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LQG Control With Minimum Directed
Information: Semidefinite
Programming Approach

Takashi Tanaka , Peyman Mohajerin Esfahani , and Sanjoy K. Mitter

Abstract—We consider a discrete-time linear–quadratic–
Gaussian (LQG) control problem, in which Massey’s di-
rected information from the observed output of the plant to
the control input is minimized, while required control perfor-
mance is attainable. This problem arises in several different
contexts, including joint encoder and controller design for
data-rate minimization in networked control systems. We
show that the optimal control law is a linear–Gaussian ran-
domized policy. We also identify the state-space realization
of the optimal policy, which can be synthesized by an ef-
ficient algorithm based on semidefinite programming. Our
structural result indicates that the filter–controller separa-
tion principle from the LQG control theory and the sensor–
filter separation principle from the zero-delay rate-distortion
theory for Gauss–Markov sources hold simultaneously in
the considered problem. A connection to the data-rate the-
orem for mean-square stability by Nair and Evans is also
established.

Index Terms—Communication networks, control over
communications, Kalman filtering, LMIs, stochastic optimal
control.

I. INTRODUCTION

THERE is a fundamental tradeoff between the best achiev-
able control performance and the data rate at which plant

information is fed back to the controller. Studies of such a
tradeoff hinge upon analytical tools developed at the interface
between traditional feedback control theory and Shannon’s in-
formation theory. Although the interface field has been signifi-
cantly expanded by the surged research activities on networked
control systems (NCSs) over the last two decades [1]–[5], many
important questions concerning the rate-performance tradeoff
studies are yet to be answered.
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A central research topic in the NCS literature has been the sta-
bilizability of a linear dynamical system using a rate-constrained
feedback [6]–[9]. The critical data rate below which stability
cannot be attained by any feedback law has been extensively
studied in various NCS setups. As pointed out by Nair et al.
[10], many results including [6]–[9] share the same conclusion
that this critical data rate is characterized by an intrinsic property
of the open-loop system known as topological entropy, which is
determined by the unstable open-loop poles. This result holds
irrespective of different definitions of the “data rate” considered
in these papers. For instance, in [9], the data rate is defined as
the log-cardinality of channel alphabet, while, in [8], it is the
frequency of the use of the noiseless binary channel.

As a natural next step, the rate-performance tradeoffs are of
great interest from both theoretical and practical perspectives.
The tradeoff between linear–quadratic–Gaussian (LQG) perfor-
mance and the required data rate has attracted attention in the
literature [11]–[24]. Generalized interpretations of the classical
Bode’s integral also provide fundamental performance limita-
tions of closed-loop systems in the information-theoretic terms
[25]–[28]. However, the rate-performance tradeoff analysis in-
troduces additional challenges that were not present through
the lens of the stability analysis. First, it is largely unknown
whether different definitions of the data rate considered in the
literature listed above lead to different conclusions. This issue
is less visible in the stability analysis, since the critical data
rate for stability turns out to be invariant across several different
definitions of the data rate [6]–[9]. Second, for many opera-
tionally meaningful definitions of the data rate considered in the
literature, computation of the rate-performance tradeoff func-
tion involves intractable optimization problems (e.g., dynamic
programming [21] and iterative algorithm [18]), and tradeoff
achieving controller/encoder policies is difficult to obtain. This
is not only inconvenient in practice, but also makes theoretical
analyses difficult.

In this paper, we study the information-theoretic requirements
for LQG control using the notion of directed information [29]–
[31]. In particular, we define the rate-performance tradeoff func-
tion as the minimal directed information from the observed out-
put of the plant to the control input, optimized over the space of
causal decision policies that achieve the desired level of LQG
control performance. Among many possible definitions of the
“data rate” as mentioned earlier, we focus on directed informa-
tion for the following reasons.

First, directed information (or related quantity known as
transfer entropy) is a widely used causality measure in sci-
ence and engineering [32]–[34]. Applications include commu-
nication theory (e.g., the analysis of channels with feedback),

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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portfolio theory, neuroscience, social science, macroeconomics,
statistical mechanics, and potentially more. Since it is natural to
measure the “data rate” in NCSs by a causality measure from the
observation to action, directed information is a natural option.

Second, it is recently reported by Silva et al. [22]–[24] that
directed information has an important operational meaning in
a practical NCS setup. Starting from an LQG control problem
over a noiseless binary channel with prefix-free codewords, they
show that the directed information obtained by solving the afore-
mentioned optimization problem provides a tight lower bound
for the minimum data rate (defined operationally) required to
achieve the desired level of control performance.

A. Contributions of This Paper

The central question in this paper is the characterization of
the most “data-frugal” LQG controller that minimizes directed
information of interest among all decision policies achieving
a given LQG control performance. In this paper, we make the
following contributions.

1) In a general setting including multiple-input multiple-
output (MIMO), time-varying, and partially observable
plants, we identify the structure of an optimal decision
policy in a state-space model.

2) Based on the above structural result, we further develop
a tractable optimization-based framework to synthesize
the optimal decision policy.

3) In the stationary setting with MIMO plants, we show how
our proposed computational framework, as a special case,
recovers the existing data-rate theorem for mean-square
stability.

Concerning (i), we start with general time-varying, MIMO,
and fully observable plants. We emphasize that the optimal de-
cision policy in this context involves two important tasks: 1)
the sensing task, indicating which state information of the plant
should be dynamically measured with what precision; and 2) the
control task, synthesizing an appropriate control action given
available sensing information. To this end, we first show that
the optimal policy that minimizes directed information from
the state to the control sequences under the LQG control per-
formance constraint is linear. In this vein, we illustrate that the
optimal policy can be realized by a three-stage architecture com-
prising a linear sensor with additive Gaussian noise, a Kalman
filter, and a certainty equivalence controller (see Theorem 1). We
then show how this result can be extended to partially observed
plants (see Theorem 3).

Regarding (ii), we provide a semidefinite programming (SDP)
framework characterizing the optimal policy proposed in step
(i) (see Sections IV and VII). As a result, we obtain a compu-
tationally accessible form of the considered rate-performance
tradeoff functions.

Finally, as highlighted in (iii), we analyze the horizontal
asymptote of the considered rate-performance tradeoff func-
tion for MIMO time-invariant plants (see Theorem 2), which
coincides with the critical data rate identified by Nair and Evans
[9] (see Corollary 1).

B. Organization of This Paper

The rest of this paper is organized as follows. After some
notational remarks, the problem considered in this paper is

Fig. 1. LQG control of fully observable plant with minimum directed
information.

formally introduced in Section II, and its operational interpreta-
tion is provided in Section III. Main results are summarized in
Section IV, where connections to the existing results are also
explained in detail. Section V contains a simple numerical ex-
ample, and the derivation of the main results is presented in
Section VI. The results are extended to partially observable
plants in Section VII. We conclude in Section VIII.

C. Notational Remarks

Throughout this paper, random variables are denoted by lower
case bold symbols such as x. Calligraphic symbols such as X
are used to denote sets, and x ∈ X is an element. We denote
by xt a sequence x1 , x2 , . . . , xt , and xt and X t are understood
similarly. All random variables in this paper are Euclidean val-
ued and are measurable with respect to the usual topology. A
probability distribution of x is demoted by Px . A Gaussian dis-
tribution with mean μ and covariance Σ is denoted by N (μ,Σ).
The relative entropy of Q from P is a nonnegative quantity
defined by

D(P‖Q) �
{∫

log2
dP (x)
dQ(x) dP (x), if P � Q

+∞, otherwise

where P � Q means that P is absolutely continuous with re-
spect to Q, and dP (x)

dQ(x) denotes the Radon–Nikodym deriva-
tive. The mutual information between x and y is defined by
I(x;y) � D(Px,y‖Px ⊗ Py), where Px,y and Px ⊗ Py are
joint and product probability measures, respectively. The en-
tropy of a discrete random variable x with the probability mass
function P (xi) is defined by H(x) � −∑i P (xi) log2 P (xi).

II. PROBLEM FORMULATION

Consider a linear time-varying stochastic plant

xt+1 = Atxt + Btut + wt , t = 1, . . . , T (1)

where xt is an Rn -valued state of the plant, and ut is the control
input. We assume that initial state x1 ∼ N (0, P1|0), P1|0 � 0
and noise process wt ∼ N (0,Wt), Wt � 0, t = 1, . . . , T , are
mutually independent.

The design objective is to synthesize a decision policy that
“consumes” the least amount of information among all poli-
cies achieving the required LQG control performance (see
Fig. 1). Specifically, let Γ be the space of decision policies,
i.e., the space of sequences of Borel measurable stochastic
kernels [35]

P (uT ||xT ) � {P (ut |xt, ut−1)}t=1,...,T .

A decision policy γ ∈ Γ is evaluated by two criteria:
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1) the LQG control cost

J(xT +1 ,uT ) �
T∑

t=1

E
(‖xt+1‖2

Qt
+ ‖ut‖2

Rt

)
; (2)

2) and directed information

I(xT → uT ) �
T∑

t=1

I(xt ;ut |ut−1). (3)

The right-hand sides (RHSs) of (2) and (3) are evaluated with
respect to the joint probability measure induced by the state-
space model (1) and a decision policy γ. In what follows, we
often write (2) and (3) as Jγ and Iγ to indicate their dependence
on γ. The main problem studied in this paper is formulated as

DIT (D) � min
γ∈Γ

Iγ (xT → uT ) (4a)

s.t. Jγ (xT +1 ,uT ) ≤ D (4b)

where D > 0 is the desired LQG control performance.
Directed information (3) can be interpreted as the information

flow from the state random variable xt to the control random
variable ut . The following equality called conservation of infor-
mation [36] shows a connection between directed information
and the standard mutual information:

I(xT ;uT ) = I(xT → uT ) + I(uT −1
+ → xT ).

Here, the sequence uT −1
+ = (0,u1 ,u2 , . . . ,uT −1) denotes an

index-shifted version of uT . Intuitively, this equality shows that
the standard mutual information can be written as a sum of two
directed information terms corresponding to feedback (through
decision policy) and feedforward (through plant) information
flows. Thus, (4) is interpreted as the minimum information that
must “flow” through the decision policy to achieve the LQG
control performance D.

We also consider time-invariant and infinite-horizon LQG
control problems. Consider a time-invariant plant

xt+1 = Axt + But + wt , t ∈ N (5)

with wt ∼ N (0,W ), and assume Qt = Q and Rt = R for t ∈
N. We also assume (A,B) is stabilizable, (A,Q) is detectable,
and R � 0. Let Γ be the space of Borel-measurable stochastic
kernels P (u∞||x∞). The problem of interest is

DI(D) � min
γ∈Γ

lim sup
T →∞

1
T

Iγ (xT → uT ) (6a)

s.t. lim sup
T →∞

1
T

Jγ (xT +1 ,uT ) ≤ D. (6b)

More general problem formulations with partially observable
plants will be discussed in Section VII.

III. OPERATIONAL MEANING

In this section, we revisit a networked LQG control prob-
lem considered in [22]–[24]. Here, we consider time-invariant
MIMO plants, while [22]–[24] focus on single-input single-
output plants. For simplicity, we consider fully observable plants
only. Consider a feedback control system in Fig. 2, where the
state information is encoded by the “sensor + encoder” block and
is transmitted to the controller over a noiseless binary channel.
For each t = 1, . . . , T , let At ⊂ {0, 1, 00, 01, 10, 11, 000, · · · }

Fig. 2. LQG control over noiseless binary channel.

be a set of uniquely decodable variable-length codewords [37,
Ch. 5]. Assume that codewords are generated by a causal policy

P (a∞||x∞) � {P (at |xt, at−1)}t=1,2,... .

The “decoder + controller” block interprets codewords and com-
putes control input according to a causal policy

P (u∞||a∞) � {P (ut |at, ut−1)}t=1,2,... .

The length of a codeword at ∈ At is denoted by a ran-
dom variable lt . Let Γ′ be the space of triplets {P (a∞||
x∞),A∞, P (u∞||a∞)}. Introduce a quadratic control cost

J(xT +1 ,uT ) �
T∑

t=1

E
(‖xt+1‖2

Q + ‖ut‖2
R

)
with Q � 0 and R � 0. We are interested in a design γ′ ∈ Γ′
that minimizes the data rate among those attaining control cost
smaller than D. Formally, the problem is formulated as

R(D) � min
γ ′∈Γ ′

lim sup
T →+∞

1
T

T∑
t=1

E(lt) (7a)

s.t. lim sup
T →+∞

1
T

J(xT +1 ,uT ) ≤ D. (7b)

It is difficult to evaluate R(D) directly, since (7) is a highly
complex optimization problem. Nevertheless, Silva et al. [22]
observed that R(D) is closely related to DI(D) defined by (6).
The following result is due to [38]

DI(D) ≤ R(D) < DI(D) +
r

2
log

4πe

12
+ 1 ∀D > 0. (8)

Here, r is an integer no greater than the state-space dimension
of the plant.1 The following inequality plays an important role
to prove (8).

Lemma 1: Consider a control system (1) with a decision
policy γ′ ∈ Γ′. Then, we have an inequality

I(xT → uT ) ≤ I(xT → aT ‖uT −1
+ )

where the RHS is Kramer’s notation [31] for causally condi-
tioned directed information

∑T
t=1 I(xt ;at |at−1 ,ut−1).

Proof: See Appendix A. �
Lemma 1 can be thought of as a generalization of the standard

data-processing inequality. It is different from the directed data-
processing inequality in [6, Lemma 4.8.1], since the source xt

is affected by feedback. See also [39] for relevant inequalities
involving directed information.

1More precisely, r is the rank of the optimal signal-to-noise ratio matrix
obtained by SDP, as will be clear in Section IV-B.
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Fig. 3. Structure of the optimal control policy for problem (4). Matri-
ces Ct , Vt , Lt , and Kt are determined by the SDP-based algorithm in
Section IV.

Now, the first inequality in (8) can be directly verified as

I(xT → uT ) (9a)

≤
T∑

t=1

I(xt ;at |at−1 ,ut−1) (9b)

=
T∑

t=1

(
H(at |at−1 ,ut−1) − H(at |xt ,at−1 ,ut−1)

)
(9c)

≤
T∑

t=1

H(at |at−1 ,ut−1) (9d)

≤
T∑

t=1

H(at) (9e)

≤
T∑

t=1

E(lt). (9f)

Lemma 1 is used in the first step. The last step follows from
the fact that the expected codeword length of uniquely decodable
codes is lower bounded by its entropy [37, Th. 5.3.1].

Proving the second inequality in (8) requires a key technique
proposed in [22] involving the construction of dithered uniform
quantizer [40]. Detailed discussion is available in [38].

IV. MAIN RESULT

In this section, we present the main results of this paper. For
the clarity of the presentation, this section is only devoted to a
setting with full state measurements and shows how the main
objective of control synthesis can be achieved by a three-step
procedure. We shall later discuss in Section VII in regard to an
extension to partial observable systems.

A. Time-Varying Plants

We show that the optimal solution to (4) can be realized by
the following three data-processing components, as shown in
Fig. 3.

1) A linear sensor mechanism

yt = Ctxt + vt , vt ∼ N (0, Vt), Vt � 0 (10)

where vt , t = 1, . . . , T are mutually independent.

2) The Kalman filter computing x̂t = E(xt |yt ,ut−1).
3) The certainty equivalence controller ut = Kt x̂t .

The role of the mechanism (10) is noteworthy. Recall that in
the current problem setting in Fig. 1, the state vectorxt is directly
observable by the decision policy. The purpose of introducing
an artificial mechanism (10) is to reduce data “consumed” by
the decision policy, while desired control performance is still
attainable. Intuitively, the optimal mechanism (10) acquires just
enough information from the state vector xt for control purposes
and discards less important information. Since the importance
of information is a task-dependent notion, such a mechanism is
designed jointly with other components in 2 and 3. The mech-
anism (10) may not be a physical sensor mechanism, but rather
be a mere computational procedure. For this reason, we also call
(10) a “virtual sensor.” A virtual sensor can also be viewed as an
instantaneous lossy data compressor in the context of networked
LQG control [22], [38]. As shown in [38], the knowledge of the
optimal virtual sensor can be used to design a dithered uniform
quantizer with desired performance.

We also claim that data-processing components in 1–3 can
be synthesized by a tractable computational procedure based on
SDP summarized below. The procedure is sequential, starting
from the controller design, followed by the virtual sensor design
and the Kalman filter design.

1) Step 1 (Controller design): Determine feedback control
gains Kt via the backward Riccati recursion:

St =

{
Qt, if t = T

Qt + Φt+1 , if t = 1, . . . , T − 1
(11a)

Φt = A�
t (St − StBt(B�

t StBt + Rt)−1B�
t St)At

(11b)

Kt = −(B�
t StBt + Rt)−1B�

t StAt (11c)

Θt = K�
t (B�

t StBt + Rt)Kt. (11d)

Positive semidefinite matrices Θt will be used in Step 2.
2) Step 2 (Virtual sensor design): Let {Pt|t ,Πt}T

t=1 be the
optimal solution to a max-det problem:

min
{Pt |t ,Π t }T

t = 1

1
2

∑T

t=1
log detΠ−1

t + c1 (12a)

s.t.
T∑

t=1

Tr(ΘtPt|t) + c2 ≤ D (12b)

Πt � 0 (12c)

P1|1 � P1|0 , PT |T = ΠT (12d)

Pt+1|t+1 � AtPt|tA�
t + Wt (12e)[

Pt|t − Πt Pt|tA�
t

AtPt|t AtPt|tA�
t + Wt

]
� 0. (12f)

Constraint (12c) is imposed for every t = 1, . . . , T , while
(12e) and (12f) are for every t = 1, . . . , T − 1. Constants
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c1 and c2 are given by

c1 =
1
2

log det P1|0 +
1
2

T −1∑
t=1

log det Wt

c2 = Tr(N1P1|0) +
T∑

t=1

Tr(WtSt).

Define signal-to-noise ratio matrices {SNRt}T
t=1 by

SNRt � P−1
t|t − P−1

t|t−1 , t = 1, . . . , T

Pt|t−1 � At−1Pt−1|t−1A
�
t−1 + Wt−1 , t = 2, . . . , T

and set rt = rank(SNRt). Apply the singular value de-
composition to find Ct ∈ Rrt ×nt and Vt ∈ Srt

++ such that

SNRt = C�
t V −1

t Ct , t = 1, . . . , T. (13)

If rt = 0, Ct and Vt are null (zero-dimensional) matrices.
3) Step 3 (Filter design): Determine the Kalman gains by

Lt = Pt|t−1C
�
t (CtPt|t−1C

�
t + Vt)−1 . (14)

Construct a Kalman filter by

x̂t = x̂t|t−1 + Lt(yt − Ct x̂t|t−1) (15a)

x̂t+1|t = At x̂t + Btut . (15b)

If rt = 0, Lt is a null matrix and (15a) becomes x̂t =
x̂t|t−1 .

An optimization problem (12) plays a key role in the proposed
synthesis. Intuitively, (12) “schedules” the optimal sequence of
covariance matrices {Pt|t}T

t=1 in such a way that there exists
a virtual sensor mechanism to realize it and the required data
rate is minimized. The virtual sensor and the Kalman filter are
designed later to realize the scheduled covariance.

Theorem 1: An optimal policy for the problem (4) exists if
and only if the max-det problem (12) is feasible, and the optimal
value of (4) coincides with the optimal value of (12). If the op-
timal value of (4) is finite, an optimal policy can be realized by
a virtual sensor, Kalman filter, and a certainty equivalence con-
troller, as shown in Fig. 3. Moreover, each of these components
can be constructed by an SDP-based algorithm summarized in
Steps 1–3.

Proof: See Section VI. �
Remark 1: If Wt is singular for some t, we suggest to factor-

ize it as Wt = FtF
�
t and use the following alternative max-det

problem instead of (12):

min
{Pt |t ,Δ t }T

t = 1

1
2

∑T

t=1
log det Δ−1

t + c1 (16a)

s.t.
∑T

t=1
Tr(ΘtPt|t) + c2 ≤ D (16b)

Δt � 0 (16c)

P1|1 � P1|0 , PT |T = ΔT (16d)

Pt+1|t+1 � AtPt|tA�
t + FtF

�
t (16e)[

I − Δt F�
t

Ft AtPt|tA�
t + FtF

�
t

]
� 0. (16f)

Fig. 4. Sensor–filter–controller separation principle: integration of the
sensor–filter and filter–controller separation principles.

Constraint (16c) is imposed for every t = 1, . . . , T , while
(16e) and (16f) are for every t = 1, . . . , T − 1. Constants c1

and c2 are given by c1 = 1
2 log detP1|0 +

∑T −1
t=1 log |det At |

and c2 = Tr(N1P1|0) +
∑T

t=1 Tr(F�
t StFt). This formulation

requires that At, t = 1, . . . , T − 1 are nonsingular matrices.
Derivation is omitted for brevity.

B. Time-Invariant Plants
For time-invariant and infinite-horizon problems (5) and (6),

it can be shown that there exists an optimal policy with the same
three-stage structure as in Fig. 4, in which all components are
time invariant. The optimal policy can be explicitly constructed
by the following numerical procedure:

1) Step 1 (Controller design): Find the unique stabilizing
solution to an algebraic Riccati equation

A�SA − S − A�SB(B�SB + R)−1B�SA + Q = 0
(17)

and determine the optimal feedback control gain by K =
−(B�SB + R)−1B�SA. Set Θ = K�(B�SB + R)K.

2) Step 2 (Virtual sensor design): Choose P and Π as the
solution to a max-det problem:

min
P,Π

1
2

log det Π−1 +
1
2

log det W (18a)

s.t. Tr(ΘP ) + Tr(WS) ≤ D (18b)

Π � 0 (18c)

P � APA� + W (18d)[
P − Π PA�

AP APA� + W

]
� 0. (18e)

Define P̃ � APA� + W , SNR � P−1 − P̃−1 , and set
r = rank(SNR). Choose a virtual sensor yt = Cxt +
vt , vt ∼ N (0, V ) with matrices C ∈ Rr×n and V ∈
Sr

++ such that C�V −1C = SNR.
3) Step 3 (Filter design): Design a time-invariant Kalman

filter

x̂t = x̂t|t−1 + L(zt − Cx̂t|t−1)

x̂t+1|t = Ax̂t + But

with L = P̃C�(CP̃C� + V )−1 .
Theorem 2: An optimal policy for (6) exists if and only if

a max-det problem (18) is feasible, and the optimal value of
(6) coincides with that of (18). Moreover, an optimal policy
can be realized by a virtual sensor, Kalman filter, and a cer-
tainty equivalence controller as shown in Fig. 4, all of which are
time invariant. Each of these components can be constructed by
Steps 1–3.
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Proof: See Appendix D. �
Theorem 2 shows a noteworthy fact that DI(D) defined by (6)

admits a single-letter characterization, i.e., it can be evaluated
by solving a finite-dimensional optimization problem (18).

C. Data-Rate Theorem for Mean-Square Stabilization

Theorem 2 shows that DI(D) defined by (6) admits a semidef-
inite representation (18). By analyzing the structure of the opti-
mization problem (18), one can obtain a closed-from expression
of the quantity limD→+∞ DI(D). Notice that this quantity can
be interpreted as the minimum data rate (measured in directed
information) required for mean-square stabilization. The next
corollary shows a connection between our study in this paper
and the data-rate theorem by Nair and Evans [9].

Corollary 1: Denote by σ+(A) the set of eigenvalues λi of
A such that |λi | ≥ 1 counted with multiplicity. Then

lim
D→+∞

DI(D) =
∑

λi ∈σ+ (A)

log |λi |. (19)

Proof: See Appendix E. �
Corollary 1 indicates that the minimal data rate for mean-

square stabilization does not depend on the noise property W .
This result is consistent with the observation in [9]. However,
as is clear from the semidefinite representation (18), minimal
data rate to achieve control performance Jt ≤ D depends on W
when D is finite.

Corollary 1 has a further implication that there exists a quan-
tized LQG control scheme implementable over a noiseless bi-
nary channel such that data rate is arbitrarily close to (19) and
the closed-loop systems in stabilized in the mean-square sense.
See [41] for details.

Mean-square stabilizability of linear systems by quantized
feedback with Markovian packet losses is considered in [42],
where a necessary and sufficient condition in terms of the nom-
inal data rate and the packet dropping probability is obtained.
Although directed information is not used in [42], it would be
an interesting future work to compute limT →∞ 1

T I(XT → UT )
under the stabilization scheme proposed there and study how it
is compared to the RHS of (19).

D. Connections to the Existing Results

We first note that the “sensor–filter–controller” structure iden-
tified by Theorem 1 is not a simple consequence of the filter–
controller separation principle in the standard LQG control the-
ory [43]. Unlike the standard framework in which a sensor
mechanism (10) is given a priori, in (4), we design a sensor
mechanism jointly with other components. Intuitively, a sen-
sor mechanism in our context plays a role to reduce information
flow from yt to xt . The proposed sensor design algorithm has al-
ready appeared in [44]. In this paper, we strengthen the result by
showing that the designed linear sensor turns out to be optimal
among all nonlinear (Borel measurable) sensor mechanisms.

Information-theoretic fundamental limitations of feedback
control are derived in [25]–[28] via the “Bode-like” integrals.
However, the connection between [25]–[28] and our problem (4)
is not straightforward, and the structural result shown in Fig. 3
does not appear in [25]–[28]. Also, we note that our problem
formulation (4) is different from the networked LQG control
problem over Gaussian channels [12], [14], [45], where a model
of Gaussian channel is given a priori. In such problems, linearity
of the optimal policy is already reported [4, Chs. 10, 11].

It should be noted that problem (4) is closely related to
the sequential rate-distortion problem (also called zero-delay
or nonanticipative rate-distortion problem) [6], [46], [47]. In
the Gaussian sequential rate-distortion problem where the plant
(1) is an uncontrolled system (i.e., ut = 0), it can be shown
that the optimal policy can be realized by a two-stage “sensor–
filter” structure [46]. However, the same result is not known
for the case in which feedback controllers must be designed
simultaneously. Relevant papers toward this direction include
[47]–[49], where Csiszár’s formulation of rate-distortion func-
tions [50] is extended to the nonanticipative regime. In par-
ticular, [49] considers nonanticipative rate-distortion problems
with feedback. In [51] and [52], LQG control problems with
information-theoretic costs similar to (4) are considered. How-
ever, the optimization problem considered in these papers is not
equivalent to (4), and the structural result shown in Fig. 4 does
not appear.

In a very recent paper [24, Lemma 3.1], it is independently
reported that the optimal policy for (4) can be realized by an
additive white Gaussian noise (AWGN) channel and linear fil-
ters. While this result is compatible to ours, it is noteworthy that
the proof technique there is different from ours and is based on
fundamental inequalities for directed information obtained in
[39]. In comparison to [24], we additionally prove that the opti-
mal control policy can be realized by a state-space model with
a three-stage structure (shown in Figs. 3 and 4), which appears
to be a new observation to the best of our knowledge.

The SDP-based algorithms to solve (4), (6), and (38) are
newly developed in this paper, using the techniques presented
in [46] and [44]. Due to the lack of analytical expression of the
optimal policy (especially for MIMO and time-varying plants),
the use of optimization-based algorithms seems critical. In [53],
an iterative water-filling algorithm is proposed for a highly rel-
evant problem. In this paper, the main algorithmic tool is SDP,
which allows us to generalize the results in [22]–[24] to MIMO
and time-varying settings.

V. EXAMPLE

In this section, we consider a simple numerical example
to demonstrate the SDP-based control design presented in
Section IV-B. Consider a time-invariant plant (5) with randomly
generated matrices

A =

⎡
⎢⎣

0.12 0.63 −0.52 0.33
0.26 −1.28 1.57 1.13
−1.77 −0.30 0.77 0.25
−0.16 0.20 −0.58 0.56

⎤
⎥⎦,

W =

⎡
⎢⎣

4.94 −0.10 1.29 0.35
5.55 2.07 0.31

2.02 1.43
sym. 3.10

⎤
⎥⎦

B =

⎡
⎢⎣

0.66 −0.58 0.03 −0.20
2.61 −0.91 0.87 −0.07
−0.64 −1.12 −0.19 0.61
0.93 0.58 −1.18 −1.21

⎤
⎥⎦

and the optimization problem (6) with Q = I and R = I . By
solving (18) with various D, we obtain the rate-performance
tradeoff curve shown in Fig. 5 (top left). The vertical asymptote
D = Tr(WS) corresponds to the best achievable control per-
formance when unrestricted amount of information about the
state is available. This corresponds to the performance of the
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Fig. 5. (Top left) Data rate DI(D) [bits/step] required to achieve con-
trol performance D. (Bottom left) Rank of SNR(D), evaluated after
truncating singular values smaller than 0.1% of the maximum singular
value. (Right) Singular values of SNR(D) evaluated at D = 33, 40, and
80. Truncated singular values are shown in block bars. An SDP solver
SDPT3 [54] with YALMIP [55] interface is used.

state-feedback linear–quadratic regulator (LQR). The horizontal
asymptote

∑
λi ∈σ+ (A) log |λi | = 1.169 bits/sample is the mini-

mum data rate to achieve mean-square stability. Fig. 5 (bottom
left) shows the rank of SNR matrices as a function of D. Since
SNR is computed numerically by an SDP solver with some finite
numerical precision, rank(SNR) is obtained by truncating sin-
gular values smaller than 0.1% of the maximum singular value.
Fig. 5 (right) shows selected singular values at D = 33, 40,
and 80. Observe the phase transition (rank dropping) phenom-
ena. The optimal dimension of the sensor output changes as D
changes.

Specifically, the minimum data rate to achieve control perfor-
mance D = 33 is found to be 6.133 bits/sample. The optimal
sensor mechanism yt = Cxt + vt ,vt ∼ N (0, V ) to achieve
this performance is given by

C =

[−0.864 0.258 −0.205 −0.382
−0.469 −0.329 0.662 0.483
−0.130 0.332 −0.502 0.780

]
,

V =

[ 0.029 0 0
0 0.208 0
0 0 1.435

]
.

If D = 40, the required data rate is 3.266 bits/sample, and the
optimal sensor is given by

C =
[−0.886 0.241 −0.170 −0.359
−0.431 −0.350 0.647 0.523

]
, V =

[
0.208 0

0 2.413

]
.

Similarly, the minimum data rate to achieve D = 80 is 1.602
bits/sample, and this is achieved by a sensor mechanism with

C = [−0.876 0.271 −0.169 −0.362 ], V = 1.775 .

Fig. 6 shows the closed-loop responses of the state trajectories
simulated in each scenario.

VI. DERIVATION OF THE MAIN RESULT

This section is devoted to prove Theorem 1. We first define
subsets Γ0 , Γ1 , and Γ2 of the policy space Γ as follows.

Fig. 6. Closed-loop performances of the controllers designed for
D = 33 (top), D = 40 (middle), and D = 80 (bottom). Trajectories of
the second component of the state vector and their Kalman estimates
are shown.

1) Γ0 : The space of policies with three-stage separation
structure explained in Section IV.

2) Γ1 : The space of linear sensors without memory followed
by linear deterministic feedback control. Namely, a policy
P (uT ‖xT ) in Γ1 can be expressed as a composition of

yt = Ctxt + vt , vt ∼ N (0, Vt) (20)

and ut = lt(yt), where Ct ∈ Rrt ×nt , rt is some nonneg-
ative integer, Vt � 0, and lt(·) is a linear map.

3) Γ2 : The space of linear policies without state memory.
Namely, a policy P (uT ‖xT ) in Γ2 can be expressed as

ut = Mtxt + Ntut−1 + gt , gt ∼ N (0, Gt) (21)

with some matrices Mt,Nt , and Gt � 0.

A. Proof Outline

To prove Theorem 1, we establish a chain of inequalities:

inf
γ∈Γ:Jγ ≤D

Iγ (xT → uT ) (22a)

≥ inf
γ∈Γ:Jγ ≤D

T∑
t=1

Iγ (xt ;ut |ut−1) (22b)

≥ inf
γ∈Γ2 :Jγ ≤D

T∑
t=1

Iγ (xt ;ut |ut−1) (22c)

≥ inf
γ∈Γ1 :Jγ ≤D

T∑
t=1

Iγ (xt ;yt |yt−1) (22d)

≥ inf
γ∈Γ0 :Jγ ≤D

T∑
t=1

Iγ (xt ;yt |yt−1) (22e)

≥ inf
γ∈Γ0 :Jγ ≤D

Iγ (xT → uT ). (22f)
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Since Γ0 ⊂ Γ, clearly (22a)≤ (22f). Thus, showing the above
chain of inequalities proves that all quantities in (22) are equal.
This observation implies that the search for an optimal solution
to our main problem (4) can be restricted to the class Γ0 without
loss of performance. The first inequality (22b) is immediate from
the definition of directed information. We prove inequalities
(22c)–(22f) in subsequent Sections VI-B–VI-E, respectively. It
will follow from the proof of inequality (22f) that an optimal
solution to (22e), if exists, is also an optimal solution to (22f).
In particular, this implies that an optimal solution to the original
problem (22a), if exists, can be found by solving a simplified
problem (22e). This observation establishes the sensor–filter–
controller separation principle depicted in Fig. 3.

Then, we focus on solving problem (22e) in Section VI-F. We
show that problem (22e) can be reformulated as an optimiza-
tion problem in terms of SNRt � C�

t V −1
t Ct , which is further

converted to an SDP problem.

B. Proof of Inequality (22c)

We will show that for every γP = {P (ut |xt, ut−1)}T
t=1 ∈ Γ

that attains a finite objective value in (22b), there exists γQ =
{Q(ut |xt, ut−1)}T

t=1 ∈ Γ2 such that JP = JQ and

T∑
t=1

IP (xt ;ut |ut−1) ≥
T∑

t=1

IQ(xt ;ut |ut−1)

where subscripts of I and J indicate probability measures on
which these quantities are evaluated. Without loss of gener-
ality, we assume P (xT +1 , uT ) has zero mean. Otherwise, we
can consider an alternative policy γP̃ = {P̃ (ut |xt, ut−1)}T

t=1 ,
where

P̃ (ut |xt, ut−1) � P (ut + EP (ut)|xt + EP (xt), ut−1

+ EP (ut−1))

which generates a zero-mean joint distribution P̃ (xT +1 , uT ).
We have IP̃ = IP in view of the translation invariance of mutual
information, and JP̃ ≤ JP due to the fact that the cost function
is quadratic.

First, we consider a zero-mean jointly Gaussian probability
measure G(xT +1 , uT ) having the same covariance matrix as
P (xT +1 , uT ).

Lemma 2: The following inequality holds whenever the left-
hand side is finite

T∑
t=1

IP (xt ;ut |ut−1) ≥
T∑

t=1

IG(xt ;ut |ut−1). (23)

Proof: See Appendix B. �
Next, we are going to construct a policy γQ = {Q(ut |xt,

ut−1)}T
t=1 ∈ Γ2 using a jointly Gaussian measure G(xT +1 ,

uT ). Let Etxt + Ftut−1 be the least mean-square error esti-
mate of ut given (xt ,ut−1) in G(xT +1 , uT ), and let Vt be the
resulting estimation error covariance matrix. Define a stochas-
tic kernel Q(ut |xt, u

t−1) by Q(ut |xt, u
t−1) = N (Etxt +

Ftut−1 , Vt). By construction, Q(ut |xt, u
t−1) satisfies2

dG(xt, u
t) = dQ(ut |xt, u

t−1)dG(xt, u
t−1). (24)

Define Q(xT +1 , uT ) recursively by

dQ(xt, ut−1) = dP (xt |xt−1 , ut−1)dQ(xt−1 , ut−1) (25)

dQ(xt, ut) = dQ(ut |xt, u
t−1)dQ(xt, ut−1) (26)

where P (xt |xt−1 , ut−1) is a stochastic kernel defined by (1).
The following identity holds between two Gaussian measures
G(xT +1 , uT ) and Q(xT +1 , uT ).

Lemma 3: G(xt+1 , u
t) = Q(xt+1 , u

t) ∀t = 1, . . . , T.
Proof: See Appendix C. �
We are now ready to prove (22c). First, replacing a policy γP

with a new policy γQ does not change the LQG control cost

JγP
=
∫ (‖xt+1‖2

Qt
+ ‖ut‖2

Rt

)
dP (xt+1 , u

t)

=
∫ (‖xt+1‖2

Qt
+ ‖ut‖2

Rt

)
dG(xt+1 , u

t) (27a)

=
∫ (‖xt+1‖2

Qt
+ ‖ut‖2

Rt

)
dQ(xt+1 , u

t)

= JγQ
. (27b)

Equality (27a) holds since P and G have the same second-
order moments. Step (27b) follows from Lemma 3. Second,
replacing γP with γQ does not increase the information cost

T∑
t=1

IP (xt ;ut |ut−1) ≥
T∑

t=1

IG(xt ;ut |ut−1) (28a)

=
T∑

t=1

IQ(xt ;ut |ut−1). (28b)

Inequality (28a) is due to Lemma 2. In (28b), IG(xt ;ut |
ut−1) = IQ(xt ;ut |ut−1) holds for every t = 1, . . . , T because
of Lemma 3.

C. Proof of Inequality (22d)

Given a policy γ2 ∈ Γ2 , we are going to construct a policy
γ1 ∈ Γ1 such that Jγ1 = Jγ2 and

Iγ2 (xt ;ut |ut−1) = Iγ1 (xt ;yt |yt−1) (29)

for every t = 1, . . . , T . Let γ2 ∈ Γ2 be given by

ut = Mtxt + Ntut−1 + gt , gt ∼ N (0, Gt).

Define ỹt � Mtxt + gt . If we write Ntut−1 = Nt,t−1ut−1 +
· · · + Nt,1u1 , it can be seen that ut and ỹt are related by an
invertible linear map⎡

⎢⎢⎢⎣
ỹ1
...
...
ỹt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

I 0 · · · 0

−N2,1 I
...

...
. . . 0

−Nt,1 · · · −Nt,t−1 I

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

u1
...
...
ut

⎤
⎥⎥⎥⎦ (30)

2Equation dP (x, y) = dP (y|x)dP (x) is a short-hand notation for
P (BX × BY ) =

∫
B X

P (BY |x)dP (x) ∀BX ∈ BX , BY ∈ BY .
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for every t = 1, . . . , T . Hence

I(xt ;ut |ut−1) = I(xt ; ỹt + Ntut−1 |ỹt−1 ,ut−1)

= I(xt ; ỹt |ỹt−1). (31)

Let Gt = E�
t VtEt be the (thin) singular value decomposition.

Since we assume (31) is bounded, we must have

Im(Mt) ⊆ Im(Gt) = Im(E�
t ). (32)

Otherwise, the component of ut in Im(Gt)⊥ depends determin-
istically on xt and (31) is unbounded. Now, define yt � Et ỹt =
EtMtxt + Etgt , gt ∼ N (0, Gt). Then, we have

E�
t yt = E�

t EtMtxt + E�
t Etgt , gt ∼ N (0, Gt)

= Mtxt + gt = ỹt .

In the second line, we used the facts that E�
t EtMt = Mt and

E�
t Etgt = gt under (32). Thus, we have yt = Et ỹt and ỹt =

E�
t yt . This implies thatyt and ỹt contain statistically equivalent

information, and that

I(xt ; ỹt |ỹt−1) = I(xt ;yt |yt−1). (33)

Also, since ut depends linearly on ỹt by (30), there exists a
linear map lt such that

ut = lt(yt). (34)

Setting Ct � EtMt , construct a policy γ1 ∈ Γ1 using yt �
Et ỹt = Ctxt + vt with vt ∼ N (0, Vt) and a linear map (34).
Since joint distribution P (xT +1 , uT ) is the same under γ1 and
γ2 , we have Jγ1 = Jγ2 . From (31) and (33), we also have (29).

D. Proof of Inequality (22e)

Notice that for every γ ∈ Γ1 , conditional mutual information
can be written in terms of Pt|t = Cov(xt − E(xt |yt ,ut−1)):

Iγ (xt ;yt |yt−1)

= Iγ (xt ;yt |yt−1 ,ut−1)

= h(xt |yt−1 ,ut−1) − h(xt |yt ,ut−1)

=
1
2

log det(At−1Pt−1|t−1A
�
t−1 + Wt−1) − 1

2
log det Pt|t .

(35)

Moreover, for every fixed sensor equation (20), covariance ma-
trices are determined by the Kalman filtering formula

Pt|t = ((At−1Pt−1|t−1A
�
t−1 + Wt−1)−1 + SNRt)−1 .

Hence, conditional mutual information (35) depends only on the
choice of {SNRt}T

t=1 and is independent of the choice of a linear
map lt . On the other hand, the LQG control cost Jγ depends on
the choice of lt . In particular, for every fixed linear sensor (20), it
follows from the standard filter–controller separation principle
in the LQG control theory that the optimal lt that minimizes
Jγ is a composition of a Kalman filter x̂t = E(xt |yt ,ut−1)
and a certainty equivalence controller ut = Kt x̂t . This implies
that an optimal solution γ can always be found in the class Γ0 ,
establishing the inequality in (22e).

For a fixed linear sensor (20), an explicit form of the Kalman
filter and the certainty equivalence controller is given by Steps 1

and 3 in Section IV. Derivation is standard and hence is omitted.
It is also possible to write Jγ explicitly as

Jγ = Tr(N1P1|0) +
T∑

t=1

(
Tr(WtSt) + Tr(ΘtPt|t)

)
. (36)

Derivation of (36) is also straightforward and can be found in
[44, Lemma 1].

E. Proof of Inequality (22f)

For every fixed γ ∈ Γ0 , by Lemma 1, we have

Iγ (xT → uT ) ≤ Iγ (xT → yT ‖uT −1
+ )

=
T∑

t=1

Iγ (xt ;yt |yt−1 ,ut−1)

=
T∑

t=1

Iγ (xt ;yt |yt−1)

=
T∑

t=1

Iγ (xt ;yt |yt−1)+ Iγ (xt−1 ;yt |xt ,yt−1)

=
T∑

t=1

Iγ (xt ;yt |yt−1).

The last equality holds since, by construction, yt = Ctxt + vt

is conditionally independent of xt−1 given xt .

F. SDP Formulation of Problem (22e)

Invoking (35) and (36) hold for every γ ∈ Γ0 , problem
(22e) can be written as an optimization problem in terms of
{Pt|t , SNRt}T

t=1 as

min
T∑

t=2

(
1
2

log det(At−1Pt−1|t−1A
�
t−1 + Wt)− 1

2
log det Pt|t

)

+
1
2

log det P1|0 − 1
2

log det P1|1

s.t. Tr(N1P1|0) +
T∑

t=1

(
Tr(WtSt) + Tr(ΘtPt|t)

) ≤ D,

P−1
1|1 = P−1

1|0 + SNR1

P−1
t|t =(At−1Pt−1|t−1A

�
t−1 +Wt−1)−1 + SNRt , t= 2, . . . , T

SNRt � 0, t = 1, . . . , T.

This problem can be reformulated as a max-det problem as
follows. First, variables {SNRt}T

t=1 are eliminated from the
problem by replacing the last three constraints with equivalent
conditions

0 ≺ P1|1 � P1|0

0 ≺ Pt|t � At−1Pt−1|t−1A
�
t−1 + Wt−1 , t = 2, . . . , T.
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Fig. 7. LQG control of partially observable plant with minimum directed
information.

Second, the following equalities can be used for t = 1, . . . ,
T − 1 to rewrite the objective function:

1
2

log det(AtPt|tA�
t + Wt) − 1

2
log det Pt|t

=
1
2

log det(P−1
t|t + A�

t W−1
t At) +

1
2

log detWt (37a)

= inf
Π t

1
2

log det Π−1
t +

1
2

log det Wt (37b)

s.t. 0 ≺ Πt � (P−1
t|t + A�

t W−1
t At)−1

= inf
Π t

1
2

log det Π−1
t +

1
2

log det Wt (37c)

s.t. Πt � 0,

[
Pt|t − Πt Pt|tA�

t

AtPt|t AtPt|tA�
t + Wt

]
� 0.

In step (37a), we have used the matrix determinant theorem
[56, Th. 18.1.1]. An additional variable Πt is introduced in step
(37b). The constraint is rewritten using the matrix inversion
lemma in (37c).

These two techniques allow us to formulate the above problem
as a max-det problem (12). Thus, we have shown that Steps 1–3
in Section IV provide an optimal solution to problem (22d),
which is also an optimal solution to the original problem (22a).

VII. EXTENSION TO PARTIALLY OBSERVABLE PLANTS

So far, our focus has been on a control system in Fig. 1 in
which the decision policy has an access to the state xt of the
plant. Often in practice, the state of the plant is only partially
observable through a given physical sensor mechanism. We now
consider an extension of the control synthesis to partially ob-
servable plants.

Consider a control system in Fig. 7, where a state-space
model (1) and a sensor model yt = Htxt + gt are given. We
assume that initial state x1 ∼ N (0, P1|0), P1|0 � 0 and noise
processes wt ∼ N (0,Wt), Wt � 0, gt ∼ N (0, Gt), Gt � 0,
t = 1, . . . , T are mutually independent. We also assume that
Ht has full row rank for t = 1, . . . , T . Consider the following
problem:

min
γ∈Γ

Iγ (yT → uT ) (38a)

s.t. Jγ (xT +1 ,uT ) ≤ D (38b)

where Γ is the space of policies γ = P (uT ‖yT ). Relevant op-
timization problems to (38) are considered in [22]–[24] in the
context of Section III. Based on the control synthesis devel-
oped so far for fully observable plants, it can be shown that the
optimal control policy can be realized by the architecture shown

in Fig. 8. Moreover, as in the fully observable cases, the optimal
control policy can be synthesized by an SDP-based algorithm.

Step 1 (Pre-Kalman filter design): Design a Kalman filter

x̃t = x̃t|t−1 + L̃t(yt − Ht x̃t|t−1) (39a)

x̃t+1|t = At x̃t + Btut , x̃1|0 = 0 (39b)

where the Kalman gains {L̃t}T +1
t=1 are computed by

L̃t = P̃t|t−1H
�
t (HtP̃t|t−1H

�
t + Gt)−1

P̃t|t = (I − L̃tHt)P̃t|t−1

P̃t+1|t = AtP̃t|tA�
t + Wt.

Matrices Ψt = L̃t+1(Ht+1 P̃t+1|tH�
t+1 + Gt+1)L̃�

t+1 will be
used in Step 3.

Step 2 (Controller design): Determine feedback control gains
Kt via the backward Riccati recursion:

St =

{
Qt, if t = T

Qt + Nt+1 , if t = 1, . . . , T − 1
(40a)

Mt = B�
t StBt + Rt (40b)

Nt = A�
t (St − StBtM

−1
t B�

t St)At (40c)

Kt = −M−1
t B�

t StAt (40d)

Θt = K�
t MtKt. (40e)

Positive semidefinite matrices Θt will be used in Step 3.
Step 3 (Virtual sensor design): Solve a max-det problem with

respect to {Pt|t ,Πt}T
t=1 :

min
1
2

T∑
t=1

log det Π−1
t + c1 (41a)

s.t.
T∑

t=1

Tr(ΘtPt|t) + c2 ≤ D (41b)

Πt � 0 (41c)

P1|1 � P1|0 , PT |T = ΠT (41d)

Pt+1|t+1 � AtPt|tA�
t + Ψt (41e)[

Pt|t − Πt Pt|tA�
t

AtPt|t AtPt|tA�
t + Ψt

]
� 0. (41f)

Constraint (41c) is imposed for every t = 1, . . . , T , while
(41e) and (41f) are for every t = 1, . . . , T − 1. Constants c1
and c2 are given by

c1 =
1
2

log det P1|0 +
1
2

T −1∑
t=1

log det Ψt

c2 = Tr(N1P1|0) +
T∑

t=1

Tr(ΨtSt).

If Ψt is singular for some t, consider an alternative max-det
problem suggested in Remark 1. Set rt = rank(P−1

t|t − P−1
t|t−1),
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Fig. 8. Structure of optimal control policy for problem (38). Matrices L̃t , Ct , Vt , Lt , and Kt are determined by the SDP-based algorithm in
Appendix F.

where

Pt|t−1 � At−1Pt−1|t−1A
�
t−1 + Wt−1 , t = 2, . . . , T.

Choose matrices Ct ∈ Rrt ×nt and Vt ∈ Srt
++ so that

C�
t V −1

t Ct = P−1
t|t − P−1

t|t−1 (42)

for t = 1, . . . , T . In case of rt = 0, Ct and Vt are considered to
be null (zero dimensional) matrices.

Step 4 (Post-Kalman filter design): Design a Kalman filter

x̂t = x̂t|t−1 + L̂t(zt − Ct x̂t|t−1) (43a)

x̂t+1|t = At x̂t + Btut (43b)

where Kalman gains L̂t are computed by

L̂t = Pt|t−1C
�
t (CtPt|t−1C

�
t + Vt)−1 . (44)

If rt = 0, Lt is a null matrix and (43a) is simply replaced by
x̂t = x̂t|t−1 .

Theorem 3: An optimal policy for the problem (38) exists if
and only if the max-det problem (41) is feasible, and the optimal
value of (38) coincides with the optimal value of (41). If the
optimal value of (38) is finite, an optimal policy can be realized
by an interconnection of a pre-Kalman filter, a virtual sensor,
post-Kalman filter, and a certainty equivalence controller, as
shown in Fig. 8. Moreover, each of these components can
be constructed by an SDP-based algorithm summarized in
Steps 1–4 above.

Proof: See [57]

VIII. CONCLUSION

In this paper, we considered an optimal control problem in
which directed information from the observed output of the
plant to the control input is minimized subject to the constraint
that the control policy achieves the desired LQG control perfor-
mance. When the state of the plant is directly observable, the
optimal control policy can be realized by a three-stage structure
comprised of a linear sensor with additive Gaussian noise, a
Kalman filter, and a certainty equivalence controller. An exten-
sion to partially observable plants was also discussed. In both
cases, the optimal policy is synthesized by an efficient numerical
algorithm based on SDP.

APPENDIX A
DATA-PROCESSING INEQUALITY FOR DIRECTED INFORMATION

Lemma 1 is shown as follows. Notice that the following chain
of equalities hold for every t = 1, . . . , T .

I(xt ;at |at−1 ,ut−1) − I(xt ;ut |ut−1)

= I(xt ;at ,ut |at−1 ,ut−1) − I(xt ;ut |ut−1) (45a)

= I(xt ;at |ut) − I(xt ;at−1 |ut−1) (45b)

= I(xt ;at |ut) − I(xt−1 ;at−1 |ut−1)

− I(xt ;at−1 |xt−1 ,ut−1) (45c)

= I(xt ;at |ut) − I(xt−1 ;at−1 |ut−1). (45d)

When t = 1, the above identity is understood to mean I(x1 ;
a1) − I(x1 ;u1) = I(x1 ;a1 |u1), which clearly holds as x1–
a1–u1 form a Markov chain. Equation (45a) holds be-
cause I(xt ;at ,ut |at−1 ,ut−1) = I(xt ;at |at−1 ,ut−1) + I(xt ;
ut |at ,ut−1) and the second term is zero since xt–(at ,ut−1)–ut

form a Markov chain. Equation (45b) is obtained by applying
the chain rule for mutual information in two different ways:

I(xt ;at ,ut |ut−1)

= I(xt ;at−1 |ut−1) + I(xt ;at ,ut |at−1 ,ut−1)

= I(xt ;ut |ut−1) + I(xt ;at |ut).

The chain rule is applied again in step (45c). Finally, (45d)
follows as at−1–(xt−1 ,ut−1)–xt form a Markov chain.

Now, the desired inequality can be verified by computing the
RHS minus the left-hand side as

T∑
t=1

[
I(xt ;at |at−1 ,ut−1) − I(xt ;ut |ut−1)

]

=
T∑

t=1

[
I(xt ;at |ut) − I(xt−1 ;at−1 |ut−1)

]
(46a)

= I(xT ;aT |uT ) ≥ 0. (46b)

In step (46a), the identity (45) is used. The telescoping sum
(46a) cancels all but the final term (46b).
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APPENDIX B
PROOF OF LEMMA 2

We use the following technical Lemmas 4–6. Proofs can be
found in [57].

Lemma 4: Let P be a zero-mean Borel probability measure
on Rn with covariance matrix Σ. Suppose G is a zero-mean
Gaussian probability measure on Rn with the same covariance
matrix Σ. Then, supp(P ) ⊆ supp(G).

Lemma 5: Let P (xT +1 , uT ) be a joint probability measure
generated by a policy γP = {P (ut |xt, ut−1)}T

t=1 and (1).
1) For each t = 1, . . . , T , P (xt+1 |ut) and P (xt+1 |xt, u

t)
are nondegenerate Gaussian probability measures for ev-
ery xt and ut .
Moreover, if IP (xt ;ut |ut−1) < +∞ for all t =
1, . . . , T , then the following statements hold.

2) For every t = 1, . . . , T ,

P (xt |ut) � P (xt |ut−1), P (ut) − a.e., and

IP (xt ;ut |ut−1) =
∫

log
(

dP (xt |ut)
dP (xt |ut−1)

)
dP (xt, u

t).

3) For every t = 1, . . . , T ,

P (xt |xt+1 , u
t) � P (xt |ut−1), P (xt+1 , u

t) − a.e..

Moreover, the following identity holds P (xt+1 , u
t) −

a.e.:

dP (xt |ut)
dP (xt |ut−1)

=
dP (xt+1 |ut)

dP (xt+1 |xt, ut)
dP (xt |xt+1 , u

t)
dP (xt |ut−1)

.

(47)
Lemma 6: Let P (xT +1 , uT ) be a joint probability measure

generated by a policy γP = {P (ut |xt, ut−1)}T
t=1 and (1), and

G(xT +1 , uT ) be a zero-mean jointly Gaussian probability mea-
sure having the same covariance as P (xT +1 , uT ). For every
t = 1, . . . , T , we have the following.

1) ut−1–(xt ,ut)–xt+1 form a Markov chain in G. More-
over, for every t = 1, . . . , T , we have

G(xt+1 |xt, u
t) = G(xt+1 |xt, ut)

= P (xt+1 |xt, ut)

= P (xt+1 |xt, u
t)

all of which have a nondegenerate Gaussian distribution
N (Atxt + Btut,Wt).

2) For each t = 1, . . . , T , G(xt |xt+1 , u
t) is a nonde-

generate Gaussian measure for every (xt+1 , u
t) ∈

supp(G(xt+1 , u
t)).

If the left-hand side of (23) is finite, by Lemma 5, it can be
written as follows:

T∑
t=1

IP (xt ;ut |ut−1)

=
T∑

t=1

∫
log
(

dP (xt |ut)
dP (xt |ut−1)

)
dP (xT +1 , uT )

=
∫

log

(
T∏

t=1

dP (xt |ut)
dP (xt |ut−1)

)
dP (xT +1 , uT )

=
∫

log

(
T∏

t=1

dP (xt |xt+1 , u
t)

dP (xt |ut−1)
dP (xt+1 |ut)

dP (xt+1 |xt, ut)

)
dP (xT +1 , uT)

=
∫

log
(

dP (x1 |x2 , u1)
dP (x1)

)
dP (x2 , u1) (48a)

+
T∑

t=2

∫
log
(

dP (xt |xt+1 , u
t)

P (xt |xt−1 , ut−1)

)
dP (xt+1 , ut) (48b)

+
∫

log
(

dP (xT +1 |uT )
dP (xT +1 |xT , uT )

)
dP (xT +1 , uT ). (48c)

The result of Lemma 5(c) is used in the third equality. In
the final step, the chain rule for the Radon–Nikodym deriva-
tives [58, Proposition 3.9] is used multiple times for telescoping
cancellations. We show that each term in (48a)–(48c) does not
increase by replacing the probability measure P with G. Here,
we only show the case for (48b), but a similar technique is also
applicable to (48a) and (48c)∫

log
(

dP (xt |xt+1 , u
t)

dP (xt |xt−1 , ut−1)

)
dP (xt+1 , ut)

−
∫

log
(

dG(xt |xt+1 , u
t)

dG(xt |xt−1 , ut−1)

)
dG(xt+1 , ut) (49a)

=
∫

log
(

dP (xt |xt+1 , u
t)

dP (xt |xt−1 , ut−1)

)
dP (xt+1 , ut)

−
∫

log
(

dG(xt |xt+1 , u
t)

dG(xt |xt−1 , ut−1)

)
dP (xt+1 , ut) (49b)

=
∫

log
(

dP (xt |xt+1 , u
t)

dP (xt |xt−1 , ut−1)
dG(xt |xt−1 , u

t−1)
dG(xt |xt+1 , ut)

)
dP (xt+1 , ut)

=
∫

log
(

dP (xt |xt+1 , u
t)

dG(xt |xt+1 , ut)

)
dP (xt+1 , ut) (49c)

=
∫ [∫

log
(

dP (xt |xt+1 , u
t)

dG(xt |xt+1 , ut)

)
dP (xt |xt+1 , u

t)
]
dP (xt+1 , u

t)

=
∫

D
(
P (xt |xt+1 , u

t)‖G(xt |xt+1 , u
t)
)
dP (xt+1 , u

t)

≥ 0.

Due to Lemma 6, log dG(xt |xt + 1 ,u t )
dG(xt |xt−1 ,u t−1 ) in (49a) is a quadratic

function of xt+1 and ut everywhere on supp(G(xt+1 , ut)).
This is also the case everywhere on supp(P (xt+1 , ut))

Authorized licensed use limited to: TU Delft Library. Downloaded on January 13,2022 at 10:44:15 UTC from IEEE Xplore.  Restrictions apply. 



TANAKA et al.: LQG CONTROL WITH MINIMUM DIRECTED INFORMATION: SEMIDEFINITE PROGRAMMING APPROACH 49

since it follows from Lemma 4 that supp(P (xt+1 , ut)) ⊆
supp(G(xt+1 , ut)). Since P and G have the same covariance,
dG(xt+1 , ut) can be replaced by dP (xt+1 , ut) in (49b). In
(49c), the chain rule of the Radon–Nikodym derivatives is
used invoking that P (xt |xt−1 , u

t−1) = G(xt |xt−1 , u
t−1) from

Lemma 6(a).

APPENDIX C
PROOF OF LEMMA 3

Clearly G(x1) = Q(x1) holds. Following an induction argu-
ment, assume that the claim holds for t = k − 1. Then

dQ(xk+1 , u
k )

=
∫
Xk

dQ(xk , xk+1 , u
k )

=
∫
Xk

dP (xk+1 |xk , uk )dQ(xk , uk ) (50a)

=
∫
Xk

dP (xk+1 |xk , uk )dQ(uk |xk , uk−1)dQ(xk , uk−1)

(50b)

=
∫
Xk

dP (xk+1 |xk , uk )dQ(uk |xk , uk−1)dG(xk , uk−1)

(50c)

=
∫
Xk

dP (xk+1 |xk , uk )dG(xk , uk ) (50d)

=
∫
Xk

dG(xk , xk+1 , u
k ) (50e)

= dG(xk+1 , u
k ).

The integral signs “
∫

BX k + 1 ×B
U k

” in front of each of the

above expressions are omitted for simplicity. Equations (50a)
and (50b) are due to (25) and (26), respectively. In (50c), the in-
duction assumption G(xk , uk−1) = Q(xk , uk−1) is used. Iden-
tity (50d) follows from the definition (24). The result of Lemma
6(b) was used in (50e).

APPENDIX D
PROOF OF THEOREM 2 (OUTLINE ONLY)

First, it can be shown that the three-stage separation princi-
ple continues to hold for the infinite horizon problem (6). The
same idea of proof as in Section VI is applicable; for every pol-
icy γP = {P (ut |xt, ut−1)}t∈N , there exists a linear–Gaussian
policy γQ = {Q(ut |xt, ut−1)}t∈N which is at least as good as
γP . Second, the optimal certainty equivalence controller gain
is time invariant. This is because, since (A,B) is stabilizable,
for every finite t, the solution St of the Riccati recursion (11)
converges to the solution S of (17) as T → ∞ [59, Th. 14.5.3].
Third, the optimal AWGN channel design problem becomes an
SDP over an infinite sequence {Pt|t ,Πt}t∈N similar to (12), in

which “
∑T

t=1” is replaced by “lim supT →∞
1
T

∑T
t=1” and pa-

rameters At,Wt, St ,Θt are time invariant. It is shown in [60]
that the optimality of this SDP over {Pt|t ,Πt}t∈N is attained by

a time-invariant sequence Pt|t = P,Πt = Π ∀t ∈ N, where P
and Π are the optimal solution to (18).

APPENDIX E
PROOF OF COROLLARY 1

We write v∗(A,W ) � limD→+∞ R(D) to indicate its depen-
dence on A and W . From (18), we have

v∗(A,W ) =⎧⎪⎪⎨
⎪⎪⎩

inf
P,Π

1
2 log det Π−1 + 1

2 log det W

s.t. Π � 0, P � APA� + W,

[
P − Π PA�

AP APA� + W

]
� 0.

(51)

Due to the strict feasibility, Slater’s constraint qualification [61]
guarantees that the duality gap is zero. Thus, we have an al-
ternative representation of v∗(A,W ) using the dual problem
of (51)

v∗(A,W ) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
X,Y

1
2 log det X11 − 1

2 Tr(X22 + Y )W + 1
2 log detW + n

2

s.t. A�Y A −Y + X11 +X12A + A�X21 + A�X22A � 0,

Y � 0,X =
[

X11 X12
X21 X22

]
� 0.

(52)

The primal problem (51) can be also rewritten as

v∗(A,W )

=

{
inf
P

1
2 log det(APA� + W ) − 1

2 log det P

s.t. P � APA� + W,P ∈ Sn
++

(53)

=

⎧⎪⎪⎨
⎪⎪⎩

inf
P,C,V

− 1
2 log det(I − V − 1

2 CPC�V − 1
2 )

s.t. P−1 − (APA� + W )−1 = C�V −1C

P ∈ Sn
++ , V ∈ Sn

++ , C ∈ Rn×n .

(54)

To see that (67) and (54) are equivalent, note that the feasible
set of P in (67) and (54) are the same. Also

1
2

log det(APA� + W ) − 1
2

log det P

= −1
2

log det(APA� + W )−1 − 1
2

log det P

= −1
2

log det(P−1 − C�V −1C) − 1
2

log detP

= −1
2

log det(I − P
1
2 C�V −1CP

1
2 )

= −1
2

log det(I − V − 1
2 CPC�V − 1

2 )

The last step follows from Sylvester’s determinant theorem.
1) Case 1: When All Eigenvalues of A Satisfy |λi | ≥ 1 We

first show that if all eigenvalues of A are outside the open
unit disc, then v∗(A,W ) =

∑
λi ∈σ (A) log |λi |, where σ(A) is

the set of all eigenvalues of A counted with multiplicity.
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To see that v∗(A,W ) ≤∑λi ∈σ (A) log |λi |, note that the value∑
λi ∈σ (A) log |λi | + ε with arbitrarily small ε > 0 can be at-

tained by P = kI in (67) with sufficiently large k > 0. To
see that v∗(A,W ) ≥∑λi ∈σ (A) log |λi |, note that the value∑

λi ∈σ (A) log |λi | is attained by the dual problem (52) with

X = [A − I]�W−1 [A − I] and Y = 0.
2) Case 2: When All Eigenvalues of A Satisfy |λi | < 1 In this

case, we have v∗(A,W ) = 0. The fact that v∗(A,W ) ≥ 0 is
immediate from the expression (67). To see that v∗(A,W ) = 0,
consider P = P ∗ in (67) where P ∗ � 0 is the unique solution
to the Lyapunov equation P ∗ = AP ∗A� + W .

3) Case 3: General Case In what follows, we assume without
loss of generality that A has a structure (e.g., a Jordan form)

A =
[

A1 0
0 A2

]

where all eigenvalues of A1 ∈ Rn1 ×n1 satisfy |λi | ≥ 1 and all
eigenvalues of A2 ∈ Rn2 ×n2 satisfy |λi | < 1. We first recall the
following basic property of the algebraic Riccati equation.

Lemma 7: Suppose V � 0 and (A,C) is a detectable pair
and 0 ≺ W1 � W2 . Then, we have P̃ � Q̃ where P̃ and Q̃ are
the unique positive-definite solutions to

AP̃A�− P̃ − AP̃C�(CP̃C� + V )−1CP̃A� + W1 = 0
(55)

AQ̃A�− Q̃ − AQ̃C�(CQ̃C� + V )−1CQ̃A� + W2 = 0.
(56)

Proof: Consider Riccati recursions

P̃t+1 = AP̃tA
� − AP̃tC

�(CP̃tC
� + V )−1CP̃tA

�+ W1
(57)

Q̃t+1 = AQ̃tA
� − AQ̃tC

�(CQ̃tC
� + V )−1CQ̃tA

�+ W2
(58)

with P̃0 = Q̃0 � 0. Since [RHS of (57)) � (RHS of (58)] for
every t, we have P̃t � Q̃t for every t (see also [62, Lemma 2.33]
for the monotonicity of the Riccati recursion). Under the
detectability assumption, we have P̃t → P̃ and Q̃t → Q̃ as
t → +∞ [59, Th. 14.5.3]. Thus, P̃ � Q̃.

Using the above lemma, we obtain the following result.
Lemma 8: 0 ≺ W1 � W2 , then v∗(A,W1) ≤ v∗(A,W2).
Proof: Due to the characterization (54) of v∗(A,W2),

there exist Q � 0, V � 0, C ∈ Rn×n such that v∗(A,W2) =
− 1

2 log det(I − V − 1
2 CQC�V − 1

2 ) and

Q−1 − (AQA� + W2)−1 = C�V −1C. (59)

Setting Q̃ � AQA� + W2 � 0, it is elementary to show that
(59) implies Q̃ satisfies the algebraic Riccati equation (56).
Setting L̃ � AQ̃C�(CQ̃C� + V )−1 , (56) implies a Lyapunov
inequality (A − L̃C)Q̃(A − L̃C)� − Q̃ ≺ 0, showing that A −
L̃C is Schur stable. Hence, (A,C) is a detectable pair. By
Lemma 7, a Riccati equation (55) admits a positive-definite
solution P̃ � Q̃. Setting P � (P̃−1 + C�V −1C)−1 , P satisfies

P−1 − (APA� + W1)−1 = C�V −1C. (60)

Moreover, we have P � Q since

0 ≺ Q−1 = Q̃−1 + C�V −1C � P̃−1 + C�V −1C = P−1 .

Since P satisfies (60), we have thus constructed a feasible solu-
tion (P,C, V ) that upper bounds v∗(A,W1). That is,

v∗(A,W2) = −1
2

log det(I − V − 1
2 CQC�V − 1

2 )

≥ −1
2

log det(I − V − 1
2 CPC�V − 1

2 )

≥ v∗(A,W1).

Next, we prove that v∗(A,W ) is both upper and lower
bounded by

∑
λi ∈σ (A 1 ) log |λi |. To establish an upper bound,

note that the following inequalities hold with a sufficiently large
δ > 0 with W � δIn :

v∗(A,W ) ≤ v∗(A, δIn )

≤ v∗(A1 , δIn1 ) + v∗(A2 , δIn2 ) =
∑

λi ∈σ (A 1 )

log |λi |.

Lemma 8 is used in the first step. To see the second inequality,
consider the primal representation (51) of v∗(A, δIn ). If we
restrict decision variables to have block-diagonal structures

P =
[

P1 0
0 P2

]
, Π =

[
Π1 0
0 Π2

]

according to the partitioning n = n1 + n2 , then the original
primal problem (51) with (A, δIn ) is decomposed into a problem
in terms of decision variables (P1 ,Π1) with data (A1 , δIn1 )
and a problem in terms of decision variables (P2 ,Π2) with
data (A2 , δIn2 ). Due to the additional structural restriction, the
sum of v∗(A1 , δIn1 ) and v∗(A2 , δIn2 ) cannot be smaller than
v∗(A, δIn ). Finally, by the arguments in Cases 1 and 2, we have
v∗(A1 , δIn1 ) =

∑
λi ∈σ (A 1 ) log |λi | and v∗(A2 , δIn2 ) = 0.

To establish a lower bound, we show the following inequali-
ties using a sufficiently small ε > 0 such that εI � W :

v∗(A,W ) ≥ v∗(A, εIn )

≥ v∗(A1 , εIn1 ) + v∗(A2 , εIn2 ) =
∑

λi ∈σ (A 1 )

log |λi |.

The first inequality is due to Lemma 8. To prove the second
inequality, consider the dual representation (52) of v∗(A, εIn ).
By restricting decision variables X11 ,X12 ,X21 ,X22 , and Y
to have block-diagonal structures according to the partitioning
n = n1 + n2 , the original dual problem is decomposed into two
problems of the form (52) with (A1 , εIn1 ) and (A2 , εIn2 ). Since
the additional constraints in the dual problem never increase the
optimal value, we have the second inequality. Discussions in
Cases 1 and 2 are again used in the last step.
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