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a b s t r a c t

The present research was aimed at lowering the deformation temperature by applying

cover tube casing (CTC) to AZ31 magnesium alloy samples subjected to equal channel

angular pressing (ECAP) without triggering surface defects and/or fracture. The Cockcroft-

Latham (C & L) fracture model was incorporated into finite element simulation and the

critical values for a fracture to occur were determined. The fracture was predicted for the

samples deformed at 150, 175, and 200 �C without CTC and with CTC having thicknesses of

1 and 4 mm. The predictions of the model were verified with experimental data. It was

found that the workability of AZ31 increased with increasing CTC thickness, as a result of a

reduction in the maximum principal stress at the top surface, a uniform distribution of

strains, and an increase in the critical damage. In practice, the use of CTC led to the pos-

sibility of a reduction in deformation temperature by 25 �C. A sound product with a ho-

mogeneous grain structure and a mean grain size of 11 mm was achieved at 175 �C. Thus,

the ECAP working window for the alloy was enlarged with accompanying benefits in en-

ergy consumption, tooling life, and manufacturing costs.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In traditional metallurgy, grain refinement is known as a

method for improving the mechanical properties of structural

materials, e.g., strength, ductility, and fatigue resistance. This

may be considered as the main motivation for the
ivani).

his is an open access art
development of severe plastic deformation (SPD) techniques

[1]. Ultrafine grained (UFG)metals and alloyswith significantly

improved properties have been achieved by SPD processing on

many different metallic materials, e.g., steels [2,3], aluminum

and alloys [4e8], magnesium and alloys [8], and copper and

alloys [9].
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Being well known for high specific strength, magnesium

has been considered to be a promising material for structural

parts where lightweight is desired, for example, for automo-

tive parts. However, the use of magnesium products is largely

restricted to cast products, although wrought products nor-

mally have higher mechanical performance and thus are

more suitable for load-bearing applications. One of the major

barriers to the widespread use of wrought magnesium prod-

ucts is the poor workability of magnesium [10] due to its

hexagonal close-packed (HCP) crystal structure [11] with a

limited number of independent slip systems operating at

room temperature [12]. As a result, well-established bulk

forming processes, such as extrusion, rolling, and forging,

cannot be applied, unless the working temperature is raised

above 225 �C, which increases equipment costs, energy costs,

and manufacturing costs as a whole.

For wrought products, alloying of magnesium is often

desired for the sake of mechanical properties and corrosion

resistance, but it may also be used as a strategy to raise the

workability ofmagnesium throughmodifying its deformation

texture [13], or introducing a more deformable phase with a

body-centered cubic (BCC) crystal structure [14], or refining its

grain structure. The addition of aluminum to magnesium, for

example, improves the strength and corrosion resistance of

magnesium [15], also results in grain refinement, and in-

creases its ductility. However, aluminum is a weak nucleant

for magnesium grains and thus can only marginally reduce

hot tearing susceptibility. The fundamental problem of poor

workability of magnesium at temperatures below 225 �C re-

mains largely unchanged. As a consequence, MgeAleZn al-

loys still belong to a group of magnesium alloys with poor

workability and have serious limitations for bulk forming

processes involving large strains, such as severe plastic

deformation (SPD) which serves as an effective means to

achieve desirable grain refinement and mechanical proper-

ties [16].

SPD processing of MgeAleZn alloys requires careful

consideration of all process parameters, basically tempera-

ture, strain, and strain rate. An effective approach to broad-

ening the applicable process parameters is to increase the

temperature [17], thereby allowing more slip systems to

operate, which are otherwise inactive at room temperature

[18]. When the deformation temperature is increased, the

strain rate plays an important role in determining the defor-

mation behavior and the as-deformed microstructure.

Therefore, it needs to be precisely controlled [19]. Kang et al.

[20] investigated the SPD of the AZ31 alloy using equal channel

angular pressing (ECAP) and found that at temperatures below

150 �C, all samples failed during ECAP. At temperatures higher

than 200 �C, however, sound samples could be obtained at low

strain rates. With deformation temperature increased to

250 �C, samples could be readily deformed over a wider range

of strain rates. Similar results were obtained by Lapvok [21]

and Figueiredo et al. [22]. The main reason behind these

findings is that during SPD large, cumulative plastic strains

are imposed on the material, which results in significant in-

creases in dislocation density and grain refinement [1,23,24].

When deformation temperature is raised, dynamic or semi-

dynamic recovery and recrystallization are activated, leading

to dislocation annihilation, subgrain formation, and even
recrystallization and grain growth, which undermines the

results desired to achieve by applying SPD [25]. Therefore, it is

a challenge to increase the workability of MgeAleZn alloys

and at the same time lower the deformation temperature for

ECAP. Several strategies have been explored, such as tight

control of deformation temperature and strain rate [20e22],

application of backpressure [21,26,27], and change of die

design [28e30]. As an alternative method to improve work-

ability during ECAP, covered tube casing (CTC) has recently

been proposed [31]; a copper tube on an aluminum sample

resulted in improved strain distribution inside the aluminum

sample [31]. Jahed et al. [32] investigated the effect of CTC on

the fracture of the AM30 magnesium alloy at elevated tem-

peratures of 200, 250, and 275 �C and confirmed improved

workability. However, no attempts were made to lower the

deformation temperature to the range where cracking or

facture has a much stronger tendency to occur.

Over the temperature range below the critical temperature

of 225 �C, the interplay between deformation temperature,

strain, and strain rate becomes more important in deter-

mining the deformation responses, dynamic restoration

mechanism, and failure mechanisms of MgeAleZn alloys.

The ECAP process parameters are further compounded by CTC

thickness that determines the strain homogeneity and

occurrence of fracture at a given deformation condition. In

this regard, fracture models and deformation analysis using

the finite elements (FE) method are of great help, as their

combination is capable of predicting fracture at various pro-

cessing conditions, before experimental research. Fracture

models, such as the Cockcroft-Latham (C & L) model, consider

material failure as a function of processing parameters, such

as stress, strain, strain rate, and temperature. A fracture oc-

curs when these parameters or a relationship containing

these parameters exceeds a critical value [33]. The C& Lmodel

is one of themostwidely used fracturemodels, which uses the

maximum principal stress for the calculation of damage in a

cumulative mode [34]. Due to some discrepancies observed

between the predictions of the C & L model and the experi-

mental results [22], normalized C & L criteria were proposed,

in which the effect of the hydrostatic stress was included.

However, the authors of the present communication demon-

strated that the C & L model can more precisely predict frac-

ture during ECAP processing of the AZ31 at room temperature

than normalized C & L [35]. Besides, other fracture models,

such as the stress ratio criterion [36], have been used for the

prediction of fracture during ECAP at room temperature. To

the best knowledge of the authors, there have been few at-

tempts to predict the fracture of magnesium alloys during

ECAP at moderately elevated temperatures.

The effect of the ECAP on the evolution of microstructure

and mechanical properties of magnesium alloys, e.g., AZ31

has been thoroughly studied [8,15,37e39] and is not covered in

this investigation. The current paper is focused on the pre-

diction of fracture during ECAP of AZ31 alloy aimed at further

improving the processing route of the AZ31 magnesium alloy.

Because ECAP is used to apply extremely high amounts of

deformation to refine the grain structure of metallic materials

and achieve UFG structure or nano grained alloys, the defor-

mation temperature should be kept below the recrystalliza-

tion temperature. For most metals and alloys, SPD is

https://doi.org/10.1016/j.jmrt.2021.03.096
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conducted at room temperature. However, room temperature

deformation ofmagnesium alloys is not practical which is due

to poor workability [10]. Therefore, magnesium alloys are

mostly deformed at 200 �C or higher which is likely to result in

dynamic recrystallization and reduced achievements by SPD.

At lower temperatures, no recrystallization is expected, but

fracture may occur. To optimize the processing route, C & L

fracture model is incorporated into a FEM simulation of ECAP

of AZ31 at moderately elevated temperatures. The effect of

CTC on lowering applicable deformation temperature,

improving the workability of the alloy, and refining the as-

deformed grain structure is another aim of the current

paper. The deformation temperature could be reduced by the

CTC approach which is explained by the developed fracture

model. Themicrostructures of the samples are investigated to

demonstrate the importance of reducing deformation tem-

perature on grain refinement.
2. Experimental procedure

The chemical composition of the AZ31 magnesium alloy used

in this investigation was determined using optical emission

spectroscopy according to ASTM B954-15 and is shown in

Table 1. Hot extruded rods with a diameter of 48 mm were

heated in an open atmosphere electrical resistance furnace at

400 �C for 24 h and then quenched in water [40]. This heat

treatment was performed to eliminate intermetallic com-

pounds, mostly the b-Mg17Al12 phase, from the matrix [41].

The samples were held at room temperature for 48 h before

ECAP.

For ECAP processing, a die made of the H13 tool steel with

two channels intersecting at 90� and an outer curved corner of

22� was used. The diameter of the channels was 16.05 mm.

The whole die and sample set-up were heated using 4 heating

plates surrounding the die to desired temperatures of defor-

mation mentioned in Table 2. The temperature inside the die

at a distance of 10 mm from the intersection of the two

channels was measured using a thermocouple with an accu-

racy of ±5 �C. The die was heated to the desired temperature

first. Then, the sample was inserted into the entry channel,

and ECAP was performed after 10 min holding. MoS2 grease

was used for lubrication. For pressing, a 1 MN hydraulic press

at a ram speed of 1.3 mm/s was used.
Table 1 e Chemical composition of the alloy used in this
investigation (wt.%).

Mg Al Zn Mn Other

Base 2.5 0.76 0.26 <0.3

Table 2e Labels of the samples used in this investigation.

Thickness of
Cu tubes (mm)

Temperature (�C)

25 150 175 200

0 25e0 150e0 175e0 200e0

1 e 150e1 175e1 200e1

4 e 150e4 175e4 200e4
To investigate the effect of CTC on the workability and

fracture occurrence of AZ31, pure copper tubes (purity: 99.9%)

with thicknesses of 1 and 4mmwere used. The outer diameter

of the tubes was 16 mm and the inner diameters were 8 and

14mm, as listed in Table 2. Samplewithout CTCwas subjected

to the same ECAP processing for comparison purposes.

A Huvitz optical microscope was used to determine the

effect of ECAP processing on the evolution of grain structure.

The observation was made on the longitudinal section of the

deformed samples. After cutting, grinding, and polishing,

sampleswere chemically etched using a solution composed of

1 mLl HNO3, 1 mL CH3COOH, and 1 g C2H2O4 in 150 mL

deionized water. The grain sizes of the samples before and

after ECAP were determined by using the linear intercept

method.
3. Fracture model and FE simulation

To reveal deformation parameters and damage inside the

AZ31 alloy sample during ECAP, a Deform 3D software pack-

age was used. To introduce the material behavior into the

simulations of ECAP, the material model of AZ31 available in

the Deform 3D package was used. The simulations were per-

formed at 150, 175, and 200 �C. The shear friction model was

applied to represent contact conditions between the work-

piece and the FSP tool. By taking advantage of the symmetry of

the ECAP setup, one half of the sample with 20,000 non-

uniform tetrahedral elements and minimum and maximum

sizes of 1 and 2 mm was modeled. Remeshing was performed

in the areas where deformation exceeded a predetermined

distortion value of 30%. During the simulations of ECAP of the

samples with CTC, an existing material model of pure copper

in the software package was used. 15,000 and 18,000 tetrahe-

dral elements were used for CTC with thicknesses of 1 and

4 mm, respectively. The same re-meshing criterion and

symmetrical conditions as those used for ECAP without CTC

were applied. Both the sample and CTC were simplified as

plastic materials with their elastic behavior ignored.

A rigid ramwith a diameter of 16mmand length of 160mm

was meshed with 20,000 elements and minimum and

maximum sizes of 1.2 and 2.1 mm. As the whole die was

heated up to the deformation temperature, and considering

the significantly higher volume of the die to the deforming

sample, the temperature of the die was considered to stay

unchanged during the simulation. As the ram is not heated

up, heat transfer to the ram was incorporated into the model.

Thermal characteristics of the workpiece and tool which are

used in the simulation are presented in Table 3.

Ram speed was the same as that applied in the experi-

ments, i.e., 1.3 mm/s. The die was also considered to be rigid
Table 3e Thermal and friction characteristics used in this
investigation.

Property AZ31 alloy H13

Thermal conductivity (W/mK) 84 24.5

Heat capacity (kJ/m3K) 2096 4500

Coefficient of friction 0.4 e

https://doi.org/10.1016/j.jmrt.2021.03.096
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and modeled to be the same as the experimental setup with

an intersection angle of 90� and an outer curved corner of 22�.
The simulation was performed for 500 steps with 0.2 mm ram

displacement at each step. The distributions of strains, strain

rates, and temperatures were reported as the outputs of the

simulations.

The C & L fracture criterion, as expressed in Eq. (1), was

used to predict the occurrence of fracture during ECAP, when

the cumulative damage exceeded a critical value, C. The crit-

ical damage value is usually determined from tensile tests.

The damage of a deforming sample is calculated as a cumu-

lative parameter.

c ¼
Zεf

0

s1 dεp (1)

where s1 is the maximum principal stress, εp the equivalent

strain, and εf the equivalent strain at which fracture occurs.
4. Results and discussion

4.1. Estimation of the critical value for the C & L fracture
model

As previously shown [35], the critical value in the C & L cri-

terion can be estimated by calculating the area under the

stressestrain curve obtained from tensile test at room tem-

perature.With changes in temperature and strain rate applied

in tensile tests, the area under the stressestrain curve

changes accordingly and as a result, the critical value changes.

Therefore, in one single ECAP deformation process, the critical

value and the probability of fracture may be different for the

deformation conducted locally at different temperatures and

strain rates. Besides, when deformation is conducted at an

elevated temperature, inhomogeneous distributions of tem-

peratures and strain rates inevitably occur. Fig. 1 shows the

distributions of temperatures and strain rates in a sample
Fig. 1 e FEM predicted distributions of the effective strain

rates and temperatures in a sample deformed at 150 �C.
deformed at 150 �Cwithout CTC, as an example. It can be seen

that the sample has different values of temperature and strain

rate throughout the longitudinal section. This will cause var-

ied histories of strain rate and temperature in different re-

gions on the longitudinal section of the sample. It is thus

impossible to choose one specific temperature or strain rate to

be applied in the tensile test to calculate the critical value.

Hypothetical stressestrain curves at different tempera-

tures and strain rates during deformation are shown in Fig. 2.

A critical value at a specific spot inside the ECAP sample can be

obtained by calculating the sum of S1, S2, S3, and S4, as the

area underneath stressestrain curves of the samples at

different conditions. Any specific spot inside the sample may

experience many combinations of temperatures and strain

rates during ECAP. As a result, the calculation of the critical

values by estimating the true deformation history requires the

availability of a large number of data, which is not practical.

A way around the problem in the present research is to

perform the simulations of ECAP without implementing the

fracture criterion first to calculate the cumulative damage in

different regions of the deforming sample. At this step, a

fracture is not predicted, because no fracture criterion is

activated. From experimental observations and those re-

ported in the literature [20e22], it is understood that Mg alloys

including AZ31 cannot withstand deformation in ECAP at

room temperature or even at temperatures below 200 �C.
Under these conditions, surface cracks form in the upper re-

gion of the sample during ECAP, while the bottom and middle

regions remain intact [20e22]. One may thus infer that the

cumulative damage in the upper region, predicted by the

simulation, is equal to or larger than the critical value. Be-

sides, the predicted damage in the other regions, even in the

most damaged area, is below the critical value simply because

no fracture is observed in these regions. Therefore, the value

of damage in the highly damaged area but still with damage

less than the upper region is assumed to be a critical value.

This way of estimating the critical value provides a certain

factor of safety for future predictions, which makes the

approach practically viable.
Fig. 2 e Hypothetical variations in strain rate and

temperature at one specific spot in a deforming sample

during ECAP.

https://doi.org/10.1016/j.jmrt.2021.03.096
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The predictions of the cumulative damage in the samples

deformed at 150, 175, and 200 �C are shown in Fig. 3. As dis-

cussed earlier, the maximum damage occurs in the upper

region of the deformed samples. The values of the cumulative

damage in this region were 20, 25, and 30 MPa for the samples

deformed at 150, 175, and 200 �C, respectively. It should be

noted that the values to be used in the simulations with the

implementation of the fracture criterion are tentative and

may be subjected to change or correction if the predictions do

not agree with experimental results.

4.2. Simulation of ECAP with the fracture criterion
implemented

The results obtained from the simulations of ECAP of the AZ31

alloy deformed at 150, 175, and 200 �Cwith CTC thicknesses of

0, 1, and 4mmare shown in Fig. 4. At 150 �C, fracture occurs in

all samples from the top surface, as indicated by the red color

(Fig. 4a). Without CTC, fracture occurs through the thickness

of the sample. With CTC, however, fracture proceeds only

halfway through the thickness. The application of CTC results

in reductions in cumulative damage and thus fracture in the

sample.

In the case of the sample deformed at 175 �C (Fig. 4 b), the

sample without CTC appears to be the same as the one

deformed at 150 �C. However, no fracture is observable in the

samplewith CTC.Minor signs of damage appear at the surface

of the sample with 1 mm thick CTC, but no damage is

observed in the sample with 4 mm thick CTC. Damage and

thus fracture reduce with increasing CTC thickness. For the

sample deformed at 200 �C (Fig. 4c), the fracture does not

appear in any of the samples; with or without CTC, a sound

deformed product is achieved, although minor signs of dam-

age are observed at the surface of the sample without CTC. It

confirms that fracture in the ECAPed samples reduces with

increasing CTC thickness.
Fig. 3 e Results of preliminary simulations showing the extent o
To quantify the extent of damage, the variation in the C &

L damage on the longitudinal section of the sample was

extracted (Fig. 4). The damage is presented along with the

distance from the upper region to the bottom region of the

sample, as illustrated by the black rectangular box in the

figure. For all the samples, the maximum damage occurs at

the top surface, the damage lessens towards the center and

increased again towards the bottom surface. This is consis-

tent with the experimental observation that fracture initi-

ates on the top surface [20e22]. In Fig. 4, a dashed line is

drawn to indicate a critical value of damage, above which the

cumulative damage is larger than the critical value and

fracture may occur in the sample or part of the sample. The

value of critical damage increases with increasing deforma-

tion temperature. It can be seen in Fig. 4a that the damage at

the top surface exceeds the critical value at 150 �C, with or

without CTC. In addition, the damage is very close to the

critical value even in the core regions, indicating the likeli-

hood of fracture or severe cracking inside the deformed

sample. With deformation temperature increased to 175 �C,
the damage of the samples with CTC is reduced and becomes

lower than the critical value. However, for the sample

without CTC, the damage still exceeds the critical value up to

almost 3 mm under the top surface. For the samples

deformed at 200 �C, the damage is all below the critical value,

with or without CTC.

To ascertain the predictions of fracture, the maximum

principal stress and the effective strain in the black rectan-

gular box indicated in Fig. 4, were extracted (Fig. 5). As can be

seen in Fig. 5a, the maximum principal stress reduces from

the top surface towards the bottom. The trend is the same for

all the samples. The slope of the reduction is the highest at

150 �C. The variation of the effective strain on the cross-

section of the sample follows the same pattern for the sam-

ples with or without CTC at 150 �C and without CTC at 175 �C
only. Indeed, the maximum values of the effective strain
f predicted damage during ECAP at different temperatures.

https://doi.org/10.1016/j.jmrt.2021.03.096
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Fig. 4 e Predictions from the simulations showing (a), (b), and (c) fractured samples and the distributions of damage values

on the longitudinal section and (d), (e), and (f) the distribution of the C & L damage values through the thickness of the

samples with 0, 1 and 4 mm thick CTC and deformed at (a) and (d) 150, (b) and (e) 175 and (c) and (f) 200 �C.
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occur at the surface of the samples. According to the C & L

fracture criterion, high cumulative damage is an outcome of

high levels of the principal stresses and effective strains. In

the other regions of the samples, with increasing distance

towards the bottom, both values of the effective strain and

maximum principal stress and, therefore, the damage

reduction. For the samples deformed at 175 �C with CTC and

those deformed at 200 �C, however, the effective strains from

the top to the bottom remain at a low level, although the

maximum principal stress is the highest at the top surface

and reduces towards the bottom. It seems to indicate the

effective strain to be a more important parameter to decide

the occurrence of fracture. Variations in maximum principal

stress and effective strain through-thickness reduce with

using CTC and increasing CTC thickness. Indeed, deforma-

tion becomes more uniform with the application of CTC and

increasing CTC thickness. This results in reduced localiza-

tion of deformation and accumulative damage which are

required for initiation of fracture. It should be added that the
highest values of maximum principal stress and effective

strain, which occur at the top surface of the sample, are

reduced by the application of CTC and increasing CTC

thickness. According to the formulation of C & L fracture

criterion in Eq. (1), reducedmaximumprincipal stress results

in lower values of accumulative damage to acquire the crit-

ical value and initiate fracture. Reduced value of effective

strain which is achieved at the surface of the CTC-deformed

samples may result in the same consequence and postponed

fracture initiation.

4.3. Verification of the predicted results

To verify the predictions made from the simulations, AZ31

samples were deformed at the same conditions as those used

in the simulations. The images of the deformed samples are

presented in Fig. 6. Fracture indeed occurred in all samples

deformed at 150 �C. A magnified image of a fractured sample

with 4 mm thick CTC and deformed at 150 �C, showing the

https://doi.org/10.1016/j.jmrt.2021.03.096
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Fig. 5 e Distributions of (a), (c) and (e) the maximum principal stresses and (b), (d), and (f) the effective strains through the

thickness of the samples with 0, 1, and 4 mm thick CTC and deformed at (a) and (b) 150, (c) and (d) 175 and (e) and (f) 200�.
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extent of damage, is presented in Fig. 7a. With temperature

increased to 175 �C, the damage reduced, and in the sample

with 1 mm thick CTC, no fracture was observed. In addition,

sound samples were achieved, when they were deformed at
Fig. 6 e Samples with CTC of different thickne
200 �C. However, it should be noted that, as shown in Fig. 7b,

surface cracks formed in the sample without CTC and

deformed at 200 �C. Such surface cracks were however not

observed in the sample with 1 mm thick CTC and deformed at
sses, deformed at different temperatures.
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Fig. 7 e Fracture in (a) the sample with 1 mm thick CTC and deformed at 175 �C and (b) surface cracks in the sample without

CTC and deformed at 200 �C.
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175 �C. These results are all in good agreement with the pre-

dictions from the simulations, indicating that the application

of CTC indeed helps lower the deformation temperature by

25 �C and yet a sound product is achievable. A reduction in

deformation temperature leads to reductions in energy con-

sumption, die damage, and manufacturing costs. In addition,

as will be shown later, it benefits the microstructure that is of

great importance, because it is one of the main reasons for

applying SPD.

4.4. Evolution of microstructure

The results from the simulations and experiments presented

earlier clearly show that deformation temperature may be

lowered by 25 �C if CTC is utilized in the ECAP of the AZ31

alloy. It is important to know the effect of such a reduction in

deformation temperature on the as-deformedmicrostructure.

In Fig. 8, the grain structure of the sample with 1 mm thick

CTC and deformed at 175 �C is compared to that of the sample

without CTC and deformed at 200 �C, relative to the micro-

structure of the AZ31 alloy before ECAP. It can be seen that the

initial microstructure of the alloy is composed of circular,

equiaxed grains with a mean grain size of 39 mm and without

any preferred orientation. By contrast, the sample deformed

at 175 �C has elongated coarse grains oriented in the defor-

mation direction (the white arrow) and also fine recrystallized

grains mostly at the boundaries of the initial grains (Fig. 8b).

The fraction of recrystallized grains is below 10%. The mean

grain size of this sample is 11 mm. This demonstrates the
Fig. 8 e Grain structures of (a) the sample before ECAP, (b) the sa

the sample without CTC and deformed at 200 �C.
effectiveness of ECAP processing in grain refinement. The

sample deformed at 200 �C without CTC (Fig. 8c) has fine,

recrystallized grains and also coarse, deformed grains. The

fraction of recrystallized grains is above 30% and the mean

grain size is 12 mm, which does not differ markedly from that

of the sample with 1 mm thick CTC and deformed at 175 �C.
Such a small difference may be considered to be within an

error margin and the grain structures may be considered to be

essentially the same. This is because the recrystallized grain

structure is dynamically formed without much grain growth

and the mean grain size is thus independent of the deforma-

tion temperature [25].

The distributions of the diameter of the grains on the plane

of measurement are presented in Fig. 9. The sample before

ECAP has a broad distribution of grain sizes, ranging from10 to

80 mm.When the material is deformed, grain sizes reduce and

limit themselves to values less than 50 mm, as a result of the

refinement of the initially coarse grains. The grains at the

surface region have more uniform sizes than those in the

other regions. After ECAP, the number density of fine grains is

significantly increased in both of the samples. This is obvi-

ously because of the formation of fine recrystallized grains.

When the area fractions of grains over different size ranges

are considered, the grain structure of the sample with 1 mm

thick CTC and deformed at 175 �C is more homogeneous than

that of the sample without CTC and deformed at 200 �C.
Therefore, one may conclude that the reduction in deforma-

tion temperature as a result of the use of CTC leads to a more

uniform microstructure after ECAP.
mple with 1 mm thick CTC and deformed at 175 �C, and (c)
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Fig. 9 e Distributions of grain sizes of (a) the sample before

ECAP, (b) the sample with 1 mm thick CTC and deformed at

175 �C, and (c) the sample without CTC and deformed at

200 �C.
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5. Conclusions

In this investigation, the effect of CTC on the workability,

damage, and fracture of AZ31 samples during equal channel

angular pressing (ECAP) was investigated employing FE

simulation and validated by experiments. Accumulative

damage values in deformed samples were calculated using

the C & L criterion incorporated into the DEFORM FE simula-

tion program. In addition, the effect of lowered deformation

temperature on the grain structure was investigated. The

following conclusions have been drawn.

(1) The fracture occurs at the top surface of the sample

during ECAP when the cumulative damage exceeds a

critical value. This is because the parameters deter-

mining the occurrence of fracture, i.e., the maximum
principal stress and the effective strain, are the highest

at the top surface.

(2) With increasing deformation temperature, the work-

ability of the samples is improved, and fracture is less

likely to occur. Sound products can be achieved after

ECAP at 200 �C without CTC or even at 175 �C with CTC.

This is attributed to (i) a reduction in the maximum

principal stress at the top surface, (ii) a more uniform

strain distribution throughout the sample, and (iii) an

increase in the critical damage value in the C & L cri-

terionwith rising deformation temperature. The benefit

from CTC is a reduction in deformation temperature by

25 �C and yet a sound product can be achieved.

(3) Lowering the deformation temperature by 25 �C is sig-

nificant for the ECAP of the AZ31 alloy. It improves the

cost-effectiveness of ECAP processing and also the

mechanical properties of the ECAPed material as a

result of a reduction in the fraction of recrystallized

grains and an improvement in grain size uniformity.
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