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Abstract. Shape estimation of soft robotic systems is challenging due
to the range of deformations that can be achieved, and the limited avail-
ability of physically compatible sensors. We propose a method of recon-
struction using Inertial Measurement Units (IMUs), which are mounted
on segments of a deformable manipulator. This approach utilizes the
piecewise constant curvature model in combination with the quaternion
data from IMUs to allow for accuracy reconstruction and closed-loop con-
trol. A key strength of this approach is that it is hardware agnostic, and
could be used on any soft structure to provide pose reconstruction and
controllability. We explore this approach experimentally on a growing,
extendable 3D printed continuum body structure, demonstrating that
high accuracy reconstruction that can be achieved.

Keywords: Soft manipulation · Kinematic control · Shape estimation

1 Introduction

Within the domain of soft robotics, continuum body manipulators offer partic-
ularly exciting capabilities, with applications ranging from surgery, compliant
exploration and human like environmental interactions [4,12]. To achieve such
capabilities there is firstly the challenge of the design and fabrication of the
system [6]. However, there is then the second key challenge of developing the
artificial brains to control the robot [5]. In this regard a central problem is that
of perception, since understanding the robot shape is critical for control. How-
ever, accurately measuring and reconstructing the shape of a soft robot without
relying on exteroceptive sensing techniques is very challenging [9].

There is a significant body of related work focusing on shape and pose recon-
struction of continuum body structures. Many proprioceptive techniques for such
robots rely on soft sensors which are custom or specific to the particular physi-
cal manifestation of the manipulator [8]. The use of learning techniques [14,15]
or mixed strategies [16], are often required due to the complex nonlinear char-
acteristics of these sensors. More recently approaches such as model predictive
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control [2], and computational methods [1] have been shown to perform well for
trajectory optimization of soft robots.

In light of this existing work, and the challenges that remain, we focus on
the problem statement of providing accurate and reliable proprioception to soft
robots. We believe that Inertial Measurement Units (IMUs) are a feasible solu-
tion for equipping soft robots with preconception capabilities, without altering the
soft nature of the system, and without requiring the implementation of complex
machine learning techniques. Existing work has shown how IMUs can be used for
accurate reconstruction of rigid robots [13] andUAVs [11], and has also beenwidely
demonstrated for human pose reconstruction [13]. Extending these capabilities to
thedomain of soft robots,wouldprovide a ‘universal’ proprioceptive solutionwhich
could be used across a wide number of soft arms and continuum structures. To work
towards this goal, this work makes the following contributions:

– A theoretical framework for using IMU sensor data to enable the reconstruc-
tion of the shape of a soft continuum manipulators, based upon the piecewise
constant curvature model.

– Development of a extensible, flexible, multi-segment, continuum body manip-
ulator to demonstrate this approach. We will contextually test and benchmark
against the use of encoders for proprioception [7].

– Experimental results that quantify the accuracy that can be achieved when
using IMUs for reconstruction, and for closed loop control of a continuum
body manipulator.

In the remainder of this paper we first introduce the technical approach and
methods for IMU based reconstruction. We introduce the robot platform that
has been developed to explore this approach. Following on from this we show
the results of applying the approaches to the robot platform demonstrating the
effectiveness and accuracy that can be achieved.

2 Technical Approach and Methods

Intertial Measurament Units (IMUs) sense 3-axis linear acceleration and angular
velocity. They also include a magnetometer which senses the direction of the
magnetic field. Although standard methods to fuse these sources of information
are prone to drift over time, recently proposed techniques have proven able to
reduce this problematic accumulation of error to a minimum. Such techniques
have been shown to be particularly effective in the case of sensing orientation.
For example, the Mahony filter in [11] has shown that drifts can be limited to
only the local direction of the gravity field. For the case of continuum body
robots, the output from these filters is not the only information that we have
regarding the shape of the soft robot.

Using the piecewise constant curvature (PCC) approximation we can identify
the full shape of each segment from a function which has just two variables.
Consider a number of reference frames attached as in Fig. 1, on for the end of
each segment plus one at the base. Let Ri

i−1 be the rotation matrix and tii−1 the
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Fig. 1. Model and reference frames for the manipulator.

translation mapping the reference frame at base of the i−th segment to the one
attached to its tip.

According to the description proposed in [3], the posture of the i−th segment
can be described through the two banding variables Δx,i,Δy,i ∈ R and the total
length of the segment Li. More specifically the orientation is described by the
rotation matrix Ri

i−1(Δx,i,Δy,i, si) =
⎡
⎢⎢⎣
1 +

Δ2
x,i

Δ2 (1− cos (siΔi))
Δx,iΔy,i

Δ2 (1− cos (siΔi)) −Δx,i
Δ

sin (siΔi)
Δx,iΔy,i

Δ2 (1− cos (siΔi)) 1 +
Δ2

y,i
Δ2 (1− cos (siΔi)) −Δy,i

Δ
sin (siΔi)

Δx,i
Δ

sin (siΔi)
Δy,i

Δ
sin (siΔi) 1 + (1− cos (siΔi))

⎤
⎥⎥⎦, (1)

and the position by the vector

tii−1(Δx,i,Δy,i, Li, si) =
Li

Δ2
i

⎡
⎣

(1 − cos (siΔi)) Δx,i

(1 − cos (siΔi)) Δy,i

sin (siΔi) Δi

⎤
⎦, (2)

where Δi =
√

Δ2
x,i + Δ2

y,i. The local coordinate along the segment is si ∈ [0, 1],
with 0 referring to the base, and 1 to the tip (see Fig. 1). Since we have an IMU
at the base and tip of each continuum body segment, we can use the posture
provided by a stack of Mahony filters [10] to extract the global posture of each

reference frame R̂i
0. We then evaluate the relative posture R̂i

i−1 =
(
R̂i−1

0

)−1

R̂i
0.

Finally, we can extract the parameterization of each segment by properly invert-
ing (1) for si = 1. We propose to do that by evaluating the configuration of the
segment as the solution of the optimization problem

arg min
Δx,i,Δy,i∈R2

||Ri
i−1(Δx,i, Δy,i, 1)− R̂i

i−1||2F, (3)

where || · ||F is the Frobenius norm, and Ri
i−1(Δx,i,Δy,i, 1) is as in (1). This is

evaluated by starting from the initial guess
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Δx,i =
1

2
(R̂i

i−1[3, 1]− R̂i
i−1[1, 3]) arccos(R̂

i
i−1[3, 3])/ sin(arccos(R̂

i
i−1[3, 3])),

Δy,i =
1

2
(R̂i

i−1[3, 2]− R̂i
i−1[2, 3]) arccos(R̂

i
i−1[3, 3])/ sin(arccos(R̂

i
i−1[3, 3])),

(4)

where R̂i
i−1[j, k] is the element of R̂i

i−1 positioned at row j and column k. Note
that if the PCC hypothesis were perfectly fulfilled, than Ri

i−1(Δx,i,Δy,i) = R̂i
i−1

- i.e. this would be the global minimum of (3). Yet the real system will likely have
a non perfectly constant bending. Therefore, we use standard gradient descent
method to locally refine the guess. In this way the residual drift is tamed by
the constraints imposed by the kinematic model. Finally, full postures (i.e. both
orientation and position) of each point along the segment can be retrieved by
substituting back the parameterization into (1). Note that under PCC hypothesis
the total length of the segment Li can be expressed as average of the length of
the three actuated segments, which in turn is know from the motor encoders.

In this way the IMU can be used to evaluate full posture, instead of orien-
tation only. Finally, the extracted configuration can be used to regulate the end
effector configuration of the robot through kinematic feedback controllers. We
extend here the inverse kinematics approach introduced in [7, Sect. 2C], by using
the error between desired tip configuration and the measured one, rather than
computing the value off-line.

3 Experimental Platform

To validate this algorithm we have developed a single segment, continuum body
manipulator based upon our previous work [7]. The actuation system consists
of a compliant tri-axial rack and pinion system formed from flexible 3D printed
rack elements (Fig. 2). On this motorised platform we have the three rack and
pinion mechanisms, each controlled by a DC motor equipped with a quadrature
encoder. A PID controller has been implemented to allow a the length of the legs
of the manipulation to be set. By varying the length of flexible track between the
tip and the base for each of the flexible backbones, the orientation and location
of the tip can be controlled in 3D space. This allows for both growth and change
in length of the robot, and also motion of the movement of the tip in 3D space.
Using the encoders, the approximate position of the end-effector can be controller
using the piecewise constant curvature approximation, as previously shown in [7].
Multiple, independent stages of this manipulator can be combined together to
generate larger systems, and the properties of the 3D printed racks can be varied
to control the bending properties. We have equipped the manipulator with two
9 Degrees of Freedom (DoF) IMUs (BMO005), mounted on the base and the
tip of the manipulator, with the two aligned in the Z axis. The IMUs have been
calibrated, and the 4 axis quaternions were sampled 10 Hz. Initial readings were
discarded to ensure the magnetometer is calibrated. Patterns of reflective motion
tracking markers have been mounted on the two stages of the robot, to allow the
ground truth of the position of the robot to be captured using a motion tracking
experiments. The location of the sensors and markers is highlighted in Fig. 2.
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Fig. 2. Design of the actuation stages of the manipulator showing the triaxial motors
and 3D printed tracks. Accompanied by pictures showing the range of motions and
actions that can be achieved using the manipulator. The placement of the IMUs is
highlighted.

It is important to underline here that encoders are a sensing technology that is
specific to this design, and are general not feasible for other kind of soft robots.
Conversely, implementation of IMUs on a soft robot would be agnostic of the
actuation method providing versatility.

4 Results

In this section we first explore the performance of open loop pose reconstruction
when using the IMUs on the robot system. Following on from this, we then
implemented closed loop control as proposed above to increase the positional
accuracy of the robot.

4.1 Pose Reconstruction

In the first experiments we consider the accuracy with which the pose can be
reconstructed using the IMU sensor data. The end effector was systematically
moved around the working space of the manipulator in the x, y and z axis
by varying the demanded encoder positions. During this experiment the true 6
DoF position of the end effector and base of the manipulator was captured using
motion capture, and the data from the tip and base IMU was also recorded.
Using the methods identified in Sect. 2, the pose of the robot was reconstructed
over this period using the IMU data.

In Fig. 3 we show a number of poses of the robot overlaid with a reconstruc-
tion of the robot that has been calculated using the IMU data. These results show
that there is a close similarity between the shape of the manipulator and the
reconstruction. We also see a high accuracy in the estimation of the prediction
of the location of the tip of the end effector.

To quantify the performance of the pose reconstruction over the entire
workspace of the robot, a comparison between the true pose of the end effector
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Fig. 3. Comparison between real pose of the robot, and reconstructed pose determined
using the IMU data.

(as determined by motion capture), and the pose as estimated using the IMU
data has been calculated. The error when reconstructing the location is evalu-
ated by computing the Euclidean distance between the end effector position as
reconstructed from the IMU and the true location. Over the entire recording, the
reconstruction had a mean accuracy of 2.7 cm, with an accompanying standard
deviation of 1.2 cm. For reference, the total length of the robot segment was
approximately 20 cm. The error in reconstructing the orientation was evaluated
by computing the norm of the relative rotation between the motion capture frame
and the IMU based frame, i.e. |qMCconj(qIMU )|, where qMC and conj(qIMU )
are the quaternion vectors of the motion capture and the complex conjugate of
the IMU quaternion projected on the PCC kinematic model respectively. The
recorded accuracy of the orientation has a mean of 0.92 and a standard devi-
ation of 0.12. In this context, a result of 1 represent perfect reconstruction of
the orientation. In the context of deformable robots and the variety of different
motions that can be achieved with the end effector, this offers an accuracy that
would assist in enabling many tasks.

4.2 Closed Loop Control

To experimentally test using the IMU data for closed loop control, the end-
effector of the robot has been set to move to a variety of positions along the x,
y and z planes within the work-space of the robot. This was performed using
encoder only ‘open loop control’, where the position was determined by setting
specific demand encoder values, and also closed loop control using the IMU data
in addition. The visual results are shown in Fig. 4 where the motion in each axis
is shown for both the open loop and closed loop motion strategies. It can be
observed that the IMU based control shows a far closer match to the expected
motion path. When only the encoder based approach is used slippage between
the gears and rack, and other causes of error lowers the positional accuracy
significantly. This is particularly the case for poses which are further from the
base of the robot, or poses which require large amounts of bending.

To quantitatively compare the performance of the two different control
approaches, the 3 DoF position of the end effector was measured when moved
in the three axes (as in Fig. 4), and the euclidean distance error between the
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Fig. 4. Graphical comparison of the motion that is achieved when using open loop
(encoder only control), and closed loop control using IMU feedback. This is shown for
motion in the vertical Z axis, horizontal X axis, and horizontal Y axis.
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demand and true position measured. Each pose was repeated 5 times to test
and evaluate the reliability, with the results shown in Fig. 5. We see that on
average the closed loop controller halves the position error. As seen in the pic-
torial results this is particularly the case for larger motions where the flexible
racks of the robot are most bend. For very low height, or less extreme motions,
for example in low heights in the z axis the accuracy for both methods is high,
however, for more expansive motions the IMU based closed loop control becomes
increasing important. Considering the mean accuracy of the pose reconstruction
(2.7 cm), the IMU based closed loop control achieves a precision which is in line
with this.

Fig. 5. Quantatative comparison between the performance of the open loop vs. closed
loop control for motion in the X, Y, and Z axis.
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5 Discussion and Conclusions

In this work we introduced a new method for combining the feedback from
IMUs on a deformable manipulator with the PCC model. This constrains the
IMU response, minimizing the effects of drift commonly observed when using the
response from IMUs. This approach was demonstrated on a growing, deformable
manipulator for both pose reconstruction and closed loop control of position. It
was shown how the pose could be reconstructed with an mean error of 2.7 cm in
position. Using this ability to reconstruct the pose closed loop control using the
IMUs was applied to significant reduce the error in positioning.

By introducing this IMU based proprioceptive sensing approach, we provide
a universal approach for control and reconstruction of soft, curvature based con-
tinuum manipulators. The IMUs can be easily integrated or applied to manipu-
lators of any form factor, including soft of highly performance structures. Using
the sensor feedback allows for accurate reconstruction and closed loop control.

Further work could explore the use of IMUs in multi segment robot structure,
and also on robots with other actuation methods to validate it across other
designs. As this method is highly scaleable it would be possible to create a
complex, many-segmented continuum body robot structure. The use of the IMU
based pose reconstruction could aid exploration of complex environments when
using soft robots. This IMU based method could also be extended to other
continuum body structure such as grippers, or soft walkers for proprioceptive
sensing.
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made this work possible.
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