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Deflated Preconditioned Conjugate
Gradients for Nonlinear Diffusion Image
Enhancement

Xiujie Shan and Martin van Gijzen

Abstract Nonlinear diffusion equations have been successfully used for image
enhancement by reducing the noise in the image while protecting the edges. In
discretized form, the denoising requires the solution of a sequence of linear systems.
The underlying system matrices stem from a discrete diffusion operator with large
jumps in the diffusion coefficients. As a result these matrices can be very ill-
conditioned, which leads to slow convergence for iterative methods such as the
Conjugate Gradient method. To speed-up the convergence we use deflation and
preconditioning. The deflation vectors are defined by a decomposition of the image.
The resulting numerical method is easy to implement and matrix-free. We evaluate
the performance of the method on a simulated image and on a measured low-field
MR image for various types of deflation vectors.

1 Introduction

Many people have benefited from the development of the MRI scanner. However,
MRI scanners are expensive and therefore unaffordable for many people in low-
income countries. Thus developing a simple and affordable MRI system is urgently
needed. The research described in this paper is part of the work to develop a low-
field MRI machine for imaging the head of small infants to detect hydrocephalus,
a disease that affects many newborns in Africa. A Halbach-array of permanent
magnets was designed, optimized, and built [3, 6] to replace the expensive super-
conducting magnets that are used in conventional MRI systems. This simpler and
inexpensive hardware yields more noisy images, which requires the use of denoising
processing for medicine practice.
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The diffusion filtering method interprets pixel intensities as a physical quantity
that spreads by a diffusion process in the image [2]. The most simple diffusion
model for image denoising is standard heat diffusion. The solution of the model is
equivalent to a Gaussian low-pass filter, which is also considered to be the filter
in signal processing. The major drawback of this model is that it diffuses edges as
well as noise. To overcome this, the constant diffusion coefficient is replaced by a
coefficient that depends on the image gradient. This idea was first proposed in [7]
by Perona and Malik. The resulting PM-model is given by:

∂u

∂t
= ∇ · (c(‖∇u‖)∇u) in � × (0, T ),

u(x, 0) = f in �,

∂u

∂n
= 0 on ∂� × (0, T ), (1)

where � is the image domain, T is the stopping time, u is the pixel value (which is
complex for MR images), f is the noisy image and c is a nonnegativemonotonically
decreasing function with c(0) = 1 and c(+∞) → 0. Because of the ill-posedness
of the PMmodel, Catté et al. [1] have introduced a regularizationmethod that makes
the problem well-posed.

In this paper, we consider the following diffusion coefficient which was orig-
inally proposed in [7], modified with the technique in [1] to make the problem
well-posed:

c(‖∇u‖) = e−(‖Gσ ∗∇u‖/K)2 . (2)

In this equation, Gσ is a Gaussian with standard deviation σ and K is a damping
parameter.

We discretize Eq. (1) in space using the standard finite different method, see e.g.
[1]. We use implicit Euler to discretize in time and take the diffusion coefficient
corresponding the previous time step to linearize the equation. In every time step,
we have to solve a large and sparse linear system

Au = b (3)

whereA is symmetric and positive definite. For such systems, the conjugate gradient
(CG) method [4] is the method of choice. A classical result for the convergence of
CG is that after k iterations the error is bounded by

‖u − uk‖A ≤ 2‖u − u0‖A

(√
κ − 1√
κ + 1

)k

(4)

where κ = λn/λ1 is the spectral condition number and the A-norm of u is given by
‖u‖A = (uT Au)1/2. The convergence is slow when the condition number κ is very
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large. One way to improve this is to solve the preconditioned system M−1Au =
M−1b, where M is a matrix that resembles the matrix A. To further speed up the
convergence, one can use a deflation technique to map isolated extreme eigenvalues
to zero, effectively removing them from the system. Nicolaides [5] chooses deflation
vectors that correspond to subdomains: entries of the deflation vector are one for the
nodes in its subdomain and others are zero. In [10], subdomain deflation is applied
to Poisson problems with strong contrasts in the coefficient which results in a strong
improvement of the convergence. This has motivated us to apply this technique to
our problem. To define subdomains, we segment the image. Thresholding, region
growing, and small patches are used for segmentation, leading to different ways to
define the deflation vectors.

The structure of our paper is as follows. Section 2 describes the deflated and
preconditioned CG method and we give three choices of the deflation vectors. The
influence of preconditioner for the systems is also investigated by analyzing the
eigenvalues in Sect. 2. Section 3 gives numerical experiments for the simulated
Shepp-Logan image [9] and for a measured Shepp-Logan image. The comparison
of the different deflation vectors is presented in Sect. 3 using a simulated and a
measured Shepp-Logan image. We end with conclusions in Sect. 4.

2 PCG Methods with Subdomain Deflation

Deflation has been successfully applied to speed up the convergence of the
Preconditioned Conjugate Gradient method (PCG) for a number of problem with
strong variations in coefficients [8, 10]. The main idea [5] of this DPCG method is
summarized below.

2.1 DPCG

The idea of deflation is to split the solution into two parts, one in the range of the
deflation subspace R(Z) and one in its complement. In order to achieve this, we
define the projector P by

P = I − AZ(ZT AZ)−1ZT , Z ∈ R
n×m (5)

where Z = [z1 z2 · · · zm] is the deflation matrix, which we assume to be of full
rank. I is the identity matrix. Since u = (I − PT )u + PT u we have

(I − PT )u = Z(ZT AZ)−1ZT Au = ZA−1
c ZT b (6)
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where Ac = ZT AZ. Equation (6) is easy to calculate, we only need to calculate
PT u. Using APT = PA, we can solve the deflated system

PAũ = Pb (7)

for ũ using the PCG method and then multiplying ũ by PT to obtain PT u.
A common choice for the matrix Z, first proposed in [5], is based on a

decomposition of the domain �. Decomposing domain � into m nonoverlapping
subdomains �i , i = 1, 2, · · · ,m, we choose vectors zi for i ∈ {1, 2, . . . ,m} such
that zi = 1 on �i and zi = 0 on �j , j 
= i, j ∈ {1, 2, . . . ,m}. With this special
choice of Z, the technique for solving the system is referred to subdomain deflation.

We now give the DPCG algorithm for solving the system (3) as follows. Since
the pixels values correspond to MR images they are complex valued. For this reason
we have to take complex inner products. We therefore use conjugate transpose
H instead of normal transpose T in the algorithm. The preconditioning matrix is
denoted by M .

DPCG Algorithm

Ac = ZH AZ

P = I − AZ(Ac)
−1ZH

r0 = Pb − PAu0
k = 0

while rk 
= 0 do
Solve zk = M−1rk
k = k + 1
if k = 1 then

p1 = z0
else

βk = rH
k−1zk−1/(r

H
k−2zk−2)

pk = zk−1 + βkpk−1
end if
αk = rH

k−1zk−1/(p
H
k PApk)

ũk = ũk−1 + αkpk

rk = rk−1 − αkPApk

end while
u = Z(Ac)

−1ZHb + PH ũk .

2.2 Three Different Choices for the Deflation Vectors

We use DPCG to solve Eq. (3). We construct the matrix Z by segmenting the image
into small images in three different ways: using thresholding, region growing, and
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same size patches. For the thresholding and region growing method, we expect that
by choosing the interface at edges in the image, i.e., at the location of the jumps
in the coefficients, the convergence of the iteration method can be improved. The
third technique of same size patches corresponds to the method described in [5]. It
does not make use of the image structure, but has the advantage that it is easy to
implement. Below we describe the segmentation methods in more detail.

Thresholding

The thresholding method is frequently used for image segmentation. It is a
simple and effective segmentation method for images with different intensities [2].
Assuming that the intensity values of image |f | are between 0 and 1, we divide [0, 1]
into subintervals Ik . The image is segmented by dividing it into (not necessarily
connected) regions with pixel intensities in the same subinterval.

Region Growing

Region growing (RG) segments the image into connected regions with pixel
intensities in the same subinterval. To this end, neighbouring pixels are examined,
starting from an initial seed point, to determine whether the pixel neighbors should
be added to the same region based on a growing condition. The region growing
condition we use is as follows: let |f (i0, j0)| ∈ Ik and pixel (i, j) be a neighbour of
(i0, j0). Then if |f (i, j)| ∈ Ik , the two pixels belong to the same region.

Region Growing

Divide the interval I = [0, 1] into parts Ik , k = 1, . . . , s
for k = 1 : s do

while stack is empty do
1 Search image sequentially, find the first pixel (i0, j0) that belongs to
Ik that does not belong to a segment and set (i0, j0) to be seed point.
2 For all neighbour pixels (i, j) of (i0, j0)

if (i, j) is not visited and satisfies the region growing condition then
Add pixel (i, j) to the stack.

end if
3 Take a new pixel from the stack and return it to step 2 as (i0, j0)

end while
end for
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Same Size Patches

The square domain � (image) with resolution m × n is segmented into s × r

subdomains of the same size (patches), where m/s, n/r are integers.

2.3 Preconditioner

Subdomain deflation works well if the system matrix contains a few small eigen-
values. In order to achieve this, deflation has to be combined with a suitable
preconditioning technique. A simple preconditioner that can achieve this is diagonal
scaling. This is illustrated in Fig. 1. The left panel shows the spectrum of the
unpreconditioned matrix for the simulated Shepp-Logan image considered in
numerical experiments. The right panel shows the spectrum of the preconditioned
matrix. Clearly, diagonal scaling maps most eigenvalues to values close to one, with
the exception of a few eigenvalues that are mapped to small values.

3 Experimental Results

In this section, we evaluate our method on two images: a simulated Shepp-
Logan phantom (128 × 128) and a measured low-field MR image (128 × 128).
Comparisons between CG, PCG, DPCG with the three different deflation methods
are presented. Our results correspond to one time step of implicit Euler. For the
time step, we take τ = 0.06 and the damping parameter in the diffusion coefficient
is K = 3. For the CG, PCG and DPCG iterations, initial gues is u0 = 0 and as

Fig. 1 From left to right: eigenvalues of the system matrix and eigenvalues after diagonal scaling.
The eigenvalues are displayed in the log scale
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convergence criterion we use ‖rk‖ ≤ tol · ‖r0‖ with tol = 10−5. All numerical
experiments are carried out using Matlab R2016b on a standard laptop computer.

3.1 Simulated Shepp-Logan Image

Simulated Shepp-Logan image degraded with Gaussian noise with zero mean and
variance 0.005 has been tested. The denoising results of the diffusion model are
given in Fig. 2. We only show the denoising result of CG because all denoising
results based on different numerical algorithms are the same (as they should be).
Table 1 shows that CG and PCG need more iterations to converge than the deflated
methods. Region growing based DPCG takes more time because of the clustering
algorithm. Compared to thresholding segmentation, region growing seems to be
more sensitive to noise.

Fig. 2 First row from left to right: original image, noisy image and CG result. Second row from
left to right: segmentation (Region growing) and segmentation (Thresholding)

Table 1 Comparisons for simulated Shepp-Logan

Methods CG PCG RG-DPCG Patches-DPCG(82) Thres-DPCG

Iterations 455 349 230 212 212

Time a(s) 0.27 0.20 1.21 0.34 0.16
aTimings are obtained using Matlab’s cputime routine. These include the time to segment the
image and to construct the deflation matrix
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3.2 Measured Shepp-Logan Image

In this section, we test our algorithms on an image of 128×128 pixels acquired with
the low-field MRI system described in [6]. Results of this Shepp-Logan image are
given in Figs. 3 and 4.

From Fig. 3, we know that the diffusion model achieves a good result for
denoising. However, due to the strong noise, segmentation of region growing and
thresholding result in many small regions. We observe in Fig. 4 that patches-DPCG
achieves the fastest convergence. In the above experiments, we use 42 patches to
construct the deflation vectors. In Table 2, we investigate how the number of DPCG
iterations and solution times depend on the number of patches. The number of
iterations is reduced considerably for the three Patches-DPCG methods compared
to standard CG and PCG. For this example, 42 patches yields the fastest solution
time.

Fig. 3 First row from left to right: original image, DPCG (RG). Second row from left to right:
segmentation (RG) and segmentation (Thresholding)
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Fig. 4 Residual rk for the measured MRI Shepp-Logan phantom image

Table 2 Different patches-DPCG methods, results for measured Shepp-Logan

Methods CG PCG Patches-DPCG(42) Patches-DPCG(82) Patches-DPCG(162)

Iterations 487 316 198 188 162

Time (s) 0.35 0.25 0.23 0.37 0.88

4 Conclusions

We studied the DPCG method to solve the diffusion equation for image denoising.
We used three different ways to construct the deflation vectors. The algorithm is
tested on a simulated and a measured image. The deflation method works well
for image denoising and the DPCG method converges faster than CG and PCG.
Comparing the patch-based DPCG with region growing and thresholding-DPCG,
we conclude that patches-DPCG achieves the best convergence and is not sensitive
to noise.
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