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Abstract: To date, the potential development of 3D laser scanning has enabled the capture of high-
quality and high-precision reality-based datasets for both research and industry. In particular,
Terrestrial Laser Scanning (TLS) technology has played a key role in the documentation of cultural
heritage. In the existing literature, the geometric properties of point clouds are still the main focus for
3D reconstruction, while the surface performance of the dataset is of less interest due to the partial
and limited analysis performed by certain disciplines. As a consequence, geometric defects on surface
datasets are often identified when visible through physical inspection. In response to that, this study
presents an integrated approach for investigating the materials behavior of heritage building surfaces
by making use of attribute point cloud information (i.e., XYZ, RGB, reflection intensity). To do so,
fracture surface analysis and material properties are computed to identify vulnerable structures on
the existing dataset. This is essential for architects or conservators so that they can assess and prepare
preventive measures to minimize microclimatic impacts on the buildings.

Keywords: point cloud data; material properties; fracture surfaces; heritage buildings; building
performance assessment

1. Introduction
1.1. General Background

Over the past decade, cultural heritage documentation using Terrestrial Laser Scanning
(TLS) technology has significantly improved for both research and industry. This is not
only due to the wide availability of technology but also to the ease of use, which makes
creating the dataset efficient and practical [1]. As such, it now becomes feasible to provide
significant contributions to heritage building performance analysis. In this regard, the
heritage building surfaces require great attention to maintain a proper lifecycle, especially
relating to climate and environmental issues such as energy consumption, safety, materials,
and indoor environment.

Remote Sens. 2022, 14, 410. https://doi.org/10.3390/rs14020410 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14020410
https://doi.org/10.3390/rs14020410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9772-742X
https://orcid.org/0000-0001-8102-2698
https://orcid.org/0000-0002-8607-5569
https://orcid.org/0000-0002-5684-2595
https://orcid.org/0000-0001-7311-1324
https://doi.org/10.3390/rs14020410
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14020410?type=check_update&version=2


Remote Sens. 2022, 14, 410 2 of 24

According to De Wilde [2], the concept of building performance refers to three principal
definitions, which are engineering (e.g., building’s function), process (e.g., the construction
process), and aesthetic (e.g., visual representation). These principles can then be viewed as
the behavior of buildings in relation to their use. This includes architectural performances
that rely on the integration between the observer, buildings, and surroundings. In the con-
text of heritage buildings, at least two potential factors are generally identified as causative
aspects of vulnerable building structures, namely human (e.g., war [3,4] and accidents [5,6])
and the environment (e.g., natural disaster [7,8] and aging [9,10]). These factors have a
massive impact, not only on the physical (i.e., chemical, biological mechanism) [11] and
functional performance of the heritage building, but also on the financial performance (i.e.,
maintenance cost) [12]). Specifically for climate change, due to the natural weathering of
materials and lack of regular monitoring [11], geometric defects such as cracks [13], the loss
of thermal performance [14], and structural deformation [15] are often unavoidable in the
surface morphology of heritage buildings.

According to Sesana et al. [11], the gradual changes in climate can significantly cause
various threats on the indoor environment of heritage buildings. For example, mechani-
cal degradation often occurs based on freeze-thaw cycles, salt crystallization cycles, and
physical damage on hygroscopic wooden materials and masonry buildings. There is also
chemical and biological degradation that affects materials made of silk, wall decorations,
furniture fabrics, and paper due to insects and mold activity. These degradations par-
ticularly happen in warmer climates with more humid environment, such as southern
European countries, the British Isles, and Scandinavian countries. In our view, Indonesia is
more likely to be one of the affected countries according to the relative humidity levels of its
warm climate. Therefore, precautions must be taken in the first place to prevent substantial
decay to the surface of cultural heritage buildings.

Thanks to the development of advanced laser scanning technology, one can generate
high-quality and high-precision reality-based datasets in a matter of minutes. As a product
of laser scanning datasets, the point cloud contains attribute information as part of recorded
data structures, typically characterized by position information (XYZ), color information
(RGB), and reflection intensity (I) [16]. Each piece of information serves a different task. For
example, RGB color can be used to capture a specific area based on its value. Kobayashi
et al. [17] further employed this color information by calculating Hue (H) and Saturation
(S) values in order to identify road signs in Japan. Zhan et al. [18] performed color-based
segmentation based on colorimetric similarity and spatial proximity to segment ancient
Chinese architecture, while Alshawabkeh [19] used it to automatically detect and quantify
façade linear features.

In addition to the color information, the reflection intensity (I) also contributes to
the analysis of the performance of the surface dataset. In principle, the intensity consists
of the return strength value of the laser beam corresponding to the reflectivity of the
surface being scanned [20,21]. This is why the intensity value is highly dependent on the
material and surface characteristics of the dataset. This information can be used not only to
classify and filter lidar points [22], but also to develop a model study for detecting crack
information in building walls [23] and pavement lines [24], and for monitoring in building
construction [25,26]. As for the position information (XYZ), this can be used as an index to
align and select the coordinate location of the color and intensity values in the dataset.

Therefore, leveraging the potential application of attribute information stored in point
cloud data (i.e., geometric and radiometric properties) provides further opportunities to
explore features relevant to the assessments of heritage building surfaces. The potentiality
of TLS datasets is also relevant for observation through wavelength or electromagnetic
(EM) waves. Each TLS device contains a different wavelength depending on the laser
material, optical system, and excitation method used [27]. In this regard, the greater the
wavelength, the lower the electromagnetic energy carried by the laser beam. According to
the electromagnetic spectrum, laser scanners usually lie in the range between 700 nm–2
µm, while the solar energy spectrum can start from 250 nm [28]. Given that the wavelength
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band of laser scanners belongs to the category of near infrared light (NIR), in principle
it corresponds to low-frequency radiation close to the visible red hue [29]. This informa-
tion provides us with insights to explore materials behavior for the light/solar spectrum
retrieved from the dataset. In this regard, materials behavior refers to the functions that
affect and characterize the quality of materials in the dataset, both externally (i.e., physical
deformation) and internally (i.e., intrinsic defects) [30]. These functions can consist of
temperature, orientation of fabric, and strain rates. In the context of heritage buildings,
investigating the material behavior of surface datasets plays an important role, not only
to identify the morphological characteristics of building surfaces, but also to calculate the
affected areas caused by environmental impacts or external functions.

Drawing on the above considerations, this study presents non-destructive methods for
investigating the surface degradation characteristics of existing heritage buildings. Given
the large number of cultural heritage buildings in Indonesia, this method may attract and
help architects or conservators to efficiently conduct preliminary assessments. This study
will specifically select one heritage building in Malang City, East Java, as an exploratory
case. The proposed method consists of two main features of integrated performances:
fracture surface analysis and material properties, each of which will supply information
regarding the surface morphological characteristics of the existing dataset. For example,
fracture surface analysis is used to identify the structural deformation of the dataset, while
material properties are computed to identify the performance behavior of surface materials.
Furthermore, the novel method proposed in this work provides several contributions on
the current performance assessment of cultural heritage buildings, as follows:

• The proposed method allows one to detect the fracture distribution on the existing
surface dataset. This can be done by computing geometric properties of the point cloud
(i.e., XYZ) through normal values, dip angle, and dip direction of the surface plane in
the dataset. This can help architects or conservators to further identify potential cracks
from the surface dataset.

• The proposed method contributes to the detection of vulnerable surfaces in the existing
dataset, especially with regard to the materials behavior of the dataset. This can be
done by calculating radiometric properties (i.e., RGB, I) of point clouds through the
albedo, reflectance, and transmittance values of the TLS dataset. In so doing, architects
or conservators can identify the performance qualities of certain areas in the dataset.

• The integrated analysis between fractures and materials behavior permits us to not
only analyze the surface performance of the dataset in relation to microclimatic impacts
in the indoor environment but also to calibrate the resulting simulations conducted
between fracture analysis and materials point distribution.

This work ultimately aims to develop a computational framework for performance
assessment of heritage building surfaces. The present study is structured into five sections.
Section 1 will describe a general overview of the study, discussing the potential of point
cloud attribute information relevant to the current issues in cultural heritage documentation.
It will be followed by a discussion of existing works related to the method presented in
this work. Section 2 will describe a detailed computational procedure of the proposed
method in this study. It mainly consists of three main parts, namely fracture surface
analysis, material properties, and the integrated analysis between selected fracture zones
and materials behavior. A dataset collection consisting of 3D scanning tools and selected
heritage building dataset will then be presented in Section 3. Subsequently, the results and
discussion of the study will be described comprehensively in Section 4. Lastly, Section 5
will present concluding remarks and suggestions for future research.

1.2. Related Works

Various studies have been conducted to identify the aforementioned fractures and
materials degradation, ranging from conventional methods and tools (e.g., mechanical
probes [31], electronic sensors [32,33]) to those using the latest technology, such as 3D laser
scanning and machine learning approaches [34]. This study, however, focuses on detecting
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the surface deformation characteristics of heritage buildings based on TLS datasets due
to their ease of use, time and cost considerations, the existence of high-quality datasets,
non-contact measurements, and the interdisciplinary fields of research areas. Over the
past decade, there has been a growing number of works using TLS datasets to investigate
material degradations and physical deformation (i.e., cracks) of heritage buildings. For
example, Cabaleiro et al. [35] developed an automatic detection method for identifying and
analyzing the cracks in timber beams based on lidar datasets. Specifically, they formulated
Alpha-shaped algorithms to control the growth of cracks over time so that they could
map the potential cracks that could be harmful for the building structure. Jiang et al. [36]
proposed a series of extraction methods for detecting wall cracks on earthquake-damaged
buildings. Their method consists of three main steps, namely point cloud wall segmentation
based on a triangular irregular network (TIN), image generation, and wall crack extraction.
Similarly, Laefer et al. [37] also employed TLS datasets to determine the surface cracks on
masonry structures. Although these works predominantly focus on geometric analysis of
the dataset, they also have relevant features for further investigation.

However, only a few studies have been found to specifically identify the structural
deformation and materials behavior of the building based on attribute point cloud informa-
tion. For example, Armesto-González et al. [38], Guldur and Hajjar [39], and Olsen et al. [40]
similarly examined surface degradation of buildings, mainly based on the intensity in-
formation. Several works have also been identified to utilize RGB color information for
crack detection of the building surface. For example, Kim et al. [41] investigated cracks
on concrete structures using an RGB-D camera based on the angle of view, Sanchez and
Bairan [42] performed crack pattern analysis on concrete elements based on RGB images
and orientation kernels, and Vashpanov [43] and Barazeetti and Scaioni [44] conducted
crack measurements using a high-resolution digital camera with photogrammetry tech-
niques. These studies, however, only employ image-based methods, which depend on
the camera lens, focal length, and the quality of the pixel size taken during the dataset
collection [44]. In the context of cultural heritage documentation, the aforementioned stud-
ies mostly perform partial assessments on geometric detection (i.e., cracks), often without
calibrating the thermal and optical performance of materials behavior. This consequently
makes the performance assessments of surface datasets slow and largely dependent on
physical inspection, especially when it comes to geometric defects (e.g., cracks, materials
decay). In addition, research that specifically focuses on an integrated approach to the
assessment of surface performance between structural deformation and materials behavior
based on attribute point cloud information has not yet been further explored. This study,
therefore, develops a computational framework to examine the performance of heritage
building surfaces (i.e., fracture analysis and materials behaviors) based on the geometric
and radiometric information stored in TLS datasets.

2. Methods

As introduced in the previous section, this study aims to investigate the surface
morphology of existing cultural heritage buildings by analyzing the material properties
and fracture planes in the surface dataset. A series of computational procedures was
developed to achieve this goal (see Figure 1). In general, it consists of three main steps,
namely pre-processing of the dataset, exploratory data analysis that include fracture surface
analysis and material properties, and lastly, integrated analysis between fracture plane
points and material properties.

In order to perform specific tasks in each predetermined step, the proposed method
is supported by several digital tools. For example, the raw dataset was gathered using
Leica RTC360 to collect high-resolution point clouds. It was equipped with a Cyclone
FIELD 360 to perform dataset modelling, coloring, and transformation from scanner to
the workstation in any designated format. In addition, Cloud Compare (CC) [45] was
employed to perform dataset preprocessing, such as removing outliers (unnecessary point
clouds), calculating surface normal using the Hough Normal plugin [46] on CC, enabling
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the scalar field feature, and performing dataset subsampling. LAStools [47] was used to
georeference datasets. Python [48] and R [49] were used to calculate fracture points and
material properties in the dataset, respectively. Additionally, Grasshopper and Rhinoceros
were employed for the dataset visualization. Furthermore, a detailed procedure of each
step is discussed below.
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2.1. Step 01—Dataset Pre-Processing

After collecting a raw point cloud dataset, several tasks are first required to prepare
and select the relevant information in the dataset. These tasks include georeferencing,
which aims to locate the position coordinates of the dataset to a real-world geographic
location. The georeferencing is conducted with the lasinfo and las2las modules in LASTools.
First, the ground control points are retrieved from the Differential Global Positioning
System (DGPS) from the four corners of the building. The coordinate is in UTM, with all
units (x,y,z) in meter. Because the point cloud is referenced to local coordinates —or the
offset is 0,0,0— major translation is applied with the lasinfo module to adjust the header
information. Lastly, minor translation, which translates point accuracy to mm accuracy is
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conducted with the las2las module. This is an important step in determining the correct
orientation so that the fracture plane can be calculate at a later stage. Outlier removal
and noise reduction are also performed to remove irrelevant point clouds as well as to cut
the selected portions of the dataset. Given that the raw TLS dataset includes only typical
attribute information such as XYZ, RGB, and intensity (I), the surface normal (Nx, Ny, Nz)
of the dataset are first calculated using the Hough Normal plugin [46] on CC. This plugin
is based on a convolutional neural network. It is useful, not only to select a normal from
the accumulator, but also to deal with density variation based on a local density estimation.
A detailed feature and procedure of this plugin can be found in Boulch and Marlet [46].

After computing the surface normal of the dataset, intensity correction can be per-
formed. In this regard, intensity correction aims to correct the point cloud radiometric
information from erroneous measurements caused by environmental parameters (i.e.,
equipment sensitivity [50], sensor noise interference [51], atmospheric pollution [38]) dur-
ing the scan. In fact, it is extremely difficult to compensate for all these variables due to
some local constraints, such as climatic condition (moisture and temperature pressures)
and the tools’ default settings from the manufacture. For example, the equipment calibra-
tion plays an important part in determining the performance evaluation and reducing the
uncertainty in point clouds [52]. However, factors such as the end users (audience) of 3D
scanning technology targeted in this study, most of whom are architects and heritage con-
servators, are less applicable (less priority) to equipment calibration due to the prerequisite
knowledge of 3D processing datasets. This is why this study focuses on the application
of geometric acquisition parameters, namely angle of incidence, which is relevant to the
investigation of the surface characteristics of the dataset. The corrected intensity dataset
allows us to identify better values of materials attached to the object’s surface dataset.

Furthermore, due to the high-resolution datasets received from TLS, the resulting
points often reach very dense sizes. Thus, this study performs a subsampling procedure to
manage point density during data analysis. As part of an exploratory research, this study
subsamples the density of point clouds into a spatial distance of 5 cm. This is because,
first, this study focuses on exploiting the attribute information of the dataset, especially
the radiometric properties of the point cloud. This means that the surface morphology
analysis of the dataset does not require the Triangular Irregular Network (TIN) method
to convert to the 3D mesh model. Accordingly, the subsampling procedure becomes a
relevant step to also reduce the computational cost during the simulation. Second, this
study develops a computational workflow to build an integrated analysis between surface
fracture detection and materials behavior. This workflow includes some processing tools of
architecture, such as Rhino and Grasshopper, which unfortunately have limited capacity to
handle such high-density point clouds. After that, the subsampling point can be readily
used for exploratory data analysis in the second step.

As depicted in Figure 1, the detailed computational procedures of the dataset pre-
processing can be found in our previous work [53].

2.2. Step 02—Exploratory Data Analysis of Attribute Point Cloud Information

After establishing the required dataset from the pre-processing procedure, this step
focuses on exploring the surface characteristics of the existing building dataset based on
the geometric and radiometric properties stored in the point cloud data. It aims not only to
identify the materials behavior of the heritage building surface but also to detect potentially
cracked surfaces in the dataset. For specific investigations on material properties, a detailed
methodical framework can be found in our previous studies [53,54]. This study focuses on
the integration of surface analysis between material properties and surface planes in the
context of cultural heritage buildings.

• Fracture surface analysis

Cracks or fractures are found in both old and new structures [35], even more so in
heritage buildings because of their historical nature. They represent the accumulation of
damage during normal use and affect the aesthetics and durability of the building and play
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important roles in risk assessment of the building [36]. By definition, a fracture is a failure
zone and any type of brittle discontinuities where the crack adheres to the plane [55]. In
this regard, the cracks often appear as an irregular arrangement. The irregularity can then
be recognized on the normal plane as a reference. Given that the fracture varies in a plane,
it depends not only on the high or low intensity but also on the large or small volumetric
size of the fracture cavity [56]. Thus, identifying the fracture character plays an important
role in recognizing the geometric shape and distribution of the fracture [57,58].

In order to determine the fracture distribution, the spatial geometries of the plane, such
as dip angle and dip direction, needs to be defined first. In this regard, dip angle is defined
between the horizontal plane and the discontinuity plane, while the dip direction refers
to the bearing angle (a clockwise direction with respect to north of the projection of the
discontinuity plane in the horizontal plane angle of planar features) [59–61]. These criteria
are used to characterize the distinctive features of the plane, whether it is a fracture zone
or not. The fracture zone will undoubtedly make the plane less homogeneous, although
random patterns appear in some locations. This results in a non-homogeneous distribution
of point clouds, which tends to vary across the plane, suggesting fracture and non-fracture
zone clusters. In principle, fractures can be measured through a direct (i.e., scan lining) or an
indirect (e.g., remote sensing) method. Because the indirect method provides more benefit
in terms of non-destructive measurement and time consumption, this study collected the
dataset using a lidar measurement, especially with TLS. This technique is proven to be able
to capture a large amount of the dataset at a high level of resolution [1].

In the case of surface objects, fractures attached to the plane are represented as a
lineament. This lineament is perpendicular to the plane on the object’s surface. Thus, a
normal vector is required to determine the direction of fracture lineament. The magnitude
of the fracture direction is then calculated based on the distribution of the bearing angle
value. However, the raw point cloud datasets need to be first transformed into angular
coordinates because they are still Cartesian coordinates, which do not have angular aspects.

On the other hand, angular coordinates consist of the radial distance, azimuth, and
vertical elevation as a set of components. Here, the term of azimuth values is used to define
the fracture characterization of the plane. It refers to the magnitude of the angular direction
to the normal vector. In standard practice, the azimuth is measured from true north;
nevertheless, this study uses this term for the calculation of dip angle and dip direction,
as also mentioned in several references [59–61]. Furthermore, two crucial components
obtained from normal vectors are the magnitude of dip angle and the dip direction. In
order to calculate these components, the normal vector of the fracture plane (h) and the
horizontal plane (hn) must first be defined based on bx + cy− z + a = 0 and x− z plane

for y = 0 as
→
h = (b, c,−1) and

→
hn = (0, 1, 0). The dot product of these two vectors is

→
h ×

→
hn =

∣∣∣∣ →hn

∣∣∣∣∣∣∣∣→h ∣∣∣∣ cos α. Furthermore, the relationship between these two normal vectors

can be described as bX + cY− Z + a = 0 with X − Z for Y = 0 [62]. By applying the dot
product of two vectors [63], the magnitude of angle (α) can be computed as follows:

cos α =

∣∣∣∣→hn ×
→
h
∣∣∣∣/∣∣∣∣→hn

∣∣∣∣∣∣∣∣→h ∣∣∣∣ = |c/√b2 + c2 + 1|, (1)

According to Equation (1), the dip angle (DA) can be solved using the following equation:

DA = cos−1
∣∣∣c/√b2 + c2 + 1

∣∣∣, (2)

After computing the dip angle of the surface dataset, the magnitude of dip direction
can be further investigated. In principle, it has a reference in the north direction and is
perpendicular to the strike of the plane, which is the horizontal plane. Equation (3) is
applied to convert the strike orientation to the dip direction.

strike = tan−1 uy/ux + Q, (3)
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where, uy and ux are the vector components of |u|, |u| is the three-dimensional vector space
in the Cartesian system, and Q is an angle, in degrees, that ensures α lies in the correct
quadrant between 0 to 360◦, as listed in Table 1 [64].

Table 1. The Quadrant parameters in Equation (3).

ux uy Q ( . . . ◦)

≥ 0 ≥ 0 0
< 0 ≥ 0 180
< 0 < 0 180
≥ 0 < 0 360

Furthermore, each location coordinate of the point cloud is proceeded to retrieve
the azimuth value of the normal vector (see schematic diagram in Appendix A). Subse-
quently, the distribution of these azimuth values can be plotted to identify fracture and
non-fracture zones.

• Materials behavior

The resulting corrected dataset is calculated based on two material qualities: thermal
and optical. Thermal properties correspond to the response of surface materials regarding
thermal conductivity over time [65], while optical properties refer to the interaction of
materials with electromagnetic radiation through the propagation vector or intensity [66].
Both qualities can be used to determine the performance of surface materials through the
radiometric information of the point cloud. For example, areas that absorb less energy
indicate high albedo values. After identifying these areas, we are able to substitute the
surface material that has a 70% lower insolation value with a high albedo value. This
strategy is indeed useful for measuring the thermal impact of microclimate issues on
cultural heritage buildings. As for the optical qualities, they play an important role in
determining the morphological characteristics of the surface material. In this regard,
reflectance value can be used to identify the gloss and roughness of the materials in
the dataset.

Furthermore, this study computes several parameters from the aforementioned qual-
ities, such as the albedo, reflectivity, and translucency values of the material dataset,
respectively. In this regard, albedo is defined as a fraction of solar radiation reflected by
the surface with the incidence of radiation on it [67]. Meanwhile, the material reflectivity
corresponds to the reduction in reflected electromagnetic power caused by the absorbent
surfaces or materials [68], and translucency refers to the diffuse transmission of light [69].
Specifically for translucency, it corresponds to the transmittance values of material, where
opaque materials have a zero-transmittance value because they are unable to penetrate light.
Computing these properties through RGB and intensity values stored in existing point
cloud datasets allow us to map a surface material catalogue. This catalogue can further
be used, not only to describe the surface characteristics (e.g., roughness and glossiness) of
heritage buildings, but also to take precautions regarding microclimatic conditions, such as
reducing heat gains on high reflectivity materials [70].

2.3. Step 03—Integrated Analysis between Material Properties and Fracture Points

This section develops an integrated analysis between surface fractures and materials
behavior of the heritage building. The aims are not only to further investigate the per-
formances of the surface morphology of the dataset in relation to the identified areas of
surface material distributions, but also to conduct a comparative analysis between the
overlapping areas resulting from the two performed steps (i.e., Step 2A and Step 2b). This
will provide us information regarding specific areas that include values for both fracture
points and materials properties. In doing so, this study will superimpose the value range
map of certain material properties (i.e., albedo, reflectance, transmittance) into the selected
fracture dataset. Thus, we can detect whether the performance rates of the indicated area
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are low or high, depending on the size of the overlapping areas. For example, high albedo
values usually refer to a smooth or light surface with little structural deformation, while
low ones indicate the opposite. Furthermore, the reflectance value can designate the level
of surface reflectivity of the dataset, which also indicates the state of surface temperature
during the observation [71]. For architects or conservators, this integrated analysis will
help them to further study the surface characteristics and current condition of the heritage
building, especially related to thermal performance, structural deformation, and materials
degradation of the surface dataset.

3. Dataset Collection
3.1. Selected Heritage Building Dataset

The point cloud dataset of the building was collected using 3D laser scanning technol-
ogy. This technology enables us not only to gather high precision datasets, as compared
to ALS (Aerial Laser Scanning), but also to capture specific areas outside and inside the
building. In this regard, the selected dataset was gathered using a Leica RTC360. As a
lightweight and high-speed 3D portable scanner, this tool can perform a measuring rate of
up to two million points per second with an automated targetless field registration (based
in VIS technology). This enables one to captured high-quality scans of colored 3D point
clouds in under 2 min. A detailed specification of this tool is presented in Table 2.

Table 2. A detailed specification of the 3D scanner [72].

Parameters Performance Specification Unit

Performance
Data acquisition <2 min for complete full dome scan and spherical

HDR image at 6 mm @ 10 m

Real time registration Automatic point cloud alignment based on Visual
Inertia System (VIS)

Scanning

Distance measurement High dynamic time of flight enhanced by
Waveform Digitizing Technology (WFD)

Laser class 1, 1550 nm (invisible)
Field of view 360◦ (horizontal)/300◦ (vertical)

Range Minimum 0.5–130 m
Resolution Three user selectable settings (3/6/12 mm @ 10 m)
Accuracy Angular accuracy 18”

Range accuracy 1.0 mm + 10 ppm
Range noise 0.4 mm @10 m, 0.5 mm @20 m

Imaging Camera 36 MP 3-camera system captures
Speed 1 min for full spherical HDR image

Environmental
Operating temperature −5 ◦C to +40 ◦C

Dust/humidity Solid particle/liquid ingress protection IP54

Furthermore, this study selects one spot captured from a single scan dataset. This is
not only due to the dataset correction requirements, but also to the very dense point clouds
produced by the TLS.

3.2. Selected Heritage Building Dataset

This study selected the Church of St. Virgin Mary of Mount Carmel, often called
the Malang Cathedral Church (see Figure 2), as an exploratory case for implementing
the method proposed in Figure 1. This church is located on Ijen Street, Malang City,
East Java, Indonesia (7◦58′06.11′′S, 112◦37′24.68′′E, with ellipsoid reference WGS84). The
Cathedral church was historically built on 11 February 1934, designed by architect Rijksen
en Estourgie, constructed by NV Bouwundig Bureau Siten en Louzada, and then renovated
on 27 July 2002 [73]. As one of the cultural heritage buildings in Malang, this church
presents a typical Neo-Gothic style with combined modern materials such as steel and
natural stone, and some materials imported directly from Europe. The 3D visualization
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of the dataset is freely accessible via this link https://s.ub.ac.id/gerejaijen (accessed on
17 November 2021) [74].
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Figure 2. A selected dataset of Ijen Church (St. Virgin Mary of Mount Carmel).

This study specifically selected the Altar room as a scanning dataset (see Figure 3).
This room occupies the upper part of the trunk of the cross. The selected area contains 35
million points after being deducted from the original dataset. In order to maintain compu-
tational time and cost during the analysis, the trimming dataset was then subsampled. The
subsampling dataset ultimately yielded around 121.386 points. The selected area consists
of walls, tiles, windows, and some furniture, such as chairs, desks, and lamps).

https://s.ub.ac.id/gerejaijen
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Figure 3. Segmentation of the selected dataset.

Furthermore, to investigate the dataset analysis in more detail, the selected portion of
the dataset is divided into four small parts, which consist of North wall (A/(a)), North roof
(A/(b)), South wall (B/(a)), and South roof (B/(b)) (see Figure 3).

3.3. Selected Materials of the Heritage Building

The selected area predominantly consists of four materials, namely concrete coated
with white paint (wall), marble tile (floor), gypsum (ceiling), and modified bitumen (roof).
Sections A/(a) and B/(a) most likely correspond to wall and floor materials, while sections
A/(b) and B/(b) refer to wall, ceiling, and roof. We have also identified wood material
that is mostly distributed in the furniture of the altar. In principle, each material contains
different performance thresholds of radiometric properties (see Table 3). Values below this
threshold can be categorized as low performance surfaces, and vice-versa.
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Table 3. Material specification of the heritage building. Collected from various sources [75–79].

No Elements Material Types
Material Properties

Albedo Reflectance Transparency

1. Wall Concrete coated
with white paint 0.9 0.72 Opaque

2. Floor Marble tile 0.6 0.45 Opaque
3. Ceiling Gypsum 0.85 0.7 Opaque
4. Roof Bitumen roof 0.2 0.25 Opaque

To our knowledge, there are three different approaches to detect damages in a structure:
heuristic feature-extraction methods, deep learning-based, and change detection [80]. Here,
our approach falls into the first category, which detects damages based on the surface
normal. This study found few references that specifically address fracture detection directly
based on the distribution of point distances. Most references convert the collected point
clouds into a 3D mesh model [81,82] before analyzing the fracture pattern. However, this
approach not only requires a highly computational power to handle a dense dataset, but
it also cannot be directly integrated into the proposed workflow of material properties in
this study due to the requirement of point attributes. Thus, this study currently can only
refer to similar fracture patterns and behaviors obtained from the experiment [83,84]. In
this regard, the threshold is set based on the surface fracture plane 75◦, assuming that the
potential crack of this heritage building is caused by gravity and some lateral loads.

In general, a crack can start to propagate when certain parameters, such as stress
intensity factors, reach a critical point. This case often causes a curved crack path, especially
when the material consists of inhomogeneities surfaces or has different material interfaces
due to holes, inclusions, microscopic cracks, etc. [85]. However, the fracture behavior is
highly dependent on the material. For example, concrete cracks will usually exist when a
strong pressure state is gradually distributed from micro-cracks to macro-cracks, causing
a softening behavior [86] or decreasing the bearing capacity [87]. Cacks in marble tile
are indicated by several defects, such as local chipping along cracking, short and long
linear cracks, broken corners, local depressions, and nicks along edges [88]. These cracks
are usually caused by a dull sound from the tapped slabs due to dysconnectivity to the
substrate and bowing due to decohesion of calcite grains [89]. The crack in gypsum is
caused by the high strain rate [90]. Last, cracks in the bituminous roof can be characterized
by edge cracks that are usually caused by circumferential cracks, starting at the periphery,
and gradually moving inward with radial peaks and valleys [91].

4. Result and Discussion

Having established the selected dataset, this section discusses the implementation of
the proposed workflow. The analysis results are presented in three main parts, namely
fracture surface analysis, materials behavior, and comparative analysis between fracture
zones and materials behavior.

4.1. Fracture Surface Analysis

Figure 3 shows the point distribution of the azimuth values from normal vectors of
each part of the dataset. The North and South roofs have bimodal distributions, while the
North and South walls have multimodal distributions. In this regard, the azimuth on the
North and South sides of the heritage building is between northeast and southwest. This
makes the 0◦–90◦ azimuth consistently dominate the trend in the histogram and, thus, we
interpret it as a non-facture plane. The highest peak indicates that the point corresponds to
the non-fracture plane, while the second and third largest peaks correspond to the fracture
plane. In this regard, we interpret that the plane has at least two fracture clusters with
different azimuth orientations. The estimated azimuth values, which range between 0◦ and
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−75◦ on the North wall, −75◦ on the North roof, 0◦ and 75◦ on the South wall, and 75◦ on
the South roof, enable us to identify the fracture azimuthal orientation.

Figure 4 shows a pair of conjugate fractures with north–northeast (0◦ up to 75◦) and
north–northwest (0◦ up to −75◦) directions. In principle, the conjugate joint fractures are
relatively common in natural fractures. They usually consist of two or more separated parts,
induced by compressive external factors. In the context of the building, conjugate fractures
are often caused, not only by the compressive strength of the surrounding plane, but also
by the material qualities of the building surfaces. Although parallel fractures do exist, they
are relatively uncommon. For example, homogenous materials tend to form a set of parallel
fractures, while heterogeneous materials produce erratic natural fracture patterns.
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Figure 5 displays the distribution of fracture zones contained in each part of the
building. The trend shows that the points identified in the fracture category are less in
quantity compared to those found in the surface plane without fracture (refer to Figure 3).
Each peak in the histogram corresponds to a particular normal vector azimuth. Another
interesting pattern is the tail of the azimuth distribution in Figure 4, which shows a variety
of point cloud distributions. This indicates that the surface morphology of the building is
quite heterogeneous due to the unevenness of the azimuth cluster of normal vector values
and, thus, it refers to the fracture plane.
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According to Figure 5, some fracture directions are identified. For example, Figure 5A/(a)
depicts the pattern of the conjugate fractures. This can be observed through the cluster of
fracture point clouds that seem unevenly separated, although the orientation pattern is
partly towards the north and northeast. Figure 5B/(a) also shows the characteristics of this
pattern through the distribution of the azimuth, but to a much lesser extent. In general,
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the gradual pattern of conjugate fractures is also often caused by natural forces such as
earthquakes. On the other hand, there seems to be another fracture direction that refers to
the characteristics of parallel fractures. This can be found in Figure 5A/(b),B/(b), which
present the northwest and northeast directions, respectively. In this regard, the azimuth
clusters of Figure 5A/(b),B/(b) are relatively parallel, and their density is less because their
loading is dominant in only one direction, especially regarding the structural load of the
building itself.

4.2. Materials Behavior

This step presents a mapping of the material property on the existing surfaces of the
selected dataset in parallel with the calculation of the point density for each identified
surface. This information allows one to measure the specific performance of particular
areas in the existing dataset. The property values are set to a range between 0.0–1.0 so that
a clear comparison of material identification can be drawn from one surface to another. A
predefined range is divided into four different scales to identify a significant percentage
from the resulting identification.

According to Figure 6, the general trend depicts a similar pattern found between the
albedo and reflectance values for all parts of the dataset. Interestingly, these properties
not only illustrate the same areas but also show a similar point density for all range of
the values. For example, values of albedo and reflectance ranged between 0–0.25 are
consistently identified as the least amount of point density. To be more precisely, the point
density of these properties only consists of less than 8% from the total points in each part
of the dataset. For sections A/(a) and B/(a), this range of values mainly covers corner
and furniture areas such as wooden tables, leather benches, and candles. These objects
are assumed to correspond to non-continuous surfaces, which contain multiple separated
geometries. Although the scanner position is close to this area, the resulting footprint
emitted from the Gaussian beam is relatively scattered and, thus, the distribution of energy
is not normally allocated. Moreover, the object properties seem to have a darker color that
absorbs higher energy and primarily includes rough textures, which is why the surface
material of these objects can be categorized as non-reflective surfaces that show a diffuse
reflection and include more noise datasets.

Meanwhile, the largest density of points for albedo and reflectance values are identified
differently in each part of the dataset. For example, Part A/(a) refers to a range of 0.5–0.75
(around 45% from the total points), while Part B/(a) is identified at a range of 0.75–1.0
(around 37% from the total points), and Part B/(b) and A/(b) are similarly located at a
range of 0.25–0.5, with 53% and 51–55% of point density, respectively. Some areas identified
by these values are influenced by the surface brightness of the dataset during scanning.
This specifically can be observed in Part A/(a), with a range of 0.5–0.75. Interestingly, the
tube (fluorescent) light located vertically on the corner of the wall makes its surroundings
brighter than other areas (see Figure 7). This is why a red curve pattern is spotted along the
North wall as a boundary of the shade light. In this case, the laser beam captures a different
energy from different surface brightness. The intensity values located in the surrounding
of the tube (fluorescent) light is higher than others.

When these results are compared with the elements and material types presented in
Table 3, section A/(a) depicts that the densest albedo values are illustrated in the range of
0.5–0.75, with a point density of 45%. This figure predominantly fulfills the ideal value for
floor materials (marble tile) with an albedo of 0.6, while walls with concrete materials are
shown in the range of 0.75–1.0 for the ideal albedo value. A similar trend is shown for the
ideal reflectance values of floor materials (marble tile). The range of 0.5–0.75 contains the
greatest point density and is then followed by a range of 0.75–1.0.
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Figure 7. An enlarged spot of A/(a) dataset.

A slightly different pattern is shown in section B/(a). The ideal albedo value is
illustrated in the range of 0.75–1.0, with a point density of 51% and is followed by a range
of 0.5–0.75. In this regard, the identified areas for the ideal albedo are dominated by the
wall element, while the floor element dominates the second largest point density. Although
the trend of point density looks similar with the reflectance values, the largest ideal point
for reflectance lies in the range of 0.25–0.5, with only around 9.4% of point density. The area
identified in this range is predominantly assigned to marble tile. As for the transmittance
values, all sections relatively illustrate a similar pattern. The point densities for all sections
are predominantly concentrated in the ranges of 0.0–0.25 and 0.25–0.5. This indicates that
the surface materials of the existing dataset are similarly categorized as opaque.

According to the material property distribution plotted in Figure 6, we can further
calculate the total (∆) albedo modification in the existing dataset according to its point
density. This is essential to identify specific parts that might need further actions due to
microclimatic impacts (see Figure 8). To do so, the total identified areas are multiplied by
the upper range of albedo values. This then yields the total increment (∆) of albedo in a
certain range of the dataset. For example, Sections A/(b) and B/(b) contain a similar pattern
regarding high and albedo values. The trend shows that the highest albedo corresponds
to the upper range of 0.5, which is around 0.267 or 53.4% for A/(b), while it is around
0.259 or 51.8% for B/(b). This pattern is consecutively followed by a range of upper values
of 0.75 (A/(b)—0.2775 or 27% and B/(b)—0.27 or 36%), 1.0 (A/(b)—0.0617 or 6.17% and
B/(b)—0.066 or 6.6%), and 0.25 (A/(b)—0.008575 or 3.43% and B/(b)—0.014 or 5.6%). As
for A/(a) and B/(a), the only similar pattern of total (∆) albedo is found in the upper value
range of 0.25 with 0.01825 or 7.3% and 0.014 or 5.6%, respectively. Considering that the
densest point is located at low albedo values, further treatment is required to reduce the
heat absorption in those areas. For example, the Church management team or the heritage
organization could install thermal insulation or modify the existing surface material to do a
preventive action for specific areas. As for sections A/(a) and B/(a), the low albedo values
are more visible around the furniture, not only because of the disjointed geometries, but
also because of the dark color and rough material surfaces.
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4.3. Comparative Analysis between Fracture Analysis and Material Behaviors of the Dataset

This section discusses the point distribution of materials based on the fracture datasets
identified previously in Figure 5. The resulting material properties (i.e., albedo, reflectance,
transmittance) can principally be used to calibrate the surface performance of the fracture
datasets. This study selects the albedo only to demonstrate the feasibility of this proposed
method. Accordingly, we can understand the potential feature of integrating fracture
analysis and material behaviors for cultural heritage buildings.

Figure 9 exemplifies several interesting trends regarding the overlap between albedo
(green datasets) and surface fracture (red datasets). For example, the densest albedo values
vary in each section of the fracture dataset. This can be observed in sections A/(a) and
B/(b) in the range of 0.75, which shows the greatest overlapping albedo points, while
Sections A/(b) and B/(a) are identified in the range 0.5 and 1.0, respectively. At a glance,
these identified ranges show a performance contradiction between the thermal and surface
properties of the material dataset. This is because a higher albedo value indicates a smoother
or lighter surface of the dataset, while the fracture dataset itself designates a higher surface
porosity or high irregular surface morphology. Accordingly, by having high albedo values
on identified surfaces, fractures are quite contradictory, such as in sections B/(a) (at a
range of 1.0) and B/(b) (at a range of 0.75). This often occurs on flat surfaces with bright
colors, due to the limited parameters used for dataset correction. In order to avoid this
ambiguity, we can focus on areas with less overlapping albedo points as they clearly consist
of low surface performances. Furthermore, Figure 9 also shows that areas with low albedo
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values not only provide us with significant information regarding vulnerable surfaces in the
existing heritage building, but also strengthen our hypothesis regarding fracture datasets.

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 25 
 

 

4.3. Comparative Analysis between Fracture Analysis and Material Behaviors of the Dataset 
This section discusses the point distribution of materials based on the fracture da-

tasets identified previously in Figure 5. The resulting material properties (i.e., albedo, re-
flectance, transmittance) can principally be used to calibrate the surface performance of 
the fracture datasets. This study selects the albedo only to demonstrate the feasibility of 
this proposed method. Accordingly, we can understand the potential feature of integrat-
ing fracture analysis and material behaviors for cultural heritage buildings. 

Figure 9 exemplifies several interesting trends regarding the overlap between albedo 
(green datasets) and surface fracture (red datasets). For example, the densest albedo val-
ues vary in each section of the fracture dataset. This can be observed in sections A/(a) and 
B/(b) in the range of 0.75, which shows the greatest overlapping albedo points, while Sec-
tions A/(b) and B/(a) are identified in the range 0.5 and 1.0, respectively. At a glance, these 
identified ranges show a performance contradiction between the thermal and surface 
properties of the material dataset. This is because a higher albedo value indicates a 
smoother or lighter surface of the dataset, while the fracture dataset itself designates a 
higher surface porosity or high irregular surface morphology. Accordingly, by having 
high albedo values on identified surfaces, fractures are quite contradictory, such as in sec-
tions B/(a) (at a range of 1.0) and B/(b) (at a range of 0.75). This often occurs on flat surfaces 
with bright colors, due to the limited parameters used for dataset correction. In order to 
avoid this ambiguity, we can focus on areas with less overlapping albedo points as they 
clearly consist of low surface performances. Furthermore, Figure 9 also shows that areas 
with low albedo values not only provide us with significant information regarding vul-
nerable surfaces in the existing heritage building, but also strengthen our hypothesis re-
garding fracture datasets. 

 

Figure 9. An integrated map between fracture datasets and albedo values. A/(a) Fracture zone–
North wall; A/(b) Fracture zone–North roof; B/(a) Fracture zone–South wall; B/(b) Fracture zone–
South roof.

According to the results presented in this study, our proposed method may provide a
significant contribution to the current framework for assessing the performance of cultural
heritage buildings. In particular, the integrated analysis between surface fractures and
materials behavior has confirmed its potential application relevant to existing studies,
especially related to issues of structural deformation and material degradation. The incor-
poration of thermal performance analysis retrieved from the materials properties into the
surface geometric studies completes the current assessment features for heritage buildings,
which mostly focuses on physical deformation [35], single material observations [41], and
lab-based measurement methods [42].

Although this study acknowledges some further considerations on simulation accuracy
and point density of the dataset, this work presents a potential method for conducting the
initial performance assessment of heritage buildings in Indonesia. This also includes the
other 57 cultural heritage buildings [92] that may also require periodic cultural monitoring
and assessments. Thus, corresponding architects or conservators can take a preventive
action to minimize the environmental impacts on existing heritage building surfaces.

5. Conclusions

This study has discussed a computational framework of using 3D laser scanning
technology in examining the surface performance of the existing heritage church in Malang,
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Indonesia. In particular, the presented study investigates attribute information (i.e., geo-
metric and radiometric properties) stored in point cloud data, not only to identify fracture
and non-fracture points, but also to calculate and map the material properties (i.e., albedo,
reflectance, transmittance) of the existing surface dataset. The resulting findings ultimately
allow architects or conservators to detect and analyze the microclimatic impact of exist-
ing building surfaces at an early stage before geometric defects physically occur. Several
concluding remarks of the findings are specifically summarized as follows:

• Dataset preprocessing tasks such as georeferencing, outliers removal, intensity cor-
rections, and dataset subsampling play a crucial part in this study, which is not only
useful for filtering relevant information from the raw point cloud data, but also for
minimizing erroneous results during the dataset measurement. However, there are
some aspects to consider, such as the trade-off during the dataset subsampling of
whether to have a dense dataset or maintain computational time and costs. In this
regard, this study ultimately applies a spatial distance of 5 cm to enable one to perform
the integrated workflow between fracture analysis and materials behavior. In addition,
this study selects the angle of incidence as the correction parameter for intensity values
as it is closely related and relevant to the main scope of the study. In this case, the
distance effects are assumed to be maintained by the scanner due to an automatic
brightness-reducer at a certain distance.

• Computing the dip angle and dip direction of the surface dataset leads us to identify
fracture and non-fracture zones in the dataset. In this regard, fracture points can be
detected, not only from the geometric planes, but also from the materials behavior of
the surface dataset. Nevertheless, additional on-site measurements (i.e., image-based
methods) may be required, not only to calibrate and validate the simulation results,
but also to identify more environmental parameters that may be relevant to fortify our
hypothetical results.

• It is worth noting that the workflow developed in this study only applies to a single
scan dataset. This is mainly because the correction parameters (i.e., angle of incidence)
require a single reference point for the georeferenced coordinate. Otherwise, each
point cloud will contain multiple reference points due to multiple scanner locations
after merging the dataset. This will thus create confusion for detecting the true normal
value of each point of the original dataset.

• This study detects at least two kinds of fractures, namely conjugate fractures and
parallel fractures. These fractures are detected through uneven distribution of azimuth
clusters. This uneven distribution occurs due to several factors, such as heterogeneous
materials, disjointed geometries, the structural load of the heritage building, and
natural forces such as earthquakes.

• The areas identified for thermal performances, to some extent, are not always parallel
to the fracture zone. This specifically happens on flat areas with homogenous materials
and minimal crack propagation because the crack (e.g., holes, porosity) itself can act
as an isolator that breaks the heat flux distribution.

• The total (∆) albedo modification provides essential information regarding the heat
absorption of the surface dataset.

• Comparing the albedo and fracture values in the same dataset enables us to identify
and confirm the initial surface performance analysis.

While the present study shows encouraging results, further research could be of further
benefit to include several aspects. For example, it is important to integrate the dataset
measurement collected by TLS with a thermal camera in order to calibrate and verify
temperature parameters when calculating the material properties of the dataset. Future
studies may consider the use of a deep learning approach to perform a fully automated
detection for the heritage building assessment and the use of additional parameters (e.g.,
distance range during the acquisition geometry, surface temperature) to identify very
small fractures or particular cracks. Our present work will be developed into a software
application to perform real-time detection of defects using vision sensors, including drones.
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The work will also be extended to cover other models that can detect other defects in
construction, such as structural movements, spalling, and corrosion. Our long-term vision
includes plans to create a large, open-source database of different building and construction
defects, which will support world-wide research on the condition assessment of built assets.
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Figure A1. A schematic diagram of azimuth values, normal vectors, and fracture planes. (a) The 
azimuth of fracture plane; (b) The average surface normal vectors of fracture plane [57]. 
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