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Abstract: With the advancement of multi-constellation and multi-frequency global navigation satel-
lite systems (GNSSs), more observations are available for high precision positioning applications.
Although there is a lot of progress in the GNSS world, achieving realistic precision of the solution
(neither too optimistic nor too pessimistic) is still an open problem. Weighting among different GNSS
systems requires a realistic stochastic model for all observations to achieve the best linear unbiased
estimation (BLUE) of unknown parameters in multi-GNSS data processing mode. In addition, the
correct integer ambiguity resolution (IAR) becomes crucial in shortening the Time-To-Fix (TTF) in
RTK, especially in challenging environmental conditions. In general, it is required to estimate various
variances for observation types, consider the correlation between different observables, and com-
pensate for the satellite elevation dependence of the observable precision. Quality control of GNSS
signals, such as GPS, GLONASS, Galileo, and BeiDou can be performed by processing a zero or
short baseline double difference pseudorange and carrier phase observations using the least-squares
variance component estimation (LS-VCE). The efficacy of this method is investigated using real multi-
GNSS data sets collected by the Trimble NETR9, SEPT POLARX5, and LEICA GR30 receivers. The
results show that the standard deviation of observations depends on the system and the observable
type in which a particular receiver could have the best performance. We also note that the estimated
variances and correlations among different observations are also dependent on the receiver type. It
is because the approaches utilized for the recovery techniques differ from one type of receiver to
another kind. The reliability of IAR will improve if a realistic stochastic model is applied in single
or multi-GNSS data processing. According to the results, for the data sets considered, a realistic
stochastic model can increase the computed empirical success rate to 100% in multi-GNSS as well as
a single system. As mentioned previously, the realistic precision of the solution can be achieved with
a realistic stochastic model. However, using the estimated stochastic model, in fact, leads to better
precision and accuracy for the estimated baseline components, up to 39% in multi-GNSS.

Keywords: least-squares variance component estimation; double-difference; multi-GNSS observable
precision; variance analysis

1. Introduction

In the past, US global positioning system (GPS) was the only operational system. How-
ever, the progress and development of Russia’s global navigation satellite system (GLONASS),
China’s BeiDou navigation satellite system (BDS), and Europe’s Galileo in combination with
GPS improves positioning continuity, integrity, accuracy, and precision [1,2]. They increase the
number of signals acquired and allow more observation equations to provide instantaneous
and highly accurate global positioning or meteorological estimates in a shorter convergence
time [3,4].

Processing multi-GNSS observations of different systems have shown excellent re-
sults [5–7]. In [8], the combination of GPS and BDS showed that the fixed solutions could be
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improved by more than 20%. In contrast, some results pointed out that using multi-GNSS
systems did not always provide better positioning results than GPS-only [9]. Some scientific
communities are trying to facilitate the use of multi-GNSS systems. For instance, several
analysis centers and agencies, such as the International GNSS Service (IGS) have established
multi-GNSS experiments (MGEX) that generate satellite orbits, clock information for all
GNSS satellites, phase center offsets, codes, and phase biases models [10–13].

Although the basic idea of all navigation systems is the same, they differ in some
aspects. This resulted in distinct functional models as well as varying measuring qualities.
Proper functional and realistic stochastic models based on the various characteristics of
each system signal are required to obtain the best linear unbiased estimation [14]. There
are a few reasons as to why different navigation systems have different measurement
qualities. The first explanation is the different signal structure of GLONASS. Another
systems is code division multiple access (CDMA), this system is a frequency division
multiple access (FDMA) system. It means that GLONASS uses different frequencies to
identify satellites (see [15,16] for more detail on GLONASS). Another explanation is that
GNSS systems have different orbit reference frames, often within the same constellation,
which can cause different signal qualities in the same system. For example, BeiDou satellites
orbit in three different constellations, medium earth orbit (MEO), geostationary earth orbit
(GEO), and inclined geosynchronous orbit (IGSO) [17,18].

In most positioning applications, nominal variances are considered for code and
phase observations, and the correlations between different observations are neglected.
This approach can lead to an unrealistic stochastic model, which affects the accuracy of
the estimated parameters. To obtain a realistic stochastic model for multi-GNSS, it is
necessary to consider different variances for each system observation type, the correlation
between different observables, the dependence of the precision, the satellite altitude, and the
temporal correlation of the observables in the stochastic model [19]. The E1B and E5aQ
signals of the Galileo carrier phase standard deviation, for example, were studied [20,21].
The same was done for BeiDou by [22].

Different weighting methods have been proposed to properly weigh the multi-GNSS ob-
servations, such as carrier-to-noise ratio, elevation/azimuth-dependent weighting, signal-in-
space ranging errors (SISRE), and Helmert variance component estimations (HVCEs) [23–26].
For the GPS observation variance component estimation, different methods have been pro-
posed, but one of the most well-known is the least squares variance component estimation
(LS-VCE) [14,27–30]. This method is developed in this paper for multi-GNSS VCE.

The integer ambiguity resolution is a critical requirement in high-precision positioning.
The functional model, stochastic model, and the chosen method of integer ambiguity
estimation are all known to influence IAR performance [31]. To avoid applying an incorrect
integer solution, which could result in a large error in solving the fixed position, the success
rate and failure rate ratio test are utilized as critical metrics to verify the reliability of
IAR. For more information, refer to [32,33]. The reliability of the resolved ambiguities on
the stochastic model was investigated in [34] by comparing the IAR success rate when
a nominal and realistic stochastic model for the GPS observables is considered. It was
shown that when a realistic stochastic model was used, the IAR success rate on individual
frequencies improved by 20%, whether on L1 or L2. The same is done in this work for the
multi-GNSS case.

Moreover, the weight matrix of the observables is taken into account to affect the
estimated baseline components and their uncertainties. As a result, the estimated baseline
uncertainties were evaluated in [34] using a nominal and realistic stochastic model of
the GPS observables. The findings demonstrate that employing realistic stochastic model
results in realistic baseline component uncertainty.
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This paper discusses the basic concept of multi-GNSS double-difference (DD) data pro-
cessing in Section 2, considering the functional and stochastic models of CDMA and FDMA
observation. Then, in Section 3, the LS-VCE methodology is explained. The output of the
realistic stochastic model obtained by the LS-VCE method is examined in Section 4 using
three real data sets of zero or very short baselines. Then, the effect of the stochastic model
on the IAR success rate and the precision and accuracy of the baseline components are
investigated. Finally, the results are discussed in Section 5, and conclusions are presented
in Section 6.

2. Multi-GNSS Double-Difference Data Processing Methodology

The double-difference method is a standard high-accuracy positioning technique that
uses simultaneous observations of code pseudorange and phase from multi-GNSS receivers.
When the goal is to find the (co)variances of multi-GNSS observations, this approach with a
zero or very short baseline is preferable since some errors, such as orbital errors, multipath
effects, ionospheric and tropospheric delay, are removed by differentiation [35]. However,
it should be noted that some of these errors are distance-dependent, and ignoring them
becomes more difficult as the baseline lengthens.

This method consists of two parts. The first part is the definition of the functional
model, which specifies the relationship between the observations and unknowns. The sec-
ond part is the stochastic model, which describes the precision and mutual correlation
between the observations.

2.1. Functional Model

The double-difference dual-frequency code pseudorange and carrier phase observa-
tions are used in this process. When two satellites, r, and s, are observed simultaneously by
two receivers, A and B, the observation equation is as follows [35]:

Prs
AB, f = ρrs

AB + Trs
AB + Irs

AB, f + ers
AB (1)

φrs
AB, f = ρrs

AB + λ f Nrs
AB, f + Trs

AB − Irs
AB, f + εrs

AB (2)

where (.)rs
AB = (.)r

A − (.)r
B − (.)s

A + (.)s
B and f is the frequency band ( f = 1, 2, ...). P and

φ are the DD pseudorange code and phase observations in meters, respectively. ρ is the
geometric path length between the satellites and the receivers, T and I are the tropospheric
and ionospheric delay, respectively. λ is the wavelength of the GNSS signal, and N is the
phase ambiguity in cycles, and e and ε are the errors for code and phase measurements,
respectively. As long as the baselines are zero or short, the ionospheric and tropospheric
effects can be neglected. Therefore, the functional model related to these observations for
short baselines is as follows [36]:

E
[

P
φ

]
=

[
e⊗ G 0
e⊗ G Λ⊗ Im−1

][
b
a

]
(3)

where E is the mathematical expectation operator, G is the relative receiver–satellite geom-
etry matrix, ⊗ denotes the Kronecker products, eT = ones(1, f ), and Λ =diag(λ1, ..., λ f )
gives the diagonal matrix of wavelengths for f frequencies of GNSS systems. I is the
identity matrix of order m− 1, where m denotes the number of observed satellites, b is the
baseline vector, and a is a vector containing the DD integer phase ambiguities.

This equation is applied to the CDMA-based systems, e.g., GPS, Galileo, and BeiDou.
On the other hand, the GLONASS system uses the FDMA technique. The integer-estimable
ambiguities could not be achieved using the same model as Equation (3) for the GLONASS
DD observations. Therefore, based on [37], the functional model of GLONASS DD observa-
tion can be computed using Equation (4), which is similar to the DD CDMA model.

E
[

P
φ

]
=

[
e⊗ G 0
e⊗ G Λ⊗ L

][
b
a

]
(4)
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where L is a (m− 1)× (m− 1) full rank lower triangular matrix:

Lii = 2848× gi+1

ai+1gi
f or i = 1, ..., m− 1 (5)

Lij = −2848×
αja1(i+1)

ai+1gj
f or i = j + 1, ..., m− 1 (6)

and the integers αi and βi are given by −αiai+1 + βigi = gi+1 in which ai = 2848 +
f i, f i is the GLONASS satellite channel number, which is ∈ [−7,+6], and g1 = a1,
gi =GCD(a1, . . . , ai(1 < i ≤ m).

This model, which appears to be quite similar to standard CDMA models, can guaran-
tee integer ambiguities estimates. Therefore, different types of multi-GNSS observations
can be combined, and existing integer ambiguity resolution methods can be directly ap-
plied. However, large values of the LAMBDA-decorrelated ambiguity conditional standard
deviations for i = 2m− 2, i = 2m− 3 for the FDMA model is obtained due to the presence
of the matrix L [38,39]. As a result, partial ambiguity resolution (PAR) should be used by
letting the least precise transformed ambiguities float.

This model for multi-GNSS RTK positioning was analyzed, considering short to long
baselines, which proposed a PAR approach with which the inclusion of the integer estimable
of GLONASS FDMA model was beneficial in all cases considered [40,41].

2.2. Stochastic Model

There are benefits and drawbacks to using the multi-GNSS observation equations.
While increasing the number of observation equations can improve the standard errors
in the coordinates and convergence time [24], it is shown that improper weighting of the
multi-GNSS observation can lead to degradation of the repeatability of the coordinates. The
standard deviation for pseudorange code and carrier phase observations is set to specific
values in most GNSS software, e.g., 30 cm and 3 mm, respectively.

The stochastic model contains the variances and covariances between different types of
observations, and the methods that estimate these unknown parameters are called variance
component estimations (VCEs). Consider a single observation epoch with dual-frequency
observations for the DD code and phase. The simple stochastic model in this case is:

D
[

P
φ

]
=

[
Qpp ⊗ R 0

0 Qϕϕ ⊗ R

]
(7)

where
R = STW−1S (8)

and,
Qpp = 2diag(σ2

p1
G

, σ2
p2

G
, σ2

p1
R

, σ2
p2

R
, σ2

p1
E

, σ2
p2

E
, σ2

p1
C

, σ2
p2

C
) (9)

and,
Qφφ = 2diag(σ2

φ1
G

, σ2
φ2

G
, σ2

φ1
R

, σ2
φ2

R
, σ2

φ1
E

, σ2
φ2

E
, σ2

φ1
C

, σ2
φ2

C
) (10)

here, D is the dispersion operator, σ2
pq and σ2

φq are the variances of the undifferenced code
and phase observations, respectively, with q = 1, 2. Moreover, ST =

[
−em−1, Im−1

]
, and W

is the diagonal weight matrix whose entries are based on the elevation of the satellites.
The Qpp and Qφφ parameters are what define the stochastic model for various systems.
GPS is denoted by an upper-case G, GLONASS by an R, Galileo by an E, and BeiDou by a
C. By taking into account various variance components for observables, correlations among
observations, and satellite elevation dependence of observables precision for each system,
this paper describes a method for tuning proper weightings for various types of equations.
The structure of a stochastic model can be defined as follows [42]:

Qyy = ΣC ⊗ ΣT ⊗ ΣE (11)
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in which
ΣC = blkdiag(ΣG

C , ΣR
C , ΣE

C, ΣC
C) (12)

blkdiag generates a block diagonal matrix using matrices Σsys
C as diagonal elements, com-

puted using the following formula, where sys is the GNSS type (G, R, E, or C) to consider
all the systems simultaneously.

Σsys
C =


σ2sys

P1 σ
sys
P1,P2 σ

sys
P1,φ1 σ

sys
P1,φ2

σ
sys
P1,P2 σ2sys

P2 σ
sys
P2,φ1 σ

sys
P2,φ2

σ
sys
P1,φ1 σ

sys
P2,φ1 σ2sys

φ1 σ
sys
φ1,φ2

σ
sys
P1,φ2 σ

sys
P2,φ2 σ

sys
φ1,φ2 σ2sys

φ1

 (13)

If we assume each system has four different observation types, then each system ΣC
consists of 10 unknown (including 4 variances and 6 covariances) which will be calculated
using LS-VCE. ΣT is a K× K Toeplitz matrix, used to consider the time correlation between
the observables for K epochs, as follows:

ΣT =


σ0 σ1 · · · σK−1
σ1 σ0 · · · σK−2
...

...
. . .

...
σK−1 σK−2 · · · σ0

 (14)

and ΣE is used to describe the observable precision dependency to the elevation of m
satellites, which has the following definition:

ΣE = 2


σ2
[1] + σ2

[2] σ2
[1] · · · σ2

[1]
σ2
[1] σ2

[1] + σ2
[3] · · · σ2

[1]
...

...
. . .

...
σ2
[1] σ2

[1] · · · σ2
[1] + σ2

[m]

 (15)

where σ2
[i] is computed using the following equation, with Ei being the satellite’s elevation

angle, and the reference satellite index is assumed to be satellite 1.

σ2
[i] =

1
sin2 Ei

(16)

3. LS-VCE

Essential pieces of information used to obtain a realistic stochastic model are the
variance and covariance of the GNSS observations. A correct stochastic model can influence
the correct ambiguity resolution and position [43–45]. Various VCE studies have been
conducted to modify the stochastic model. Some models were proposed based on the
elevation dependence of the observations [46], while others considered the time correlation
and cross-correlation of the code pseudoranges and carrier phases [47,48]. In addition,
some methods using the atmospheric uncertainties were introduced [49,50].

Least-squares variance component estimation is a well-known method for estimating
the unknown (co)variance components based on least-squares rules [51]. This method
was first used to estimate the (co)variance of the GPS observations. Considering the linear
model as below:

E(y) = Ax, D(y) = Qyy = Q00 +
pG

∑
k=1

σG
k QG

k +
pR

∑
k=1

σR
k QR

k +
pE

∑
k=1

σE
k QE

k +
pC

∑
k=1

σC
k QC

k (17)

y is the observation vector with dimension M = mG + mE + mC + mR, where msys is the
number of observations for system sys. x is the vector with V = 3 + vG + vE + vC + vR
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unknowns, where 3 is the number of baseline unknowns and vsys describes the number
of ambiguities for each system. A is the M×V size full rank known design matrix. As a
result, Qyy should be an M × M covariance matrix of the observables, and Q00 is the
known part of the variance matrix. The Qk are the known symmetric and positive definite
cofactor matrices. Thus, this model contains the unknown parameter vectors as well as psys

(co)variance components for each system.
The unknown (co)variances will be calculated iteratively using LS-VCE based on

Equation (18) [42]:
σ̂ = N−1l (18)

in which:
nij =

1
2

tr(QiQ−1
y P⊥A QjQ−1

y P⊥A ) (19)

consist the elements of matrix N, and the components of vector l define as follows:

li =
1
2

êTQ−1
y QiQ−1

y ê (20)

where ê is the least-squares residual estimator and P⊥A is a projector for projects in the
range space of A⊥. The iteration continues until the converge condition of

∥∥σ̂j − σ̂j−1
∥∥ < ε

is satisfied, or in other words, until the difference between two consecutive solutions is
less than the tolerance ε. Using ΣT = IK, the time correlations between the observations
are neglected. It denotes an absence of temporal correlation between the observations.
For several state-of-the-art GNSS receivers, this is not an unreasonable assumption due to
its less importance than satellite elevation and GNSS system type [42].

In [42], the multivariate linear model was implemented to reduce the computational
load and memory consumption for VCE due to the enormous size of the A matrix. In this
method, the model is repeated r times. In other words, the model is proposed for a few
consecutive epochs in each group. Then, using Equation (21), the mean value of the
estimated variances will be used as the final estimation, where σ̂

(i)
k is the kth covariance

component of the ith group.

σ̂k =
1
r ∑r

i=1σ̂
(i)
k k = 1, 2, . . . , p (21)

The diagonal elements of the final estimated matrix are variances, and the off-diagonals
are the covariances. The correlation coefficient between the various observation types
is another parameter that can be calculated using the variances and covariances with
Equation (22).

ρ̂ij =
σ̂ij√

σ̂i
√

σ̂j
(22)

4. Experiment Description and Numerical Results

The LS-VCE method was applied to three baseline multi-GNSS real data sets to deter-
mine the (co)variance components. The effect of using a realistic stochastic model of various
GNSS observables on IAR and the estimated baseline components and their uncertainties
could be investigated. The receivers used in these experiments were Trimble NETR9,
SEPT POLARX5, and LEICA GR30, which corresponds to 4 January 2019, from 00:00 to
11:59:30, and contains 2880 epochs. The receivers are the same in each baseline. The baseline
equipped with Trimble NETR9 is a zero baseline, while others are very short. Using the zero
(short) baseline of two identical receivers is essential for estimating the precision of each
system’s observations due to the elimination of almost all other effects. In order to properly
weight the observations and estimate the realistic stochastic model, the data of these three
baselines are divided into approximately 288 groups for implementing LS-VCE, which
increases the number of estimates to be sufficient for more reliable results [42]. However,
a group may be without any observations due to primary criteria, such as a low elevation
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angle, outlier detection, or even no visible satellites. As a result, there may be less than 288
estimated (co)variances. Multiple constellations were used in the experiment, including
GPS, GLONASS, Galileo, and BeiDou.

For each system, four types of observations are considered at each epoch for each
visible satellite; two code pseudorange and two phase observations, which for simplicity, we
call C1, P2, L1, and L2, respectively. The functional and stochastic model was defined based
on the DD combination of the code and phase measurements in the relative positioning,
and satellite observations less than 15 degrees are excluded. Individual variances for
all observations are estimated simultaneously. Table 1 summarizes the data processing
techniques employed.

Table 1. Summary of the strategy of data processing.

Item Strategy/Value

Positioning mode Static
Constellation-Frequency GPS (L1,L2)

GLONASS (G1,G2)
Galileo (E1,E2)
BeiDou (B1,B2)

Satellite orbits IGS-Code
Observation DD
Unknowns δX, δY, δZ, N

Ambiguity Resolution Fixed
Elevation cutoff angle 15◦

Interval 30 s
Weighting Strategy Elevation-dependent

The number of DD equations for each receiver can be determined. Figure 1 depicts the
number of visible satellites for each system, as well as their combinations. It is clear that
using multi-GNSS improves the degree of freedom significantly.

Figure 1. Number of DD equations for each system in 10 epoch group windows.

The priori values of the variances for all four systems were set to 30 cm and 3 mm
for code pseudorange and phase observations, respectively, and zero for all covariances
in the first iteration. Note that the observables from different systems were considered
completely uncorrelated. In the implementation of LS-VCE, the (co)variances of ΣC are
estimated iteratively until the ||σk − σk−1|| for two consecutive iterations are smaller than
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10−6, while the time correlation is ignored. Although the satellite elevation dependence of
the observations is taken into account, the inter-satellite/channel correlation was ignored.
Moreover, the ambiguities are resolved by least squares ambiguity decorrelation adjustment
(LAMBDA) [52,53].

For each GNSS system, the groupwise standard deviations calculated for C1, P2, L1,
and L2 for the Trimble NETR9, SEPT POLARX5, and LEICA GR30 receivers, as well as their
average values in 10 sequential epoch group windows, are shown in Figures 2–4. The type
of receiver used has an impact on the stochastic model determination. This is because each
receiver uses its recovery technique to measure the code pseudorange and carrier phase
measurements. The noise structure and, therefore, the stochastic model, can be affected by
the general setup and antenna of the receiver [14].

(a) (b)

(c) (d)

Figure 2. Groupwise estimated standard deviations for each system (dashed line) with their average
values in 10 epoch group windows (bold line) over a zero baseline with Trimble NETR9 receiver:
(a,b) for the C1 and P2 in cm; (c,d) for the L1 and L2 in mm.

For convenience, the mean values of the estimated standard deviations of four obser-
vation types for each system and their precision are presented in Tables 2–4. The results
indicate that the estimated SDs of GPS observations are 85.62, 108.01, 1.47, and 1.58 mm
for C1, P2, L1, and L2 for the Trimble NETR9 receiver. Similar to the GPS estimated vari-
ances, the BeiDou measurements have calculated SDs of 102.04, 100.62, 1.04, and 1.12 mm.
Moreover, in the Trimble NETR9 receiver, the GLONASS measurements have the highest
variances, with 152 mm, 156.66 mm, 1.43 mm, and 1.50 mm for C1, P2, L1, and L2, and the
Galileo code observations have the lowest variances of all systems. In the SEPT POLARX5
receiver, GLONASS has the highest standard deviation for code observations, while the
GALILEO has the lowest for the phase observations. The phase measurements of LEICA
GR30 have the highest, and the SEPT POLARX5 have the lowest standard deviation. It’s
worth noting that, as can be observed, the LEICA GR30 receiver’s observations are noisier,
particularly for phase measurements. The final estimated variances, on the other hand, are
not affected crucially.
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(a) (b)

(c) (d)

Figure 3. Groupwise estimated standard deviations for each system (dashed line) with their average
values in 10 epoch group windows (bold line) over a very short baseline with SEPT POLARX5
receiver: (a,b) for the C1 and P2 in cm; (c,d) for the L1 and L2 in mm.

(a) (b)

(c) (d)

Figure 4. Groupwise estimated standard deviations for each system (dashed line) with their average
values in 10 epoch group windows (bold line) over a very short baseline with LEICA GR30 receiver:
(a,b) for the C1 and P2 in cm; (c,d) for the L1 and L2 in mm.
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A similar scenario happens when it comes to the precision of the estimates. In most
cases, the precision of the estimates for SEPT POLARX5 observations is the best, while
for LEICA GR30, it is the worst. Moreover, for the Trimble NETR9 case, the precision of
the estimates for Galileo code observations is the best at the sub-millimeter level, while
the precision of the estimates for GLONASS code observations is the worst. The precision
of phase variance estimates for all systems and all receivers, on the other hand, are at the
micrometer level, which is likely too optimistic due to ignoring the temporal correlation,
which has a colored noise effect instead of white noise.

Table 2. Standard deviation of the phase and code observations and their precisions for each system,
for Trimble NETR9 receiver over a zero baseline.

GNSS System Observation Type σ̂ (mm) σσ̂ (mm)

C1 85.62 0.10
GPS P2 108.01 0.17

L1 1.47 4.37×10−5

L2 1.58 4.81×10−5

C1 152.00 0.53
GLONASS P2 156.66 0.57

L1 1.43 7.57×10−5

L2 1.50 8.05×10−5

C1 42.68 0.03
Galileo P2 19.10 0.01

L1 1.30 4.39×10−5

L2 1.24 4.19×10−5

C1 102.04 0.15
BeiDou P2 100.62 0.15

L1 1.04 1.87×10−5

L2 1.12 2.13×10−5

Table 3. Standard deviation of the phase and code observations and their precision for each system
for SEPT POLARX5 receiver over a very short baseline.

GNSS System Observation Type σ̂ (mm) σσ̂ (mm)

C1 85.67 0.09
GPS P2 49.88 0.03

L1 0.51 3.83×10−6

L2 0.51 3.83×10−6

C1 231.46 1.18
GLONASS P2 120.66 0.32

L1 0.61 6.77×10−6

L2 0.61 9.50×10−6

C1 66.63 0.08
Galileo P2 87.44 0.14

L1 0.47 4.28×10−6

L2 0.48 4.69×10−6

C1 133.14 0.21
BeiDou P2 194.07 0.45

L1 0.65 5.64×10−6

L2 0.65 5.66×10−6
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Table 4. Standard deviation of the phase and code observations and their precision for each system
for LEICA GR30 receiver over a very short baseline.

GNSS System Observation Type σ̂ (mm) σσ̂ (mm)

C1 104.83 0.19
GPS P2 120.56 0.25

L1 3.17 4.77×10−4

L2 2.87 3.56×10−4

C1 111.67 0.30
GLONASS P2 122.79 0.36

L1 2.36 3.21×10−4

L2 2.53 3.02×10−4

C1 93.92 0.29
Galileo P2 95.87 0.30

L1 1.10 9.57×10−4

L2 1.85 2.70×10−4

C1 86.19 0.54
BeiDou P2 121.18 1.18

L1 1.45 2.94×10−4

L2 1.06 1.16×10−4

The higher precision of L1 and C1 compared to L2 and P2 is due to the AS (Anti
Spoofing) confrontation method of the receiver to measure the L2 and P2 in the phase
tracking, and code tracking loops that lead to higher observations noise in these observation
types [31].

When considering the number of available satellites or the number of DD equations
used to estimate the variances, we see that the number of equations and the variances are
linked. Figure 5 depicted the number of equations and computed SD for LEICA GR30’s
code and phase observations for GLONASS, respectively. It can be seen that when there
are more visible satellites, the variances are lower.

(a) (b)

Figure 5. Number of DD equations and the estimated SD for (a) C1 and (b) L2, for GLONASS in 10
epoch group windows.

Following the explanations of the LS-VCE method, the off-diagonal elements of the
computed ΣC are the covariances between the observables of each system. As mentioned
earlier, the observations from different systems were considered uncorrelated. Therefore,
six correlations between C1 and P2, C1 and L1, C1 and L2, P2 and L1, P2 and L2, and L1 and
L2 were estimated for each system. In addition, the correlation between the observation
types was determined to make judgments. The precision of these estimations can also be
obtained by applying the error propagation law to Equation (22). The reader is directed
to [42] for more detail.
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The estimated values for different receivers are shown in Tables 5–7. Figures 6–8,
for example, show the groupwise estimated correlations between code observations for
each system.

Table 5. Covariances and correlation coefficient and their precision between the observation types
for each system for the Trimble NETR9 receiver over a zero baseline.

GNSS
System

Between
Observation

Types
σ̂i,j(mm2) σσ̂i,j (mm2) ρ̂i,j σρ̂i,j

C1-P2 1974.43 1.40 0.194 0.002
C1-L1 4.01 3.54×10−4 0.025 0.001

GPS C1-L2 3.88 3.88×10−4 0.023 0.001
P2-L1 1.05 5.63×10−4 0.008 0.001
P2-L2 1.69 6.16×10−4 0.011 0.001
L1-L2 2.76 5×10−7 0.91 0.004
C1-P2 1891.98 15.15 0.066 0.002
C1-L1 −4.41 1.96×10−3 −0.015 0.002

GLONASS C1-L2 −0.89 2.07×10−3 0.006 0.002
P2-L1 2.73 2.15×10−3 0.003 0.002
P2-L2 3.64 2.21×10−3 0.008 0.002
L1-L2 2.54 1.06×10−3 0.71 0.005
C1-P2 606.93 0.09 0.34 0.002
C1-L1 2.7 1.07×10−4 0.041 0.002

Galileo C1-L2 1.66 1.03×10−4 0.019 0.002
P2-L1 1.71 4.78×10−5 0.069 0.001
P2-L2 1.63 4.70×10−5 0.06 0.001
L1-L2 1.88 3.59×10−7 0.73 0.004
C1-P2 407.45 1.65 0.032 0.001
C1-L1 −0.06 2.07×10−4 0.001 0.001

BeiDou C1-L2 6.13×10−3 2.34×10−4 −0.001 0.001
P2-L1 −0.36 1.97×10−4 −0.006 0.001
P2-L2 −1.27 2.23×10−4 −0.012 0.001
L1-L2 0.54 4.71×10−8 0.30 0.002

Figure 6. Estimated correlation coefficients between the C1 and P2 observations (dashed line) with
their average values in 10 epoch group windows (bold line) over a zero baseline.
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Table 6. Covariances and correlation coefficient and their precision between the observation types
for each system for SEPT POLARX5 receiver over a very short baseline.

GNSS
System

Between
Observation

Types
σ̂i,j(mm2) σσ̂i,j (mm2) ρ̂i,j σρ̂i,j

C1-P2 116.85 0.24 0.026 1.31×10−3

C1-L1 −0.91 2.87×10−5 −0.018 1.44×10−3

GPS C1-L2 1.82 2.87×10−5 0.038 1.44×10−3

P2-L1 0.05 9.79×10−6 0.003 1.44×10−4

P2-L2 0.90 9.88×10−6 0.035 1.40×10−3

L1-L2 0.10 1.31×10−9 0.368 1.95×10−3

C1-P2 2156.70 18.33 0.080 2.29×10−3

C1-L1 9.06 3.67×10−4 0.075 2.46×10−3

GLONASS C1-L2 −0.74 5.08×10−4 −0.007 2.43×10−4

P2-L1 −0.74 9.98×10−5 −0.004 2.51×10−4

P2-L2 1.13 1.52×10−4 0.018 2.51×10−3

L1-L2 0.03 3.02×10−9 0.080 2.82×10−3

C1-P2 565.10 0.68 0.076 2.82×10−3

C1-L1 −0.71 1.97×10−5 −0.025 1.92×10−3

Galileo C1-L2 −0.048 2.11×10−5 −0.005 1.2×10−4

P2-L1 0.07 3.50×10−5 0.003 1.88×10−4

P2-L2 −6.36 4.05×10−5 −0.141 1.95×10−3

L1-L2 0.02 1.26×10−9 0.095 2.19×10−3

C1-P2 −4488.63 9.056 −0.149 1.32×10−3

C1-L1 −1.07 1.02×10−4 −0.012 1.29×10−3

BeiDou C1-L2 0.72 1.02×10−4 0.007 1.19×10−4

P2-L1 −0.11 2.25×10−4 -8.6×10−4 1.28×10−3

P2-L2 0.80 2.24×10−4 0.007 1.8×10−4

L1-L2 0.22 3.49×10−9 0.479 1.94×10−3

Figure 7. Estimated correlation coefficients between the C1 and P2 observations (dashed line) with
their average values in 10 epoch group windows (bold line) over a very short baseline.
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Table 7. Covariances and correlation coefficient and their precision between the observation types
for each system for LEICA GR30 receiver over a very short baseline.

GNSS
System

Between
Observation

Types
σ̂i,j(mm2) σσ̂i,j (mm2) ρ̂i,j σρ̂i,j

C1-P2 6006.4 9.27 0.19 0.019
C1-L1 18.88 0.014 0.035 1.64×10−3

GPS C1-L2 18.30 0.012 0.029 1.64×10−3

P2-L1 17.27 0.017 0.018 1.63×10−3

P2-L2 22.75 0.014 0.046 1.63×10−3

L1-L2 18.36 1.77×10−4 0.610 0.032
C1-P2 4905.7 9.314 0.25 0.029
C1-L1 11.39 0.006 0.024 2.53×10−3

GLONASS C1-L2 8.05 0.005 0.008 2.5e×10−4

P2-L1 10.72 0.008 0.011 2.51×10−4

P2-L2 17.39 0.008 0.064 2.52×10−4

L1-L2 11.20 5.04×10−5 0.52 0.045
C1-P2 3661.80 9.55 0.13 0.039
C1-L1 3.75 0.013 0.007 3.08×10−4

Galileo C1-L2 3.94 0.007 −0.004 3.12×10−4

P2-L1 9.51 0.013 0.012 3.05×10−3

P2-L2 9.82 0.006 0.036 3.07×10−3

L1-L2 7.88 3.87×10−5 0.448 0.054
C1-P2 386.59 24.33 −0.057 1.11×10−3

C1-L1 3.98 0.003 0.023 7.76×10−3

BeiDou C1-L2 1.89 0.001 0.019 7.92×10−3

P2-L1 2.69 0.006 0.003 7.59×10−4

P2-L2 1.52 0.003 −0.002 7.6×10−4

L1-L2 1.11 2.45×10−6 0.197 0.103

Figure 8. Estimated correlation coefficients between the C1 and P2 observations (dashed line) with
their average values in 10 epoch group windows (bold line) over a very short baseline.

The tables show that the correlations between two code and two phase observations
are significant in most cases. The correlation values for the SEPT POLARX5 are the lowest,
while Trimble NETR9 is the highest. The correlations between the phase observations are
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striking and for GPS is the highest with Trimble NETR9 and LEICA GR30. At the same
time, BeiDou has the lowest correlation values in these two receivers among other systems.

One of the most critical steps in high-precision GNSS positioning, as previously in-
dicated, is the IAR, which is influenced by a realistic estimate of the covariance matrix.
The LAMBDA approach was employed in this paper as a integer least-squares ambigu-
ity estimation method, resulting in the highest probability of a valid integer estimation.
However, due to the risk of applying an incorrect integer solution, which could result in a
large positioning error, the resolution of ambiguity includes not only integer estimation,
but also validation. The integer bootstrapping ambiguity success rate (SR) is used as a
critical metric to determine the reliability of integer ambiguity resolution. It displays the
fraction or percentage of IAR that were successful. The bootstrapping method begins with
the most precise float ambiguity becoming rounded. According to [54], to enhance the
bootstrapped success rate, one should work with decorrelated ambiguities rather than the
original DD ambiguities, which have a significant correlation. Therefore, Z-transformation
is used to transform the original ambiguities and the covariance matrix in the following
form that ẑ = ZTa and Qẑẑ = ZTQââZ. So, the SR of integer bootstrapping can be estimated
as follows [55]:

Ps =
n

∏
i=1

(2Φ(
1

2σẑi|I

)) (23)

in which n represents the available ambiguities and the ith ambiguity derived through a con-
ditioning on the previous I={i + 1, . . . , n} consecutively rounded ambiguities, is denoted
by the short-hand notation ẑi|I . Moreover, Φ(x) is the cumulative normal distribution,
which is calculated according to the following manner:

Φ(x) =
1√
2π

∫ x

−∞
exp{−1

2
t2} dt (24)

If the precision of the float ambiguities improves, the bootstrapped success rate keeps
increasing. As a result, integer bootstrapping will benefit from the GNSS model being
strengthened. Therefore, the integer ambiguity success rate can be compared using two
cases for single and multi-GNSS. In the first case, the nominal (co)variance in the stochastic
model is used. In contrast, the estimated variances and covariances of the data set in the re-
alistic stochastic model are introduced in the second case. Compared to a realistic stochastic
model, a nominal stochastic model will reduce the precision of calculated parameters and
result in a lower integer ambiguity success rate for all the systems. This paper is a follow-up
to [34], which demonstrates how using a more realistic stochastic model improves the IAR
success rate for GPS observations. Table 8 shows the empirical success rate computed with
nominal and realistic stochastic models and different receivers considering each system as
well as multi-GNSS.

Table 8. Estimated empirical success rate (SR) with Nominal and Realistic stochastic model in %
(G:GPS, E:Galileo, R:GLONASS, C:BeiDou).

Receiver G R E C GREC

Trimble NETR9 Nominal 98 92 95 100 97
Realistic 100 92 99 100 100

SEPT POLARX5 Nominal 97 92 95 99 98
Realistic 100 95 100 100 100

LEICA GR30 Nominal 91 92 93 92 91
Realistic 100 93 99 98 100

Finally, the estimated baseline component values are used as a criterion for evaluating
the effect of adopting a realistic (co)variance matrix. Moreover, the estimated unknowns’
uncertainties (i.e., the baseline components deviation from zero) will be calculated by
taking the square root of the diagonal components of the unknown covariance matrix
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approximated by Qx̂ ≈ (ATQ−1
yy A)−1. We estimated these values for two situations, one

with a nominal and the other with a realistic stochastic model of the multi-GNSS observ-
ables. The difference between calculated baselines and real values, as well as their standard
deviations, are shown in Table 9.

Table 9. The difference between calculated baselines and real values and standard deviations with
nominal and realistic stochastic model in multi-GNSS (mm).

Receiver ∆x σ∆x ∆y σ∆y ∆z σ∆z

Trimble NETR9 Nominal −1.24 0.30 1.53 0.47 −1.12 0.31
Realistic −0.84 0.19 1.16 0.3 −0.99 0.21

SEPT POLARX5 Nominal 2.21 0.28 −3.44 0.45 2.34 0.29
Realistic 2.13 0.08 −3.43 0.13 2.16 0.08

LEICA GR30 Nominal −7.17 1.59 −1.18 0.90 −7.20 1.42
Realistic −6.09 0.051 −0.97 0.28 −4.33 0.45

5. Discussion

Estimating the variances and covariances of measurements in various receivers for
the GPS, Galileo, GLONASS, and BeiDou systems yielded remarkable results based on the
system and the receiver. As indicated in the figures and tables, the first noticeable issue was
that the LEICA GR30 estimations were noisier. Even though this had practically no effect
on the estimated parameters, it did significantly impact the precision of the estimated phase
variances. Furthermore, among other receivers for phase observations, the SEPT POLARX5
is the most precise. The code measurement findings vary depending on the system and
receiver. For example, we may claim that SEPT POLARX5 is the most excellent option for
GPS code measurements, while Trimble NETR9 has the most precise code observations for
Galileo. LEICA GR30 has the most precise observations for two other systems.

The covariances and correlations results revealed strong correlations between two
phase and two code measurements, with the values for phase observations being signifi-
cantly higher. This is because all GNSS satellites, as is well known, have at least two ranging
codes. For instance, CA and P-codes are used in GPS. The first is for public use and is
available to civilians. An unknown W-code encrypts the latter to generate the Y-code, which
is only for military use. There are, however, several methods for tracking the P(Y) signal
that does not require knowledge of the W-code. In other words, signal recovery techniques
on the L1 frequency can not be used to measure the P-code or the L2 carrier in GPS re-
ceivers. With codeless or quasi-codeless techniques, GPS receivers can use L1 and CA-code
information to perform measurements on the L2 carrier, and Y-code [31,56,57]. The use
of these techniques results in a correlation between code and phase observations [42,58].
Besides that, the correlation values also depend on the method used for the recovery tech-
niques, which varies between different receivers. Furthermore, since the L2 phase tracking
loop is not independent of L1 measurements, its SD values are higher. Tables 5–7 back up
these claims. GLONASS and BeiDou are identical to GPS in that they both offer public and
military positioning services. Unlike more military-oriented systems, however, the Galileo
system is intended for civilian and commercial use [59]. Considering all the facts and
results, it can be concluded that the precision of GNSS observations is receiver-dependent
and system-dependent. That is where estimating a realistic stochastic model becomes vivid.
However, in total, SEPT POLARX5 has the lowest correlation among others.

To evaluate the effect of applying a realistic stochastic model, the IAR success rate
was estimated for two cases: the nominal and realistic stochastic model. When realistic
variances and covariances are added into the process, it can be seen that the IAR success
rate increases for each system as well as multi-GNSS data processing. The introduction of
the realistic stochastic model can also lead to a realistic standard deviation of the baseline
components. Compared to the basic stochastic model, the results of employing the realistic
model indicated a reduction in these values. Although the changes are minor, given the
baseline length, it can be claimed that using a realistic stochastic model in this experiment
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improves the results’ reliability. In the end, regardless of the system or receiver used, we
can conclude that using a basic stochastic model leads to poorer precision of the predicted
parameters. The results of LS-VCE for each receiver could be used in any other observation
session. This procedure can also be thought of as the calibration of a specific receiver.

6. Conclusions

The observation weighting and the realistic stochastic model estimation is still a
challenging problem in GNSS processing. To deal with this problem, the LS-VCE method
was applied to real GNSS data sets collected by three multi-GNSS receivers (Trimble
NETR9, SEPT POLARX5, and LEICA GR30) to estimate different variances and covariances
for each GNSS observation type as well as the correlation between various observations.
Considering these values and the observables’ satellite elevation dependence weighting,
a realistic stochastic model for GNSS observables can be estimated and ultimately achieve
the best linear unbiased estimators in high precision GNSS positioning. To repeat the
LS-VCE scenario several times and reduce the processing time, the data were divided into
288 groups containing ten epochs of observations.

The results showed the estimated (co)variance values for Trimble NETR9 and SEPT
POLARX5 are compatible. The Trimble NETR9 has the lowest and highest variances for
Galileo and GLONASS code observations of all, respectively. On the SEPT POLARX5 re-
ceiver, GLONASS has the highest standard deviation for code observations, and GALILEO
has the lowest for phase observations. The phase observations from the LEICA GR30 have
the highest standard deviation, while those from the SEPT POLARX5 have the lowest.
In most cases, the correlations between the phase observations are significantly larger
than those between the code observations. Moreover, the correlation values for the SEPT
POLARX5 are the lowest, while they are the highest for the Trimble NETR9. BeiDou has
the lowest correlation values for Trimble NETR9 and LEICA GR30, among other systems.

In summary, the preliminary numerical results show that the stochastic model deter-
mination of the observables is highly dependent on the type of receiver used and the signal
quality. This is because each receiver measures the code pseudorange and carrier phase
measurements using its recovery method. Therefore, the overall design of the receiver and
its antenna can affect the noise structure and hence the stochastic model. As a result, it is
preferable to do the VCE before processing to obtain the BLUE of unknown parameters.
This could be seen as a kind of calibration for the measurements of a specific GNSS receiver.

As previously mentioned, a realistic stochastic model affects the IAR success rate.
The SR was compared in two cases, once with the nominal and once with the realistic
(co)variance matrix used in the stochastic model. The results emphasized that using a more
realistic stochastic model would increase IAR success rates in single and multi-GNSS cases.
Affecting the IAR, using a realistic stochastic model based on LS-VCE, can shorten the TTF,
which is a challenge for real-time positioning techniques.

Another criterion may be the impact of the realistic stochastic model on the estimated
baseline components values and standard deviations, which are influenced by the ob-
servables’ weight matrix. In this way, the reported precision of the solution is realistic,
neither too optimistic nor too pessimistic. The findings show that introducing the realistic
stochastic model improves the baseline components’ standard deviation and accuracy and
make them reliable. Considering all of the positive effects of utilizing a realistic stochastic
model, we may evaluate the values of VCE for observations of each receiver and use the
values in other upcoming processing.
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