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Capacity Gains of Splitting Cross-Traffic
into Multiple Sub-Streams

Victor L. Knoop1 , Maria Jettina Wierbos1, and Otto van Boggelen2

Abstract
Traffic flow might be limited by cross-traffic which has priority. A typical example of such a situation is a location where
cyclists or pedestrians cross a stream of car traffic. Splitting the cross-traffic into two separate sub-streams (for instance left–
right and right–left) can increase the capacity of the main stream. This is because it is no longer necessary to have a suffi-
ciently large gap in both sub-streams simultaneously. This paper introduces a method to compute the resulting capacity of
roads with cross-traffic. Without loss of generality, we introduce three transformations to simplify computations. These
transformations are an important contribution of the paper, allowing us to create scalable graphs for capacity. Overall, the
research shows that splitting a crossing stream into two equally large sub-streams increases the capacity of the main stream.
If there is place for one vehicle in between two sub-streams, the capacity can increase up to threefold. Even larger gains are
possible with more vehicles in between. This paper presents graphs which can be used to find the capacity for generic situa-
tions, and can be used for developing guidelines on intersection design.

Keywords
classification description: operations, traffic flow theory and characteristics, models, traffic flow

Urban environments face traffic congestion. For this and
other reasons, the use of cycling or walking as mode of
transport is promoted. There are various ways to do so,
one of which is prioritizing cyclist traffic at unsignalized
intersections or crossings. Currently, at the best of the
authors’ knowledge, no tools are readily available to assess
whether additional measures are needed to improve vehicu-
lar traffic flow in this situation; Dutch handbooks (1) lack
such information. This lack of tools is currently becoming
more important because of the increase in cyclist traffic,
which will also affect the circulation of vehicular traffic.

If vehicles have to share the road with cyclists, the

traffic performance for cars is reduced. Cars have to slow

down for slower traffic (i.e., cyclists), thus reducing the

overall speed for cars. This has been mathematically ela-

borated in Yuan et al. (2). Also macroscopic traffic mod-

els have been developed for traffic flow with multiple

classes. For an overview of macroscopic models, see van

Wageningen-Kessels et al. (3). For cyclist traffic, the pro-

cess as suggested by van Wageningen-Kessels et al. (4)

needs adaptation, as cyclists influence the car traffic and

vice versa. Two fundamental diagrams need to be imple-

mented, both with two explanatory variables. For more

background on modeling mixed traffic with two fundamen-

tal diagrams, see Gashaw et al. (5) and Wierbos et al. (6).

Interactions between cars and cyclists also occur at
intersections. Cyclists can usually go to the front of a
queue and influence the queue discharge of vehicular
traffic there. Crossings of cyclists through the traffic
stream are also relevant. However, crossings where
cyclists have priority have rarely been studied. We realize
that this problem is mathematically identical to vehicle–
pedestrian interactions at zebra crossings, which has
been studied extensively (7, 8). As argued in Daganzo
and Knoop (9), increasing the number of pedestrian
crossings improves the situation for pedestrians (more
places to cross), as well as for car drivers as there are
fewer (flow-interrupting) pedestrians at each crossing.
The continuous case of ‘‘crossing anywhere’’ is therefore
theoretically the best option, and this case is further ana-
lyzed by Daganzo and Knoop (9). Practically, this is not
always feasible. Therefore, Knoop and Daganzo (10)
study the options for crosswalks at regular intervals.
Their paper iterates options, and by simulation and sev-
eral graphs indicates the consequences for the car traffic
stream if pedestrians can cross at regular intervals.
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Most crossing traffic, however, is not expected to be
anywhere along the road, but only at intersections. In this
paper we will take cyclists as example. Cyclists might
cross a road with priority. The cyclist stream is relatively
easy to split into two directions, left to right and right to
left. This is the situation we consider in this paper (see
also Figure 1a). For the sake of readability, in the remain-
der of the paper, we will refer to the (prioritized) crossing
stream as cyclist traffic and to the main stream (of which
we analyze capacity) as car traffic. Note, however, that
the analyses and results are equally valid for other modes.

This paper therefore studies the effect of separation of
cyclist traffic in sub-streams, and is inspired by situations
that occur frequently in the Netherlands. An example is
shown in Figure 1b. The paper aims to quantify the
capacities of the car traffic under various cyclist loads. It
distinguishes two situations: (1) all cyclists in one stream,
and (2) cyclists in two (or more) sub-streams. The paper
also explicitly studies the effect of the distance between
the two streams. Intuitively, a separation of cyclists in
two sub-streams based on their heading (left–right or
right–left) is most sensible. The equations allow any
separation, also a simple split of a large cycle crossing
right–left into two right–left sub-streams. The paper’s
contributions lie in (1) a theoretical contribution on how
these computations can be done, including invariant
transformations eliminating several variables, and (2)
results on the capacities, which can be used (after trans-
formations) as starting point for capacities in practice.
Note that these results are obtained on a theoretical
basis, and are not empirically tested. This work can be
applied at two different levels of design: (1) a single inter-
section and (2) a network. For an intersection, the
method can be applied to split a stream into two or three
sub-streams with a space for typically one or two vehicles
in between the sub-streams. A larger separation is unde-
sirable because of the increased complexity and the large

attention span required of drivers crossing a large inter-
section. At this level one can also consider the design of
combining cycling directions at each side of the road.
One can have a bi-directional cycling path at one side of
the road, or have a cycle path at each side of the road
(one path per direction). At the network level, the design
choice is to distribute cyclist traffic over various routes.
This will distribute cyclist traffic over various parallel
routes. Then, their crossing locations are separated by a
larger distance (several hundreds of meters).

Indeed, the paper originates from the Dutch context
with already quite a large share of cyclists. More and
more often, queuing of vehicles occurs as a result of large
streams of cyclists crossings. These streams can consist of
thousands and even tens of thousands of cyclists per day.
This happens at regular intersections as well as at round-
abouts (see for an example of that geometry Figure 7a).
Vehicular queuing also impacts the traffic safety, as driv-
ers will become impatient and take larger risks. Also, the
blocking might have other severe consequences. Let us
give two concrete examples from the Netherlands here. A
first is that cyclist traffic blocks the flow into onto a
roundabout near a hospital, and as consequence the
access route for ambulances into the hospital is some-
what blocked. A second is a cyclist crossing near an
onramp of a freeway close to a college. At times near the
start of ends of lectures, students cross the road, causing
congestion to spill back onto the freeway. In the latter
case, priority was changed and cyclists now need to wait
for cars. With the methods proposed in the current
paper, other solutions could have been tried instead.

The remainder of the paper is set up as follows. The
next section presents a foundation of traffic flow theory
relevant for the paper. The main traffic flow theory
insights are presented there: this shows the symmetries
and eliminates some parameters. As a result of the
insights from that section, the number of required

Figure 1. Examples of the situation studied: (a) schemetic representation and (b) example case in Delft, the Netherlands.
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situations that needs to be studied is largely reduced, to
an extent that all situations can be iterated. These
remaining situations have been simulated. Both the setup
and the results of these simulations are presented in sec-
tion ‘‘Numerical evaluations.’’ A section on practical
application of the insights and the simulation results fol-
lows. The final section presents the discussion and the
conclusions.

Theoretical Considerations

We consider traffic in two directions. Direction 1 is the
traffic for which we are computing the capacity.
Direction 2 is the cross-traffic which has priority. The
critical gap (denoted gc) is defined as the time which is
required for a car driver to cross the stream of cyclists.
In this paper, we make three assumptions: (1) the critical
gap for vehicles in direction 1 to cross a stream is con-
stant (later chosen as gc = 1); (2) cyclists in direction 2
arrive independently (exponential headway distribution,
or Poisson process; a discussion on relaxing this assump-
tion follows later, at the end of the results section); (3)
traffic in direction 1 acts according to a triangular funda-
mental diagram.

Let us first elaborate on the first assumption.
Implicitly, we have assumed that the traffic in direction 2
moves in streams with no width. Only when a gap larger
than gc in that stream occurs, a car can move.
Realistically, that stream might have a certain width
(cyclists moving next to each other, for instance). This
would add an (additional) travel time to cross the
stream. This can be included into the analyses by incor-
porating this additional travel time into gc. It is still
required that the stream is empty over the full width,
and differences within the width (starting to cross while
one side of the crossing is occupied) are not taken into
account.

Let us discuss the second assumption. The cyclist
blocks the car traffic for a while because it takes time to
cross the width of direction 1. The generated headways
are gross headways. It can therefore happen that a

second cyclist arrives before the first cyclist has crossed
the road. In this paper, we do not mention this crossing
time explicitly. We specify the critical gap, gc, as mini-
mum gross time between two cyclists which is needed for
a car to pass in between. We therefore move the time to
cross the street into the critical gap.

The third assumption means that in uninterrupted
conditions the flow of vehicles is (in two branches) piece-
wise linearly dependent on the density of vehicles (11).
This is characterized by three parameters. In the remain-
der of the paper, we will use notation free-flow speed vf ,
critical density kc, jam density kj, critical or capacity flow
qc (qc = vf kc), and negative wave speed w, defined such
that w.0):

w= qc=(kj � kc) ð1Þ

The closest vehicle-to-vehicle headway is hmin, which can
be derived from the fundamental diagram by

hmin = 1=qc ð2Þ

On a vehicle-level scale, this implies we will use Newell’s
simplified car-following model and assume instantaneous
acceleration when the road becomes free.

The problem we are facing now is finding the capacity
as function of nine variables. These are shown in the first
two columns of Table 1. Presenting the flow as function
of all these nine variables is not feasible. Therefore, we
will introduce a theoretical reasoning and insights to
reduce this number. This yields transformations to lose
or combine variables. Then a series of simulations can be
done by varying all remaining variables, providing capa-
cities. The aim of the transformations is generally that we
are able to obtain the results for the capacity for all cases
(i.e., variations of all nine dimensions) without the need
to redo simulations (but only transformations, which do
not need computer simulations). Table 1 first presents
(left half) the variables which are in the problem, and pre-
sents how these variables are handled (right half).

The paper will now present the dimensional reduc-
tions. Note that the reductions can be done without loss

Table 1. Overview of the Variables in the Problem and How They will be Treated.

Variable symbol Analyzed/reduced

Critical gap gc Insight 1: variables dropped: integrated into and used as unit
Crossing time
Smallest headway hmin Fixed at hmin = 0.5 time unit
Wave speed kc Transformation 2: variable dropped
Jam density kj Variable dropped: used as unit
Total crossing flow Main independent variable
Distance between sub-streams Independent variable, in unit vehicles at standstill distance
Number of sub-streams Parameter
Division of the flow crossing flow over the streams Insight 3: Upstream-downstream symmetry proven

738 Transportation Research Record 2676(1)



of generality. The insight that these transformations can
be done is an important contribution of the paper. They
allow us to provide scalable and reusable graphs.

First of all, let us consider the crossing time and the
critical gap. Without loss of generality, we rescale time
such that the critical gap and the crossing time combined
equal 1 unit of time. Depending on definitions, concep-
tually, one might perceive this combination as critical
headway, as it is the minimum time needed between two
cyclists for one vehicle to cross. Combining, we define
without loss of generality the critical gap accepted
gc = 1. Note that the minimum time headway between
two successive vehicles hmin is a different variable—
generally to be expected shorter.

Second, we will now show that the ratio w=vf does
not influence the capacity, and capacity only depends on
the number of vehicles that fit in between the two sub-
streams and the uninterrupted capacity qc (and no other
parameters of the fundamental diagram). To show this,
we use variational theory (12) to estimate the capacity.
This means we need to construct a (shortest) path in
space–time, with edges moving forward at free speed,
moving backward at wave speed, or being stationary at
blockings. This shortest path determines the capacity,
with the cost of that path being the capacity.

Let us recall the transformations introduced by Laval
and Castrillón (13) and Daganzo and Knoop (9). They
show that under stochastic localized blockings, like we
have here, the shortest path thus the capacity, is invar-
iant under a skewing transformation of the fundamental
diagram, that is, a change of w=vf . Figure 2a shows an
example of the crossings (red lines) and the matching
shortest path (blue line) determining the capacity. This is
constructed for a fundamental diagram with a high free-
flow speed and a lower (negative) wave speed �w, as
seen from the slopes of the parts of the shortest path. An
additional black dashed line following one of the pieces
of the wave illustrates the free-flow speed. Figure 2b
shows a modified situation with a different fundamental
diagram. The timings of the crossings at x=2 are modi-
fied accordingly. The timing difference makes that the
additional black dotted line following the shortest path
at free-flow speed intersects with cyclist 2 at the same
progress of its crossing. The situation with a modified
fundamental diagram and a modified cycle timing
(Figure 2b) has the same shortest path as the original sit-
uation (Figure 2a), with the same cost, therefore the
same capacity. This means, as argued in Laval and
Castrillón (13) and Daganzo and Knoop (9), that the
ratio w=vf is not influencing the solution. It is important
to note here that for both situations, even while the tim-
ing of crossings have shifted, the moments of cycle cross-
ing still adhere to the same probability density function
before and after the shift.

Let us now compute the cost for the wave going up
and down. We denote distance by the number of vehicles
at standstill that fit in between two sub-streams, N ; the
following computation will show that this is the only rel-
evant parameter to be considered for capacity. Let us
consider a shortest path, and the time this wave takes to
travel upstream and downstream. The time moving
downstream is then Td =(N=kj)=vf . The time moving
upstream is Tu =(N=kj)=w. The distance between the
sub-streams is then (N=kj). Adding both times, we find

Tall = Tu + Td =N=kj � (1=vf + 1=w)

=N=kj � (kc=qc +(kj � kc)=qc)

=N=qc =Nhmin

ð3Þ

For the rewriting of the above equation, we use substitu-
tions based on Equations 1 and 2.

The total cost in the end equals the uninterrupted
capacity qc times the time Tall. This shows that the time
is—as expected—independent on the ratio w=vf . For the
sake of computational simplicity, in the sequel we
assume without loss of generality Td = 0 and Tu =Nhmin.
(We can justify this because the solution of the problem
has just been shown not to depend on w=vf .) Note more-
over that the cost does not depend on another property
of the fundamental diagram apart from the uninter-
rupted capacity qc. Finally, we observe that for the space
between the sub-streams, the number of vehicles in
between the sub-streams is the relevant variable.

Third, we show that inverting the order of sub-streams
does not influence capacity, even with unequal demands
in the sub-streams. This means that, for example, a 40–
60 distribution of flow over both sub-streams will yield
the same capacity for direction 1 as a 60–40 distribution
of flow. This can be explained by the following reason-
ing: The capacity can be determined using variational
theory. For the reasoning behind applying variational
theory to traffic streams, we refer to Daganzo (12). From
this paper, we take that the capacity of direction 1 is
dependent on the cost of the shortest path in space–time
for an observer moving but ending at the same location.
An example is given in the space–time diagram in Figure
2. The red lines indicate crossings of cyclists on either of
the two crossings, and the blue line is the shortest path.
Exactly the same shortest path problem can be found if
we (1) invert the order of the crossing cyclists in space
(i.e., move them to the other sub-stream), and (2) move
the crossings which are now at x=1 (cyclist 2 and 4 in
Figure 2) to a time Tu later (note in Figure 2d, cyclist 2
moves from t=1.2 to t=2.2, and cyclist 4 moves also
to 1 s later). This new solution also has exactly the same
cost, therefore the same capacity.

Summarizing, we can transform one problem to
another, with inverted order of sub-streams in a dual
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coordinate system. Whereas the exact timing of the
crossing cyclists is shifted, they are—per sub-stream
location—all shifted by the same amount of time.
Therefore, the headways (and therefore the headway dis-
tribution) of the cyclists is the same. To determine the
capacity, one needs to consider an ensemble of realiza-
tions of cyclist crossings. Given that the distributions are
the same, the two coordinates will yield the same capaci-
ties. Therefore, inverting traffic direction or inverting the
order of sub-streams will not affect the capacity. This
reasoning also applies fully for more than two sub-
streams. Note the reasoning is only true for a complete
inversion of order, and not for any permutation in case

of more than two sub-streams. These three considera-
tions help us in limiting the number of cases that need to
be computed to obtain an overview of capacities for all
practical cases.

Numerical Evaluations

With the theoretical considerations of the previous sec-
tion, we have now reduced the number of dimensions
over which we need to enumerate to compute all capaci-
ties. We can now run simulations to cover a wide range
of remaining variables. In this section we first explain
how the simulations are run, and then we present the
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Figure 2. Illustration of the transformation of the cyclist crossing positions and the change of path under inversion of positions and the
matching time-shift of the cyclists 2 and 4. Note that the time is scaled such that the blocking has a unit 1 ( gc = 1); for position, an
arbitrary unit can be chosen: (a) higher free flow speed than wave speed, (b) higher wave speed than free flow speed, (c) considered
situation for computations, and (d) reversed direction.
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results of these standardized situations. Then, in the next
section, it is shown how these standardized results can be
transformed back to get results for other cases.

Set Up of Simulation

We compute the maximum number of passings of vehi-
cles by simulating the queuing system under the crossing
of cyclists. The simulations are performed for the smal-
lest headway hmin =0.5, which we consider a typical
value. Therefore, we argue that the smallest headway
between vehicles in an uninterrupted case is half the gap
needed in the cyclist stream to cross. Typically, one can
consider a 2.5 s smallest headway and a 5 s critical gap.
We consider this reasonable for a short crossing time/
crossing distance; the calculations are still correct if they
both increase and decrease proportionally (i.e., 3 s short-
est headway and 6 s critical gap leads to the same out-
comes). We consider crossing flows ranging between 0.1
and 10 vehicles per unit of time (note that this is not an
arbitrary unit, but the unit of time is set to the critical
gap including crossing time).

We will consider various variations:

1. A varying number of sub-streams (1–3, default 2)
2. A varying split rate (20–80, 40–60, 50–50; default

equal over all sub-streams, i.e., 50–50 for two
sub-streams)

3. A varying number of vehicles that can fit in
between the sub-streams (1, 2, 5, 10; default 1;
note that the situation with 0 vehicles fitting in
between is captured in the case of one sub-stream)

For variations in one dimension, the other two dimen-
sions are set at the default option, as indicated in the list
above. (e.g., if we consider 5 vehicles in between—not
being the default of 1—we consider the number of sub-
streams to be at the default 2 and the split rate between
these streams to be 50–50). In this way, we analyze all of
the elements separately.

Cyclist are generated at random times. The flow of
vehicles depends on the exact timing of the cyclists. To
eliminate effects of stochasticity, we generate a large
amount of cyclists, 5,000 for our simulations. For each
of the cyclists in direction 2, we therefore have (random)
headways. The headways are drawn from an exponential
distribution, in line with the assumption of independent
arrivals. The cyclists are randomly assigned to one of the
sub-streams with a fixed probability. Note that this yields
(stochastically) the same result as generating exponential
headways at each of the sub-streams with a rate adapted
based on the division over the streams. Once generated,
they are positioned just upstream of the crossing, and
their (future) arrival time is known. Vehicles can cross

the stream when the remaining gap to the next cyclist is
exceeding the critical gap gc. If the vehicle passes, the
crossing is unavailable for a time equal to the minimum
headway between two vehicles hmin. In line with the theo-
retical assumptions, we assume no travel time from the
moment of crossing of the first sub-stream to arrival of
the next sub-stream. Note that this time is not being
ignored, but it is not needed to account for this time for
the capacity computations because of transformation 2:
we may assume a fundamental diagram with an infinitely
large free-flow speed, and compensate for that by adapt-
ing the wave speed.

The flow restrictions caused by the queuing of a
downstream intersection are modeled based on the Link
Transmission Model (14). This means that we allow the
(i+N )th vehicle to pass a sub-stream not earlier than a
time Tall after the ith vehicles has crossed the sub-stream
downstream. In this equation i is an index, and N and
Tall are used as in Equation 3.

Results

Figure 3a shows the resulting capacities for direction 1.
For all cases, the capacity decreases with increasing
cyclist flow, which is as expected. Moreover, all capaci-
ties are 2 vehicles (veh) per unit of time for a crossing
flow of 0 cyclists per unit of time. This is caused by the
choice of hmin =0.5. Whatever the configuration is, with
no flow in the crossing direction, all vehicles follow at
their shortest headway, hmin =0.5, leading to a capacity
of 2 veh per unit of time. Let us now consider the various
variations.

First, we consider the effect of multiple sub-streams,
see Figure 3a. The capacities relative to one crossing
stream are depicted in Figure 3b. For the sake of argu-
ment, we went up to three sub-streams. In practice, one
or two (sub-)streams are more likely than three. As
expected, the capacity decreases for a larger number of
crossing cyclists, and increases with increasing number of
sub-streams. A first thought might be that for n sub-
streams, the capacity is the same as for 1=nth of the
stream in one crossing stream. However, this is not true
for two reasons. First, stochasticity will always cause one
sub-stream to have (slightly) more vehicles, which will
therefore be more limiting in capacity. Moreover, and
more importantly, there are several sub-streams to cross,
which do not operate independently. Therefore, gaps
which might be large enough for a vehicle to cross might
remain unused because a vehicle (a) cannot enter the buf-
fer space in between because of queue spillback and/or
(b) is not present in the buffer space so cannot move for-
ward. This is also the cause of what is called the short
block problem (13). Indeed, that means that a larger
spacing in between the sub-streams will lead to a higher
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capacity, as these elements are not/less restricting traffic
flow.

The capacity increases with a larger space in between
the sub-streams. This larger space reduces the impact of
the limited storage space and/or no vehicles being pres-
ent in between the sub-streams, as indicated under (a)
and (b) above. Figure 4a plots—similar to Figure 3a—
the capacity of the car traffic as function of the cyclist
flow. In this case, the various lines show how the capac-
ity increases with an increase in the number of vehicles in

between. Figure 4b shows the capacities of the situation
with a split cross-stream compared with a single cross-
stream. It shows that even if only one vehicle can be
stored in between, the capacity can triple for high cross-
ing flows. For more vehicles in between, this increases
even further.

The last consideration shown is the effect of the
unequal spread of the flow in case of two sub-streams.
As argued in the section ‘‘Theoretical considerations,’’
the capacities for an unequal distribution are
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Figure 3. The effect of splitting the stream of cyclist with one vehicle spacing in between: (a) absolute capacities and (b) relative
capacities.
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independent from the order of sub-streams. This is con-
firmed by doing simulations for both cases (i.e., 40–60
and 60–40 as well as 20–80 and 80–20). For reasons of
simplicity, for each of the pairs we will only plot one line
in the graph showing the decay of capacity with increas-
ing flow of cyclist (Figure 5). It is remarkable that a 40–
60 distribution has practically the same capacity as a 50–
50 distribution for all levels of crossing flows. As
expected, capacity reduces further for more biased distri-
bution (80–20).

Discussion

This section discusses the impact of two assumptions;
first, the fact of the absolute priority of direction 2. The
symmetries between the load on a downstream and
upstream sub-streams (i.e., 20–80 and 80–20) hold, given
the assumption that the cyclists have priority and can
cross. In practice, a queue caused by a downstream sub-
stream can grow upstream. In the current paper, we
assume that cyclists have priority and find a way to cross
(stationary) traffic, even if the queue reaches back to
their crossing location. If this is not considered to be rea-
listic, a higher crossing flow downstream will limit the
capacity more than a higher crossing flow upstream.
Second, in the simulations we have introduced the cyclist
with exponential headways. This is the most reasonable
assumption, based on independent arrivals. A thought
experiment will help considering what would happen for
other distributions. Let us consider in this thought
experiment the downstream crossing flow to be higher
than (or equal to) the crossing flow upstream. We
already established theoretically that we can do so

without loss of generality because we can invert direc-
tions with the same results. This means that the down-
stream sub-stream is the sub-stream with the capacity
constraint, and we should have sufficient vehicles waiting
or arriving to use all gaps. We first perform the thought
experiment with uniform distributions. In that case, all
gaps are equally large, so after the passing of a car, the
gap is at least the critical gap. (If the gap would not be
large enough, no gap would be large enough, as head-
ways are uniform, and flow would be zero.) As the aver-
age inflow from the upstream intersection is at least as
high as the outflow from the downstream intersection,
there is no possibility that two vehicles can go at the
downstream sub-stream and none at the upstream sub-
stream, given the uniform arrival patterns of the cyclist.
Therefore, it suffices to have one vehicle. Adding storage
capacity to two vehicles will not increase capacity. Now
consider a distribution with many cyclist following
closely (closer than gc) and then a larger gap, allowing
for N vehicles to cross. Then the maximum flow is
reached if the storage capacity allows for N vehicles in
between the sub-stream. If the platoon of cyclists is long,
there are no vehicles. Intuitively, it can be reasoned that
flow is determined by the number of vehicles in the stor-
age. We can find so by considering the limit of very large
platoon of cyclists, tending to infinity, with gaps in
between these platoons. In that case, the vehicular flow
at the upstream intersection is blocked, and only the
vehicles in between the intersections can flow. The flow
thus fully depends on the storage capacity. Therefore, in
that case, the capacity scales linearly with the storage
capacity in between, to the maximum determined by N.
The insights from the thought experiment is that (a) a
different distribution of cyclist flow will change the
results, and (b) the effectiveness of the additional storage
space above one vehicle depends on the expected size of
the gaps compared with the expected size of the time the
flow is blocked.

Practical Application

This section elaborates on a numerical example to illus-
trate how the theoretical insights and the simulation
results can be used to solve a practical problem. The last
part of the section stresses the wider applicability of the
results.

Numerical Example

For this section, imagine one is interested in the capacity
of a road with a cycle crossing flow of 600 cyclists per
hour in one direction and 900 cyclists per hour in the
other direction. For the graphs in the previous section, it
has been assumed that the gap that drivers accept
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Figure 5. Asymmetrical streams.
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between two cyclists is twice the minimum headway
between two cars. For the numerical case in this exam-
ple we assume that a critical gap is 5 s, and thus the
road without cyclists has a capacity of 1,440 vehicles
per hour (vph) (reasoned from a net time headway of
5/2=2.5 s, and therefore a 3,600 s/h/2.5 s/vehicle=
1440 vph capacity).

Now, the crossing flow has to be converted to the nat-
ural unit of time used for the graphs, that is, the critical
gap, being 5 s here. Doing the conversion, we obtain
600 + 900=1500 cyclists/hour=1,500/3,600 vehicles/
s=1,500/3,600*5=2.1 cyclists per unit of time. We
now read the graph in Figure 3a; in line with the 600 to
900 distribution of cyclists, we check 40 to 60, and read it
at a flow of 2.1 cyclists per unit of time, giving a capacity
of 0.54 vehicles/unit of time. As the unit of time is 5 s, the
capacity is equal to 0.54(vehicles/unit of time)*3,600(s/
h)/5(s/unit of time)=389 vph.

Other Applications

In this paper, we have considered the case for cyclists
crossing a stream of cars, in which the cyclists have pri-
ority. The assumptions we made in the theoretical deri-
vations are (as mentioned earlier): (1) the critical gap for
vehicles in direction 1 to cross a stream is constant (later
chosen as gc =1); (2) cyclists in direction 2 arrive inde-
pendently (exponential headway distribution, or Poisson
process); (3) traffic in direction 1 acts according to a tri-
angular fundamental diagram. As long as these assump-
tions hold, the same analyses can be applied to other
cases. In practice, this might be equally true for other
cases, for instance for pedestrians which are spread over
two pedestrian crossings. Illustrations of these situations
are show in Figure 6. Another example is the case where
cyclists want to cross a stream of cars and the cars have
priority, that is, exactly the opposite situation of what is
presented here. In that case, another consideration might

be the duration of the crossing and safety for the cyclists.
However, the assumption of a triangular fundamental
diagram for the main stream (i.e., the pedestrians) might
be less accurate, but if one is willing to accept this funda-
mental diagram, the same computations apply, and
therefore the same results can be used.

Also combinations of transport modes are possible, as
is shown in some examples from Dutch practice in Figure
7. In one case, shown in Figure 7a, there is a combined
pedestrian and cycle crossing with a one-car distance in
between. In the other illustrated case (Figure 7b), cars
need to cross a stream of cyclists before they merge into a
car stream, which also means finding two gaps (one to
cross and one to merge into). This is split by moving the
cycle path away from the car stream, to a place where a
vehicle has the possibility to stand in between the cyclist
stream and the car stream. Note that the cycle path bends
to the right just before the intersection, and bends back
after the intersection. In this case, it also serves the move-
ment of vehicles approaching from the top left side (that

Figure 6. Pedestrian crossings.

Figure 7. Examples of cases with a waiting area for a car in between two prioritized crossings (for different modes): (a) Leiden, the
Netherlands and (b) Voorschoten, the Netherlands.
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direction of the street is not visible in the picture), and
turning to their left, that is, into the side street at the right
in the picture. They need to cross the car stream in the
opposite direction (from bottom to top in the picture
which has according to Dutch rules priority over the
turning traffic), and subsequently the cyclist stream.

Conclusions and Outlook

In this paper we have considered the effect of crossing
traffic on the roadway capacity. In particular, we have
considered the capacity of the stream which has to give
priority to the crossing stream, and the effect of separat-
ing the crossing stream into sub-streams. Several trans-
formations have been presented as fundamental insights.
The transformations in turn reduce the number of vari-
ables and make it possible to enumerate the cases. This
paper has presented the graphs for these cases, which in
turn can be used to calculate capacities for specific cases.

The methodological insights show us that the relevant
parameter is how many vehicles fit in between the two
sub-streams. Moreover, we find that for two sub-streams
with unequal load, the order of the sub-streams does not
matter. Numerically, it is shown that even having room
for just one vehicle in between two sub-streams can lead
to a capacity that is three times as high as without this
possibility. This increase can even exceed three times if
the two sub-streams are separated further from each
other, that is, with room for more vehicles in between.
The capacity curves we have found in this paper can find
their way to roadway capacity handbooks.

Even in case of demand levels which are lower than
the capacity of the road, there can be travel time delays.
Further work should quantify these delays. We believe
that the transformations presented in this paper can
equally be applied to quantify delays, and are aware that
this is yet to be proven. In presenting the results of such a
study, a set of graphs like the graphs of capacity might
not be sufficient, as delays will depend on inflow, adding
another dimension to the results. Visualizing delays might
therefore require another approach then a set of graphs.

The insights presented can be transferred to be used
in practice. The first step would be to test the insights
and find the right values for the parameters used in the
scaling. For this, model testing with field data is needed.
The current work can be used as prewarning for cases
which might need redesign, as well as a rough outline for
the possible solutions. It also forms a basis to develop
guidelines, which indeed would also need the mentioned
empirical testing.
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