0

otherwise. Thus, the loss should vanish if and only if the decision x can be explained
as an optimal response to s under model θ .

In order to learn X�(s), an intuitive approach is to minimize the predictability loss
defined below.

Definition 2.2 (Predictability loss) The predictability loss of model θ is given by

�θ (s, x) := min
y∈X�

θ (s)
‖x − y‖22. (4a)

It quantifies the squaredEuclidean distance of x from the set of responses to s predicted
by θ .
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The predictability loss is known to offer strong statistical consistency guarantees but
renders (2) an NP-hard bilevel optimization problem even if the agent’s subproblem
is convex [6]. Thus, the predictability loss can only be used for low-dimensional
problems involving moderate sample sizes. An alternative choice is to minimize the
suboptimality loss proposed in this paper, which we will show to be computationally
attractive.

Definition 2.3 (Suboptimality loss) The suboptimality loss of model θ is given by

�θ (s, x) := Fθ (s, x) − min
y∈X(s)

Fθ (s, y). (4b)

It quantifies the suboptimality of x , that is, the cost of x in excess to the minimum cost
under Fθ given s.

Another computationally attractive loss function is the degree of violation of the
agent’s first-order optimality condition [11].

Definition 2.4 (First-order loss) If Fθ is differentiablewith respect to x , the first-order
loss is given by

�θ (s, x) := max
y∈X(s)

〈∇x Fθ (s, x), x − y
〉
. (4c)

It quantifies the extent to which x violates the first-order optimality condition of the
optimization problem (1) for a given s, where F is replaced with Fθ . Note that the
first-order loss vanishes whenever x represents a local minimizer of Fθ (s, ·) overX(s).

Note that the predictability loss best captures the observer’s objective to predict the
agent’s decisions. However, the suboptimality loss and the first-order loss have better
computational properties. Indeed, we will argue below that the learning model (2)
with the losfunctions (4b) or (4c) is computationally tractable under suitable convex-
ity assumptions about the agent’s decision problem (1), the support set � and the
hypothesis space F . Thus, we encounter a similar situation as in binary classification,
where it is preferable to minimize the convex hinge loss instead of the discontinuous
0-1 loss, which is the actual quantity of interest. We also emphasize that the first-order
and suboptimality losses coincide for linear hypotheses; see Sect. 5.

The following proposition establishes basic properties of the loss functions (4).

Proposition 2.5 (Dominance relations between loss functions) Assume that Fθ (s, x)
is convex and differentiable in x, and define γ ≥ 0 as the largest number satisfying
the inequality

Fθ (s, y) − Fθ (s, x) ≥ 〈∇x Fθ (s, x), y − x
〉+ γ

2
‖y − x‖2 ∀x, y ∈ X(s), ∀s ∈ S.

(5)
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If �pθ , �
s
θ and �fθ denote the predictability, suboptimality and first-order losses, respec-

tively, then we have

�fθ (s, x) ≥ �sθ (s, x) ≥ γ

2
�
p
θ (s, x) ∀s ∈ S, x ∈ X(s). (6)

Moreover, all three loss functions are non-negative and evaluate to zero if and only if
x ∈ Xθ (s).

Note that (5) always holds for γ = 0 due to the first-order condition of convexity
[14, Section 3.1.3].

Proof of Proposition 2.5 Setting γ = 0 and minimizing both sides of (5) over y ∈
X(s) yields �fθ (s, x) ≥ �sθ (s, x). Next, the first-order optimality condition of the convex
program (1) with objective function Fθ requires that

〈∇x Fθ (s, x), y − x
〉 ≥ 0 ∀y ∈ X(s) (7)

at any optimal point x ∈ X
�
θ (s). Combining the inequalities (5) and (7) then yields

Fθ (s, y) − Fθ (s, x) ≥ γ

2
‖y − x‖2 ∀x ∈ X

�
θ (s), y ∈ X(s).

Minimizing both sides of the above inequality over x ∈ X
�
θ (s) yields �sθ (s, x) ≥

γ
2 �

p
θ (s, x). Note that this inequality is only useful for γ > 0, in which case X�

θ (s) is
in fact a singleton. It is straightforward to verify that all loss functions (4) are non-
negative and evaluate to zero if and only if x ∈ X

�
θ (s). In the case of the first-order

loss, for instance, this equivalence holds because the first-order condition (7) is both
necessary and sufficient for the optimality of x . We remark that (6) remains valid if γ

depends on s and θ . ��
While the basic estimation models in statistical learning all minimize an empirical

loss as in (2), some inverse optimization models proposed in [11] implicitly mini-
mize the worst-case loss across all training samples. To capture both approaches in a
unified model, we suggest here to minimize a normalized, positive homogeneous and
monotone risk measure ρ that penalizes positive losses. More precisely, we denote by
ρQ(�θ ) the risk of the loss �θ (ξ) if ξ = (s, x) follows the distribution Q. The inverse
optimization problem (2) thus generalizes to

minimize
θ∈�

ρP̂N (�θ ), where P̂N := 1

N

N∑

i=1

δ̂ξi
(8)

represents the empirical distribution on the training samples. In the remainder we refer
to ρP̂N (�θ ) as the empirical or in-sample risk. Note that (8) reduces indeed to (2) if
we choose the expected value as the risk measure. Two alternative risk measures that
could be used in (8) are described in the following example.
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Example 1 (Risk measures) A popular risk measure that the observer could use to
quantify the risk of a positive loss is the conditional value-at-risk (CVaR) at level
α ∈ (0, 1], which is defined as

CVaRQ
α (�θ ) = inf

τ
τ + 1

α
EQ
[
max{�θ (s, x) − τ, 0}], (9a)

see [33]. For α = 1, the CVaR reduces to the expected value, and for α ↓ 0, it
converges to the essential supremum of the loss. Alternatively, the observer could use
the value-at-risk (VaR) at level α ∈ [0, 1] defined as

VaRQ
α (�θ ) = inf

τ

{
τ : Q

[
�θ (s, x) ≤ τ

] ≥ 1 − α
}
. (9b)

Note that the VaR coincides with the upper (1 − α)-quantile of the loss distribution.
Moreover, if �θ (s, x) has a continuousmarginal distribution underQ, then CVaRQ

α (�θ )

coincides with the expected loss above VaRQ
α (�θ ).

By definition, the loss function �θ (ξ) is non-negative for all ξ ∈ � and θ ∈ �. The
monotonicity and normalization of the risk measure ρ thus imply that

ρP̂N (�θ ) ≥ ρP̂N (0) = 0 ∀θ ∈ �,

which in turn implies that the optimal value of problem (8) is necessarily larger than
or equal to zero. Moreover, if the agent’s true objective function is contained inF , that
is, if F = Fθ� for some θ� ∈ �, then the loss �θ� (̂ξi ) vanishes for all i , indicating that
the optimal value of (8) is zero and that θ� is optimal in (8). In this case, the optimal
value of the in-sample risk minimization problem (8) is known a priori, and the only
informative output of any solution scheme is an optimizer, that is, a model θ ′ ∈ �

with zero in-sample risk. If the number of training samples is moderate, then there
may be multiple optimal solutions, and θ ′ may differ from the agent’s true model θ�.

Remark 2.6 (Choice of risk measures) If F = Fθ� for θ� ∈ �, then the minimum
of (8) vanishes and is minimized by θ� irrespective of ρ. Thus, one might believe
that the choice of the risk measure is immaterial for the inverse optimization problem.
However, different risk measures may result in different solution sets. For example,
if ρ is the CVaR at level α ∈ (0, 1], then θ ′ is a minimizer of (8) if and only if
�θ ′ (̂si , x̂i ) = 0 for all i ≤ N . In contrast, if ρ is the VaR at level α ∈ [0, 1], then θ ′ is
a minimizer of (8) if and only if �θ ′ (̂si , x̂i ) = 0 for a portion of at least 1− α of all N
training samples. Thus, the use of VaR may lead to an inflated solution set. Moreover,
the choice of ρ impacts the tractability of (8); see Sects. 5 and 6.

3 Inverse optimization under imperfect information

The proposed framework for inverse optimization described in Sect. 2 is predicated
on the assumption of perfect information. Specifically, it is assumed that the agent
is able to determine and implement the best response x to any given signal s and
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that the observer can measure s and x precisely. Moreover, it is implicitly assumed
that the family F of candidate objective functions contains the agent’s true objective
function F . In practice, however, the observer may be confronted with the following
challenges:

(i) Model uncertainty The hypothesis space F chosen by the observer may not
be rich enough to contain the agent’s true objective function F or any strictly
increasing transformation of F that encodes the same preferences.

(ii) Measurement noise The observed signal-response pairs may be corrupted by
noise, which prevents the observer from measuring them exactly.

(iii) Bounded rationality The agent may settle for a suboptimal decision x due to
cognitive or computational limitations. Even if the best response can be computed
exactly, an exact implementation of the desired best responsemay not be possible
due to implementation errors [9].

In the presence ofmodel uncertainty, that is, if neither F nor any strictly increasing
transformation of F is contained in the chosen hypothesis space F , then there exists
typically no θ ∈ � such that the loss functions described inSect. 2 vanish on all training
samples. In this case a perfect recovery of the agent’s preferences is fundamentally
impossible, and the optimal value of the empirical risk minimization problem (8) is
positive. The best the observer can hope for is to learn the parametric hypothesis that
most accurately (but imperfectly) captures the agent’s true preferences.

In the presence of measurement noise the observed training samples ξ̂i = (̂si , x̂i )
represent random perturbations of some unobservable pure samples ξ̃i = (̃si , x̃i ).
While x̃i is an exact optimal response to an unperturbed signal s̃i , the noisy response
x̂i generically constitutes a suboptimal—maybe even infeasible—response to ŝi . We
will henceforth assume that the noisy samples ξ̂i are mutually independent and follow
an in-sample distribution Pin, while the corresponding unperturbed samples ξ̂i are
governed by an out-of-sample distribution Pout. While the distribution Pout of the
perfect samples is supported on � by construction, the in-sample distribution Pin
of the noisy samples may or may not be supported on �. If the noisy samples can
materialize outside of �, then we call the noise inconsistent. If all noisy samples are
guaranteed to reside within �, on the other hand, then we call the noise consistent.
Thus, in the presence of measurement noise, the observer faces the challenging task to
learnPout from samples ofPin. Note that in the absence of noise we havePin = Pout,
which coincides with the distribution P introduced in Sect. 2.

Agents suffering from bounded rationality may not be able to solve (1) to global
optimality. Such agents may respond to a given signal s with a δ-suboptimal solu-
tion xδ , that is, a decision xδ ∈ X(s) with F(s, xδ) ≤ minx∈X(s) F(s, x) + δ. Here,
the parameter δ ≥ 0 quantifies the agent’s irrationality. Indeed, if δ > 0, the agent
accepts a cost increase of up to δ for the freedom of choosing a δ-suboptimal decision,
which may require fewer cognitive or computational resources than finding a global
minimizer. Note that the observer may mistakenly perceive the effects of bounded
rationality as (consistent) measurement noise or vice versa. So one might argue that
there is no need to distinguish between these two types of imperfect information.
However, bounded rationality is fundamentally different from measurement noise if
the observer knows that the imperfect measurements are caused by bounded rational-
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ity. If the imperfections originate from measurement noise, then the observer aims to
filter out the noise in order to predict the agent’s pure decisions. If the imperfections
originate from bounded rationality, on the other hand, then the observer aims to predict
the agent’s δ-suboptimal decisions and not the ideal global optimizers. In other words,
the observer always aims to predict the agent’s responses bar measurement noise, irre-
spective of whether these responses are rational or not. An observer who knows the
agent’s degree of irrationality δ may thus improve the predictive power of her learning
model by replacing the suboptimality loss (4b) with the bounded rationality loss.

Definition 3.1 (Bounded rationality loss) The bounded rationality loss of model θ is
given by

�θ (δ; s, x) := max

{
Fθ (s, x) − min

y∈X(s)
Fθ (s, y) − δ, 0

}
. (10)

It quantifies the amount by which the suboptimality of x with respect to Fθ given
signal s exceeds δ ≥ 0. By construction, �θ (δ; s, x) = 0 whenever x is a δ-supoptimal
response to the signal s, and �θ (s, x) > 0 otherwise.

Remark 3.2 (Estimating δ) Note that the bounded rationality loss with δ = 0 reduces
to the usual suboptimality loss (4b). Even if it is known that the agent suffers from
bounded rationality, the constant δ is unlikely to be available in practice. However, as
long as there are no other sources of imperfect information (such as model uncertainty
or measurement noise), the observer can estimate δ and θ from the training data by
solving

minimize
θ∈�, δ≥0

{δ : �θ (δ; ŝi , x̂i ) = 0 ∀i ≤ N } . (11)

This variant of the inverse optimization problem identifies the smallest bounded ratio-
nality constant δ that explains all observed responses as δ-suboptimal decisions under
model θ . Note that (11) constitutes a convex optimization problem as long as � is
convex and the hypotheses Fθ (s, x) are affinely parameterized in θ , which guarantees
that �θ (δ; s, x) is jointly convex in θ and δ for any fixed s and x . Moreover, instead of
solving (11), one could equivalently solve the empirical riskminimization problem (8)
with the suboptimality loss and the essential supremum risk measure to find θ and then
set δ to the resulting optimal objective value.

To some extent, all of the complications discussed in this section are inevitable in
any real application. In fact, they are likely to reflect the norm rather than the exception.
Thus, the main objective of this paper is to develop inverse optimization models that
can cope with imperfect information in a principled manner.

4 Distributionally robust inverse optimization

By combining different loss functionswith different riskmeasures, onemay synthesize
different empirical risk minimization problems of the form (8). By construction, any
solution of (8) has minimum in-sample risk. However, the in-sample risk merely
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captures historical performance and is therefore of little practical interest. Instead, the
observer seeks models that display promising performance on unseen future data.

Definition 4.1 (Out-of-sample risk) We refer to ρPout (�θ ) as the out-of-sample risk
of the model θ ∈ �.

Ideally, the observer would want to minimize the out-of-sample risk over all
candidate models θ ∈ �. This is impossible, however, because the out-of-sample
distribution Pout of the signal-response pairs is unknown, and only a finite set of
training samples from Pin is available (recall that Pin = Pout if measurements are
perfect). In this situation, the observer has to settle for a data-driven solution θ̂N ∈ �

that depends on the training samples and attains—hopefully—a low out-of-sample
risk. We emphasize that, due to its dependence on the training samples, θ̂N constitutes
a random object, whose stochastics is governed by the product distribution PN

in . A
simple data-driven solution is obtained, for instance, by solving the empirical risk
minimization problem (8).

While it is impossible tominimize the out-of-sample risk on the basis of the training
samples, it is sometimes possible to establish data-driven out-of-sample guarantees in
the sense of the following definition.

Definition 4.2 (Out-of-sample guarantee) We say that a data-driven solution θ̂N
enjoys an out-of-sample performance guarantee at significance level β ∈ [0, 1] if
there exists a data-driven certificate ĴN with

PN
in

[
ρPout (�θ̂N

) ≤ ĴN
] ≥ 1 − β. (12)

Note that the probability in (12) is evaluated with respect to the distribution of N
independent (potentially noisy) training samples, which impact both the data-driven
solution θ̂N and the certificate ĴN . Note also that the certificate ĴN can be viewed as an
upper (1−β)-confidence bound on the out-of-sample risk of θ̂N . Thus, we sometimes
refer to the confidence level 1 − β as the certificate’s reliability.

As the ideal goal to minimize the out-of-sample risk is unachievable, the observer
might settle for the more modest goal to determine a data-driven solution that admits
a low certificate with a high reliablity. We will now argue that this secondary goal is
achievable by adopting a distributionally robust approach. Specifically, we will use
the N training samples to design an ambiguity set P̂N that contains the out-of-sample
distribution Pout of the (perfect) signal-response pairs with confidence 1 − β. Next,
we construct the data-driven solution θ̂N and the corresponding certificate ĴN by
minimizing the worst-case risk across all models θ ∈ �, where the worst case is taken
with respect to all signal-response distributions in the ambiguity set P̂N , that is, we
set

θ̂N ∈ argmin
θ∈�

sup
Q∈P̂N

ρQ(�θ ) and ĴN := min
θ∈�

sup
Q∈P̂N

ρQ(�θ ). (13)

It is clear that ifPN
in [Pout ∈ P̂N ] ≥ 1−β, then the distributionally robust solution θ̂N

and the corresponding certificate ĴN defined above satisfy the out-of-sample guaran-
tee (12). In order to ensure that P̂N contains the unknown out-of-sample distribution
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Pout with confidence 1−β, we construct the ambiguity set P̂N as a ball in the space of
probability distributions with respect to the Wasserstein metric as suggested in [30].

Definition 4.3 (Wasserstein metric) For any integer p ≥ 1 and closed set � ⊂ R
n+m

we let Mp(�) be the space of all probability distributions Q supported on � with
EQ
[‖ξ‖p

] = ∫
�

‖ξ‖p Q(dξ) < ∞. The p-Wasserstein distance between two distri-
butions Q1,Q2 ∈ Mp(Rn+m) is defined as

Wp
(
Q1,Q2

)

:= inf

{(∫
‖ξ1 − ξ2‖p �(dξ1, dξ2)

)1/p
: � is a joint distribution of ξ1 and ξ2
with marginals Q1 and Q2, respectively

}

.

The Wasserstein distance Wp
(
Q1,Q2

)
can be viewed as the (p-th root of the)

minimum cost for moving the distribution Q1 to Q2, where the cost of moving a unit
mass from ξ1 to ξ2 amounts to ‖ξ1 − ξ2‖p. The joint distribution � of ξ1 and ξ2 is
therefore naturally interpreted as a mass transportation plan.

We define the ambiguity set as a p-Wasserstein ball in Mp(�) centered at the
empirical distribution P̂N defined in (8). Specifically, we define the p-Wasserstein
ball of radius ε around P̂N as

B
p
ε (P̂N ) := {Q ∈ Mp(�) : Wp

(
Q, P̂N

) ≤ ε
}
.

Note that if ε = 0 and the empirical distribution is supported on�, which is necessarily
true in the absence of measurement noise, then the Wasserstein ball Bp

ε (P̂N ) shrinks
to the singleton set that contains only the empirical distribution. In this case, the
distributionally robust inverse optimization problem (13) reduces to the empirical risk
minimization problem (8). In order to establish out-of-sample guarantees, we must
assume that the p-Wasserstein distance between Pin and Pout is bounded by a known
constant ε0 ≥ 0. This is the case, for instance, if the noise is additive and all noise
realizations are bounded by ε0 with certainty.

Proposition 4.4 (Measure concentration) Assume that there exists a > 1 with A :=
EPin [exp(‖ξ‖a)] < ∞. Assume also that β ∈ (0, 1) is a prescribed significance level,
Wp
(
Pin,Pout

) ≤ ε0, and m + n �= 2p.1 Then, there exist constants c1, c2 > 0 that
depend only on a, A, m and n such that PN

in [Pout ∈ B
p
ε (P̂N )] ≥ 1 − β whenever

ε ≥ ε0 + εN (β), where

εN (β) :=

⎧
⎪⎨

⎪⎩

(
log(c1β−1)

c2N

)min
{
p(m+n)−1, 12

}

if N ≥ log(c1β−1)
c2

,
(
log(c1β−1)

c2N

)
if N <

log(c1β−1)
c2

.

(14)

1 Proposition 4.4 readily extends to the case n+m = 2p at the expense of additional notation by leveraging
[21, Theorem 2].
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Proof Select any ε ≥ ε0 + εN (β). Then, the triangle inequality implies

Wp
(
Pout, P̂N

) ≤ Wp
(
Pout,Pin

)+ Wp
(
Pin, P̂N

)
.

By assumption, the first term on the right hand side is bounded by ε0 with certainty.
Theorem 3.5 in [30], which leverages a powerful measure concentration result devel-
oped in [21, Theorem 2], further guarantees that the second term is bounded above by
εN (β) with confidence 1 − β. As Pout is supported on �, we may thus conclude that
Pout ∈ B

p
ε (P̂N ) with probability 1 − β. This observation completes the proof. ��

Proposition 4.4 ensures that the distributionally robust solution θ̂N and the cor-
responding certificate ĴN induced by a Wasserstein ambiguity set of radius ε ≥
ε0 + εN (β) satisfy the out-of-sample guarantee (12). One can further show that if
there is no measurement noise (Pin = Pout = P) while βN ∈ (0, 1) for N ∈ N

satisfies
∑∞

N=1 βN < ∞ and limN→∞ εN (βN ) = 0,2 then any accumulation point of
{θ̂N }N∈N is P∞-almost surely a minimizer of the the out-of-sample risk ρP(�θ ) over
θ ∈ �; see [30, Theorem 3.6].

We emphasize that asymptotic consistency is lost when Pin differs from Pout.
In this case it is fundamentally impossible to systematically recover a minimizer of
the out-of-sample risk ρP(�θ ) even if infinitely many samples from Pin are available.
However, it is possible to construct examples where the solution of the distributionally
robust inverse optimization problem (13) strictly outperforms that of the empirical risk
minimization model (8) in out-of-sample tests even if the number of training samples
tends to infinity.

Besides offering rigorous out-of-sample and asymptotic guarantees, the proposed
approach to distributionally robust inverse optimization can be shown to be tractable
if the search space contains only linear or quadratic hypotheses, and risk is measured
by the CVaR of the suboptimality loss (4b) or the first-order loss (4c). Unfortu-
nately, tractability is lost when minimizing the predictability loss (4a), which is the
actual quantitiy of interest. However, the computable distributionally robust solu-
tions (θ̂ sN , Ĵ sN ) and (θ̂ fN , Ĵ fN ) corresponding to the suboptimality and first-order losses,
respectively, can be used to construct out-of-sample guarantees for the predictability
loss if the hypotheses are uniformly strongly convex with parameter γ > 0. Indeed,
if �

p
θ , �

s
θ and �fθ denote the predictability, suboptimality and first-order losses, respec-

tively, we have

PN
in

[
ρPout (�s

θ̂ sN
) ≤ Ĵ sN

]
≥ 1 − β �⇒ PN

in

[
ρPout (�

p
θ̂ sN

) ≤ 2

γ
Ĵ sN

]
≥ 1 − β

(15a)

and

PN
in

[
ρPout (�f

θ̂ fN
) ≤ Ĵ fN

]
≥ 1 − β �⇒ PN

in

[
ρPout (�

p
θ̂ fN

) ≤ 2

γ
Ĵ fN

]
≥ 1 − β,

(15b)

2 A possible choice is βN = exp(−√
N ).
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where both implications follow from the dominance relation (6) established in Propo-
sition 2.5 and the scale invariance and monotonicity of the CVaR. Thus, both θ̂ sN and
θ̂ fN are efficiently computable and offer an out-of-sample guarantee for the predictabil-
ity loss. While both guarantees involve the same confidence level 1− β, however, the
underlying certificates J sN and J fN are generically different. One can again use the dom-
inance relation (6) from Proposition 2.5 and the monotonicity of the CVaR to show
that J sN ≤ J fN . Thus, minimizing the suboptimality loss results in a weakly stronger
predictability guarantee. This reasoning suggests that the observer should favor the
suboptimality loss (4b) over the first-order loss (4c). We emphasize that unlike the
suboptimality loss, however, the first-order loss leads to tractable inverse optimization
models even in the presence of several strategically interacting agents [11].

Remark 4.5 (Out-of-sample guarantees in [11]) The out-of-sample guarantees pro-
vided in [11] only apply to the VaR, and an extension to other risk measures is not
envisaged. Specifically, [11, Theorem 6] provides an out-of-sample guarantee for the
VaR of the first-order loss, while [11, Theorem 6] offers an out-of-sample guarantee
for the VaR of the predictability loss. In contrast, the distributionally robust approach
discussed here offers out-of-sample guarantees for any normalized, positive homoge-
neous and monotone risk measure including the VaR or any coherent risk measure
such as the CVaR etc.

Remark 4.6 (Curse of dimensionality) Proposition 4.4 implies that the distributionally
robust solution θ̂N and its certificate ĴN satisfy the out-of-sample guarantee (12) for
Pin = Pout if the Wasserstein radius scales as εN (β) ∝ O(N−1/(m+n)). This entails
a curse of dimensionality, that is, both εN (β) as well as ĴN converge slowly for
large input and/or output dimensions. By generalizing [36, Theorem 4.6], however,
one can show that a significantly smaller Wasserstein radius of the order O((m +
n)
√
log(N )/N ) is sufficient for (12) whenever � is compact and does not contain 0,

while �θ (ξ) is Lipschitz continuous in θ ∈ � for every ξ ∈ �.

5 Linear hypotheses

On the one hand, the hypothesis space F should be rich enough to contain the agent’s
unknown true objective function F . On the other hand, F should be small enough
to ensure tractability of the distributionally robust inverse optimization problem (13)
and to prevent degeneracy of its optimal solutions. A particular class F that strikes
this delicate balance and proves useful in many applications is the family of linear
objective functions Fθ (s, x) := 〈θ, x

〉
. The corresponding search space � ⊆ R

n may
account for prior information on the agent’s objective and should not contain θ = 0,
which corresponds to a trivial constant objective function that renders every response
optimal. Examples of tractable search spaces are listed below.

Example 2 (Tractable search spaces) If there is no prior information on F , it is natural
to set

� := {θ ∈ R
n : ‖θ‖∞ = 1

}
. (16a)
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Note that the normalization ‖θ‖∞ = 1 is non-restrictive because the objective func-
tions corresponding to θ and κ θ imply the same preferences for any model θ �= 0
and scaling factor κ > 0. In fact, we could define � as the unit sphere induced by
any norm on Rn . However, the ∞-norm stands out from a computational perspective.
While all norm spheres are non-convex and therefore a priori unattractive as search
spaces, the ∞-norm sphere decomposes into 2n polytopes—one for each facet. This
polyhedral decomposition property allows us to optimize efficiently over �.

If F is known to be non-decreasing in the agent’s decisions, a natural choice is

� := {θ ∈ R
n : ‖θ‖1 = 1, θ ≥ 0}. (16b)

This search space has been used in [27] and constitutes a single convex polytope.
If F is believed to reside in the vicinity of a nominal objective function

〈
θ0, x

〉
as

in [4], then we may set

� := {θ ∈ R
n : ‖θ − θ0‖ ≤ �

}
, (16c)

where ‖ · ‖ denotes a generic norm, and � reflects the degree of uncertainty about the
nominal model θ0.

When focusing on linear hypotheses, the suboptimality loss function (4b) reduces
to

Fθ (s, x) − min
y∈X(s)

Fθ (s, y) = 〈θ, x
〉− min

y∈X(s)

〈
θ, y
〉 = max

y∈X(s)

〈
θ, x − y

〉

= max
y∈X(s)

〈∇x Fθ (s, x), x − y
〉

(17)

and thus equals thefirst-order loss (4c),which is positive homogeneous and subadditive
in θ . The tractability results to be established below rely on the following assumption.

Assumption 5.1 (Conic representable support) The signal space S and the feasible
set X(s) are conic representable, that is,

S = {s ∈ R
m : Cs 	C d

}
and X(s) = {x ∈ R

n : Wx 	K Hs + h} ∀s ∈ S,

where the relations ‘	C’ and ‘	K’ represent conic inequalities with respect to some
proper convex cones C and K of appropriate dimensions, respectively. The set � of
all possible signal-response pairs thus reduces to

� = {(s, x) ∈ R
m × R

n : Cs 	C d, Wx 	K Hs + h
}
.

We also assume that the convex set � admits a Slater point.

Under Assumption 5.1, the suboptimality loss �θ (s, x) is concave in (s, x) for every
fixed θ , see, e.g., [14, Section 3.2.5]. We are now ready to state our first tractability
result for the class of linear hypotheses.
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Theorem 5.2 (Linear hypotheses and suboptimality loss) Assume that F represents
the class of linear hypotheses with a search space of the form (16) and that Assump-
tion 5.1 holds. If the observer uses the suboptimality loss (4b) and measures risk using
the CVaR at level α ∈ (0, 1], then the distributionally robust inverse optimization
problem (13) over the 1-Wasserstein ball is equivalent to the finite conic program3

minimize τ + 1

α

(

ελ + 1

N

N∑

i=1

ri

)

subject to θ ∈ �, λ ∈ R+, τ, ri ∈ R, φi1, φi2 ∈ C∗, μi1, μi2, γi ∈ K∗ ∀i≤N
〈
Cŝi − d, φi1

〉+ 〈Wx̂i − Hŝi − h, μi1 + γi
〉 ≤ ri + τ ∀i≤N

〈
Cŝi − d, φi2

〉+ 〈Wx̂i − Hŝi − h, μi2
〉 ≤ ri , θ = Wᵀγi ∀i≤N

∥∥∥∥

(
Cᵀφi1 − Hᵀ(μi1 + γi )

Wᵀ(μi1 + γi )

)∥∥∥∥∗
≤ λ,

∥∥∥∥∥

(
Cᵀφi2 − Hᵀμi2

Wᵀμi2

)∥∥∥∥∥∗
≤ λ ∀i≤N .

(18)

We emphasize that Theorem 5.2 remains valid if the training samples are incon-
sistent with the given support information, that is, if (̂si , x̂i ) /∈ � for some i ≤ N , in
which case �θ (̂si , x̂i ) can even be negative.

Proof of Theorem 5.2 By the definition of CVaR, the objective function of (13) can
be expressed as

sup
Q∈B1

ε(P̂N )

ρQ(�θ ) = sup
Q∈B1

ε(P̂N )

inf
τ

τ + 1

α
EQ
[
max{�θ (s, x) − τ, 0}]

= inf
τ

τ + 1

α
sup

Q∈B1
ε(P̂N )

EQ
[
max{�θ (s, x) − τ, 0}]. (19)

The interchange of the maximization over Q and the minimization over τ in the
second line is justified by Sion’s minimax theorem [38], which applies because the
Wasserstein ball B1

ε(P̂N ) is weakly compact [12, p. 2298]. The subordinate worst-
case expectation problem in the second line of (19) constitutes a semi-infinite linear
program. As the corresponding integrand is given by the maximum of �θ (s, x)−τ and
0, both of which can be viewed as proper concave functions in (s, x), this worst-case
expectation problem admits a strong dual semi-infinite linear program of the form

inf
λ≥0,ri

ελ + 1
N

N∑

i=1
ri

s.t. sup
(s,x)∈�

sup
y∈X(s)

〈
θ, x − y

〉− τ − λ‖(s, x) − (̂si , x̂i )‖ ≤ ri ∀i ≤ N

sup
(s,x)∈�

−λ‖(s, x) − (̂si , x̂i )‖ ≤ ri ∀i ≤ N ,

(20)

3 Strictly speaking, if � is an ∞-norm ball of the form (16a), then (18) can be viewed as a family of 2n
finite conic programs because � is non-convex but decomposes into 2n convex polytopes.
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see Theorem 4.2 in [30] for a detailed derivation of (20) for more general integrands.
By the definitions of X(s) and � put forth in Assumption 5.1, respectively, the i-th
member of the first constraint group in (20) holds if and only if the optimal value of
the conic program

sup
s,x,y

〈
θ, x − y

〉− τ − λ‖(s, x) − (̂si , x̂i )‖
s.t. Cs 	C d, Wx 	K Hs + h, Wy 	K Hs + h

is smaller or equal to ri . The dual of this conic program is given by

inf
〈
Cŝi − d, φi1

〉+ 〈Wx̂i − Hŝi − h, μi1 + γi
〉− τ

s.t. φi1 ∈ C∗, μi1, γi ∈ K∗
∥∥∥∥

(
Cᵀφi1 − Hᵀ(μi1 + γi )

Wᵀ(μi1 + γi )

)∥∥∥∥∗
≤ λ, θ = Wᵀγi ,

and strong duality holds because the uncertainty set � contains a Slater point due to
Assumption 5.1. Thus, the i-th member of the first constraint group in (20) holds if
and only if there exist φi1 ∈ C∗ and μi1, γi ∈ K∗ such that θ = Wᵀγi ,

〈
Cŝi − d, φi1

〉+ 〈Wx̂i − Hŝi − h, μi1 + γi
〉 ≤ ri

+ τ and

∥∥∥∥

(
Cᵀφi1 − Hᵀ(μi1 + γi )

Wᵀ(μi1 + γi )

)∥∥∥∥∗
≤ λ.

A similar reasoning shows that the i-th member of the second constraint group in (20)
holds if and only if there exist φi2 ∈ C∗ and μi2 ∈ K∗ such that

〈
Cŝi − d, φi2

〉+ 〈Wx̂i − Hŝi − h, μi2
〉 ≤ ri and

∥∥∥∥

(
Cᵀφi2 − Hᵀμi2

Wᵀμi2

)∥∥∥∥∗
≤ λ.

In summary, the worst-case expectation in the second line of (19) thus coincides with
the optimal value of the finite conic program

inf ελ + 1
N

N∑

i=1
ri

s.t. λ ∈ R+, ri ∈ R, φi1, φi2 ∈ C∗, μi1, μi2, γi ∈ K∗ ∀i ≤ N
〈
Cŝi − d, φi1

〉+ 〈Wx̂i − Hŝi − h, μi1 + γi
〉 ≤ ri + τ ∀i ≤ N

〈
Cŝi − d, φi2

〉+ 〈Wx̂i − Hŝi − h, μi2
〉 ≤ ri , θ = Wᵀγi ∀i ≤ N

∥∥∥∥∥

(
Cᵀφi1 − Hᵀ(μi1 + γi )

Wᵀ(μi1 + γi )

)∥∥∥∥∥∗
≤ λ,

∥∥∥∥∥

(
Cᵀφi2 − Hᵀμi2

Wᵀμi2

)∥∥∥∥∥∗
≤ λ ∀i ≤ N .

The claim then follows by substituting this conic program into (19). ��
If (̂si , x̂i ) ∈ � for all i ≤ N , then the conic program (18) simplifies. In this case,

the maximization problems in the last constraint group of (20) all evaluate to zero,

123



Data-driven inverse optimization with imperfect information 209

which implies that
〈
Cŝi − d, φi2

〉 + 〈Wx̂i − Hŝi − h, μi2
〉 ≤ ri reduces to ri ≥ 0,

while the decision variables φi2 and μi2 as well as the constraints

∥∥∥∥

(
Cᵀφi2 − Hᵀμi2

Wᵀμi2

)∥∥∥∥∗
≤ λ

can be omitted from (18) for all i ≤ N .
For stress test experiments it is often desirable to know the extremal distribution that

achieves the worst-case risk in (13). The following theorem shows that this extremal
distribution can be constructed systematically for any fixed θ ∈ � by solving a finite
convex optimization problem akin to (18).

Theorem 5.3 (Worst-case distribution for linear hypotheses) Under the assumptions
of Theorem 5.2, the worst-case risk in (18) corresponding to a fixed θ ∈ � coincides
with the optimal value of a finite convex program, i.e.,

sup
Q∈Bp

ε (P̂N )

CVaRQ
α (�θ ) = max

1

αN

N∑

i=1

πi1�θ

(
pi1
πi1

,
qi1
πi1

)

s.t. πi j ∈ R+, pi j ∈ R
m, qi j ∈ R

n ∀i ≤ N , j ≤ 2
pi j
πi j

∈ S,
qi j
πi j

∈ X(
pi j
πi j

) ∀i ≤ N , j ≤

πi1 + πi2 = 1,
1

N

N∑

i=1

πi1 = α ∀i ≤ N

1

N

N∑

i=1

2∑

j=1

πi j

∥∥∥∥∥

( pi j
πi j

− ŝi
qi j
πi j

− x̂i

)∥∥∥∥∥
≤ ε.

(21)

For any optimal solution {π�
i j , p

�
i j , q

�
i j } of this convex program, the discrete distribution

Q� := 1

N

N∑

i=1

2∑

j=1

π�
i jδξ�

i j
with ξ�

i j :=
(
p�
i j

π�
i j

,
q�
i j

π�
i j

)ᵀ

belongs to the Wassertein ball B1
ε(P̂N ) and attains the supremum on the left hand side

of (21).

Proof As the loss function (17) is proper and jointly concave in x and s, we can use a
similar reasoning as in [30, Theorem 4.5] to show that the convex program on the right
hand side of (21) coincides with the strong dual of (18) for any fixed θ ∈ �. If this
convex program is solvable and {π�

i j , p
�
i j , q

�
i j } is a maximizer, thenQ� ∈ B

1
ε(P̂N ) due

to [30, Corollary 4.7]. It remains to be shown that CVaRQ�

α (�θ ) is no smaller than (18).
Indeed, by the definition of CVaR we have
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CVaRQ�

α (�θ ) = inf
τ∈R τ + 1

αN

N∑

i=1

2∑

j=1

π�
i j max

{

�θ

(
p�
i j

π�
i j

,
q�
i j

π�
i j

)

− τ, 0

}

= sup
0≤νi j≤π�

i j

⎧
⎨

⎩
1

αN

N∑

i=1

2∑

j=1

νi j�θ

(
p�
i j

π�
i j

,
q�
i j

π�
i j

)

: α = 1

N

N∑

i=1

2∑

j=1

νi j

⎫
⎬

⎭

≥ 1

αN

N∑

i=1

π�
i1�θ

(
p�
i1

π�
i1

,
q�
i1

π�
i1

)
= sup

Q∈Bp
ε (P̂N )

CVaRQ
α (�θ ).

Here, the second equality follows from strong linear programming duality, while the
inequality follows from the feasibility of the solution νi1 = π�

i1 and νi2 = 0 for i ≤ N .

We close this section by generalizing Theorem 5.2 to the bounded rationality
loss (10). The proof largely parallels that of Theorem 5.2 and is therefore omitted
for brevity.

Corollary 5.4 (Linear hypotheses and bounded rationality loss) Assume that F rep-
resents the class of linear hypotheses with search space of the form (16) and that
Assumptions 5.1 holds. If the observer uses the bounded rationality loss (10) and
measures risk using the CVaR at level α ∈ (0, 1], then the inverse optimization prob-
lem (13) over the 1-Wasserstein ball is equivalent to a variant of the conic program (18)
with an additional decision variable τ ∈ R+ and where the first constraint group is
replaced with

〈
Cŝi − d, φi1

〉+ 〈Wx̂i − Hŝi − h, μi1 + γi
〉 ≤ ri + τ + δ ∀i ≤ N .

6 Quadratic hypotheses

Optimization problems with quadratic objectives abound in control [5], statistics [22],
finance [29] and many other application domains. Algorithms for inverse optimization
that can learn quadratic objective functions from signal-response pairs are therefore
of great practical interest. This motivates us to consider the class F of quadratic
hypotheses of the form Fθ (s, x) := 〈x, Qxx x

〉+ 〈x, Qxss
〉+ 〈q, x

〉
, which are encoded

by a parameter θ := (Qxx , Qxs, q). The corresponding search space should account
for prior information on the agent’s objective and should exclude θ = 0. Examples of
tractable search spaces are listed below.

Example 3 (Tractable search spaces) If F is only known to be strongly convex in x ,
it is natural to set

� :=
{
θ = (Qxx , Qxs, q) ∈ R

n×n × R
n×m × R

n : Qxx 	 I

}
. (22a)

Note that the normalization Qxx 	 I is non-restrictive because a positive scaling of
the objective function does not alter the agent’s preferences.
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If F is only known to be bilinear in s and x , it is natural to set

� :=
{
θ = (Qxx , Qxs, q) ∈ R

n×n × R
n×m × R

n : Qxx 	 0, Qxs = I

}
, (22b)

where the normalization Qxs = I can always be enforced by redefining s if necessary.
If F is close to a nominal objective function

〈
x, Q0

xx x
〉+ 〈x, Q0

xss
〉+ 〈q0, x 〉, then

we may set

� :=
{
θ = (Qxx , Qxs, q) ∈ R

n×n × R
n×m × R

n : Qxx 	 0, ‖θ − θ0‖ ≤ �

}
,

(22c)

where ‖ · ‖ denotes a generic norm, and � captures the uncertainty of the nominal
model θ0 = (Q0

xx , Q
0
xs, q

0).

When focusing on quadratic candidate objective functions, the suboptimality
loss (4b) reduces to

�θ (s, x) = 〈x, Qxx x + Qxss + q
〉− min

y∈X(s)

〈
y, Qxx y + Qxss + q

〉

= max
y∈X(s)

〈
x, Qxx x + Qxss + q

〉− 〈y, Qxx y + Qxss + q
〉
.

(23)

As in Sect. 5, we suppose that Assumption 5.1 holds. In this setting the agent’s decision
problem (1) constitutes a conic program and is therefore tractable for common choices
of the cones C andK. In contrast, the inverse optimization problem (13) is hard. In fact,
it is already hard to evaluate the objective function of (13) for a fixed θ . As we work
with quadratic objectives, throughout this section we use the 2-norm on the signal-
response space and the 2-Wasserstein metric to measure distances of distributions.

Theorem 6.1 (Intractability of (13) for quadratic hypotheses) Assume that F repre-
sents the class of quadratic hypotheseswith search space (22a)and thatAssumption5.1
holds. If the observer uses the suboptimality loss (4b) and measures risk using the
CVaR at level α ∈ (0, 1], then evaluating the objective function of (13) for a fixed
θ ∈ � is NP-hard even if N = 1 (there is only one data point), α = 1 (the observer
is risk-neutral), S is a singleton, X(s) is a polytope independent of s, and Qxs = 0.

Proof The proof relies on a reduction from the NP-hard quadratic maximization prob-
lem [31].

Quadratic Maximization
Instance. A positive definite matrix Q = Qᵀ 	 I.
Goal. Evaluate max‖x‖∞≤1

〈
x, Qx

〉
.

Given an input Q 	 I to the quadratic maximization problem, we construct an
instance of the inverse optimization problem (13) with N = 1, α = 1, andWasserstein
radius ε = √

n, where

ŝ1 := 0, x̂1 := 0, Qxx := Q, Qxs := 0, S := {0},
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X(s) := {x ∈ R
n : ‖x‖∞ ≤ 1}.

Under this parametrization, the objective function of (13) reduces to

sup
Q∈B2

ε(P̂N )

ρQ(�θ ) = sup
Q∈B2

ε(P̂N )

EQ

[
max
y∈X(s)

〈
x, Qxx x + Qxss + q

〉

−〈y, Qxx y + Qxss + q
〉]

= sup
Q∈B2

ε(P̂N )

EQ

[
max
y∈X(s)

〈
x, Qx

〉− 〈y, Qy
〉]

≤ sup
s∈S,x∈X(s)

max
y∈X(s)

〈
x, Qx

〉− 〈y, Qy
〉 = sup

‖x‖∞≤1

〈
x, Qx

〉
,

where the inequality in the third line follows from the inclusion B
2
ε(P̂N ) ⊆ M2(�),

while the last equality holds because the innermost maximum is attained at y = 0.
As (s, x) ∈ � if and only if s = 0 and ‖x‖∞ ≤ 1, we conclude that (s, x) ∈ �

implies ‖x‖2 ≤ √
n and ‖(s, x)‖22 ≤ n = ε2. Moreover, as the empirical distribution

P̂N coincides with the Dirac point measure at 0, the Wasserstein ball B2
ε(P̂N ) thus

contains all distributions supported on �, implying that the inequality in the above
expression is in fact an equality. Hence, evaluating the objective function of (13) is
tantamount to solving the NP-hard quadratic maximization problem. This observation
completes the proof. ��

Corollary 6.2 (Intractability of (13) for bilinear hypotheses) If all assumptions of
Theorem 6.1 hold but F denotes the class of bilinear hypotheses with search space
(22b), then evaluating the objective of (13) for a fixed θ ∈ � is NP-hard even if
N = 1, α = 1, S is a singleton, X(s) is a polytope independent of s and Qxx = 0.

Proof The proof is similar to that of Theorem 6.1 and omitted for brevity. ��

Corollary 6.2 asserts that the inverse optimization problem (13) is intractable even
if we focus on linear candidate objectives that depend on the exogenous signal s. This
finding contrasts with the tractability Theorem 5.2 for candidate objectives indepen-
dent of s. The intractability results portrayed inTheorem6.1 andCorollary 6.2motivate
us to devise a safe conic approximation for the inverse optimization problem (13) with
quadratic candidate objective functions.

Theorem 6.3 (Quadratic hypotheses and suboptimality loss) Assume that F repre-
sents the class of quadratic hypotheses with a search space of the form (22) and that
Assumption 5.1 holds. If the observer uses the suboptimality loss (4b) and measures
risk using the CVaR at level α ∈ (0, 1], then the following conic program provides a
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safe approximation for the distributionally robust inverse optimization problem (13)
over the 2-Wasserstein ball:

minimize τ + 1

α

(

ε2λ + 1

N

N∑

i=1

ri

)

subject to θ = (Qxx , Qxs , q) ∈ �, λ ∈ R+, τ, ri , ρi1, ρi2 ∈ R ∀i ≤ N

φi1, φi2 ∈ C∗, μi1, μi2, γi ∈ K∗, χi1, χi2 ∈ R
m, ζi1, ηi1, ζi2 ∈ R

n ∀i ≤ N

χi1 = 1
2 (−Cᵀφi1 + Hᵀ(μi1 + γi ) − 2λ̂si ) ∀i ≤ N

ζi1 = 1
2 (−q − Wᵀμi1 − 2λx̂i ), ηi1 = 1

2 (q − Wᵀγi ) ∀i ≤ N

ρi1 = τ + ri + λ
(〈
x̂i , x̂i

〉+ 〈ŝi , ŝi
〉)+ 〈d, φi1

〉+ 〈h, μi1 + γi
〉 ∀i ≤ N

χi2 = 1
2 (−Cᵀφi2 + Hᵀμi2 − 2λ̂si ) ∀i ≤ N

ζi2 = 1
2 (−Wᵀμi2 − 2λx̂i ) ∀i ≤ N

ρi2 = ri + λ
(〈
x̂i , x̂i

〉+ 〈ŝi , ŝi
〉)+ 〈d, φi2

〉+ 〈h, μi
〉 ∀i ≤ N

⎡

⎢⎢
⎣

λI − 1
2Q

ᵀ
xs

1
2Q

ᵀ
xs χi1

− 1
2Qxs λI − Qxx 0 ζi1
1
2Qxs 0 Qxx ηi1
χ

ᵀ
i1 ζ

ᵀ
i1 η

ᵀ
i1 ρi1

⎤

⎥⎥
⎦ 	 0,

⎡

⎣
λI 0 χi2

0 λI ζi2
χ

ᵀ
i2 ζ

ᵀ
i2 ρi2

⎤

⎦ 	 0 ∀i ≤ N .

(24)

Note that Theorem 6.3 remains valid if (̂si , x̂i ) /∈ � for some i ≤ N .

Proof of Theorem 6.3 As in the proof of Theorem 5.2 one can show that the objective
function of the inverse optimization problem (13) coincides with a variant of (19) that
involves the 2-Wasserstein ball. In the remainder, we derive a safe conic approximation
for the subordinate worst-case expectation problem

sup
Q∈B2

ε(P̂N )

EQ
[
max{�θ (s, x) − τ, 0}]. (25)

Duality arguments borrowed from [30, Theorem 4.2] imply that the above infinite-
dimensional linear program admits a strong dual of the form

inf
λ≥0,ri

ε2λ + 1
N

N∑

i=1
ri

s.t. sup
s∈S, x,y∈X(s)

〈
x, Qxx x + Qxss + q

〉− 〈y, Qxx y + Qxss + q
〉− τ

−λ‖(s, x) − (̂si , x̂i )‖22 ≤ ri ∀i ≤ N
sup

s∈S, x∈X(s)
−λ‖(s, x) − (̂si , x̂i )‖22 ≤ ri ∀i ≤ N .

(26)

By using the definitions of S and X(s) put forth in Assumption 5.1, the i-th member
of the first constraint group in (26) is satisfied if and only if the optimal value of the
maximization problem
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sup
s,x,y

〈
x, Qxx x + Qxss + q

〉− 〈y, Qxx y + Qxss + q
〉− τ − λ‖(s, x) − (̂si , x̂i )‖22

s.t. Cs 	C d, Wx 	K Hs + h, Wy 	K Hs + h
(27)

does not exceed ri . The Lagrangian of the conic quadratic program (27) is defined as

L(s, x, y;φi1, μi1, γi )

:= 〈x, Qxx x + Qxss + q
〉− 〈y, Qxx y + Qxss + q

〉− τ − λ‖(s, x) − (̂si , x̂i )‖22
+ 〈Cs − d, φi1

〉+ 〈Wx − Hs − h, μi1
〉+ 〈Wy − Hs − h, γi

〉
, (28)

and therefore (27) can be expressed as a max-min problem of the form

sup
s,x,y

inf
φi1∈C∗ inf

μi1,γi∈K∗ L(s, x, y;φi1, μi1, γi )

≤ inf
φi1∈C∗ inf

μi1,γi∈K∗ sup
s,x,y

L(s, x, y;φi1, μi1, γi ),

where the inequality follows from weak duality. As� contains a Slater point by virtue
of Assumption 5.1, strong duality holds (meaning that the inequality collapses to an
equality) if the Lagrangian is concave in (s, x, y); see also Proposition 6.4 below.
We conclude that the i-th member of the first constraint group in (26) holds if there
exist φi1 ∈ C∗ and μi1, γi ∈ K∗ with sups,x,y L(s, x, y;φi1, μi1, γi ) ≤ ri . As the
Lagrangian constitutes a quadratic function, this statement is satisfied if and only if
there are φi1 ∈ C∗, μi1, γi ∈ K∗, χi1 ∈ R

m , ζi1, ηi1 ∈ R
n and ρi1 ∈ R with

χi1 = 1
2 (−Cᵀφi1 + Hᵀ(μi1 + γi ) − 2λ̂si )

ζi1 = 1
2 (−q − Wᵀμi1 − 2λx̂i ), ηi1 = 1

2 (q − Wᵀγi )

ρi1 = τ + ri + λ
(〈
x̂i , x̂i

〉+ 〈ŝi , ŝi
〉)+ 〈d, φi1

〉+ 〈h, μi + γi
〉

⎡

⎢⎢
⎣

λI − 1
2Q

ᵀ
xs

1
2Q

ᵀ
xs χi1

− 1
2Qxs λI − Qxx 0 ζi1
1
2Qxs 0 Qxx ηi1
χ

ᵀ
i1 ζ

ᵀ
i1 η

ᵀ
i1 ρi1

⎤

⎥⎥
⎦ 	 0.

Similarly, it can be shown that the i-th member of the second constraint group in (26)
is satisfied if and only if there exist φi2 ∈ C∗, μi2 ∈ K∗, χi2 ∈ R

m , ζi2 ∈ R
n and

ρi2 ∈ R such that

χi2 = 1
2 (−Cᵀφi2 + Hᵀμi2 − 2λPsŝi )

ζi2 = 1
2 (−Wᵀμi2 − 2λx̂i )

ρi2 = ri + λ
(〈
x̂i , x̂i

〉+ 〈ŝi , ŝi
〉)+ 〈d, φi2

〉+ 〈h, μi
〉

⎡

⎣
λI 0 χi2
0 λI ζi2

χ
ᵀ
i2 ζ

ᵀ
i2 ρi2

⎤

⎦ 	 0.

(29)
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Replacing the semi-infinite constraints in (26) with the respective semidefinite approx-
imations shows that the worst-case expectation (25) is bounded above by the optimal
value of the conic program

inf ε2λ + 1
N

N∑

i=1
ri

s.t. λ ∈ R+, ri , ρi1, ρi2 ∈ R, φi1, φi2 ∈ C∗, μi1, μi2, γi ∈ K∗ ∀i ≤ N

χi1, χi2 ∈ R
m, ζi1, ηi1, ζi2 ∈ R

n ∀i ≤ N

χi1 = 1
2 (−Cᵀφi1 + Hᵀ(μi1 + γi ) − 2λ̂si ) ∀i ≤ N

ζi1 = 1
2 (−q − Wᵀμi1 − 2λx̂i ), ηi1 = 1

2 (q − Wᵀγi ) ∀i ≤ N

ρi1 = τ + ri + λ
(〈
x̂i , x̂i

〉+ 〈ŝi , ŝi
〉)+ 〈d, φi1

〉+ 〈h, μi1 + γi
〉 ∀i ≤ N

χi2 = 1
2 (−Cᵀφi2 + Hᵀμi2 − 2λ̂si ) ∀i ≤ N

ζi2 = 1
2 (−Wᵀμi2 − 2λx̂i ) ∀i ≤ N

ρi2 = ri + λ
(〈
x̂i , x̂i

〉+ 〈ŝi , ŝi
〉)+ 〈d, φi2

〉+ 〈h, μi
〉 ∀i ≤ N

⎡

⎢⎢
⎣

λI − 1
2Q

ᵀ
xs

1
2Q

ᵀ
xs χi1

− 1
2Qxs λI − Qxx 0 ζi1
1
2Qxs 0 Qxx ηi1
χ

ᵀ
i1 ζ

ᵀ
i1 η

ᵀ
i1 ρi1

⎤

⎥⎥
⎦ 	 0,

⎡

⎣
λI 0 χi2
0 λI ζi2

χ
ᵀ
i2 ζ

ᵀ
i2 ρi2

⎤

⎦ 	 0 ∀i ≤ N .

(30)

The claim then follows by substituting (30) into a suitable worst-case CVaR formula
akin to (19). ��

If (̂si , x̂i ) ∈ � for all i ≤ N , then the conic program (24) simplifies. In this case,
the maximization problems in the last constraint group of (26) all evaluate to zero,
which implies that the constraints (29) reduce to ri ≥ 0, while the decision variables
φi2, μi2, χi2, ζi2 and ρi2 can be omitted from (24) for all i ≤ N .

In spite of the hardness results outlined in Theorems 6.1 and 6.2, the following
proposition shows that the tractable approximation of Theorem 6.3 is sometimes exact.

Proposition 6.4 (Ex post exactness guarantee) If an optimal solution to the safe conic
approximation (24) from Theorem 6.3 satisfies the strict inequality

⎡

⎣
λI − 1

2Qxs
ᵀ 1

2Qxs
ᵀ

− 1
2Qxs λI − Qxx 0
1
2Qxs 0 Qxx

⎤

⎦ � 0, (31)

then (24) is equivalent to the original distributionally robust inverse optimization
problem (24).

Our computational experiments suggest that the ex post exactness condition (31)
is often satisfied if the Wasserstein radius ε is not too large.
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Proof of Proposition 6.4 From the proof of Theorem 6.3 we conclude that the optimal
value of the distributionally robust inverse optimization problem (13) can be repre-
sented as infθ,λ,τ ϕ(θ, λ, τ ), where

ϕ(θ, λ, τ ) := λε2 + 1

N

N∑

i=1

sup
s∈S, x,y∈X(s)

max
{〈
x, Qxx x + Qxss + q

〉〈
y, Qxx y

+ Qxss + q
〉− τ, 0

}
− λ‖(s, x) − (̂si , x̂i )‖22

for θ ∈ � and λ ≥ 0, and ϕ(θ, λ, τ ) = ∞ otherwise. By construction, ϕ is jointly
convex in θ = (Qxx , Qxs, q), λ and τ . Moreover, it is clear that the optimal value
of the finite convex program (24) can be represented as infθ,λ,τ ϕ̂(θ, λ, τ ), where
ϕ̂(θ, λ, τ ) denotes the infimum of (24) when the decision variables θ , λ and τ are
fixed. The proof of Theorem 6.3 further implies that ϕ̂ coincides with ϕ whenever the
Lagrangian (28) is concave in (s, x, y), which is the case if and only if

⎡

⎣
−λI 1

2Q
ᵀ
xs − 1

2Q
ᵀ
xs

1
2Qxs Qxx − λI 0

− 1
2Qxs 0 −Qxx

⎤

⎦ 
 0. (32)

Note also that ϕ̂(θ, λ, τ ) = ∞ whenever (32) is violated because (32) is implied by
the constraints of (24). In summary, ϕ and ϕ̂ are both convex functions satisfying

ϕ̂(θ, λ, τ ) =
{

ϕ(θ, λ, τ ) if (32) holds,
+∞ otherwise.

Thus, any minimizer of ϕ̂ satisfying the strict inequality (31) resides in the interior
of the region where the convex functions ϕ̂ and ϕ coincide and must therefore also
minimize ϕ.

Finally, we generalize Theorem 6.3 to the bounded rationality loss (10). The proof
largely parallels that of Theorem 6.3 and is therefore omitted for brevity.

Corollary 6.5 (Quadratic hypotheses and bounded rationality loss) Assume that F
represents the class of quadratic hypotheses with a search space of the form (22)
and that Assumption 5.1 holds. If the observer uses the bounded rationality loss (10)
and measures risk using the CVaR at level α ∈ (0, 1], then the inverse optimization
problem (13) over the 2-Wasserstein ball is is conservatively approximated by a variant
of the conic program (24) where τ ∈ R+ and the defining equation of ρi is replaced
with

ρi1 = τ + ri + δ + λ
(〈
x̂i , x̂i

〉+ 〈ŝi , ŝi
〉)+ 〈d, φi1

〉+ 〈h, μi1 + γi
〉 ∀i ≤ N .

The distributionally robust inverse optimization problem (13) also admits a safe
convex approximation when the search space consists of a class of convex hypotheses
of the type considered in [27]. Due to space restrictions we relegate this discussion to
Appendix 1.
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7 Numerical experiments

Wenowcompare the proposed distributionally robust approach to inverse optimization
against the state-of-the-art techniques described in [6] and [10]. The first experiment
aims to learn a linear hypothesis from imperfect training samples, where the imperfec-
tion is explained by measurement noise or the agent’s bounded rationality. Similarly,
the second experiment endeavors to learn a quadratic hypothesis from imperfect train-
ing samples, where the imperfection is explained by measurement noise or model
uncertainty.

All experiments are run on an Intel XEON CPU with 3.40GHz clock speed and
16GB of RAM. All linear, quadratic and second-order cone programs are solved with
CPLEX 12.6, and all semidefinite programs are solved with MOSEK 8. In order to
ensure that our experiments are reproducible, we make the underlying source codes
available at https://github.com/sorooshafiee/InverseOptimization.

7.1 Learning a linear hypothesis

The goal of this experiment is to learn a linear hypothesis from imperfect training
samples where the measured responses represent feasible perturbations of the true
optimal responses. The perturbations can be explained by measurement noise or by
the agent’s bounded rationality. We argue that different causes of the perturbations
necessitate different inverse optimization models.

7.1.1 Consistent noisy measurements

Decision problem of the agent: We assume that the agent’s true objective function
is F(s, x) = 〈θ�, x

〉
for some θ� in the vicinity of a nominal model θ0. The nominal

model is sampled uniformly from �0 := {
θ ∈ R

n : ‖θ0‖∞ ∈ [1, 5]}, while θ� is
sampled uniformly form � := {θ ∈ R

n : ‖θ − θ0‖∞ ≤ 1
}
. This construction implies

that θ� �= 0 almost surely. We also assume that the agent’s feasible set is given by
X(s) = {x ∈ R

n : ‖x‖∞ ≤ 1, Ax ≥ s}, where the constraint matrix A is sampled
uniformly from the hypercube [−1, 1]m×n . This feasible set can be brought to the
standard form of Assumption 5.1 by setting

W = (I,−I, Aᵀ)ᵀ ∈ R
(2n+m)×n, H = (0, 0, I)ᵀ ∈ R

(2n+m)×m, h

= (−1,−1, 0)ᵀ ∈ R
2n+m and K = R

2n+m+ .

For a fixed signal s, we denote the optimal value of the agent’s true decision problem
by z�(s).

Generation of training samples: A single signal is constructed as s = Av1, where
the auxiliary random variable v1 follows the uniform distribution on [−1, 1]n . Thus,
if ai , i ≤ m, denote the rows of the constraint matrix A, then the support of s can be
expressed as S = {s ∈ R

m : |si | ≤ ‖ai‖1 ∀i ≤ m}. This support can be brought to the
standard form of Assumption 5.1 by setting
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C = (I,−I)ᵀ ∈ R
2m×m, d

= (‖a1‖1, . . . , ‖am‖1, ‖a1‖1, . . . , ‖am‖1)ᵀ ∈ R
2m and C = R

2m+ .

As v1 ∈ X(s) by construction, problem (1) is feasible for every s ∈ S. We assume that
the agent’s response to s is noisy in the sense that it constitutes a random δ-suboptimal
solution to (1) for δ = 1. Specifically, we assume that x is obtained as a solution of
an auxiliary optimization problem

min
x∈X(s)

{〈
θrand, x

〉 : 〈θ�, x
〉 ≤ z�(s) + δ

}
,

which minimizes a linear cost over the set of all δ-suboptimal solutions to (1). The
gradient θrand of the cost is sampled uniformly from [−1, 1]n . By construction,we have
x ∈ X(s), which implies that (s, x) ∈ �. Thus, the measurement noise is consistent
with the known support of the exact signal-response pairs. The imperfect consistent
training samples (̂si , x̂i ), i ≤ N , are now generated independently using the above
procedure.

Decision problem of the observer: The observer aims to identify a linear hypothesis
Fθ (s, x) := 〈

θ, x
〉
, θ ∈ �, that best predicts the agent’s responses to new signals,

where the search space � is set to the ∞-norm ball around the nominal model θ0
described above. We assume that the observer minimizes the suboptimality loss (4b)
and uses the expected value to measure risk. Moreover, the observer solves the distri-
butionally robust inverse optimization problem (13) over a 1-Wasserstein ball around
the empirical distribution on the training samples, where the ∞-norm is used as the
transportation cost on �. Note that this problem can be reformulated as the tractable
linear program (18) by virtue of Theorem 5.2.

Out-of-sample risk: To assess the quality of an estimator θ̂N obtained from (18),
we evaluate its out-of-sample risk EPout (�θ̂N

) both with respect to the predictability
loss (4a) and the suboptimality loss (4b), where Pout represents the distribution of a
single test sample (s, x) independent of the training samples, and where x is an exact
(non-noisy) response to s in (1). In practice, the out-of-sample risk cannot be evaluated
analytically but only numerically by using 1000 independent test samples from Pout.
By relying on non-noisy test samples, we assess howwell the estimator θ̂N can predict
the agent’s exact optimal responses.

Results:All numerical results are averaged across 100 independent problems instances
{θ0, θ�, A}. The first experiment involves m = 50 signal variables, n = 50 decision
variables and N = 10 training samples. Figure 1a shows how the out-of-sample risk
of the optimal estimator θ̂N (ε) obtained from (18) changes with the radius ε of the
underlying Wasserstein ball. This experiment suggests that both the predictability
and suboptimality risks can be significantly reduced by using a distributionally robust
inverse optimizationmodel with a judiciously calibrated ambiguity set. Unfortunately,
Fig. 1a, from which the optimal Wasserstein radii could be read off easily, is not avail-
able in the training phase as its construction requires large amounts of test samples.
Instead, the Wasserstein radii offering the lowest out-of-sample risk must also be esti-

123



Data-driven inverse optimization with imperfect information 219

Fig. 1 Out-of-sample suboptimality and predictability risks in the presence of imperfect consistent training
samples and perfect test samples. Lines represent averages across 100 simulation runs, while shaded areas
visualize the tubes between the 25 and75%quantiles.a Impact of theWasserstein radius on the suboptimality
and predictibility risk, b suboptimality learning curve, c predictibility learning curve

mated from the training data. To this end, we use the following k-fold cross validation
algorithm:

Partition ξ̂1, . . . , ξ̂N into k folds, and repeat the following procedure for each fold
i = 1, . . . , k. Use the i-th fold as a validation dataset and merge the remaining k − 1
folds to a training dataset of size Ni . Using only the i-th training dataset, solve (18)
for a large but finite number of candidate radii ε ∈ E to obtain an estimator θ̂Ni (ε).
Use the i-th validation dataset to estimate the out-of-sample risk of θ̂Ni (ε) for each
ε ∈ E . Set ε̂iN to any ε ∈ E that minimizes this quantity. After all folds have been
processed, set ε̂N to the average of the ε̂iN for i = 1, . . . , k, and re-solve (18) with
ε = ε̂N using all N samples. Report the optimal solution θ̂N and the optimal value ĴN
of (18) as the recommended estimator and its corresponding certificate, respectively.
Throughout all experiments we set k = min{5, N } and E = {ε = b · 10c : b ∈
{1, 5}, c ∈ {−4,−3,−2,−1}}.

For brevity, we henceforth refer to the above cross-validation scheme as the dis-
tributionally robust optimization (DRO) approach. In the following, we compare the
resulting DRO estimator against two state-of-the-art estimators from the literature.
The first estimator is obtained from the variational inequality (VI) approach proposed
in [10], which minimizes the first-order loss (4c) averaged across all training samples.
By [10, Theorem 3], the resulting inverse optimization problem is equivalent to the
tractable linear program

minimize
1

N

N∑

i=1

|ri |
subject to θ ∈ �, γi ∈ R+, ri ∈ R ∀i ≤ N〈

Wx̂i − Hŝi − h, γi
〉 ≤ ri ∀i ≤ N

W�γi = θ ∀i ≤ N .

Note that as all training samples are consistent, that is, (̂si , x̂i ) ∈ � for i = 1, . . . , n,
one can show that all residuals ri are automatically non-negative, and the above linear
program can be viewed as a special instance of (13) that minimizes the first-order loss,
where the risk measure is set to the expected value and the Wasserstein radius is set
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to zero. If there were inconsistent training samples that fall outside of �, on the other
hand, the absolute values of the residuals would be needed to prevent unboundedness.

As the first-order loss coincides with the suboptimality loss when focusing on linear
hypotheses (see Sect. 5), the VI approach can be viewed as a special case of the DRO
approach when all training samples are consistent and the Wasserstein radius ε is set
to zero. Due to the extra freedom of choosing a nonzero ε, we therefore expect the
DRO approach to have an advantage over the VI approach in this setting.

The second estimator is obtained from the bilevel programming (BP) approach pro-
posed in [6], which minimizes the predictability loss (4a) averaged across all training
samples. As shown in [6, Section 2.2], the resulting inverse optimization problem is
equivalent to the optimistic bilevel program

minimize
1

N

N∑

i=1

‖x̂i − yi‖22
subject to θ ∈ �, yi ∈ argmin

z

{〈
z, θ
〉 : Wz ≥ Hŝi + h

}
∀i ≤ N .

Note that this bilevel programcanbeviewedas a special instanceof (13) thatminimizes
the predictability loss, where the risk measure is set to the expected value and the
Wasserstein radius is set to zero.

The above bilevel program can be reformulated as a mixed integer quadratic pro-
gram by replacing the ‘argmin’-constraint with the Karush–Kuhn–Tucker optimality
conditions of the agent’s linear program. Indeed, note that the resulting complementary
slackness conditions can be linearized by introducing binary variables that identify
the binding constraints. However, this approach requires big-M constants to bound
the optimal dual variables. As valid big-M constants are difficult to obtain in general
and as overly conservative big-M constants lead to numerical instability, we use here
the YALMIP interface for bilevel programming, which calls a dedicated branch and
bound algorithm that branches directly on the complementarity slackness conditions
[28]. Throughout our experiments we limit all branch and bound calculations to 2000
iterations.

Figure 1b, c visualize the suboptimality and predictability learning curves, respec-
tively, which capture how the out-of-sample risk of the different estimators changes
with the number of training samples. As optimistic bilevel programs are NP-hard even
when all objective and constraint functions are linear [8], this experiment focuses on
problem instances with n = m = 10. Even for these moderate problem dimensions,
however, the inverse optimization problems associated with the BP approach fails
to find a feasible solution for more than 10 training samples. In contrast, all other
approaches lead to tractable linear programs. Figure 1b shows that the DRO approach
dominates the VI and BP approaches uniformly across all samples sizes in terms of
out-of-sample suboptimality risk. This is reassuring as the DRO approach actually
minimizes suboptimality risk. However, Fig. 1c suggests that the DRO approach wins
even in terms of out-of-sample predictability risk. This is perhaps surprising because,
unlike the BP approach, the DRO approach only minimizes an approximation of the
predictability loss. We conclude that injecting distributional robustness may be more
beneficial for out-of-sample performance than using the correct loss function.
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Table 1 Out-of-sample suboptimality risk in the presence of noisy consistent measurements

m

n Methods 10 20 30 40 50

10 VI 1.4 × 10−1 1.8 × 10−1 1.4 × 10−1 1.2 × 10−1 1.3 × 10−1

DRO 1.2 × 10−1 1.3 × 10−1 1.1 × 10−1 8.9 × 10−2 9.5 × 10−2

20 VI 3.0 × 10−1 3.5 × 10−1 3.2 × 10−1 2.5 × 10−1 2.4 × 10−1

DRO 2.4 × 10−1 2.9 × 10−1 2.4 × 10−1 1.9 × 10−1 1.9 × 10−1

30 VI 3.8 × 10−1 4.4 × 10−1 4.6 × 10−1 4.2 × 10−1 3.6 × 10−1

DRO 3.2 × 10−1 3.7 × 10−1 3.7 × 10−1 3.3 × 10−1 3.1 × 10−1

40 VI 4.4 × 10−1 5.5 × 10−1 6.0 × 10−1 5.4 × 10−1 5.1 × 10−1

DRO 3.7 × 10−1 4.5 × 10−1 4.6 × 10−1 4.4 × 10−1 4.5 × 10−1

50 VI 5.0 × 10−1 6.4 × 10−1 6.5 × 10−1 7.1 × 10−1 6.2 × 10−1

DRO 4.1 × 10−1 5.1 × 10−1 5.4 × 10−1 5.6 × 10−1 5.4 × 10−1

Table 2 Out-of-sample predictability risk in the presence of consistent noisy measurements

m

n Methods 10 20 30 40 50

10 VI 6.1 × 10−1 4.6 × 10−1 3.4 × 10−1 2.6 × 10−1 2.4 × 10−1

DRO 5.6 × 10−1 4.2 × 10−1 3.2 × 10−1 2.4 × 10−1 2.2 × 10−1

20 VI 1.1 × 100 9.1 × 10−1 7.6 × 10−1 6.1 × 10−1 5.1 × 10−1

DRO 1.0 × 100 9.0 × 10−1 7.2 × 10−1 5.9 × 10−1 4.8 × 10−1

30 VI 1.4 × 100 1.2 × 100 1.1 × 100 9.7 × 10−1 8.5 × 10−1

DRO 1.4 × 100 1.2 × 100 1.1 × 100 9.5 × 10−1 8.4 × 10−1

40 VI 1.6 × 100 1.5 × 100 1.4 × 100 1.3 × 100 1.2 × 100

DRO 1.6 × 100 1.5 × 100 1.4 × 100 1.3 × 100 1.2 × 100

50 VI 1.8 × 100 1.7 × 100 1.6 × 100 1.6 × 100 1.4 × 100

DRO 1.8 × 100 1.7 × 100 1.6 × 100 1.6 × 100 1.4 × 100

Tables 1 and 2 report the out-of-sample suboptimality and predictability risks,
respectively, for the DRO and VI estimators based on N = 10 training samples and
for different signal and response dimensions. The BP approach is excluded from this
comparison due to its intractability. We observe that the DRO estimator always attains
the lowest suboptimality risk and often the lowest predictability risk. Whenever the
VI estimator wins, the predictability risks of the VI and DRO estimators are in fact
almost identical.
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Fig. 2 Out-of-sample suboptimality and predictability risks in the presence of imperfect consistent training
and test samples. Lines represent averages across 100 simulation runs, while shaded areas visualize the tubes
between the 25 and 75%quantiles. a Impact of theWasserstein radius on the suboptimality and predictibility
risk, b suboptimality learning curve, c predictibility learning curve

7.1.2 Bounded rationality

Consider the exact same setting as in Sect. 7.1.1 but assume now that the agent
suffers from bounded rationality. Specifically, assume that the agent selects random
δ-suboptimal decisions that are perfectly measured by the observer. This means that
the training samples are generated as in Sect. 7.1.1, but the imperfection of the training
responses is now explained by the agent’s bounded rationality instead of the observer’s
noisy measurements. At this point one may wonder why a new interpretation of the
imperfections should impact the observer’s inverse optimization problem. In the fol-
lowing we will assume, however, that the observer is aware of the agent’s bounded
rationality, knows the value of δ and aims to predict the agent’s actual suboptimal
decisions. Therefore, the DRO approach to inverse optimization is subject to two
changes:

• The observer minimizes the bounded rationality loss (10) instead of the subopti-
mality loss (4b).

• The test samples are generated in the same way as the training samples. Thus, the
test responses no longer constitute perfect minimizers of (1) but represent random
δ-suboptimal solutions.

Recall that the bounded rationality loss favors hypotheses that correctly predict δ-
suboptimal responses. We also highlight that the observer’s inverse optimization
problemwith bounded rationality loss can be reformulated as a tractable linear program
by virtue of Corollary 5.4. Moreover, by using imperfect test samples, the out-of-
sample risk is now measured under the distribution of an imperfect signal-response
pair, which is the correct performance criterion given that the observer aims to predict
imperfect responses.

In analogy to Sect. 7.1.1, the impact of the Wasserstein radius on the out-of-
sample suboptimality and predictability risk is shown in Fig. 2a. The suboptimality
and predictability learning curves of different estimators are visualized in Fig. 2b,
c, respectively. Here, the DRO estimator is defined in terms of the bounded ratio-
nality loss, while the VI and BP estimators are computed as in Sect. 7.1.1 and are
thus not corrected for the agent’s bounded rationality. The impact of the signal and
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Table 3 Out-of-sample suboptimality risk in the presence of bounded rationality

m

n Methods 10 20 30 40 50

10 VI 4.3 × 10−2 2.5 × 10−2 1.1 × 10−2 5.7 × 10−3 4.5 × 10−3

DRO 2.5 × 10−2 1.1 × 10−2 6.4 × 10−3 2.9 × 10−3 1.8 × 10−3

20 VI 7.7 × 10−2 7.8 × 10−2 6.3 × 10−2 3.7 × 10−2 1.8 × 10−2

DRO 5.3 × 10−2 4.4 × 10−2 3.4 × 10−2 2.1 × 10−2 9.2 × 10−3

30 VI 1.2 × 10−1 1.3 × 10−1 1.2 × 10−1 8.9 × 10−2 6.4 × 10−2

DRO 7.9 × 10−2 7.8 × 10−2 6.9 × 10−2 5.2 × 10−2 3.9 × 10−2

40 VI 1.4 × 10−1 1.9 × 10−1 1.7 × 10−1 1.4 × 10−1 1.2 × 10−1

DRO 9.7 × 10−2 1.2 × 10−1 1.1 × 10−1 9.5 × 10−2 8.2 × 10−2

50 VI 1.9 × 10−1 2.0 × 10−1 2.1 × 10−1 2.0 × 10−1 1.7 × 10−1

DRO 1.2 × 10−1 1.3 × 10−1 1.4 × 10−1 1.4 × 10−1 1.2 × 10−1

Table 4 Out-of-sample predictability risk in the presence of bounded rationality

m

n Methods 10 20 30 40 50

10 VI 8.2 × 10−1 5.8 × 10−1 4.5 × 10−1 3.5 × 10−1 3.2 × 10−1

DRO 7.9 × 10−1 5.9 × 10−1 4.6 × 10−1 3.7 × 10−1 3.4 × 10−1

20 VI 1.2 × 100 1.1 × 100 8.9 × 10−1 7.2 × 10−1 5.8 × 10−1

DRO 1.2 × 100 1.1 × 100 9.2 × 10−1 7.4 × 10−1 6.0 × 10−1

30 VI 1.5 × 100 1.4 × 100 1.2 × 100 1.1 × 100 9.4 × 10−1

DRO 1.5 × 100 1.4 × 100 1.3 × 100 1.1 × 100 9.6 × 10−1

40 VI 1.7 × 100 1.6 × 100 1.5 × 100 1.4 × 100 1.3 × 100

DRO 1.8 × 100 1.7 × 100 1.6 × 100 1.4 × 100 1.3 × 100

50 VI 1.9 × 100 1.8 × 100 1.7 × 100 1.6 × 100 1.5 × 100

DRO 1.9 × 100 1.9 × 100 1.8 × 100 1.7 × 100 1.6 × 100

response dimensions on the out-of-sample suboptimality and predictability risk are
reported in Tables 3 and 4, respectively. Unless otherwise stated, all experiments are
parameterized exactly as in Sect. 7.1.1. Here, the DRO estimator systematically attains
the lowest suboptimality risk, while the VI estimator almost always wins in terms of
predictability risk, even though only by a small margin.
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7.2 Learning a quadratic hypothesis

A fundamental problem in marketing is to understand the purchasing decisions of
consumers, which is an essential prerequisite for estimating demand functions. In
this section we study the inverse optimization problem of a marketing manager (the
observer) aiming to learn the quadratic utility function that best explains the purchasing
decisions of a consumer (the agent). This problem setup is inspired by [27].

7.2.1 Consistent noisy measurements

Decision problem of the agent: Assume that there are n products with prices s ∈
R
n+. The agent aims to select a basket of goods x ∈ R

n+ that minimizes the true
objective function F(s, x) = 〈

s, x
〉 − U (x), where

〈
s, x
〉
represents the purchasing

costs, while the concave quadratic function U (x) := −〈x, Q�
xx x
〉 − 〈q�, x

〉
captures

the utility of consumption. The positive definite matrix Q�
xx is constructed as follows.

Sample a square matrix A uniformly form [−1, 1]n×n , denote by R the orthogonal
matrix consisting of the orthonormal eigenvectors of (A + Aᵀ)/2 and set Q�

xx :=
RᵀDR, where D is a diagonal matrix whose main diagonal is sampled uniformly
form [0.2, 1]n . Moreover, the gradient q� is sampled uniformly from [−2, 0]n . Finally,
define the agent’s feasible set as X(s) = [0, 5]n , which can be brought to the standard
form of Assumption 5.1 by setting

W =(I,−I)ᵀ ∈ R
2n×n, H =(0, 0)ᵀ ∈ R

2n×m, h=5 · (0,−1)ᵀ ∈ R
2n and K=R

2n+ .

As usual, for a fixed signal s, we denote the optimal value of the agent’s true decision
problem by z�(s).

Generation of training samples: Signals follow the uniform distribution on the sup-
port set S = [0, 1]n , which can be brought to the standard form of Assumption 5.1 by
setting C = (I,−I)ᵀ ∈ R

2n×n , d = (0,−1)ᵀ ∈ R
2n and C = R

2n+ . As in Sect. 7.1.1,
we assume that the agent’s response to s is noisy and constitutes a random δ-suboptimal
solution to (1) for δ = 0.2. Thus, x is obtained as a solution of the auxiliary problem

min
x∈X(s)

{〈
x, Qrandx

〉 : 〈x, Q�
xx x
〉+ 〈s, x 〉+ 〈q�, x

〉 ≤ z�(s) + δ
}
,

which minimizes a convex quadratic cost over the set of all δ-suboptimal solutions
to (1). Specifically, Qrand is a diagonal matrix whose main diagonal is sampled
uniformly form [0, 1]n . As (s, x) ∈ � by construction, the measurement noise is
consistent with the know support of the exact signal-response pairs. The imperfect
consistent training samples (̂si , x̂i ), i ≤ N , are now generated independently using
the above procedure.

Decision problem of the observer: The observer aims to identify the best quadratic
hypothesis of the form Fθ (s, x) := 〈x, Qxx x

〉 + 〈x, s〉 + 〈q, x
〉
, where the parameter
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Fig. 3 Impact of the Wasserstein radius on the out-of-sample suboptimality and predictability risk. Lines
represent averages across 100 simulation runs, while shaded areas visualize the tubes between the 25 and
75% quantiles. a Imperfect consistent training samples and perfect test samples, b imperfect inconsistent
training samples and perfect test samples, c model uncertainty

θ = (Qxx , q) ranges over the search space

� =
{
θ = (Qxx , q) ∈ R

n×n × R
n : Qxx 	 0

}
.

Note that no hypothesis Fθ (s, x), θ ∈ �, can vanish identically due to the term
〈
x, s
〉
.

Note also that the agent’s true objective function corresponds to θ� = (Q�
xx , q

�) ∈ �.
We assume that the observer minimizes the suboptimality loss (4b), uses the expected
value to measure risk and solves the distributionally robust inverse optimization prob-
lem (13) over a 2-Wasserstein ball around the empirical distribution on the training
samples, where the 2-norm is used as the transportation cost on �. By Theorem 6.3,
the emerging inverse optimization problem is conservatively approximated by the
tractable semidefinite program (24).

Out-of-sample risk: The quality of an estimator θ̂N obtained from (24) is measured
by its out-of-sample risk EPout (�θ̂N

) both with respect to the predictability loss (4a)
and the suboptimality loss (4b), where Pout represents the distribution of a single test
sample (s, x) independent of the training samples, and where x is an exact (non-noisy)
response to s in (1). More precisely, the out-of-sample risk is evaluated approximately
using 1,000 independent test samples from Pout.

Results:All numerical results are averaged across 100 independent problems instances
{Q�

xx , q
�}. Under the assumption that the signal and response dimensions are set to

n = 10 and there are N = 20 training samples, Fig. 3a shows how the out-of-sample
risk of the optimal estimator θ̂N (ε) obtained from (13) changes with the Wasserstein
radius ε. As in Sect. 7.1.1, this experiment suggests that both the predictability and sub-
optimality risks can be reduced by using a distributionally robust inverse optimization
model.

7.2.2 Inconsistent noisy measurements

Assume now that the agent’s optimal solutions to (1) are corrupted by additive mea-
surement noise that follows a uniform distribution on [−0.1, 0.1]n . Otherwise, we
consider the exact same experimental setup as in Sect. 7.2.1. Under this premise,
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it is likely that some training responses are infeasible in (1), that is, x̂i /∈ X(̂si )
and—a fortiori—(̂si , x̂i ) /∈ � for some i ≤ N . These problematic training samples
are inconsistent with the known support of the perfect signal-response pairs, and the
corresponding empirical distribution P̂N fails to be supported on �. Thus, for all suf-
ficiently small values of ε there exists no distribution Q on � with W2

(
Q, P̂N

) ≤ ε,
implying that theWasserstein ball B2

ε(P̂N ) is empty, in which case the distributionally
robust inverse optimization problem (24) becomes meaningless. Figure 3b visualizes
the out-of-sample suboptimality and predictability risk of the optimal estimator θ̂ (ε)

as a function of ε. Note that for any fixed ε the figure reports the out-of-sample risk
averaged only across those problem instances {Q�

xx , q
�} for which B

2
ε(P̂N ) �= ∅.

Inspecting the results at the instance level, we observe that the out-of-sample risk is
typically minimized by the smallest value of ε ≥ 0 for which B

2
ε(P̂N ) �= ∅ (this is

not evident from the aggregate results shown in Fig. 3b). We conclude that a distribu-
tionally robust approach may be necessary for consistency.

7.2.3 Model uncertainty

Assume next that the agent’s objective function is not contained in the set of hypotheses
Fθ (s, x), θ ∈ �, but that the signals and the agent’s responses are unaffected by
noise. Specifically, in analogy to [27], we assume that the true utility function is given
by U (x) := 〈

1,
√
Ax − b

〉
, where A is a diagonal matrix whose main diagonal is

sampled uniformly from [0.5, 1]n , while b is sampled uniformly from [0, 0.25]n . The
square root is applied componentwise and evaluates to −∞ for negative arguments.
Otherwise, we consider the exact same experimental setup as in Sect. 7.2.1. Figure 3c
shows the out-of-sample suboptimality and predictability risk of the optimal estimator
θ̂ (ε) as a function of ε, indicating that the best results are obtained for strictly positive
Wasserstein radii, which enable the observer to combat over-fitting to the training
samples.

7.2.4 Comparison of different data-driven inverse optimization schemes

In practice, the Wasserstein radii offering the lowest out-of-sample risk must be esti-
mated from the training samples only. To this end, the DRO approach calibrates ε

via k-fold cross validation as in Sect. 7.1. Another estimator is obtained by solving
the empirical risk minimization (ERM) problem (8) using the empirical mean and the
suboptimality loss (4b). This approach effectively mimics the DRO approach but sets
ε = 0, which can be viewed as a trivial data-driven strategy to calibrate the Wasser-
stein radius.4 The VI approach also disregards ambiguity and minimizes the empirical

4 We did not consider the ERM approach in Sect. 5 because it coincides with the VI approach for linear
hypotheses.
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first-order loss by solving the semidefinite program

minimize
1

N

N∑

i=1

|ri |
subject to Qxx ∈ R

n×n, q ∈ R
n, γi ∈ R+, ri ∈ R ∀i ≤ N〈

Wx̂i − Hŝi − h, γi
〉 ≤ ri ∀i ≤ N

W�γi = 2Qxx x̂i + ŝi + q ∀i ≤ N
Qxx 	 0,

see [10, Theorem 3]. As in Sect. 7.1.1, the absolute values of the residuals ri in the
objective can be dropped whenever the training samples are consistent with �. We
exclude the BP approach from this experiment because it leads to severely intractable
mixed integer semidefinite programming problems.

All three approaches described above search over the parametric space of quadratic
hypotheses. If the observer suspects that the true utility function fails to be quadratic,
however, she may prefer a non-parametric approach that models the gradient of the
utility function as a vector field f ∈ Hn , where H represents a reproducing kernel
Hilbert space of real-valued functions on R

n+, which is induced by a symmetric and
positive definite kernel function k : R

n+ × R
n+ → R. As Hn is typically infinite-

dimensional and contains multiple candidate gradients f ∈ Hn that explain the
training data, it has been suggested in [10, Section 5] to minimize the Hilbert norm∑n

i=1 ‖ fi‖2H of f subject to the constraint that the residuals of the first-order opti-

mality condition at the training samples satisfy 1
N

∑N
i=1 |ri | ≤ κ for some prescribed

threshold κ ≥ 0. This amounts to finding the smoothest (with respect to the ker-
nel function k) candidate gradient f ∈ Hn that explains the training data to within
accuracy κ . By leveraging a generalized representer theorem, the resulting infinite-
dimensional optimization problem can be reformulated as the tractable quadratic
program

minimize
n∑

i=1

〈
ei , αKα�ei

〉

subject to α ∈ R
n×N , γi ∈ R+, ri ∈ R ∀i ≤ N

〈
Wx̂i − Hŝi − h, γi

〉 ≤ ri ∀i ≤ N

W�γi = ŝi − αKei ∀i ≤ N

1

N

N∑

i=1

|ri | ≤ κ,

(33a)

where K ∈ R
N×N denotes the kernel matrix with entries Ki j = k (̂xi , x̂ j ), ei stands

for the i-th standard basis vector in a space of appropriate dimension, and α ∈ R
n×N

denotes a decision variable that encodes the partial derivatives of the utility function
via fi (x) =∑N

j=1 αi j k (̂x j , x); see [10, Theorem 5].
In the inverse optimization context studied here, however, the above non-parametric

VI approach suffers from two shortcomings that are not addressed in [10].
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(i) The inverse optimization problem (33a) aims to learn the gradient field f of the
unknown utility functionU . As the Hessian matrix ofU must be symmetric, the
gradient field f must satisfy

∂ fi (x)

∂x j
= ∂ f j (x)

∂xi
∀x ∈ R

n+, ∀i, j = 1, . . . , n.

By Stokes’ theorem, this condition is necessary and sufficient to ensure that the
utility function U can be reconstructed uniquely (modulo an additive constant)
from f . Specifically, this condition guarantees that the utility function is defined
unambiguously through the line integral U (x) = U (0) + ∫C

〈
f (x ′), dx ′〉, where

C represents an arbitrary piecewise smooth curve in Rn+ connecting 0 and x .
(ii) While the inverse optimization problem (33a) represents a tractable quadratic

program, the resulting gradient field f may induce a non-concave utility function
U , which means that the agent’s objective function F(s, x) = 〈s, x 〉−U (x) may
have multiple local minima. Thus, even though learning f is easy, predicting
the optimal response x to a given signal s may require the solution of a hard
non-convex optimization problem,whichmay severely complicate extensive out-
of-sample tests. Similarly, evaluating the suboptimality loss F(s, x) at a fixed
signal-response pair is intractable.

Here we address the first challenge by using the polynomial kernel function
k(x, x ′) = (c

〈
x, x ′〉 + 1)p, which allows us to include the missing symmetry con-

ditions in (33a) by appending the linear equality constraints

N∑

k=1

(
αik [̂xk ] j − α jk [̂xk ]i

) q−1∏

t=1

[̂xk ]lt = 0 ∀i, j = 1, . . . , n,∀1 ≤ l1 ≤ · · · ≤ lq−1 ≤ n,∀q = 1, . . . , p.

(33b)

The second challenge does not have a simple remedy, and therefore we abandon the
ideal goal to solve (1) to global optimality. Instead, for any given signal s, we use
the gradient field f obtained from (33) directly to find a local solution of (1) via
the classical subgradient descent algorithm [16, Chapter 3], where the step size is set
to 10−3 and an initial feasible solution is selected uniformly at random from X(s).
Note that the focus on local minima in prediction is consistent with the use of the first-
order loss (4c) in inverse optimization because the first-oder loss cannot distinguish
local and global optima and thus fails to penalize training samples (̂si , x̂i ) where x̂i is
a locally optimal but globally suboptimal response to ŝi .

In our experimentswe determine the parameter c of the polynomial kernel via 5-fold
cross validation. Once the gradient field f has been inferred from (33), we construct
the corresponding utility function by integrating f along the straight line C between
0 and x with parameterization g(t) = t x for t ∈ [0, 1], that is, we set

U (x) = U (0) +
∫

C

〈
f (x ′), dx ′〉 = U (0) +

∫ 1

0

〈
f (t x), x

〉
dt = U (0)
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Table 5 Data-driven inverse optimization: out-of-sample suboptimality and predictability risk of the VI,
ERM and DRO approaches in different experimental settings

Methods Suboptimality Predictability

Consistent noisy
measurements

VI (parametric) 3.2 × 10−1 1.3 × 100

ERM 8.6 × 10−2 4.7 × 10−1

DRO 7.9 × 10−2 3.9 × 10−1

Inconsistent noisy
measurements

VI (parametric) 9.2 × 10−2 6.3 × 10−1

ERM Unbounded Unbounded

DRO 4.0 × 10−2 2.4 × 10−1

Model uncertainty VI (parametric) 8.3 × 10−1 2.8 × 100

VI (non-parametric, p = 2) 1.9 × 100 4.8 × 100

VI (non-parametric, p = 3) 4.0 × 10−1 6.4 × 100

ERM 6.2 × 10−1 2.4 × 100

DRO 6.0 × 10−1 2.2 × 100

+
∫ t

0

n∑

i=1

N∑

j=1

xiαi j k (̂x j , t x) dt

= U (0) +
n∑

i=1

N∑

j=1

xiαi j

∫ 1

0
(c
〈
t x, x̂ j

〉+ 1)p dt = U (0)

+
n∑

i=1

N∑

j=1

xiαi j

(
c
〈
x, x̂ j

〉+ 1
)p+1 − 1

c(p + 1)
〈
x, x̂ j

〉 .

Table 5 reports the out-of-sample suboptimality and predictability risks, respectively,
for the DRO, VI and ERM estimators. The non-parametric VI approach is exclusively
used in the presence of model uncertainty, which is the only scenario in which it has
a chance to outperform the more parsimonious parametric approaches. Our results
show that the DRO estimator consistently attains the lowest suboptimality and pre-
dictability risk among all parametric approaches.We emphasize that the suboptimality
and predicatability risk of the non-parametric VI approach are evaluated with respect
to the local minimum identified by the subgradient descent algorithm and are there-
fore largely meaningless. In fact, we observed that the suboptimality risk becomes
even negative for certain instances in which the global minimum of (1) could not
be found. This artefact explains the low suboptimality risk of the non-parametric VI
approach with p = 3. Note also that for p ≥ 4 the number of symmetry conditions
(33b) explodes, and thus (33) can no longer be solved. We also reconfirm our earlier
observation that injecting robustness reduces out-of-sample risk.
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Appendix A. Convex hypotheses

Consider the class F of hypotheses of the form Fθ (s, x) := 〈
θ,�(x)

〉
, where each

component function of the feature map� : Rn → R
d is convex, and where the weight

vector θ ranges over a convex closed search space � ⊆ R
d+. Thus, by construction,

Fθ (s, x) is convex in x for every fixed θ ∈ �. In the remainder we will assumewithout
much loss of generality that the transformation from the signal-response pair (s, x)
to the signal-feature pair (s, �(x)) is Lipschitz continuous with Lipschitz modulus 1,
that is, we require

‖(s1, �(x1))−(s2, �(x2))‖≤‖(s1, x1)−(s2, x2)‖ ∀(s1, x1), (s2, x2) ∈ R
m × R

n .

(34)

Before devising a safe conic approximation for the inverse optimization problem (13)
with convex hypotheses, we recall that the conjugate of a function f : Rn → R is
defined through f ∗(z) = supx∈Rn

〈
z, x
〉− f (x).

Theorem A.1 (Convex hypotheses and suboptimality loss) Assume thatF represents
the class of convex hypotheses induced by the feature map � and with a convex
closed search space � ⊆ R

d+ and that Assumption 5.1 holds. If the observer uses the
suboptimality loss (4b) and measures risk using the CVaR at level α ∈ (0, 1], then
the following convex program provides a safe approximation for the distributionally
robust inverse optimization problem (13) over the 1-Wasserstein ball:

minimize τ + 1

α

(

ελ + 1

N

N∑

i=1

ri

)

subject to θ ∈ �, λ ∈ R+, τ, ri ∈ R, φi1, φi2 ∈ C∗, γi ∈ K∗, zi j ∈ R
n ∀i ≤ N ,∀ j ≤ d

d∑

j=1

θ j�
∗
j (zi j/θ j ) + 〈θ,�(̂xi )

〉+ 〈φi1,Cŝi − d
〉− 〈γi , Hŝi + h

〉 ≤ ri + τ ∀i ≤ N

d∑

j=1

zi j = W�γi ∀i ≤ N

〈
Cŝi − d, φi2

〉 ≤ ri ∀i ≤ N
∥∥∥∥

(
H�γi − C�φi1

θ

)∥∥∥∥∗
≤ λ,

∥∥∥∥

(
C�φi2

0

)∥∥∥∥∗
≤ λ ∀i ≤ N .

(35)

Note that Theorem A.1 remains valid if (̂si , x̂i ) /∈ � for some i ≤ N .

Proof of Theorem A.1 As in the proof of Theorem 5.2 one can show that the objective
function of the inverse optimization problem (13) is equivalent to (19). In the remain-
der, we derive a safe conic approximation for the (intractable) subordinate worst-case
expectation problem
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sup
Q∈B1

ε(P̂N )

EQ
[
max{�θ (s, x) − τ, 0}]. (36)

To this end, note that the suboptimality loss �θ (s, x) = 〈θ,�(x)
〉−miny∈X(s)

〈
θ,�(y)

〉

depends on x only through�(x). Thismotivates us to define a lifted suboptimality loss
��
θ (s, ψ) = 〈θ, ψ

〉−miny∈X(s)
〈
θ,�(y)

〉
, whereψ represents an element of the feature

spaceRd , and the empirical distribution P̂�
N = 1

N

∑N
i=1 δ(̂si ,�(̂xi )) of the signal-feature

pairs. Moreover, we denote by B
1
ε(P̂

�
N ) the 1-Wasserstein ball of all distributions on

S×R
d that have a distance of at most ε from P̂�

N . In the following we will show that
the worst-case expectation

sup
Q∈B1

ε(P̂
�
N )

EQ
[
max{�θ (s, ψ) − τ, 0}] (37)

on the signal-feature space S×R
d provides a tractable upper bound on the worst-case

expectation (36). By Definition 4.3, each distribution Q ∈ B
1
ε(P̂N ) corresponds to a

transportation plan �, that is, a joint distribution of two signal-response pairs (s, x)
and (s′, x ′) under which (s, x) has marginal distribution Q and (s′, x ′) has marginal
distribution P̂N . By the lawof total probability, the transportationplan canbe expressed
as � = 1

N

∑N
i=1 δ(̂si ,̂xi ) ⊗ Qi , where Qi denotes the conditional distribution of (s, x)

given (s′, x ′) = (̂si , x̂i ), i ≤ N , see also [30, Theorem 4.2]. Thus, we the worst-case
expectation (36) satisfies

sup
Q∈B1

ε(P̂N )

EQ
[
max{�θ (s, x) − τ, 0}]

= sup
Qi

1

N

N∑

i=1

∫

�

max{�θ (s, �(x)) − τ, 0}Qi (ds, dx)

s.t.
1

N

N∑

i=1

∫

�

‖(s, x) − (̂si , x̂i )‖Qi (ds, dx) ≤ ε

∫

�

Qi (ds, dx) = 1 ∀i ≤ N

≤ sup
Qi

1

N

N∑

i=1

∫

�

max{�θ (s, �(x)) − τ, 0}Qi (ds, dx)

s.t.
1

N

N∑

i=1

∫

�

‖(s, �(x)) − (̂si , �(̂xi ))‖Qi (ds, dx) ≤ ε

∫

�

Qi (ds, dx) = 1 ∀i ≤ N

≤ sup
Qi

1

N

N∑

i=1

∫

S×Rd
max{�θ (s, ψ) − τ, 0}Qi (ds, dψ)
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s.t.
1

N

N∑

i=1

∫

S×Rd
‖(s, ψ) − (̂si , �(̂xi ))‖Qi (ds, dψ) ≤ ε

∫

S×Rd
Qi (ds, dψ) = 1 ∀i ≤ N ,

where the first inequality follows from (34), while the second inequality follows from
relaxing the implicit condition that the signal-feature pair (s, ψ) must be supported
on {(s, �(x)) : (s, x) ∈ �} ⊆ S × R

d . Using a similar reasoning as before, the last
expression is readily recognized as theworst-case expectation (37). Thus, (37) provides
indeed an upper bound on (36). Duality arguments borrowed from [30, Theorem 4.2]
imply that the infinite-dimensional linear program (37) admits a strong dual of the form

inf
λ≥0,ri

λε + 1

N

N∑

i=1

ri

s.t. sup
(s,y)∈�,ψ∈Rd

〈
θ, ψ − �(y)

〉− τ − λ‖(s, ψ) − (̂si , �(̂xi ))‖ ≤ ri ∀i ≤ N

sup
s∈S,ψ∈Rd

−λ‖(s, ψ) − (̂si , �(̂xi ))‖ ≤ ri ∀i ≤ N .

(38)

By using the definitions of S and X(s) put forth in Assumption 5.1, the i-th member
of the first constraint group in (38) is satisfied if and only if the optimal value of the
maximization problem

sup
s,y,ψ

〈
θ, ψ − �(y)

〉− τ − λ‖(s, ψ) − (̂si , �(̂xi ))‖
s.t. Cs 	C d, Wy 	K Hs + h

(39)

does not exceed ri . A tedious but routine calculation shows that the dual of (39) can
be represented as

inf
pi ,qi ,γi ,φi1,zi j

d∑

j=1

θ j�
∗
j (zi j/θ j ) − τ + 〈θ,�(̂xi )

〉+ 〈φi1,Cŝi − d
〉− 〈γi , Hŝi + h

〉

s.t.
∑d

j=1 zi j = W�γi

‖(H�γi − C�φi1, θ)‖∗ ≤ λ

γi ∈ K∗, φi1 ∈ C∗.
(40)

Note that the perspective functions θ j�
∗
j (zi j/θ j ) in the objective of (40) emerge from

taking the conjugate of θ j� j (y). Thus, for θ j = 0 we must interpret θ j�
∗
j (zi j/θ j ) as

an indicator function in zi j which vanishes for zi j = 0 and equals ∞ otherwise. By
weak duality, (40) provides an upper bound on (39).We conclude that the i-th member
of the first constraint group in (38) is satisfied whenever the dual problem (40) has a
feasible solution whose objective value does not exceed ri . A similar reasoning shows
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that the i-th member of the second constraint group in (38) holds if and only if there
exists φi2 ∈ C∗ such that

〈
Cŝi − d, φi2

〉 ≤ ri and

∥∥∥∥

(
Cᵀφi2

0

)∥∥∥∥∗
≤ λ.

Thus, the worst-case expectation (36) is bounded above by the optimal value of the
finite convex program

inf ελ + 1

N

N∑

i=1

ri

s.t. λ ∈ R+, ri ∈ R, φi1, φi2 ∈ C∗, γi ∈ K∗ ∀i ≤ N
∑d

j=1 θ j�
∗
j (zi j/θ j ) + 〈θ, �(̂xi )

〉+ 〈φi1,Cŝi − d
〉− 〈γi , Hŝi + h

〉 ≤ ri + τ ∀i ≤ N
∑d

j=1 zi j = W�γi ∀i ≤ N
〈
Cŝi − d, φi2

〉 ≤ ri∥∥∥∥

(
H�γi − C�φi1

θ

)∥∥∥∥∗
≤ λ,

∥∥∥∥

(
C�φi2

0

)∥∥∥∥∗
≤ λ ∀i ≤ N .

The claim then follows by substituting this convex program into (19).
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