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Summary
Because the seafloor is a complex ecosystem, a multidisciplinary approach must be
adopted in order to produce comprehensive habitat maps. Such multidisciplinary
projects have been lacking for the Dutch area of the North Sea. To address this lack,
the Distribution, structure and functioning of low resilience seafloor communities
and habitats of the Dutch North Sea (DISCLOSE) project, funded by the Gieskes-
Strijbis Fonds, was initiated. The consortium for the project included three research
institutes, as well as the North Sea Foundation. The first of the research institutes
was the Delft University of Technology, tasked with the large-scale mapping of the
seafloor, using acoustic systems such as the multibeam echosounder (MBES). The
second research institute, the University of Groningen (UG), focused on the use of
photography and videography to study the seafloor and the epifauna at a smaller,
yet more detailed, spatial scale. Finally, the Royal Netherlands Institute for Sea
Research (NIOZ), studied the seafloor from both the perspective of particle size
and macrofauna using grab-sample data. All of these measurement methods were
utilized for the same research areas, in order to maximize the possibility to estab-
lished links between the sampling methods, and thereby create detailed habitat
maps. The work in this thesis focuses specifically on the acoustic results generated
within the DISCLOSE project.

In recent years the MBES has become the standard tool for the large-scale
mapping of the ocean floor. With the MBES, large swaths of the seafloor can be
covered in short periods of time. The use of the two-way travel time to measure the
bathymetry of the ocean has become very standardized. In addition to measuring
the bathymetry, the MBES can also deliver the collocated backscatter product. The
appropriate use of backscatter for the classification of seafloor properties and habi-
tats is much less well understood than bathymetry. As such, this is an active field of
research. Within Dutch waters, most research has taken place using datasets from
the area of the Cleaverbank. Other areas have not been well studied, for example,
the southern sandy area. Utilizing MBES backscatter-based seafloor classification
in sandy areas is a major focus in this thesis.

A dataset from the Brown Bank area of the North Sea was used in order to study
seafloor classification over mega ripple structures. A big part of the Southern North
Sea is covered in nested sand waves of different sizes. The largest of these is the
tidal ridge, with some ten kilometers from crest to crest. The second largest is the
sand wave, and the smallest is the mega ripple. Obviously, the main sediment type
in this area is sand. Previous research suggests that a difference in grain size is to
be expected between the crest of the tidal ridge to the trough. It was not known if
a difference in grain size from the crest to the trough of the sand wave or the mega
ripple is present, or detectable using MBES backscatter. As such, for this research a
few things were very important. Firstly, it was necessary to accurately correct the
backscatter for the seafloor slopes in the research area. Next, it was important to
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have a high spatial resolution for the final classification results. Additionally, a high
geo-acoustic resolution was also needed. This final resolution is needed because it
is expected that the difference in sediment properties from the trough to crest of
a mega-ripple may be just slightly coarser or finer sand. From our research, it was
found that it is possible to use MBES backscatter in order to classify the sediment
types at the scale of mega ripples. It was found that the coarsest sediments were
in the troughs, finer sediments on the stoss side slopes, and a mixture of sediments
on the lee side slopes of the mega ripples.

A different data set from the Brown Bank area was used to further study the
effects of small sand ripples on MBES backscatter data. It is important to note that
these sand ripples were smaller than the above mentioned mega ripples. They were
so small that they were not resolved in the bathymetry data. For this research, data
from two MBESs and four different frequencies were available. These frequencies
ranged from 30 kHz to 450 kHz. It was found that these small sand ripples had
a, survey-azimuth dependent, effect which was discernible in the angular response
curves (ARCs) which were created from the MBES backscatter. ARCs consider the
backscatter intensity as a function of the angle between the seafloor and direction
of the incoming acoustic waves. Similar patterns have previously been found in
other research. However, it was not previously shown that the orientation and
shape of the sand ripples could be determined based on the affected ARCs. By
sailing specific patterns over the seafloor, the orientation of the sand ripples was
determined successfully. The angles of the stoss and lee sides of the sand ripples
were also estimated. It was further found that the sand ripples changed orientation
when the tide direction shifted.

Thus far, most of the acoustic research within the DISCLOSE project focused
on backscatter-based classification in sandy environments of the southern North
Sea. But with only these results, and because of the fact that backscatter data
is not available for the entirety of the North Sea, only small areas of the seafloor
could be classified using these methods. Therefore, it was necessary to develop a
different algorithm that could classify the seafloor based on the much more widely
available bathymetry. In order to develop such a method, data from an area from
Norwegian waters was used, where both backscatter and bathymetry data, as well
as a number of ground truth data points were available from an heterogeneous
area of seafloor. Two methods were developed, using an object-based image anal-
ysis (OBIA) approach. The best performing algorithm was transferred to a data set
from the Dutch North Sea and further tested. It was found that that OBIA method
transferred well from one area to another. Furthermore the OBIA based classifica-
tion results were acceptable, with a 10% decrease in accuracy when these results
and backscatter-based classification results were compared to grab-sample ground-
reference data. Additionally, the computation requirements for this method were
small compared to many other image-classification methods. This makes the de-
veloped method applicable to large areas of the North Sea, and could in the future
be adapted to global bathymetric maps.

As indicated, DISCLOSE was a multidisciplinary project. As such, the focus was
not just on acoustics. In order to get the most out of this project it was necessary
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to create links between the different sampling methods. Video and grab-sample
data was already previously used to ground truth the acoustic results. But a further
link between the different methods was needed. Therefore, in the final chapter an
additional classification method was developed in which a number of new sediment
parameters were estimated from the acoustic data. These were then related to
biological data, to identify the most informative acoustic parameters with respect
to macrobenthos. It was found that the volume scattering parameter was a valuable
parameter to predict the presence of, for example, Sabellaria Spinulosa reefs. It
was further found that there was a variation in macrobenthic densities from the
crest to the trough of sand waves. In this manner, the value of the DISCLOSE
method was confirmed.





Samenvatting
Omdat de zeebodem een complex ecosysteem is, moet een multidisciplinaire be-
nadering worden gevolgd om uitgebreide habitatkaarten te produceren. Voor het
Nederlandse deel van de Noordzee ontbraken dergelijke multidisciplinaire projec-
ten. Om hierop in te spelen is het Distribution, structure and functioning of low
resilience seafloor communities and habitats of the Dutch North Sea (DISCLOSE)
project, gefinancierd door het Gieskes-Strijbis Fonds, gestart. Het consortium voor
het project omvatte drie onderzoeksinstituten, evenals de Stichting De Noordzee.
De eerste van de onderzoeksinstituten was de Technische Universiteit Delft, be-
last met het op grote schaal in kaart brengen van de zeebodem met behulp van
akoestische systemen zoals de multibeam echolood (MBES). Het tweede onder-
zoeksinstituut, de Rijksuniversiteit Groningen (RUG), richtte zich op het gebruik van
fotografie en videografie om de zeebodem en de epifauna op kleinere, maar meer
gedetailleerde, ruimtelijke schaal te bestuderen. Ten slotte heeft het Koninklijk Ne-
derlands Instituut voor Onderzoek der Zee (NIOZ) de zeebodem zowel vanuit het
perspectief van de deeltjesgrootte als de macrofauna bestudeerd met behulp van
steekmonstergegevens. Al deze meetmethoden werden in dezelfde onderzoeksge-
bieden gebruikt zodat de mogelijkheid om bemonsteringsmethoden te koppelen, en
zo gedetailleerde habitatkaarten te maken, werd vergroot. Het werk in dit proef-
schrift richt zich specifiek op de akoestische resultaten die zijn gegenereerd binnen
het DISCLOSE-project.

De MBES is de afgelopen jaren het standaardinstrument geworden voor het op
grote schaal in kaart brengen van de oceaanbodem. Met de MBES kunnen grote
delen van de zeebodem in korte tijd in kaart worden gebracht. Het gebruik van
de exacte tijdsduur tussen het uitzenden van het geluid en het opvangen van de
echo is een gestandaardizeerde methode om de diepte van de oceanen te bepalen.
Een MBES kan, naast de exacte tijdsduur, ook andere kenmerken van de opgevan-
gen echo registreren, zoals de intensiteit (backscatter). Deze backscatter data kan
gebruikt worden om zeebodemeigenschappen en habitats te classificeren, al is er
nog geen eenduidige methode ontwikkeld om dit te doen. Als zodanig is dit een
actief onderzoeksgebied. Binnen de Nederlandse wateren is het meeste onderzoek
gedaan met datasets uit het gebied van de Klaverbank. Andere gebieden zijn niet
goed onderzocht, bijvoorbeeld het zuidelijke zandgebied. Het gebruik van MBES op
backscatter gebaseerde zeebodemclassificatie in zandige gebieden is een belangrijk
aandachtspunt in dit proefschrift.

Een dataset uit het Bruine Bank-gebied van de Noordzee werd gebruikt om de
classificatie van de zeebodem over mega-ribbelstructuren te bestuderen. Een groot
deel van de zuidelijke Noordzee is bedekt met genestelde zandgolven van verschil-
lende groottes. De grootste hiervan zijn de zandbanken, met zo’n tien kilometer van
top tot top. De op één na grootste zijn de zandgolven, en de kleinste zijn de me-
garibbels. Het belangrijkste sedimenttype in dit gebied is uiteraard zand. Op basis
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van eerder onderzoek werd er een verschil in korrelgrootte verwacht tussen de top
en het dal van de zandbank. Het was niet bekend of er een verschil in korrelgrootte
van de top tot het dal van de zandgolven of de megaribbel aanwezig is, of detec-
teerbaar is met MBES-backscatter. Voor dit onderzoek waren daarom een aantal
zaken erg belangrijk. Ten eerste was het nodig om de backscatter nauwkeurig te
corrigeren voor hellingen van de zeebodem in het onderzoeksgebied. Vervolgens
was het belangrijk om een hoge ruimtelijke resolutie te hebben voor de uiteinde-
lijke classificatieresultaten. Daarnaast was ook een hoge geo-akoestische resolutie
nodig. Deze resolutie is nodig omdat verwacht wordt dat het verschil in sedimentei-
genschappen van de dal tot de top van een megaribbel net iets grover of fijner zand
kan zijn. Uit ons onderzoek is gebleken dat het mogelijk is om MBES-backscatter
te gebruiken om de sedimenttypen op de schaal van megaribbels te classificeren.
Het bleek dat de grofste sedimenten zich in de dalen bevonden, fijnere sedimenten
op de loef-zijde en een mengsel van sedimenten op de lijzijde van de megaribbels.

Een andere dataset uit het Brown Bank-gebied werd gebruikt om de effecten van
kleine zandribbels op MBES-backscatter verder te bestuderen. Het is belangrijk op
te merken dat deze zandribbels kleiner waren dan de bovengenoemde megaribbels.
Ze waren zo klein dat ze niet zichtbaar waren in de bathymetrische gegevens. Voor
dit onderzoek waren gegevens van twee MBES’en en vier verschillende frequen-
ties beschikbaar. Deze frequenties varieerden van 30 kHz tot 450 kHz. Er werd
gevonden dat deze kleine zandribbels een (vaarrichting-afhankelijk) effect hadden
dat waarneembaar was in de Angular Response Curves die werden gecreëerd op
basis van de backscatter. ARC’s beschouwen de backscatter als een functie van
de hoek tussen de zeebodem en de richting van de binnenkomende akoestische
golven. Soortgelijke patronen zijn eerder gevonden in ander onderzoek. Het was
echter niet eerder aangetoond dat de oriëntatie en vorm van de zandribbels konden
worden bepaald op basis van de getroffen ARC’s. Door in specifieke patronen over
de zeebodem te varen, werd de oriëntatie van de zandribbels met succes bepaald.
De hoeken van de loef- en lij-zijden van de zandribbels werden ook geschat. Ver-
der werd gevonden dat de zandribbels van richting veranderden wanneer het tij
van richting veranderde.

Tot dusver was het meeste akoestische onderzoek binnen het DISCLOSE-project
gericht op op backscatter gebaseerde classificatie in zandige omgevingen van de
zuidelijke Noordzee. Maar met alleen deze resultaten, en omdat backscattergege-
vens niet voor de gehele Noordzee beschikbaar zijn, konden alleen kleine delen van
de zeebodem met deze methoden worden geclassificeerd. Daarom was het nodig
om een ander algoritme te ontwikkelen dat de zeebodem kon classificeren op basis
van de veel breder beschikbare bathymetrie. Om een dergelijke methode te ont-
wikkelen, werden gegevens uit een gebied uit de Noorse wateren gebruikt, waar
zowel backscatter- als bathymetriegegevens, evenals een aantal bodemmonsters
beschikbaar waren van een heterogeen gebied van de zeebodem. Er werden twee
methoden ontwikkeld, waarbij gebruik werd gemaakt van een objectgebaseerde
beeldanalyse (OBIA)-benadering. Het best presterende algoritme is verder getest
op een dataset uit de Nederlandse Noordzee. Het bleek dat die OBIA-methode goed
toepasbaar was op beide gebieden. Verder waren de op OBIA gebaseerde classifi-
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catieresultaten acceptabel, met een afname van 10% in nauwkeurigheid wanneer
deze resultaten en op backscatter gebaseerde classificatieresultaten werden verge-
leken met de gemeten waarden van de steekproeven. Bovendien waren de bereke-
ningsvereisten voor deze methode klein in vergelijking met veel andere beeldclas-
sificatiemethoden. Dit maakt de ontwikkelde methode toepasbaar op grote delen
van de Noordzee en kan deze in de toekomst worden toegepast op mondiale ba-
thymetrische kaarten.

Zoals aangegeven was DISCLOSE een multidisciplinair project. De focus lag dus
niet alleen op akoestiek. Om het maximale uit dit project te halen was het nood-
zakelijk om koppelingen te maken tussen de verschillende steekproefmethoden.
Video- en bodemmonsters werden al eerder gebruikt om de akoestische resultaten
te valideren. Maar er was behoefte aan een verdere koppeling tussen de verschil-
lende methoden. Daarom is in het laatste hoofdstuk een aanvullende classifica-
tiemethode ontwikkeld waarin een aantal nieuwe sedimentparameters zijn geschat
op basis van de akoestische gegevens. Deze zijn vervolgens gerelateerd aan biolo-
gische gegevens om de parameters te identificeren die het meest informatief zijn
over het macrobenthische leven. Het bleek dat de volumeverstrooiingsparameter
een waardevolle parameter was om de aanwezigheid van bijvoorbeeld Sabellaria
Spinulosa-riffen te voorspellen. Verder werd gevonden dat er een variatie was in
macrobenthische dichtheden van de top tot het dal van zandgolven. Op deze ma-
nier werd de waarde van de DISCLOSE-methode bevestigd.
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Introduction

In questions of science, the authority of a thousand
is not worth the humble reasoning of a single individual.

Galileo Galilei

He who controls the sea controls everything.

Themistocles

1.1. Motivation
To the countries around its borders, the North Sea has played an integral part of
their modern history. From 835 to 1050 AD the Vikings ruled much of the area
around the North Sea [1]. Throughout the middle ages, before the development of
good roads, the North Sea facilitated much of Europe’s trading ability [2]. For no
other European country has the North Sea played as significant of a role as for the
Netherlands. It was the trade on the North Sea that helped to usher in the so called,
Dutch Golden years from 1500 to 1815. Various Dutch Ports have been the largest
in the world at various times. In the 13th century the Port of Amsterdam rose to
importance. Later, in the 17th century it became the main port of the Dutch East
India Trading company. More recently, the Port of Rotterdam outgrew the Port of
Amsterdam. Until recently (2004) it was the world’s busiest port [3]. The ports of
Dordrecht and Delft have also played their part in Dutch history. Of course, Dutch
ports are only a fraction of the ports that interact with the North Sea. All of this
shipping activity is one of the reasons why the North Sea is also one of the busiest
seas of the world [4, 5].

In addition to the shipping activity on the North Sea, it is also one of the most
bottom trawled continental shelves in the world [6]. It has further been shown that
this fishing activity is focused on specific habitats [7]. Oil and gas extraction and
exploration is another major activity on the North Sea [8]. All of these activities
have a significant effect on the benthic habitats of the North Sea.

Current regulations require the effects of all these economic activities on marine
life to be assessed [9]. But for all the advances in science and our increasing
capability to study habitats on larger scales, less than 18% of the world’s oceans
are mapped [10]. Furthermore, it is one thing to map the bathymetry of the ocean,
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but a much more complicated matter is to map sediment distributions or habitats
in the oceans.

The study of habitats is very multifaceted, and as such, any effort to create
comprehensive habitat maps must utilize a multi-disciplinary approach. There are
multiple methods that are commonly employed for the study of benthic habitats
including acoustic methods [11, and references therein], video and photographic
methods [12], and grab sampling [13–15] among others. With this as the back-
ground, the DISCLOSE project (D stribution, Stru ture and functioning of w-
resilience benthic communities and habitats of the Dutch North S a) was initiated,
to address the knowledge gap in benthic habitat mapping in the Dutch North Sea.
In the DISCLOSE project, three main methodologies are employed. Firstly, at the
largest scale, acoustic mapping systems are used to create detailed maps of the
seabed bathymetry, topography, and sediment composition. Next, the distribution
and functioning of benthic marine habitats are studied at a more detailed scale us-
ing video and still cameras. Finally, the structure and functioning of benthic habitats
at the organism scale are studied using core samples of the seafloor. By linking the
information from these three levels of scale, producing high resolution and broad
scale habitat maps is achieved.

DISCLOSE is not the first project that aims to combine acoustic, photographic,
videographic, and grab-sample information to create habitat maps. In [16] a similar
approach of using acoustic data in conjunction with video data and grab-samples
was used to explore and map cold water reefs in the United Kingdom’s economic
zone of the North Sea. Jordan et al. [17] created detailed bathymetry and sediment
maps of the New South Wales coast in Australia, using extensive video footage from
a towed video system as well as single beam echo sounder and grab-sample data
to create habitat maps. Between 2004 and 2008 there was a European project
for mapping seabed habitats called MESH [18]. With regards to habitat mapping,
the MESH project produced Bathymetric Position Index maps with a resolution of
200 × 200 m and combined these with the known sediment distribution, based on
grab-sample data. Currently the European Marine Observation and Data Network
(EMODnet) [19] is continuing the work started by MESH. They currently have habitat
maps up to the European Nature Information System (EUNIS) Level 31 in the Dutch
area of the North Sea.

In order to improve upon the work that has thus far taken place, a few key
questions need to be answered. The first relates to the use of backscatter. The
main acoustic system used for this research, the multibeam echosounder (MBES)
(further introduced in Section 1.2), is capable of delivering both bathymetry, a
measure of water depth, as well as backscatter, a measure of the intensity of the
sound reflected back to the sonar from the seafloor. Bathymetry was used in some
of the mentioned projects, but there is a need to go beyond bathymetry and also
use backscatter-based classification to create links to habitats. Next, especially for
1A full description of the different levels is found in [20]. Level 3 includes the ”Main habitats” and is
further described as ”These serve to provide very broad divisions of national and international applica-
tion which reflect major differences in biological character. They are equivalent to the intertidal Sites
of Special Scientific Interest (SSSI) selection units (for designation of shores in the UK) (Joint Nature
Conservation Committee 1996) and can be used as national mapping units.”
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the southern North Sea, which is a sandy environment with sand waves of multiple
superimposed scales, spatial and geo-acoustic2 resolutions need to be investigated.
Finally, since full-coverage backscatter maps will not become available in the short
term, methods to maximize the use of bathymetry data for classification purposes
need to be explored. These are some of the areas where the DISCLOSE project
contributes to the state of the art of modern benthic habitat mapping research.

1.2. Multi-disciplinary habitat mapping methods
From the perspective of acoustics, marine habitat mapping is a topic of intense
research. This is in part due to the high performance of modern acoustic systems.
Of these systems, an important one is the MBES. The MBES is a swath sonar that
uses focused sound beams to acoustically ensonify a large number of very specific
locations of the seafloor on a wide swath. When combined with a global positioning
system (GPS) and a motion reference unit (MRU), the location being ensonified is
not just known in relation to the vessel, but also geographically. In addition to
delivering bathymetry, a measure of the water depth, MBES systems also deliver
the collocated backscatter product. Both of these products are used in this thesis.
MBES systems are also capable of delivering water column data. Brown et al.
[11] lists 148 studies covering acoustic habitat mapping methodologies that were
published in the decade prior to 2011. This indicates the level of research effort
being expended on this topic. The results from the acoustic methods developed in
this thesis are further linked to video and grab-sample data to create habitat maps.

Of the three different methods used in DISCLOSE, acoustic methods allow large
areas of the seafloor to be sensed. Acoustic based mapping plays a similar role in
the underwater world as satellite and airborne optical methods do terrestrially. The
main reason for this, is that electromagnetic waves attenuate rapidly underwater,
whereas, acoustic waves carry much further in water than they do in air. It could be
said that the foundation for underwater acoustics was laid in 1826, when the speed
of sound in water was accurately determined by Jean-Daniel Colladon and Charles
Francios Sturm [22]. In 1916 Alexander Behm carried out the first tests to measure
the depth of the seafloor using echo sounding [23]. Behm used small explosions
as a sound source for his initial echo sounding. Around 1923 the Submarine Signal
Company built a for-purpose fathometer to acoustically measure the water depth
[24]. In 1964 the first Sonar Array Sounding System (SASS) was introduced [25].
This system made use of beam forming to create directivity in the sound signal.
Beam forming is only possible when using multiple receive transducers. This allows
the sensitivity of the system to be steered in desired directions. For many years the
more simple single beam echo sounder (SBES) was widely used because they were
more affordable, easier to operate, and the data they yielded was easier to store and
process. A disadvantage of the single beam echosounder is that only a narrow swath
of the seafloor is mapped at a time. In 1958 the first publication came forth that
used the Side Scan Sonar (SSS) as a survey tool for seafloor mapping [26, 27]. The

2Geo-acoustic resolution: the scale at which different types of sediments can be resolved using a certain
acoustic classification/characterization technique [21]
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side scan sonar is a wide swath system, contrary to the SBES, and as such it covers
a large area of the seafloor. However, due to the method of deployment (towed
behind a ship close to the seafloor) and its construction (lack of a beam forming
during signal reception) it is not suitable to use it as a bathymetry measuring tool.
Starting in the 1960s, multi beam echosounders were developed for the US military
[25]. The civilian versions lacked some of the capabilities of the military version
at that time. However, in recent years MBESs have really come into their own for
bathymetric measurements. In addition to bathymetry, the most recent systems
also allow for the acquiring of collocated backscatter data. Especially in the last 20
years they became an integral and indispensable tool for habitat mapping [11]. For
anything except the shallowest of water, they provide the means for a rapid and
large-scale overview of the seafloor.

Acoustic methods are not the only area that has seen a recent surge in research
effort. Mallet and Pelletier [12] compared 60 years of video techniques for shallow
(< 100 m depth) salt water environments. In their literature review they found 182
peer reviewed papers on this topic, 67% of which were published in the decade
prior to 2014. They too cite the improvement in technology, improvements in sen-
sor technology, improvements in battery life, and information storage capacity as
reasons why video techniques are now more readily employed.

The method of benthic study that has been used the longest is that of grab
sampling. The Dutch government has gathered this kind of data in the MWTL
(Monitoring waterstaatkundige toestand des lands) program since 1995 [13–15].
In the North Sea, grab samples have been used for much longer for the study and
mapping of habitats, some as early as 1773 [28].

1.3. Research objectives
The main focus of this thesis is to investigate the role of acoustic measurement
techniques for habitat mapping. The study area is limited to the Dutch sector
of the North Sea. Here, much of the previous research in acoustic mapping has
focused on the area of the Cleaver bank. One objective of this thesis is to expand
the areas for which the relationship between backscatter and the seafloor type is
well understood. A big portion of the southern North Sea is covered with sandy
sediment. Furthermore, the typical topography of this area is that of sand waves of
various sizes superimposed on top of each other. The applicability of backscatter-
based classification in these kinds of environments is thus investigated.

In a sand-wave environment, the question of resolution is important. This is be-
cause a detailed geographic resolution is needed in order to distinguish differences
at the scales of small sand waves, called megaripples. These megaripples in the
southern North Sea have a wavelength of a few tens of meters. Therefore, to find
sediment or habitat patterns on these megaripples a spatial classification resolution
well below 10 m is needed. However, this is not the only resolution criterion that is
of importance. Geo-acoustic resolution is also important. This is because the main
sediment for the seafloor is expected to be sand, and a high geo-acoustic resolution
would allow small changes in sediment type to be distinguished for different parts of
the megaripple. In this thesis it is investigated if sufficient spatial and geo-acoustic



1.4. Thesis outline

1

5

resolutions can be achieved to detect patterns of sediment distributions on different
parts of megaripples.

It is also investigated how much of an effect and what kind of effect very small-
scale sand ripples have on backscatter. These small sand ripples are often visible in
video data but are not captured in MBES bathymetry data. To carry out backscatter-
based classifications in sand-wave areas, these affects need to be understood. It
is further investigated if backscatter can be used to determine the shapes and
orientations of sand ripples that do not show up in the bathymetry.

One of the most common data types that is used for seafloor classification in
acoustics is backscatter. However, currently large gaps in backscatter coverage
exist in the North Sea. It is not known when full-coverage backscatter of the North
Sea in the Dutch sector will become available. However, the Hydrographic Service
of the Royal Netherlands Navy collects bathymetric data for the entirety of the
Dutch sector of the North Sea on regular intervals. Therefore, it is investigated if
a classification method can be developed that is applicable for those areas of the
North Sea where backscatter is not available but bathymetric data is available.

Finally, it is investigated how to best link acoustic seafloor data to habitat data
such as video and grab-sample data. The end goal of the acoustic mapping is to
create maps not just of the bathymetry or sediment type, but to map the habitats
of the seafloor in full coverage and in high detail. It is important for future projects
that DISCLOSE creates links between these methods.

1.4. Thesis outline
This thesis is structured in the following way. In Chapter 2 the basics of acoustic
methods and the theory needed for a good understanding of the rest of the thesis
is discussed.

In Chapter 3 a dataset from the Brown Bank area of the North Sea is used for
seafloor classification in a sand-wave environment. This area of the seafloor has
sand waves of multiple scales. The first of these is the tidal ridge. These structures
have a wavelength of 10 or more kilometers. Superimposed on the tidal ridges
are sand waves. Sand waves have a wavelength from a hundred to a few hundred
meters. Additionally, there is a still smaller seafloor structure, the megaripple, which
has a wavelength of a few tens of meters. In previous research it has been shown
that the sediment changes from the crest of a tidal ridge to the trough of a tidal ridge
[29]. In this research it is investigated if the sediment changes at the scales of sand
waves and megaripples. It is also in this chapter where the question of resolutions is
addressed. Based on the results within this chapter, guidelines for future monitoring
programs are indicated. If there is a significant change in sediments at the scale
of the megaripple, then video- and grab-sampling geo-referencing need to be at a
resolution better than the wavelength of a megaripple in order to create accurate
habitat maps.

In Chapter 4 another dataset, again from the Brown Bank area of the North Sea,
is used. This dataset contains acoustic data with multiple and different frequencies.
For the analysis, the angular response curves (ARCs) of the MBES backscatter data
were used. These curves consider the backscatter intensity as a function of the
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angle between the seafloor and direction of the incoming acoustic waves. The
ARCs contain unexpected peaks that do not coincide with nadir, which is directly
below the survey vessel. These peaks in the ARCs are caused by very small sand
ripples on the seafloor. The size of these sand ripples is so small that they cannot
be detected in the bathymetric data. It is found that not only can the sand ripples
be detected in the backscatter data, but that the orientation of the sand ripples
can also be detected. For the first time, acoustic evidence confirms that these
small-scale sand ripples change direction with the changing of the tide, i.e., on a
six hour cycle. The acoustic results are validated with video ground truth data. The
results from this chapter indicate a large-scale change of the top few centimeters
of the seafloor four times per day, and that these changes can be mapped by use
of MBESs, not through bathymetry, but through backscatter.

In Chapter 5 full coverage habitat mapping, despite gaps in backscatter data
coverage, is addressed. Datasets from Norwegian waters as well as from Dutch wa-
ters are used in order to develop a method to classify the seafloor using bathymetry
and bathymetric derivative image layers. The developed methods do not rely on
the use of backscatter in order to classify the seafloor. These results are important,
because this method could be extended to cover the entire Dutch Continental Shelf
(DCS). Older legacy data, and high-quality bathymetry data from the Hydrographic
Service could then be utilized even further than they are now.

In Chapter 6 all of the acoustic methods described in the previous chapters are
used and linked to data from video camera and grab samples. As such, links are
established between acoustic mapping and the biology of the seafloor to produce
habitat maps.

Finally in Chapter 7 the conclusions for the thesis are presented. It is also
discussed how these findings relate to and are practically applicable in the real
world. Their value to society as a whole and more particularly to the Netherlands,
in the mapping of our resources, especially that of our benthic habitats, is discussed.
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2
Background and theory

Only a few know, how much one must know,
to know how little one knows.

Werner Heisenberg

What we know is a drop,
what we don’t know is an ocean.

Isaac Newton

2.1. Introduction
The work presented in this thesis fits into a rich history of research in a very active
field of study. Therefore, in this chapter, the theory that is relevant to the work in
the remaining chapters is presented. A major part of this chapter will focus on the
necessary theory related to the functioning of multibeam echosounders (MBESs).

Due to the rapid attenuation of electromagnetic waves underwater, the most
common method used to map large areas of the seafloor is that of acoustic meth-
ods. Sonars have come along way since their first introduction in the 1920s [1].
Today’s multibeam echosounders are precision instruments often operating at mul-
tiple frequencies gathering detailed information from a wide swath of seafloor. They
will deliver products such as bathymetry, backscatter, and water column informa-
tion. To determine how to interpret the MBES measurements regarding seafloor
properties, the physics of sound traveling through water, how the water column
affects the sound, how it interacts with the seafloor, and other factors all need to
be taken in account. These are some of the items that are considered this chapter.

2.2. Multibeam Echosounders
The idea of the MBES first came from developmental land mapping radars of the
US military. These radars used a Mills Cross technique, named after the Australian
radio astronomer Bernard Mills, to beam form (more on beam forming later in the
chapter) radar signals. Although the plan for the radars did not pan out, the Mills
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Cross technique was adopted by General Instrument engineers who developed a
Bottom Mapping Sonar (BOMAS) in collaboration with the US Navy [2]. Later this
BOMAS system came to be known as the Sonar Array Sounding System (SASS).
From the first SASS test system in 1964 [3, 4] until 1974 these systems and the
data they generated remained largely classified. In 1977 the first operational non-
military MBES, the Sea Beam ”Classic”, entered service on the French vessel Jean
Charcot [2]. These early systems were largely deep water systems, instead of
shallow water systems, with frequencies ranging from 12 to 30 kHz. In the years
following, shallow water MBES systems were developed. By 1984 shallow water
MBES systems were used for mapping and inspection for the offshore oil and gas
industry [5].

Initial interest in MBES systems and the data they produce was based on military
needs for submarine and missile navigation [2, 4]. Ocean engineering applications
soon also made use of the technology, initially for the laying of deep sea cables.
The driving force for systems for shallower waters with higher frequencies came
from oil and gas exploration needs [4]. More recently, interest in habitat mapping
has increased [6], as well as the use of backscatter for seafloor classification [7].

Today’s multibeam echosounders and the way they are employed are a far cry
from the original SeaBeam Classic with its 16 beams and 45° swath coverage angle.
This is due to both the decades of design and production improvements and also to
the massively more powerful computers available today. It is common for modern
MBESs to have over a thousand beams, swath opening angles up to 160°, as well as
dual swath modes. In addition to delivering data from the seafloor, modern MBES
systems can also deliver water column data. Water column data is not yet in wide
spread use due to file size and compute power constraints. In terms of backscatter,
the recent capability to acquire backscatter data at multiple frequencies in a single
pass is particularly welcomed by the habitat mapping community [8–11].

There are three main types of MBES data, as follows:

• Bathymetry

• Backscatter

• Water column.

Bathymetry is the measure of the water depth. Bathymetry is generated by measur-
ing the travel time of acoustic pings that are beamformed during both the transmit
and receive operations. Backscatter refers to the intensity of the return signal.
Both of these will be thoroughly covered in the following sections. The third of the
above data types, water column data, is a record of the backscatter intensity not
just around the time that the ping, for a given beam, reaches the seafloor, but for
the entire time the ping travels through the water column. This datatype is not
considered in this thesis.

2.2.1. General functioning
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Figure 2.1: Fluid particle positions with the passage of a sine wave. is the axis along which the wave
travels. indicates the amplitude of the compression wave (also known as acoustic pressure). Small
arrows indicate the direction of particle movement. The spacing in the vertical lines indicates the state
of particle density as the wave passes. Figure after [12]

Sound propagation
In order to understand the operation of MBES systems, the principles of sound
and sound propagation need to first be addressed. Sound, is of course, what we
perceive with our ears, but is broader than just what we can hear. It also applies
to pressure waves with frequencies lower than what we can hear (infrasound) or
higher than what we can hear (ultrasound). Sound in a medium is a matter of a
traveling pressure wave (Figure 2.1).

Sound, or acoustic disturbances, are perturbations to an ambient state in a fluid
that can be characterized by the values 𝑝 and 𝜌 . Where 𝑝 is the pressure and
𝜌 is the density. By using the principle of the conservation of mass and Newtons
second law, neglecting higher order terms, and equating 𝑝 and 𝜌, the linear Wave
equation [12]

∇ 𝑝 = 𝜕 𝑝
𝜕𝑥 + 𝜕 𝑝𝜕𝑦 + 𝜕 𝑝𝜕𝑧 = 1

𝑐
𝜕 𝑝
𝜕𝑡 (2.1)

is derived. Where ∇ it the Laplacian, the sum of the second derivatives related to
the (𝑥, 𝑦, 𝑧) directions of a three dimensional Cartesian coordinate system, 𝑝 is the
pressure of the propagating wave.

For many applications related to the modeling of underwater acoustics sound
can be considered as a plane wave. As such, Equation 2.1 is considered only along
a single direction 𝑠. The assumption is that all acoustic field quantities are such
that they depend only on time 𝑡 and 𝑠. With that, Equation 2.1 reduces to
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𝜕 𝑝
𝜕𝑠 = 1

𝑐
𝜕 𝑝
𝜕𝑡 . (2.2)

Equation 2.2 can be factored to the following

( 𝜕𝜕𝑠 −
1
𝑐
𝜕
𝜕𝑡) (

𝜕
𝜕𝑠 +

1
𝑐
𝜕
𝜕𝑡) 𝑝 = 0 (2.3)

because differential operators are commutable and therefore can be manipulated
in algebraic fashion. Let 𝑝 be a function of 𝜉 = 𝑡 − 𝑠/𝑐 and 𝜂 = 𝑡 + 𝑠/𝑐. Then
𝜕/𝜕𝑡 = 𝜕/𝜕𝜉 + 𝜕/𝜕𝜂 and 𝜕/𝜕𝑠 = −(1/𝑐)(𝜕/𝜕𝜉 − 𝜕/𝜕𝜂), and with that the wave
equation becomes

− 4
𝑐
𝜕
𝜕𝜉

𝜕
𝜕𝜂𝑝 = 0. (2.4)

The general solution of Equation 2.4 is a sum of a function of 𝜉 = 𝑡 − 𝑠/𝑐 and
𝜂 = 𝑡 + 𝑠/𝑐 as follows

𝑝(𝑠, 𝑡) = 𝑓(𝑡 − 𝑠/𝑐) + 𝑔(𝑡 + 𝑠/𝑐) (2.5)

where both 𝑓 and 𝑔 are arbitrary functions [12].
In the case where the acoustic wave is a plane harmonic wave then

𝑝(𝑠, 𝑡) = 𝑝 𝑒 ( ) (2.6)

is a solution, where 𝑝 is the amplitude, 𝜔 is the radial frequency, and 𝑘 is the wave
number. Taking the real part of this equation yields the solution of the harmonic
1D wave equation as

𝑝(𝑠, 𝑡) = 𝑝 cos(𝑘𝑠 − 𝜔𝑡). (2.7)

Considering a spherical wave and using a polar coordinate system, Equation 2.1
becomes

𝜕 (𝑟𝑝)
𝜕𝑟 = 1

𝑐
𝜕 (𝑟𝑝)
𝜕𝑡 . (2.8)

where 𝑟 is the radial distance from the source. The general solution is similar to
Equation 2.5 as follows

𝑟𝑝(𝑠, 𝑡) = 𝑓(𝑡 − 𝑠/𝑐) + 𝑔(𝑡 + 𝑠/𝑐). (2.9)

Here 𝑔 is the case where the wave moves towards the source, which is not possible.
Considering again a harmonic wave, then the solution simplifies to

𝑝(𝑟, 𝑡) = 𝐴
𝑟 𝑒

( ) (2.10)

For most cases of sound modeling related to MBES systems either the radial
coordinate systems or the plane wave system is used. Sound from sources in the
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water will propagate spherically. At a certain point the curvature of the sphere is
small enough relative to the wave length to where the sound front can be considered
to be a plane wave.

The above explains some of the basic physics related to sound propagation
underwater as is needed for an understanding of the functioning of MBES systems.
The interested reader is directed to [12] and [13] and the references therein for a
more detailed discussion.

Speed of sound in water
The speed of sound in the water (a fluid) is given by

𝑐 = √𝐵𝜌 (2.11)

where 𝐵 is the bulk modulus and 𝜌 is the density [13].
The speed of sound in ocean water is dependent on the water temperature 𝑇, the

depth 𝑧, and the salinity of the water 𝑆. Some of the earliest measures of the speed
of sound in water were performed by François Sulpice Beudant (1816) and Jean-
Daniel Colladon together with Charles Francios Sturm (1826) [13, 14]. Beudant
performed the test close to Marseilles with an underwater bell and a swimmer who
waved a flag when he heard the sound arrive. According to his measurement,
the speed of sound was 1, 500𝑚/𝑠 Colladon and Sturm used an underwater bell
in lake Geneva and a boat in the water to listen for the arrival of the sound. A
gunpowder flash coinciding with the striking of the bell was used to start the clock.
According to their measurement the sound speed was 1, 435𝑚/𝑠 (consistent with
modern expectations, given the water temperature that they measured to be 8
°C). Interestingly, the purpose of their measurement was to confirm calculations of
water compressibility [14]. Starting in the 1920s accurate tables of the sound speed
became available [13] giving these parameters [15], and were improved upon by
Kuwahara [16] in 1939. Medwin [17] proposed an empirical formula for the speed
of sound in the water based on these tables. The formula is given by

𝑐 = 1449.2+4.6𝑇−0.055𝑇 +0.00029𝑇 +(1.34 − 0.01𝑇) (𝑆 − 35)+0.016𝑧 (2.12)

where

• 𝑇 is the water temperature in °C.

• 𝑧 is the depth in 𝑚.

• 𝑆 is the salinity of the water in parts per thousand (ppt).

For accurate bathymetry measurements with MBESs, the sound speed is needed
for the entire water column [18]. To measure the sound speed profile of the water
column there are two kinds of systems. The first of these, called a CTD probe,
measures the conductivity, temperature, and pressure. From these the salinity,
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temperature and depth are determined which in turn are used to determine the
sound speed profile. The second device uses a small transducer sending a pulse
of sound that is reflected back to the transducer. By knowing the exact distance of
the reflector plate the speed of sound is directly measured.

Either of these devices is lowered to the seafloor during which time it continu-
ously carries out measurements to create a sound speed profile of the entire water
column. In deeper water, the sound speed sensor may be lowered through the
thermocline(s) until the remainder of the sound profile can be accurately estimated
because the main changing parameter is the depth and thus the pressure.

Beamforming
All modern MBES systems use the principle of acoustic beamforming in order to
both focus the emission of the sound as well as when receiving the sound that
returns from the seafloor. This beamforming is how the depth and backscatter
measurements are known to come from a specific location of the seafloor. Because
of the important role of beamforming in modern sonars, the theory will be treated
here.

Beamforming is an interference phenomenon. Consider the case where there
are two sound sources located on the 𝑥-axis of a 3-D Cartesian space separated by
some distance 𝐿 . Let’s further assume that these sources emit the same signal at
the same time. On the axis perpendicular to 𝐿 and located in the middle between
the two sources, the two signals are in phase, thus resulting in a doubling of the
pressure. At other angles, a variety of situations can occur ranging from full con-
structive to full destructive interference. This is the basic principle of beamforming
during the active part of the sonar operation.

During the receive phase of the ping cycle, beamforming is also carried out.
Assume now that the receive array of the MBES is an array of hydrophones on
the 𝑦-axis of the above mentioned Cartesian space. Figure 2.2 shows an example
with 𝑀 hydrophones 𝑚ℓ (ℓ = 0, 1, 2, ..., 𝑀 − 1) each offset with a distance 𝛿𝑦 from
the previous hydrophone. Let the total length of the array being 𝐿 . Let us further
assume that the wavefront can be considered to be a plane wave. Then the summed
output of these hydrophones would be maximized if the plane wave arrives from a
direction perpendicular to the hydrophone array. Assume the wave arrives not from
the perpendicular direction but rather with an offset angle 𝜃 from the perpendicular.
Let us further consider the hydrophone 𝑚 to be the reference hydrophone. Let the
distance between the wave front and some hydrophone 𝑚ℓ be 𝑑 ℓ (Figure 2.2).
For simplicity, let us consider only the point in time when the wave front arrives at
𝑚 i.e. 𝑑 = 0 . Then the relationship

sin(𝜃) =
𝑑 ℓ
ℓ𝛿𝑦 𝑓𝑜𝑟 ℓ = 0, ... , 𝑀 − 1 (2.13)

holds true. The time delay of the arrival of the wavefront at the other hydrophones
is expressed as

𝑡ℓ =
𝑑 ℓ
𝑐 ℓ = 0, ... , 𝑀 − 1. (2.14)
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Figure 2.2: Schematic of a plane wave impinging on a line array of equally spaced hydrophones with
an angle .

With that, the phase delay at the array elements is as follows

Δ𝜑ℓ = 𝜔𝑡ℓ =
2𝜋
𝜆 𝑑 ℓ =

2𝜋ℓ sin(𝜃)𝛿𝑦
𝜆 (2.15)

where 𝜔 is the angular frequency such that the following holds 𝜔 = 2𝜋𝑓, 𝑓 is the
frequency of the acoustic wave, and 𝜆 is the acoustic wavelength. Equation 2.15
can be rewritten in complex notation such that the phase delay is

Δ𝜑ℓ = 𝑒
sin( ) ℓ . (2.16)

With that, the acoustic array response to the incoming wave arriving from angle 𝜃
is given by the sum

𝐺(𝜃) = ∑
ℓ

𝑒
sin( ) ℓ . (2.17)

Equation 2.17 indicates the sensitivity of an array to sound coming from a given
direction 𝜃 which is not directly in front of the array. In order to know the sensitivity
of an array to an incoming wave from direction 𝜃 while steered towards 𝜙 the term
sin(𝜙) needs to be added to Equation 2.17 as follows

𝐺(𝜃, 𝜙) = ∑
ℓ

𝑒 (sin( ) sin( ))ℓ . (2.18)
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Figure 2.3: Illustration of beam patterns for a simulated array of length 0.1 m, with 512 equally
spaced hydrophones. Indicated are the beam patterns for both an unsteered array (shown in blue), and
an array steered towards 40° (shown in green). Both main lobes and side lobes are visible. The beam
opening angle is shown for both cases by , as typically measured at -3 decibels.

From this, the beam pattern [13] 𝑏 (𝜃, 𝜙) is easily calculated as the squared
magnitude of the normalized array response by

𝑏 (𝜃, 𝜙) = |
∑ℓ 𝑒 (sin( ) sin( ))ℓ

𝑀 | . (2.19)

An example beam pattern is presented in Figure 2.3 (in decibel units) for a simulated
array of length 𝐿 = 0.1 m with 512 equally spaced hydrophones. The beam pattern
is shown for both an unsteered array (𝜙 = 0) (in blue) as well as a steered array
towards 𝜙 = 40° (in green) for a simulated frequency of 90 kHz. The beam width
Ω is defined by the width of the beam at the -3 dB sensitivity level. As is visible
in Figure 2.3 the beam width of the steered beam is wider than the unsteered
beam. This is due to the effective array length being shorter when the array is
steered. The amount of the beam width increase is 1/𝑐𝑜𝑠(𝜙). In addition to the
main lobe there are side lobes as well. These are directions to which the array is
also sensitive. For the simulated array shown in Figure 2.3 none of the side lobe
levels have a sensitivity of 0 dB. A side lobe level of 0 dB sensitivity is also referred
to as a grating lobe. The locations and sensitivities of the side lobes depend on
the array geometry. Because side lobes are not desired, they are often reduced by
weighting the contribution of array elements. The disadvantage to such weighting
is the widening of the main lobe.

In a manner similar to the steering of the receive array the send array can also
be steered by introducing a delay for some of the transducer elements. This is done
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in order to have a more even spacing of soundings in the along track direction. In
practice, there are various ways implemented by the different sonar manufacturers
for such beam steering during the pinging cycle. Because of the breadth of this
topic, the interested reader is referred to [19] for a deeper look at the various
aspects of transmit beam steering and their impacts on sonar operations.

Auxiliary Sensors
Thus far, the operation of the MBES has been discussed. But there are a few
additional sensors that are needed in order to get a good bathymetric measurement.
The first of these is a global positioning system (GPS). A GPS is a satellite based radio
navigation system. The precise position of the satellites as they relate to the earth
is known by the use of ground base stations. Using the travel time of radio signals
from multiple satellites, a GPS receiver calculates its precise global position. To get
the best measurements for surveying, two GPS receivers are typically mounted high
on a ship’s mast, so they will have a direct line of sight to the satellites above. The
location of the GPS receivers, relative to the sonar must be known, and the offsets
accounted for.

To account for those offsets, a motion reference unit (MRU) is used to constantly
and precisely measure the roll, yaw, pitch, and heave of the vessel. The MRU is
typically installed close to the ship’s center of gravity. In addition to the offsets
between the GPS receivers and the MBES, the offsets between these two systems
and the MRU are also very precisely measured.

With these two systems, it is possible to very accurately determine the exact
horizontal position of the MBES at all times. It is a little more complicated to get
precise vertical position, since typical GPS accuracy in the vertical direction is in the
range of 0.5 m. If the survey takes place closer to shore then an additional RTK
system is used to improve the vertical measurement accuracy. Another method is
to measure the draft of the vessel (more specifically the MBES), and correct for the
influence of the tide to get an accurate and unchanging bathymetric measurement.

2.2.2. Bathymetry
Given the theory of underwater sound propagation and the methods of beamform-
ing and global positioning that have thus far been established, the core products
delivered by multibeam echosounders (MBESs) can now be discussed. One of the
main products of MBES systems is the water depth, or bathymetry, which is sur-
veyed in swaths. By sailing ”lawn mower patterns” (optimizing sailing patters for
(autonomous) surveying is a topic of research [20]) full coverage of the seafloor is
achieved. In this way the point cloud, from which the digital terrain model of the
seafloor is generated, is established.

With the accurate position and orientation of the MBES known, the beam angle
𝜃 is also known. Furthermore the speed of sound 𝑐 in the water column is known.
From the MBES the two-way travel time 𝑡 is then measured. From this, the across
track distance 𝑦 is known as well as the water depth 𝑑 (Figure 2.4). These can be
expressed as
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Figure 2.4: Across-track cross section of an oblique beam of a multibeam echosounder for a sloping
seafloor (a) and a flat seafloor (b). The range from the sonar to the seafloor, and the depth are also
shown (figure after [21] and [22]).

𝑑 = 𝑟 cos(𝜃) (2.20a)
𝑦 = 𝑟 sin(𝜃) (2.20b)

where 𝑟 is calculated using the two-way travel time and the speed of sound as

𝑟 = 𝑐𝑡
2 . (2.21)

The above holds true assuming that the sound speed is constant. However, as
seen from Equation 2.12 the sound speed depends on the temperature, depth, and
salinity. There are two affects that need to be considered. Firstly, the range 𝑟 can
be affected by a changing sound speed. For this problem a reasonable accuracy
can be achieved by using the average sound speed in the water column. But the
additional problem is that the sound ray is refracted, and as such, changes direction.
This is especially true for the beams pointing away from nadir. To account for this,
ray tracing needs to be implemented in order to assign the correct location of the
beam footprint on the seafloor. The fundamental theory employed in ray tracing is
Snell’s law [23, 24]

sin(𝜃 )
𝑐 = sin(𝜃 )

𝑐 = 𝑘 (2.22)

where 𝜃 is the ray angle in one medium with a sound speed of 𝑐 , 𝜃 is the ray
angle in the second medium with a sound speed of 𝑐 , and 𝑘 is a constant. Snell’s
law holds for the water to seabed interface, but it also holds in the case where the



2.2. Multibeam Echosounders

2

21

sound speed in water changes with changing depth. For ray tracing, Snell’s law is
applied some discrete number of times at different water depths, given a sound
speed profile of the water column (The interested reader is directed to [18, 23, 24]
for more information on this topic).

There are two general methods by which the (two-way) travel time, or the
time with the sound arrives at the seafloor is detected [25]. The first of these is an
amplitude detection and is used for beam angles close to nadir. The second method
is a phase detection, and is used for oblique beam angles.

The amplitude detection method computes the center of gravity from the signal
envelope as follows

𝑡 =
∑ 𝑡 𝑎(𝑡 )
∑𝑎(𝑡 ) (2.23)

where 𝑎 is the digitized sound signal and 𝑡 the time sample. This signal is that
of one beam of the MBES system. With the phase detection method, use is made
of interferometry between two subsets of the receiving array [25]. For both of the
sub-arrays, the signal is beam-formed for the desired beam angle. Because of the
difference in distance from the return point on the seafloor to the centers of both
sub-arrays there will be a phase difference between the signals that each of these
sub-arrays receives. When the return signal comes from the expected angle, for
which the sub-arrays are beam formed, then the phase difference between the two
signals is zero. Thus, the zero-phase crossing is the correct arrival time. The phase
difference Δ̂𝜑 is calculated with

Δ̂𝜑 = 𝑎𝑟𝑔 {𝑆 𝑆∗ } (2.24)

where 𝑆 is the signal envelope of the first sub-array, and 𝑆∗ is the complex conju-
gate signal of the second sub-array [26]. Because the return signal is often noisy,
and therefore the phase difference ramp(s) are noisy, a low order polynomial is
fitted to the phase difference measurement to improve the bottom detection. Be-
cause there may be many phase ramps limited between −𝜋 and 𝜋, the correct
phase ramp is chosen using the center of gravity of the signal envelope, as used for
the amplitude detect method. The interested reader is refereed to [25] and [26]
for a more detailed discussion of bottom detection methods.

2.2.3. Backscatter
Until this point only the depth measurement delivered by MBES systems has been
discussed. The bathymetric measurement depends on the range detection based
on the two-way travel time. This measurement is performed on the portion of the
sound signal that, after interacting with the seafloor and scattering, scatters back in
the direction from which it came, toward the sonar (Figure 2.5). Another term for
this portion of the sound signal is the backscatter. In addition to just measuring the
travel time, the intensity of this signal can also be measured to yield an additional
information source on the seafloor. However, unlike the case where the only interest
is the two-way travel time, which is nowadays relatively standard, as long as the
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Figure 2.5: Reflection and scattering of an incident acoustic wave due to seafloor roughness.

signal to noise ratio is sufficient, an accurate measure and derivation of backscatter
strength is more complicated.

In the context of seafloor mapping, it would be desirable that the resulting
variation in backscatter is representative of only changes caused by differences in
seafloor characteristics. For this to be the case, the absorption, refraction, and
scattering of sound in the water column need to be accounted for. Another class of
effects that needs to be controlled for is the internal sensitivity and processing of
the signal in the MBES. For example, the source level 𝑆𝐿 of the active ping should be
accurately known. The receiver sensitivities should also be calibrated. The analog
to digital converters should operate without signal loss or distortion. The full sonar
equation with the different contributors is given by [27]

𝐵𝐿 = 𝑆𝐿 + 𝐵𝑃 (𝜃) − 2𝑇𝐿 + 𝐵𝑆 (𝛽) + 10 log (𝐴) + 𝑆𝐻 + 𝐵𝑃 (𝜃) + 𝑃𝐺 (2.25)

where 𝑆𝐿 is the source level, 𝐵𝑃 is the beam sensitivity pattern during transmit,
𝑇𝐿 is the transmission loss. The following two terms relate to the target strength.
The first, 𝐵𝑆 (𝛽) being the desired seafloor contribution of the backscatter which
depends on the frequency and the grazing angle 𝛽. The second controls for the
instantaneously ensonified area 𝐴. The next term, 𝑆𝐻 is the sensitivity of the receive
array. A beam pattern correction per angle 𝜃 is included with the term 𝐵𝑃 (𝜃).
Finally, 𝑃𝐺 is the gain introduced between the signal reception to what is recorded
in the data files.

The above indicates the ideal situation where all imperfections can be corrected
and the absolute backscatter strength is derivable. In practice it is often not possible
to perform all of these corrections. Especially the corrections for sonar sensitivi-
ties are often hard to do, due to manufacturer confidentiality restrictions related to
sonar construction specifics [28]. Sonar sensitivity is also known to change through
the lifetime of a sonar [29]. As such, when absolute calibration of the sonar is not
possible then relative values are often used to determine acoustic class relation-
ships to the seafloor [28]. In such cases, the backscatter-based classification map
is matched to ground truth data to determine the class relationships to seafloor
characteristics.
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2.2.4. Sound interaction with the seafloor
To consider how sound interacts with the seafloor, and thereby examine what the
backscatter measurements indicate about the seafloor, let us first consider a sim-
ple case. The case of a plane wave arriving from some angle 𝜃 interacting with
the boundary between two mediums 1 and 2. Each medium will have respective
parameters for density and sound speed 𝜌, 𝑐. Depending on the exact parameters,
it is expected that there will be a reflection of the incoming wave away from the
interface as well as an transmission of the wave from medium 1 to medium 2. The
reflection for a wave arriving from angle 𝜃 (with respect to normal) is expected
to be in the direction of −𝜃 (about normal to the plane). Given the continuity
conditions, the part of the incident wave that is transmitted into medium 2 will
obey Snell’s law (Equation 2.22). With regards to the relationship between the in-
cident, reflected and transmitted pressures, the coefficients for the reflection and
transmission are expressed as

𝑅(𝜃 ) = 𝜌 𝑐 cos(𝜃 ) − 𝜌 𝑐 cos(𝜃 )
𝜌 𝑐 cos(𝜃 ) + 𝜌 𝑐 cos(𝜃 ) (2.26a)

𝑇(𝜃 ) = 2𝜌 𝑐 cos(𝜃 )
𝜌 𝑐 cos(𝜃 ) + 𝜌 𝑐 cos(𝜃 ) = 1 + 𝑅(𝜃 ). (2.26b)

Thus, there is a part of the incoming wave that is reflected, a part that is transmitted,
but in the case of typical seafloors there is also a part that is absorbed by the second
medium. This is accounted for by making the sound speed 𝑐 complex by a complex
wave number 𝑘. The complex sound speed then becomes

�̃� = 𝑐 − 𝑖𝛼 |𝑐|𝜔 (2.27)

where 𝛼 is the absorption coefficient in nepers/m, and 𝜔 is the circular frequency.
With this modification there will not be perfect reflection even for incident angles
near normal.

The case that has been discussed thus far is an idealized case. If this was
the case for the seafloor then the MBES would not function due to there being no
backscatter. Thus, the phenomena of scattering needs to be considered.

How different surfaces affect the scattering of acoustic (or electromagnetic)
waves has been covered extensively in numerous books such as [30–34]. A short
introduction is provided below. Acoustic waves are scattered by irregularities in the
seafloor [35]. These include the following.

• The roughness of the water sediment interface.

• Spatial variations in sediment physical properties.

• Discrete inclusions such as shell pieces, pebbles, or bubbles.

The main measure of backscattering that is of interest for classifying the seafloor
is termed the backscatter strength 𝐵𝑆(𝜑 ). The backscatter strength is the dB form
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of the scattering cross section. The scattering cross section is, in turn, defined as
the ratio of the intensity of the scattered sound 𝐼 and the intensity of the incoming
acoustic plane wave 𝐼 in decibel units. The ratio is given by

𝑆(𝜑 ) = 𝐼 (𝜑 )
𝐼 (𝜑 ) . (2.28)

Here 𝐼 is given relative to a unit area of 1 m and at a distance of 1 m from this
unit area. The angle between the seafloor and the direction from which the plane
wave arrives at the area of the seafloor is 𝜑 (Grazing angle). The case given here
is where 𝐼 is measured for the direction of 𝜑 i.e. the backscatter direction. With
that the backscatter strength 𝐵𝑆(𝜑 ) is defined as follows

𝐵𝑆(𝜑 ) = 10 log (𝐼 (𝜑 )𝐼 (𝜑 ) ) . (2.29)

The backscatter strength 𝐵𝑆 is important as it relates to the characterization of
the seafloor. However, in practice something is needed that is independent of the
area that is instantaneously ensonified. This is called the Target Strength 𝑇𝑆, and
the relationship between the 𝑇𝑆 and the 𝐵𝑆 is as follows

𝑇𝑆(𝜑 ) = 𝐵𝑆(𝜑 ) + 10 log ( 𝐴𝐴 ) (2.30)

where 𝐴 is the instantaneously ensonified area and 𝐴 = 1 m is the reference
area.

In acoustics (although it was first used in optics [36]) Lambert’s cosine law is
often used as a simple model for the angle dependence of the backscatter strength
[37]. Lambert’s rule holds for rough seafloor surfaces. Consider a sound with
intensity 𝐼 arriving at the area 𝐴 of seafloor in question from the angle 𝜑 . The
power of this wave with respect to the seafloor is then 𝑃 = 𝐼 𝐴 sin(𝜑 ). According to
Lambert’s law the intensity 𝐼 radiated in the direction of 𝜑 measured at a distance
of 1 m is given by

𝐼 = 𝜇𝐼 𝐴 cos(𝜑 ) cos(𝜑 ) (2.31)

where 𝜇 is a proportionality constant. When 𝜑 = 𝜑 , i.e. the backscatter direction,
then Lambert’s law written in dB values is

10 log (𝐼𝐼 ) = 10 log (𝜇) + 10 log (cos(𝜑 ) cos(𝜑 ))

= 10 log (𝜇) + 20 log (cos(𝜑 )) = 𝐵𝑆(𝜑 ).
(2.32)

The term 𝜇 can be adjusted to account for both the frequency dependency as
well as sediment geoacoustic properties. Experiments indicate that typical values for
10 log (𝜇) range from -40 dB to -10 dB. A good first estimate value for 10 log (𝜇)
is -29 dB when using Lambert’s rule for any given seafloor [38]. Lambert’s law
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Figure 2.6: Backscatter strength according to the APL-model as a function of grazing angle for two
seafloor types, Mud in the green, and Sandy gravel in blue. The contribution of volume scattering is
shown in dashed lines and the contribution of roughness scattering is shown in dotted lines.

provides a good first approximation of backscatter intensity. For some seafloors,
such as rock, Lambert’s rule has been shown to provide a good estimate for the
entire range of swath angles. For other seafloors, especially seafloors composed of
fine sediments, it is only valuable for oblique grazing angles [38].

One of the more sophisticated models that is used for backscatter modeling was
developed by Jackson [39], the so-called Applied Physics Laboratory of the Unversity
of Washington (APL-UW) model. This model is valid for frequencies between 10 kHz
and 100 kHz, although it is also referenced for higher frequencies [40]. This model
has eight inputs, as follows

1. 𝜃 - The angle of incidence of the acoustic wave front, given in degrees.

2. 𝑓 - The frequency of the ping, given in Hz.

3. 𝜌 - Ratio of sediment mass density to water mass density, given in kg/m .

4. 𝑐 - Ratio of sediment sound speed to water sound speed, given in m/s.

5. 𝛼 - the sediment attenuation coefficient, given in dB/m.

6. 𝛾 - the spectral exponent of the sediment roughness.

7. 𝜂 - the spectral strength of the sediment roughness.

8. �̂� - Volume scattering parameter.

The APL model further uses three sub-models, namely, the Kirchhoff Approxima-
tion, the Composite Roughness Approximation, and the Large-Roughness Scattering
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Cross Section. The Kirchhoff approximation is used for angles within 50 degrees
of normal and is valid for smooth to relatively smooth seafloors. The composite
roughness approximation is valid for smooth to relatively smooth seafloors for an-
gles away from normal. The Large-roughness scattering cross section is used for
rougher seafloors such as gravel and rock, and is used for the entire range of angles.
Interpolation is performed such that there are no jumps in the final result. Together,
these models account for seafloor interface roughness and volume scattering from
within the sediment (Figure 2.6).

2.2.5. Typical backscatter data processing steps
There are a number of backscatter processing steps that were performed prior to
classification, in the following chapters. The exact processing steps depended on
the sonar from which the data came. In the following chapters data is used that was
collected by either Kongsberg or R2Sonic MBES systems. These two manufacturers
log the backscatter data in different manners.

Both Kongsberg and R2Sonic apply a time varying gain (TVG) to counteract
the decrease in signal intensity due to spherical spreading. This real time TVG
application is needed in order to keep the signal in the sensitivity range of the
digitizers. For both the Kongsberg and R2Sonic data, this TVG was removed and
reapplied with absorption coefficients calculated by use of ocean conditions that
were also measured during the respective cruises. At this point, the data processing
differs between the data from the two systems.

R2Sonic stores the intensity data as digitized pressure units. These are con-
verted to decibels. Next, because the transducer has different sensitivity for the
different frequencies, these are corrected for. Then the data were corrected for
user defined receiver gains.

Kongsberg implements a TVG, but does so assuming a flat seafloor. This TVG is
removed from the data and a new TVG applied using the actual distance of travel
information for each beam, and thus removing the assumption of the seafloor being
flat.

Then for both systems a slope correction is performed as is discussed in more
detail in Section 3.2.2. This slope correction is performed using the bathymetry
data from the MBES. Having the corrected slopes allows corrected grazing angles
to be known, which in turn ensures higher accuracy when applying angle specific
classification such as the Bayesian classification method [21, 22] (Section 3.2.2).
Having the correct seafloor slope also allows the BS to be adjusted for the correct
ensonified area 𝐴, as done in Section 3.2.2. There are some instances, for example,
for small seafloor features, where the slope correction fails. Chapter 4 illustrates a
case in which slope correction does not work.
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3
Seafloor classification in a

sand-wave environment on the
Dutch Continental Shelf using

multibeam echosounder
backscatter data

But striking a sandbar with the sea on both sides,
they ran the vessel aground; and the bow stuck fast

and remained immovable,

Acts 27:41

No great discovery was ever made without a bold guess.

Isaac Newton

High resolution maps of sandy seafloors are valuable to understand seafloor
dynamics, plan engineering projects, and create detailed benthic habitat maps.
This chapter presents multibeam echosounder backscatter classification re-
sults of the Brown Bank area of the North Sea. We apply the Bayesian
classification method in a megaripple and sand-wave area with significant
slopes. Prior to the classification, corrections are implemented to account for
the slopes. This includes corrections on the backscatter value and its corre-
sponding incident angle. A trade-off in classification resolutions is found. A
higher geo-acoustic resolution is obtained at the price of losing spatial res-
olution, however, the Bayesian classification method remains robust with
respect to these trade-off decisions. The classification results are compared
to grab-sample particle-size analysis and classified video footage. In non-
distinctive sedimentary environments, the acoustic classes are not attributed
to only the mean grain size of the grab samples but to the full spectrum of the
grain sizes. Finally, we show the Bayesian classification results can be used

Parts of this chapter have been published in Geosciences (3), 142 (2019) [1]
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to characterize the sedimentary composition of megaripples. Coarser sedi-
ments were found in the troughs and on the crests, finer sediments on the
stoss slopes and a mixture of sediments on the lee slopes.
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3.1. Introduction

I n recent years, increasing use has been made of multibeam echosounder (MBES)
systems to characterize the seafloor by acoustic remote sensing. Use has been

made of the bathymetric data derived from MBES systems (or single beam echo
sounders (SBES)), correlated with grab samples to determine the variations in sedi-
ment over sand waves in the North Sea [2–5]. In addition to bathymetry data, MBES
systems also provide backscatter (BS) data which can be utilized more directly to
characterize seafloor sediments [6]. There are a variety of approaches in use for
the classification of the seafloor using MBES backscatter data. These range from
image-based segmentation approaches [7, 8], classification based on backscatter
angular response curves [9, 10], as well as, principal component analysis of both
bathymetry and backscatter data [11–13], among others.

We employ the Bayesian classification method, which was first developed in [14].
One of the key components of the method is that it considers the BS data per
beam angle. This method can discriminate between relatively homogeneous sed-
iments [15], can be used as a reliable tool for long-term environmental monitor-
ing [13], and was previously applied to river beds where significant slopes needed
to be accounted for [16].

The Brown Bank area of the North Sea (Figure 3.1a; data source: [17]) ex-
hibits sand waves of various sizes, namely, sand banks (Figure 3.1b), sand waves
(Figure 3.1c), and megaripples (Figure 3.1d) (see Section 3.2.1 for definitions). Al-
though the main sediment is sand, there is a variation of muddy sediments mixed
with gravel and shell fragments in the deep troughs and well sorted medium sand
on the crest [18]. Also, infauna species diversity and abundance is much higher in
the troughs than on the crest [18]. A high resolution classification map of seafloor
sediments in a sand-wave area provides valuable information for both marine biolo-
gists, who study the spatial variability of seabed habitats and benthic communities,
and modelers of seafloor dynamics.

The goal of this chapter is four-fold. We first apply the Bayesian classification
method to a sand-wave area where there exist significant and rapidly changing
slopes in small areas. The second goal is to investigate to what extent different
acoustic classes can be distinguished. A comparison with grabs is carried out to in-
vestigate what sediment properties drive the acoustic discrimination in an area with
relatively homogenous sediments. The third goal is to examine the trade-off be-
tween the geo-acoustic1 versus spatial resolution of classification results. The final
goal is to determine the patterns of sediments on different parts of the megaripple
cycle using the acoustic classification results.

3.2. Study area, materials, and methods
3.2.1. Study Area

T he Brown Bank is located 85 km off the coast of the Netherlands, in the mid-
dle between the UK and the Netherlands, due west of Egmond aan Zee (52∘32 59.994

1Geo-acoustic resolution: the scale at which different types of sediments can be resolved using a certain
acoustic classification/characterization technique [15].
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Figure 3.1: ( ) Location of Brown Bank area in North Sea (data source: [17]); ( ) Bathymetry of
Brown Bank; arrows indicate sand banks; (c) Survey area; red circles and yellow triangles are ground
truthing locations, survey lines are in red, and arrows point to sand-wave structures (spatial resolution
1 m × 1 m); ( ) Megaripple bed forms, indicated by arrows (spatial resolution is 1 m × 1 m, all depths
are given in meters (m)).
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N, 3∘18 36.400 E; Figure 3.1). This area was visited in 2017 with the Royal Nether-
lands Institute for Sea Research (NIOZ) vessel, the Pelagia, from 27 October to
November 3 (Cruise number/name: 64PE428disclose). Tidal currents in this area
oscillate between a north eastern and south western flow direction with current
flow rates exceeding 1 km/h. The average water current is in the north eastern
direction [19]. The annual mean significant wave height is 2 m [20]. The main
seabed substrate in this part of the North Sea is sand, with sand waves of various
sizes clearly visible in the bathymetry. The dominant bathymetric features of the
research area are sand banks (Figure 3.1b), which can be tens of meters high and
have a length of 5–10 km [21]. In the study area there is mainly one sand bank,
i.e., the most dominant one in the North Sea [21], which is called the Brown Bank.
The Brown Bank runs from north to south, with a water depth on the top of the
bank of ∼19 m, and a water depth in the troughs on either side being ∼45 m.

In addition to the sand banks, there are two other periodic bed forms that are
defined in this chapter as sand waves (Figure 3.1c) and megaripples (Figure 3.1d)
[22], respectively. Sand waves occur with a wavelength of around 200 m, with the
occasional wavelength as short as 100 m and others as long as 300 m. In [23]
it was found that sand waves migrate at a rate of several meters per year, and
that the migration speed is strongly correlated with the sand-wave shape. Super-
imposed on the sand waves are megaripples [22], which have a wavelength of 15
m, where some wavelengths are as short as 10 m and others as long as 25 m.
The megaripples move faster than the sand waves, in the scale of weeks [22, 24]
or even hours [25]. The troughs of the Brown Bank consist of muddy sediments
mixed with gravel and shell fragments and the crests contain well sorted medium
sand [18].

3.2.2. Multibeam echosounder data
Multibeam echosounder settings
The acoustic survey was performed with a hull-mounted Kongsberg EM 302 multi-
beam echosounder (MBES). The EM 302 has a central frequency of 30 kHz and has
2∘ and 1∘ beam opening angles in the across and along track directions respectively.
Four transmit sectors were used during the survey, each using a slightly different
frequency of 26.5 kHz, 30.5 kHz, 33.5 kHz, and 28.5 kHz for sectors 1 to 4. The
beam coverage of the 432 beams was set to equidistant (vs. equiangular). A swath
opening angle of 130∘ was used, with port and starboard coverage both being 65∘.
The pulse length was 750 µs for the entire survey. The EM 302 has a sensitivity res-
olution of 0.1 dB. Bathymetry, backscatter, and water column data were recorded
using Kongsberg’s native seafloor information system (SIS) software. A Seapath
global positioning system (GPS) and motion reference unit (MRU) provided position
and motion correction information. GPS information was fed into the MBES pro-
cessing, and was sufficient to eliminate the need to perform tide corrections. The
MBES data were corrected for roll, heave, and yaw.

The data from the Pelagia were cleaned using the following steps. Firstly, the
data was imported into the QPS Qimera software, and a spline filter was used to flag
data points that were depth outliers. Subsequently, the cleaned data from Qimera
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Figure 3.2: Across-track cross section (y-z) plane for the signal footprint of an oblique beam for three
environments: shallow water (a), non-flat bottom (b), and deep water (c), (figure after [1] and [16]
and similar to Figure 2.4).

were imported into Qinsy to convert them into an ASCII tabular format. Further
processing was then carried out in Matlab. Aeration artifacts were filtered out if the
average backscatter over 15 adjacent pings was more than 1.5 dB lower than the
average backscatter over the nearest 700 pings.

Backscatter corrections for seafloor slopes
Because the survey area is dominated by sand waves and megaripples, with seafloor
slopes as steep as 20 degrees, a slope-corrected grazing angle is needed. If not
corrected, the significant slopes of the seafloor can in principle degrade the classi-
fication results. This is thus an essential pre-processing step because the Bayesian
classification method uses the backscatter data at a specific grazing angle. We
closely follow the pre-processing steps proposed by [16]. Figure 3.2 shows the
across-track cross section of the signal footprint for three different environments,
i.e., a shallow water, a deep water and a non-flat seafloor.

A three-step algorithm is employed to estimate and hence apply the corrections
required due to the local slopes. The steps are as follows: (1) Estimating the
along- and across-track seafloor slopes; (2) Correction of the true beam grazing
angle; and (3) Correcting the backscatter data. These steps require the along- and
across-track slopes in the time-varying coordinate system of the vessel. The details
of the above steps are as follows.

S e Estimation of local slopes
The least-squares method is employed to estimate the local slopes using the

bathymetry data. The slopes are computed in the time-varying coordinate system
of the vessel. The bathymetry data of a given MBES line was gridded to a grid size
of 2 m × 2 m. Such a regular surface patch includes a few pings and beams around
the central beam angle. For the discrete points within the surface patch, we then
have 𝑧 = 𝑓(𝑥 , 𝑦 ), 𝑖 = 1,…, 𝑛, 𝑛 indicating the number of bathymetry data within
the surface patch. Here 𝑥 and 𝑦 refer to the along and across-track coordinates in
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Figure 3.3: ( ) Bathymetry data on a crest of a sand wave, ( ) across track slopes and (c) along
track slopes ; depths are given in meters, slopes are in degrees ( )

relation to the vessel for point 𝑖. The surface patch is assumed to be a plane, with
the form

𝑓(𝑥, 𝑦) = 𝑎 + 𝑎 𝑥 + 𝑎 𝑦 (3.1)

consisting of three unknown coefficients 𝑎 , 𝑎 and 𝑎 . The model of observa-
tion equations is of the form 𝑧 = 𝐷𝑎, where 𝑧 = [𝑧 , …, 𝑧 ] is the 𝑛-vector of
observations containing the bathymetry data within the 2 m × 2 m surface patch,
𝑎 = [𝑎 𝑎 𝑎 ] is the vector of unknown parameters, and 𝐷 is the 𝑛 × 3 design
matrix for which its 𝑖 row is 𝐷 = [1 𝑥 𝑦 ]. Assuming the observations are inde-
pendent and have identical variances, the least squares estimate of the parameters
is �̂� = (𝐷 𝐷) . A procedure called ‘data snooping’ can also be used to test for the
presence of outliers in the bathymetry data [26, 27]. This will then leave out some
outlying depth measurements when computing the local slopes.

Having estimated the parameters of the above surface patch 𝑓(𝑥, 𝑦), one can
obtain the local slopes 𝑓 (𝑥, 𝑦) = 𝑎 and 𝑓 (𝑥, 𝑦) = 𝑎 where 𝑎 and 𝑎 are the
ratios of the vertical to horizontal changes in the along and across-track directions
respectively. Figure 3.3 shows one typical area in which the along and across-track
slopes have been estimated. The signature of the megaripples is clearly visible from
the computed slopes.

S e Grazing angle correction
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After estimating the local surface, the local slopes 𝑎 and 𝑎 of the plane are
known (Equation (3.1)). The normal vector to the plane is the gradient of the
surface, expressed as ⃗⃗n⃗ = [𝑎 𝑎 − 1] . The nominal receiving-beam direction
based on the flat surface in the z-y plane is provided as ⃗⃗⃗⃗m⃗ = [0 − sin𝜃 cos𝜃] ,
where 𝜃 is the nominal incident angle. The angle between the two vectors ⃗⃗n⃗ and
⃗⃗⃗⃗m⃗ is the true incident angle, given as

cos𝜃 =
sin𝜑 + 𝑎 cos𝜑

√1 + 𝑎 + 𝑎
(3.2)

where 𝜑 = − 𝜃 is the nominal grazing angle. Therefore, the nominal incident
angle 𝜃 should be corrected to the true incident angle 𝜃 . This is an essential step
because the classification method uses the backscatter data at a specific angle.

S e Backscatter correction
The local slopes also affect the backscatter data. This is because the received

backscatter refers to a flat signal footprint 𝐴 [16]. In the presence of local slopes,
the signal footprint will change and hence the corresponding backscatter values
need to be corrected for the actual ensonified area 𝐴 using the along and across-
track slope angles (𝛼 = arctan(𝑎 ) and 𝛼 = arctan(𝑎 )) [16] (Figure 3.2). The
correction 𝐶 of the backscatter for the actual ensonified area, expressed in decibels
(dB) is given as

𝐶 = 10 log(
sin(𝜃 − 𝛼 ) cos𝛼

sin𝜃 ) . (3.3)

The corrected data is then supplied to the Bayesian classification method.

Bayesian classification method
This section provides an overview of the essential steps to generate the acous-
tic classification maps from the backscatter (BS) data. The central limit theorem
expresses that the BS follows a Gaussian distribution for one sediment type, if suf-
ficient independent measurements are considered for determining the BS values.
For a given frequency and angle, the backscatter strength depends on the seabed
properties. If the survey area contains 𝑚 sediment types, the BS histogram of
the backscatter data for a specific incident angle is then represented by a linear
combination of 𝑚 Gaussian distributions as

𝑓(𝑦 |x) = ∑𝑐 exp(−
(𝑦 − �̄� )
2𝜎 ) (3.4)

where 𝑦 is the BS value at bin (𝑦 , 𝑦 + Δ) of the BS histogram, with 𝑗 = 1,…,𝑀
and 𝑀 being the total number of bins. The bin size Δ is set by the sensitivity
resolution of the MBES. The vector x contains the unknown parameters of the
Gaussian distribution: x = (�̄� , …, �̄� , 𝜎 , …, 𝜎 , 𝑐 , …, 𝑐 ), where the triple (�̄� , 𝜎 ,
and 𝑐 ) indicates the mean, standard deviation and contribution of each Gaussian
distribution for 𝑘 = 1,…,𝑚. The curve fitting procedure is performed in an iterative
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manner for increasing 𝑚. The error in the fitting is tested by the 𝜒 goodness of fit
test, which is of the form

𝜒 =∑
(𝑛 − 𝑓(𝑦 |x))

𝜎 (3.5)

where 𝑛 denotes the number of backscatter measurements per bin 𝑗 in the BS
histogram. For 𝑛 a Poisson-distribution is postulated, indicating that the variance
𝜎 is equal to 𝑛 . The goodness of fit statistic has a chi-squared distribution with
𝜈 = 𝑀 − 3𝑚 degrees of freedom. The goodness-of-fit criterion is then defined as
the reduced chi-squared statistic, given by

𝜒 = 𝜒
𝜈 (3.6)

which has a value close to 1 for a good fit, indicating that the difference between
modelled and measured histograms fall within the uncertainties of the BS data.
The value of 𝑚 for which no significant improvement on the reduced chi-squared
statistic is obtained, or when it has a value close to 1, can be considered to be the
optimal value of 𝑚 based on the backscatter data.

The final classification step uses the Bayes decision rule. The above 𝑚 Gaus-
sians introduce 𝑚 hypotheses as 𝐻 , 𝑘 = 1,…,𝑚 which correspond to the 𝑚
seafloor sediment types. It is assumed that the hypotheses are equally likely and
the Bayesian decision rule for multiple hypotheses then indicates to accept 𝐻 if
max {𝑓(𝑦 |𝐻 )} = 𝑓(𝑦 |𝐻 ). Given the observation 𝑦, the hypothesis that maxi-
mizes the likelihood 𝑓(𝑦|𝐻) gets accepted. Thus, in principle, the intersections of
the 𝑚 Gaussians result in 𝑚 non-overlapping acceptance regions 𝐴 , corresponding
to 𝑚 acoustic classes (ACs).

Two levels of data averaging
To ensure that the central limit theorem is satisfied, namely the backscatter strength
per angle and sediment type is Gaussian distributed, the backscatter values used
should be the result of a sufficient number of independent measurements. The
backscatter per beam is an average value, i.e., the result of 𝑁 measurements, with
𝑁 representing the number of signal footprints (or scatter pixels) within the beam
footprint, see Figure 3.2. Sometimes the number of scatter pixels in a beam is
small. Then the backscatter values are averaged over a certain number of neigh-
boring beams and consecutive pings. This, though reducing the spatial resolution,
ensures that each BS value is representative of a sufficient number of scatter pix-
els. In addition, a larger number of scatter pixels per backscatter strength value
provides narrower Gaussian distributions per sediment type, i.e., increased geo-
acoustic resolution. For beams away from nadir, the ensonified area 𝐴 is (much)
smaller than the beam footprint. Therefore many scatter pixels fall within the foot-
print of the receiving beam. The number of scatter pixels 𝑁 within a beam is a
function of 𝜃 and 𝛼 , and is given by
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𝑁 (𝜃, 𝛼 ) =
(
cos( ))

(
sin( ))

(3.7)

where Ω is the beam aperture in the across-track direction, 𝑐 is the average water
sound speed, 𝑇 the length of the transmitted pulse, and 𝑅 = 𝐻/ cos𝜃, where 𝐻
is the water depth. Equation (3.7) only holds for the beams sufficiently away from
nadir. For beams closer to nadir the ensonified area is limited by the beam aperture
and not the projected pulse duration. Thus, the nadir beams have only one scatter
pixel.

To investigate the trade-off between the spatial and geo-acoustic resolution,
two levels of data averaging were performed. In the first averaging scheme, no
averaging was done as long as a data point was based on 20 or more scatter
pixels, which was the case for the outer beams. If a data point had less than 20
scatter pixels, it was averaged with the geographically nearest neighbors until it
was representative of at least 20 scatter pixels.

For the second scheme the data of a given MBES line was gridded to a grid size
of 2 m × 2 m. The average backscatter and the average depth of all the points
in a grid cell are used to form a single data point for that grid cell. It was further
required that a grid cell contained at least 10 data points, otherwise the data within
that grid cell was discarded. The advantage of this method is that the averaging
of the backscatter increases, and hence it reduces noise in the classification re-
sults. The disadvantage is that it decreases the number of data points used in the
classification, and thereby decreases the spatial resolution of the classification.

Megaripple partitioning
To investigate the distribution of sediments over megaripples, thirty two areas with
a size of ∼100 m × 100 m, where a clear megaripple pattern was present, were
selected for further study. Using the orientation of the megaripples and the values
of the absolute slopes, a direction specific slope was computed such that positive
slopes would be on the stoss side (the side that receives dominant tidal current,
also the less steep side) and the negative slopes would be on the lee side of the
megaripple (Figure 3.4). The polarity of the computed slopes thus separated the
area into the different sides of a megaripple. Further subareas were created by
defining the crests and troughs of the megaripples. This was done by fitting a
plane 𝑍 = 𝑓(𝐸,𝑁) = 𝑎 + 𝑎 𝐸 + 𝑎 𝑁 to the bathymetric data using the least
squares method. Here 𝐸 and 𝑁 refer to the easting and northing coordinates of
the bathymetry data in a UTM (Universal Transverse Mercator) coordinate system.
The points above the fitted plane are classified to be on the crest, and those below
the plane, in the trough of the megaripple. The area was then binned based on
the directional slope, ranging from −20 to 20 degrees with a bin size of 5 degrees
(Figure 3.4). The bin centers are then at −17.5, −12.5,…, 17.5 degrees. The mean
and mode occurrences of acoustic classes were calculated per bin and per trough
and crest area for each of the 32 selected areas and used for determining sediment
patterns over megaripples.
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Figure 3.4: Schematic structure of a megaripple; wavelength is 10 m and depth variation is ∼1 m.
Also indicated are crest versus trough area and stoss versus lee sides. Slopes of the megaripple are
presented with a bin size of 5 degrees.

3.2.3. Video data
Videos of the seabed were collected along 150 m transects at 10 stations (Fig-
ure 3.1c) with a towed video camera system. This system was inspired by the
one used in [28]. The aluminum frame houses a remote controlled forward-facing
video camera (Kongsberg OE14-522A-0009 Colour HD Pan), a downward facing
DSRL camera (NIKON D750), eight lights (Fisheye FIX NEO 1000DX SW II LED),
and two sets of lasers (Z-Bolt, SCUBA-II green) with a fixed separation distance.
The video camera was set to view the seabed just in front of the frame. Moreover,
the frame was equipped with multiple floats, resulting in a small positive buoyancy.
Two drag chains underneath the frame cause for negative buoyancy. The varying
length of the part of the drag chain which touches the seabed stabilizes the frame’s
height above the seabed. Three towing cables were attached to the frame at differ-
ent points, which were combined after 6.5 m into one towing cable. A drop weight
of 55 kg was attached to this merging point, which reduced the vertically oriented
towing forces of the vessel on the frame. The video camera was connected to a
computer on-board with a video data “umbilical cord”, which was held in place sepa-
rate from the towing cable. Using the live stream from the video camera, the length
of the towing cable was adjusted to maintain seabed view during transects. During
video operations, the vessel had a speed of ∼0.1 m/s.

The collected video footage was analyzed and the superficial seabed type de-
termined. The time of every observed change in seabed type was recorded. All
recordings in which the seabed was not (clearly) visible, due to particle clouds or
motion, or in which at least one of the lasers was not visible were defined as invalid.
The position of the camera was estimated based on a time-match with the position
of the vessel, which was saved by the vessel’s logging system every 30 seconds.
As the distance between the camera and vessel varies, depending on the prevailing
depth and current, the exact position of the camera cannot be determined. How-
ever, because the camera was deployed on the starboard side of the vessel, with
as little towing cable as possible, we assume the positioning error to be >10 m but
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<100 m.

3.2.4. Grab-sample data
Twenty two grab sample locations were selected, with twenty one of these falling
on a regular grid. That includes seven vertically oriented parallel lines each with
three locations; in the eastern most border of the survey area, in the troughs on
both sides, on the slopes on either side, and on the crest of the Brown Bank, and
in the western most border of the survey area (Figure 3.1). At each sampling
location three replicate samples were taken resulting in a total of 66 grab samples.
The grab samples were acquired with a 30 cm Box Core. Subsamples were taken
for particle size analysis (PSA). Between the time that the samples were gathered
until they were processed in the lab, they were stored at −20∘ C. Prior to PSA
the samples were freeze-dried. For the particle size analysis the contents of the
sample were successively sieved over 4, 2, and 1 mm sieves and the weights of
these fractions were measured. The particles that were larger than 2 mm were
separated to determine the gravel fraction. The grain size distribution of the portion
smaller than 1 mm was determined by means of laser diffraction with a Malvern
Mastersizer 2000 (Malvern Instruments, Worcestershire, UK). The sieving and laser
diffraction results were combined by scaling the results from the Malvern by the
mass proportion of the sample that was smaller than 1 mm. This combined dataset
was then used for further analysis.

The results of the grab sample sieving process were converted into the phi
grain size units by using 𝜙 = − log 𝑑, where 𝑑 is the representative diameter of
the grains in millimeters. Two measures are often used to describe the sediment
grain size of a grab sample, that is, the median or the mean grain size. The median
corresponds to the 50th percentile on the cumulative curve of which half the par-
ticles by weight are larger and half are smaller than the median. It is therefore of
the form 𝑀 = 𝜙 . The mean is the average grain-size for which several formulas
are used in the literature. The most commonly used formula is that given by [29]

𝑀 = 𝜙 + 𝜙 + 𝜙
3 (3.8)

where 𝜙 ,𝜙 and 𝜙 represent the size at the 16th, 50th, and 84th percentiles
of the sample by weight. For the work presented here the mean grain size is used;
but similar results are obtained using the median grain size.

In addition to the mean grain size, provided by Equation (3.8), statistics for
sorting 𝜎 (Equation (3.9)), skewness 𝑠 (Equation (3.10)), and kurtosis 𝑘 (Equa-
tion (3.11)) of the grain size distribution were also calculated [29].
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𝜎 = 𝜙 − 𝜙
4 + 𝜙 − 𝜙

6.6 (3.9)

𝑠 = 𝜙 + 𝜙 − 2𝜙
2(𝜙 − 𝜙 ) + 𝜙 + 𝜙 − 2𝜙

2(𝜙 − 𝜙 ) (3.10)

𝑘 = 𝜙 − 𝜙
2.44(𝜙 − 𝜙 ) (3.11)

These were used to create a feature matrix 𝑌 = [𝑀 𝜎 𝑠 𝑘]. Principal component
analysis of this matrix, which is of size 66×4, was performed and the most informa-
tive principal components (PCs) were selected. These are then used to determine
the correlation between the acoustic classification results and the full grain size
spectrum of the grab samples.

Folk classification of the grab samples is also used. According to this classifica-
tion method, sediments are given a descriptive label based on the proportions of
Mud, Sand, and Gravel. Gravel particles are those larger than 2 mm, Sand those
between 2 mm and 0.0625 mm, and Mud what is less than 0.0625 mm. A 0.01%
boundary was used between a “no gravel” content and a “slightly gravelly” label.

3.3. Results and discussion
3.3.1. Acoustic Classification Results

T he classification method of Section 3.2.2 is now applied to the backscatter (BS)
data that was cleaned and pre-processed according to the description in Section

3.2.2. That is, the correct grazing angles are known and the backscatter data has
been corrected for the change in the ensonified area induced by the seafloor slopes.

In the first step, the number of sea bottom types, distinguishable in the acoustic
data, is determined. This is achieved by increasing the number of Gaussians to well
describe the histogram of the BS values at a given grazing angle. The number of
seafloor types, 𝑚, was found to be 4 (Figure 3.5). The beam angles used to create
the histograms and to perform the Gaussian fitting procedure were the 30∘, 28∘,
and 26∘ grazing angles, for both the port and starboard sides. The error bars
in Figure 3.5 give the standard deviation of the 𝜒 statistic, √2/𝜈. Because the
backscatter data from the EM 302 multibeam is recorded at a resolution of 0.1 dB
the number of bins 𝑀 per histogram tended to be well above 100. The variable 𝜈
gets larger with larger 𝑀 and therefore the standard deviations of the 𝜒 statistic,
represented by the error bars in Figure 3.5, become small.

Figure 3.6 shows the BS histograms along with their best fit for the grazing
angles 30∘, 28∘, and 26∘. The intersecting points of the corresponding probability
density functions (PDFs) are used to form the acceptance regions of the four classes.
The percentages of the histogram at these reference angles that fall into a specific
class were then recorded and used to divide, and thereby classify, the histograms
for the grazing angles from 65∘ to 25∘.

The acoustic classification results are presented in Figure 3.7. The broad scale



3

44 3. Seafloor classification over megaripples

Figure 3.5: Reduced chi-square as a function of number of Gaussians. Error bars, which were
multiplied by a factor of 2 for distinction, indicate standard deviation of reduced chi-square test statistics.
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Figure 3.6: Measured histograms for grazing angles 30∘, 28∘, and 26∘ for both port and starboard sides,
in gray; sum of number of Gaussians, in red (see: Equation (3.4)), individual Gaussians are in
black. Error bars (in blue) were multiplied by a factor of 3 for distinction.
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Figure 3.7: Acoustic classification map of Brown Bank obtained from backscatter data for beams between
25∘ and 65∘. Also shown are grab Folk classes with their station numbers. Depth contours (solid black
lines) are presented at 5 m intervals.

classification results fall into the following patterns. For water depths shallower than
25 m, on the crest of the Brown Bank, mainly acoustic classes 1 and 2 occur. Lower
classes (1 and 2) generally correlate with smaller grain sizes [13]. In the troughs
on either side of the Brown Bank, for water depths deeper than 35 m, the classes
are higher, mainly classes 3 and 4. In the remainder of the area the classes tend
to be a mixture of classes 2 and 3.

3.3.2. Ground truth data
In total there were 16,594 classified, and geo-referenced, seconds of valid video
footage (video frames, Table 3.1). In all areas where video data was collected “Sand
with a ripple structure” was found (Figure 3.8). The presence of shell fragments
(Figure 3.8 b), smaller and larger stones (or Granules and Pebbles according to
the Udden-Wentworth grain size classification scheme [30]) (Figure 3.8 c), and
Sabellaria fragments (Figure 3.8 d) varied from one area to the next. Figure 3.9
represents the video classification results overlaid on the acoustic classes. The class
“Sand with hardly any shell fragments” was only found on the crest of the Brown
Bank, see Figure 3.9 (upper right). The remaining 3 classes were all found in the
troughs on either side of the Brown Bank.

At Station 2 (Figure 3.9, upper left), alternating video classes of “sand with
some shell fragments” and “sand with small stones and incidental larger stones”
are seen. The alternation matches with the wavelength of the megaripples in this
area. The acoustic classification also alternates on this spatial scale, between class
4, as the highest class, and class 3 or 2 for the lower classes. The video data at
Station 8, containing “Sand with hardly any shell fragments”, have mainly lower
acoustic classes 1 and 2. At Stations 9 and 14 (lower parts of Figure 3.9) the video
is classified as mostly “Sand with some shell fragments”. However, some frames are
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Figure 3.8: Sample video frames classified as ( ) Sand with hardly any shell fragments, ( ) Sand
with some shell fragments, (c) Sand with small stones and incidental larger stones, and ( ) Sand with
Sabellaria fragments and incidental larger stones.

classified as also having either “Small stones and incidental larger stones” at Station
14, or “Sabellaria fragments and incidental larger stones” at Station 9. Their loca-
tions match with areas of higher acoustic classes (Figure 3.9).

To further investigate the relation between the video data and the acoustic
classification results, the two datasets were geographically matched, and the oc-
currences of the acoustic and video classifications were counted. The mode of
the acoustic class within a one-meter radius was used. If there were no acoustic
classes within this radius then the video data point was discarded. The results are
presented in Figure 3.10. In areas where the video recordings indicate “sand with
no shell fragments” the occurrence of acoustic class 1 is dominant. There are no
instances of acoustic class 4 in these areas. In areas where the video data indicate
the presence of “sand with some shell fragments” the occurrence of acoustic classes
2 and 3 is highest at 32% and 49%. For “Sand with Sabellaria fragments and inci-
dental larger stones” and “Sand with small stones and incidental larger stones” the
distribution of acoustic class occurrences is very similar, with higher percentages
for the higher acoustic classes. There were hardly instances of acoustic class 1 in
these areas.

As for the grab samples, the majority have a mean grain size ranging from
𝑀 = 1.50𝜙 to 𝑀 = 1.75𝜙. The standard deviation of the mean grain sizes from
the three samples taken at each station was at the same level as the size range
of all the samples i.e., 𝜎 = 0.25𝜙. There was one triple of grab samples (from
Station 23) with a smaller mean grain size, 𝑀 = 4.04 ± 1.18, than the rest of the
grab samples. The grab at this station was composed of very fine particles that
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Figure 3.9: Video classification results at four stations. Per station, indicated location and class of video
frame in colored dots and MBES classification results as background.

Figure 3.10: Percentages of occurrence of acoustic classes within one-meter radius of video data points,
classified as follows: “Sand with hardly any shell fragments” (No S.F.), “Sand with some shell fragments”
(Some S.F.), “Sand with Sabellaria fragments and incidental larger stones” (Sab. & L.S.), or “Sand with
small stones and incidental larger stones” (S.S. & L.S.)
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Table 3.1: Classification of video data with numbers and percentages of total frames per class

l ssi ic io
e o
es

o o l
es

Sand with hardly any shell fragments 4,495 27.1%

Sand with some shell fragments 8,651 52.1%

Sand with Sabellaria fragments
and incidental larger stones 1,257 7.6%

Sand with small stones and incidental
larger stones 2,191 13.2%

o l 16,594 100.0%

were compacted and stuck together. For most grab samples, clumps of particles
that were stuck together could be brushed lightly in order for them to be sieved.
The grab samples from Station 23, however, had to be crushed through the various
sieve sizes with force. After doing this, the particle size analysis (PSA) indicated
small grain sizes for this grab sample.

Often, backscatter-based acoustic classes are compared to the mean grain sizes
to create sediment maps [12, 31, 32]. Figure 3.11a shows the results of such a
comparison. It can be seen that the acoustic classification results are not correlated
with mean grain size values. This observation not only holds when the mean grain
size is compared with the acoustic classes, but also when the mean grain size of
a grab sample is compared to its Folk classification (Figure 3.11b). Thus, a grab
sample with different Folk class can have the same mean grain size.

When using Folk classes, the sediments “sandy mud” (sM), “sand” (S), “slightly
gravelly sand” ((g)S), and “gravelly sand” (gS) were encountered. Out of the 22
grab sample positions there is 1 location that is classified as sM. There were 5,
15, and 1 locations that were classified as S, (g)S and gS, respectively. Thus, the
dominant sediment types in the surveyed area is either sand or slightly gravelly
sand, again indicating an almost non-distinctive sedimentary environment.

The number of matches between the Folk class and acoustic class at the grab
sample locations shows a general trend of coarser sediments for higher acoustic
classes (Figure 3.12). Sand corresponds mainly to acoustic classes 1 and 2. Slightly
gravelly sand is matched dominantly with acoustic classes 2 and 3, and gravelly sand
with acoustic class 3. However, the finest sediment sM correlates with acoustic class
4. This is likely due to the compactness of the sediment for this grab sample, as was
described earlier. We may assume that (g)S of the grab samples corresponds to
“Sand with some shell fragments” in the video data. This correspondence is also
observed when comparing the grab samples and acoustic classes in Figure 3.12
with the video data and acoustic classes in Figure 3.10.
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Figure 3.11: Averaged mean grain sizes and standard deviations versus acoustic class numbers ( ) and
Folk classification ( ) for 21 of the grab samples with from . to .

Figure 3.12: Correlation between sediment type and acoustic class at grab sample locations. Size of
dots and numbers indicate number of matches between sediment types and acoustic classes.
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Figure 3.13: Acoustic class numbers versus first principal component obtained from grain size statistics
given by [29]

3.3.3. Full spectrum of grain size distribution for classification
Based on the mean grain size of the grab samples, the survey area is very homo-
geneous. However, both the Folk classes of grab samples and the acoustic data
indicate four sediment types. This indicates that the acoustic classes are to be at-
tributed to the full spectrum of the grain size distribution and not just the mean
grain size.

This is now investigated by using the variables 𝑀 ,𝜎, 𝑠, and 𝑘 from Equations
(3.8)–(3.11) and performing PCA on these as explained in Section 3.2.4. The first
PC, representing 53% of the feature variabilities, is not far from being just the sign-
corrected average of the above four features with the dominant contributions from
𝜎, 𝑀 and 𝑠. This PC is thus considered to be the most informative feature and
hence will be used for comparison. Figure 3.13 shows this PC versus the acoustic
classification results. A positive correlation is observed. This verifies that the full
spectrum of the grain size distribution should be used when comparing grab samples
with the acoustic classes and not just the mean grain size.

From the literature, it is expected that higher backscatter values would cor-
respond to larger grain sizes. As indicated in Figure 3.11 there is no correlation
with higher acoustic classes (which correspond to higher backscatter values) for
larger mean grain sizes, because the mean grain size does not vary much over the
grab samples. To check what influence larger grains have on backscatter values,
the backscatter values from the beam angles ranging from 25 to 65 degrees were
averaged over a few pings around each grab sample. These averaged backscatter
values were compared to the percentage of the grab sample with a grain size greater
than 0.5 mm (Figure 3.14). This showed that larger percentages of large grain sed-
iments correspond to higher backscatter values (the linear correlation coefficient is
0.51). This finding is in agreement with the results presented by [33] who found
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Figure 3.14: Mean backscatter value of angular response curve (excluded data around nadir) versus
percentage of grab contents with grain sizes greater than 0.5 mm.

a positive correlation between backscatter levels and shell or gravel percentage of
grab samples. It can therefore be concluded that the areas of high backscatter
values (classes 3 and 4) correspond to slightly gravelly sand and lower backscat-
ter values (classes 1 and 2) correspond to sand. Further investigation would be
needed to quantify the influence of other factors affecting backscatter strength,
such as surface roughness and volume scattering [34].

3.3.4. Geo-acoustic versus spatial resolution
The classification of sediments in the Brown Bank area brings to the forefront a
dilemma of resolutions. On the one hand sediments may vary from crest to trough
of some of the smallest sand waves, i.e., megaripples, which have a wavelength of
a few tens of meters. It would be desirable to accurately classify sediments over
these features at a high spatial resolution. On the other hand a high geo-acoustic
resolution is needed to account for small changes in sediment composition from
the crest to the trough of the megaripple. When applying the Bayesian classifi-
cation method, the geo-acoustic resolution is increased when the data points are
representative of a higher number of scatter pixels due to the standard deviation
of the Gaussians being less. The theoretical standard deviation of the Gaussians
is 𝜎 = 5.57/√𝑁 , where 𝑁 is the number of scatter pixels [14]. An approach to
increasing the number of scatter pixels per data point is to average the backscatter
(BS) data over several beams in the across track direction, and several pings in the
along track direction as employed by [16]. Performing such an averaging proce-
dure has the added benefit of averaging out much of the ping to ping variability
of backscatter data that is not dependent on the seafloor properties. While such
averaging increases the geo-acoustic resolution, it directly decreases the spatial
resolution of the classification.
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Figure 3.15: Comparison of Gaussian curve fitting to histogram of backscatter under two levels of aver-
aging; limited averaging (top), heavier averaging (bottom); indicated in plots are Gaussian curve fitting
(a and c), and chi-square test statistics (b and d). Fitting was done on grazing angle 26 degrees star-
board.
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For determining a good trade-off, the acoustic data were preprocessed with
different levels of averaging (see Section 3.2.2). Figure 3.15 shows the fits of
a Gaussian PDF to the BS histogram at the 26∘ starboard grazing angle for both
approaches. A few observations are highlighted:

• The above averaging procedure can in principle reduce the noise of the backscat-
ter data. This may, however, not decrease the standard deviation proportion-
ally to the square root of the number of scatter pixels represented. This is
because this rule is valid only for independent and identically distributed data.
This cannot be the case for the backscatter data averaged over a small surface
patch, because the variation and uncertainty in the BS data has independent
and dependent components. The independent component is known as noise,
which can be averaged out. This however does not hold for the dependent
component, which is intrinsic to acoustic sediment properties and its hetero-
geneity. The fact that the two histograms in Figure 3.15 look similar also
verifies the above reasoning; otherwise the second data set would have a
significantly narrower histogram due to the averaging procedure.

• There is a trade-off between the spatial and geo-acoustic resolutions. While
heavier averaging increases the geo-acoustic resolution of the classification,
it directly decreases its spatial resolution. Narrower and relatively more sep-
arated Gaussians as well as chi-squared values closer to 1, obtained for the av-
eraged data set (Figure 3.15 bottom subplots), indicate a better geo-acoustic res-
olution.

• The results obtained in Figure 3.15 show that the means and standard de-
viations of the Gaussians are characteristic of the acoustic properties of the
sediment types. Given that the mean grain sizes of the grab samples sug-
gested a homogeneous seabed in this survey area, it might be thought that
if the parameters of the Gaussian were given a significant range within which
they could vary, only one (or a few) Gaussians would be fitted to the entire
histogram. The results show that this is not the case. For both datasets, the
bounds for the standard deviation were set to a range of 0.5–2 dB but for
neither dataset were the lower or upper bounds used after the curve fitting
was implemented. This indicates that the Bayesian classification results are
not significantly affected by the averaging procedure.

3.3.5. Classifying sediments over megaripples
Now we investigate to what extent MBES backscatter data can be used to classify
the sediments over megaripples. This is of particular interest for detailed habitat
mapping [35], engineering projects such as offshore wind farms or pipe laying [23],
and for modelers of sand waves who study the morphology, hydrodynamics, and
sand transport at the seafloor [2, 25]. In the previous sections it is found that
higher acoustic classes correspond to sediments with a larger proportion of coarse
sediments in this study area. These terms will thus be used interchangeably in the
following paragraphs.
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Figure 3.16: Maximum slopes (in degrees), representing megaripple structures, in two typical examples
in Brown Bank area.

Thirty two areas where megaripples were present were selected and partitioned
as described in Section 3.2.2; see Figure 3.16 for two examples. Figure 3.17 shows
the histogram of the maximum slopes computed for the above-mentioned areas.
For these areas the occurrences of acoustic classes per location on the megaripples
were counted. These classification results for the slope bin centers are presented
in Figure 3.18. At the lowest point of the stoss side of the trough, i.e., bin center
(BC) = 2.5∘, the dominant AC is 3 (Figure 3.18, right). From the trough moving
towards the crest, this gradually changes from higher classes to lower classes. The
finest sediments (class 1) are found on the stoss side at BC = 17.5∘, for both the
trough and crest areas. Continuing towards the crest, the sediments are classified
as either class 2 or class 3. At the highest point on the lee side of the crest, BC
= −2.5∘, the dominant acoustic class is again 3. This tends to become coarser when
continuing down the crest towards the trough on the lee side. At BC = −17.5∘, the
steepest point on the lee side, on the boundary between the crest and trough areas
(specified by rectangles in Figure 3.18), a mixture of acoustic classes, ranging from
fine to coarse (class 1 to 4), is observed. This is also clearly visible in the two typical
areas (out of the 32) in Figure 3.19. An important characteristic of this part of the
megaripples, is that the coarsest sediments appear only here (see also Figure 3.19,
left). In the remaining parts of the trough, at BC= −12.5∘, −7.5∘, and −2.5∘, the
sediments are again classified as coarse-grained.

To create a generalized acoustic class per position on the megaripple structure
a weighted average of the dominant acoustic class was calculated for each slope
bin, side of the megaripple, and trough or crest area. This can be considered a
combining of the classification results presented in Figure 3.18. The result is shown
in Figure 3.20. The alternating green and red line on the steepest part of the lee
side slope indicates that the entire range of acoustic classes was found on this part
of the megaripple. We hypothesize that this is a result of megaripple migration.

Megaripples migrate towards the lee side, known based on bathymetry com-
parisons with older data. This is also the average flow direction. We hypothesize
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Figure 3.17: Histogram of maximum slopes computed in 32 typical areas with megaripple structures.

Figure 3.18: Acoustic classification results of 32 typical areas with megaripple structure given for bin
centers ranging from –17.5 to 17.5 degrees; crest (le ), trough ( i ).
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Figure 3.19: Acoustic classification results in two typical areas of Figure 3.16. Black dots indicate steep
slopes of < 10∘ on the lee side of megaripples.

Figure 3.20: Schematic sedimentary composition of megaripple migrating to right; wavelength is 10 m
and depth variation is ±1 m. Colors represent interpolated classes among class numbers 1, 2, 3, and 4,
as in Figure 3.18; dashed green-red lines indicate all variants of sediment types (from fine to coarse).
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that fine suspended sediments are deposited on the lee side of the megaripple.
Then low acoustic classes are expected. At times of high tidal currents, the com-
bination of the steep slope and a downward current causes an avalanche of the
fine sediment deposition [25], leaving only the coarse sediments exposed. For that
area high acoustic classes are then expected. This is why such a range of acoustic
classes are encountered on the steepest leeward slopes of the megaripples.

3.4. Summary and conclusions

T he Bayesian classification method was applied to MBES backscatter data gath-
ered in the Brown Bank area of the North Sea. To obtain reliable classification

results, steep and rapidly changing slopes over tens of meters had to be corrected
for. Acoustic classification results were then compared with video and grab-sample
data.

Based on the results of the sediment grain size analysis it was found that the
seafloor sediments of the Brown Bank area are very homogeneous. The variance
in the mean grain size over the entire area was at the level of the variance within
the triplicate grab samples from individual sampling stations. However, Folk clas-
sification of grab samples, as well as the acoustic classification results were more
discriminative. A further analysis showed that for areas like the Brown Bank, the full
grain size distribution should be used when classifying the grab samples and when
relating this ground truth data to the acoustic classification results. This should be
taken into account for any future sediment studies in homogeneous sandy environ-
ments.

For acoustic classification of sediments in relatively homogeneous environments,
especially over megaripple structures, high spatial and geoacoustic resolutions are
required. There is, however, a trade-off in these resolutions. Therefore, depending
on the aim of a classification application, either of these resolutions can be optimized
for. It was found that the Bayesian classification method remains statistically sound
when optimizing for the spatial resolution, as long as the number of scatter pixels
used in the averaging satisfies the central limit theorem requirements. This is a
pivotal result that underscores the validity of our acoustic classification results over
megaripples.

The results revealed that there was a significant sorting of sediments over
megaripples. Higher acoustic classes, and therefore coarser sediments, were found
in the troughs and on the crests. Low acoustic classes were consistently found to be
on the steepest part of the stoss side of a megaripple. On the, even steeper, lee side
slope of the megaripple a mixture of all acoustic classes was found. These detailed
results have a number of implications. First, for detailed habitat maps, the size of
the megaripple and not that of the sand wave should define the resolution scale
of the map. Next, researchers gathering ground truth data, such as grab samples
and video data, should strive to geo-reference the point measured on the seafloor
with an accuracy well below the wavelength of megaripples to avoid ambiguities in
measurement. Finally, it confirms that the classification of backscatter data from
MBES systems is a powerful method to further study and display the spatial distri-
bution of sediments over megaripple bed forms. As such, it can provide valuable
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information for habitat mapping, engineering projects such as offshore wind farms
or pipe laying, or to serve as field validation data for sand-wave modelers.
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4
The measuring of cm scale sand

ripples by their effect on multibeam
echosounder backscatter data

Become a student of change.
It is the only thing that will remain constant.

Anthony J. D’Angelo

Things don’t have to change the world to be important.

Steve Jobs

Backscatter data from multibeam echosounders are commonly used to clas-
sify seafloor sediment composition. It has been shown that the survey az-
imuth affects backscatter when small organized seafloor structures, such as
sand ripples, are present. These sand ripples are too small to be detected
in the multibeam bathymetry. In this chapter we show that such azimuth
effects are time dependent and are useful to examine the orientation of sand
ripples in relation to the flow direction of the tide. To this end, multibeam
echosounder data at four different frequencies were gathered from the area
of the Brown Bank in the North Sea. The acoustic results were compared
to video and tide-flow data for validation. The sand ripples affected the
backscatter at all frequencies, but for the lowest frequencies the effect was
spread over more beam angles. Using the acoustic data made it possible
to deduce the orientations of the sand ripples over areas of multiple square
kilometers. We found that the top centimeter(s) of the seafloor undergoes a
complete transformation every six hours, as the orientation of the sand rip-
ples changes with the changing tide. Our methodology allows for morphol-
ogy change detection at larger scales and higher resolutions than previously
achieved.

Parts of this chapter have been published in Geosciences (12), 495 (2020) [1]
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4.1. Introduction

T he North Sea is one of the busiest seas of the world [2], with heavy shipping
traffic [3] from major international ports such as Rotterdam, Antwerp, Ham-

burg, and Bremen. At its southernmost point, it connects to the English Channel
at the Dover Strait, which is the busiest shipping lane in the world [4]. In addition
to the shipping activity on the North Sea, it is also one of the most bottom-trawled
continental shelves in the world [5]. Fishing activity is not distributed evenly, but fo-
cused on specific habitats [6]. Shallow nearshore areas are targeted by Beam-Sole
fishers, non muddy flanks of large-scale elevations such as the Doggerbank by
beam-Plaice fishers, and Otter-Mix fisheries are concentrated in deeper areas with
low bed shear stress. To maintain a “Good Environmental Status” amidst multiple
pressures, the European Marine Strategy Framework Directive (MSFD) requires Eu-
ropean states to monitor their marine waters [7]. The use of acoustic methods is
an important component of marine monitoring efforts [8].

Since their introduction in 1964 [9], multibeam echosounders (MBESs) have be-
come a very useful tool for monitoring ocean environments. Initially, these systems
were used mostly for measuring bathymetry. Recently, the use of the co-located
and co-registered backscatter has been increasingly used for seafloor classifica-
tion [10]. The desired backscatter level for seafloor classification is called backscat-
ter strength, which is only dependent on the frequency of the transmitted signal,
the angle of incidence of the acoustic wave relative to the seafloor [11], and the
morphology and composition of the seafloor [12]. To get backscatter strength from
backscatter, it needs to be corrected for the source level of the transmitter, trans-
mission loss due to absorption and spreading, the angle-dependent sensitivity of
the receiver array, the ensonified area of the seafloor, and any electronic gains
applied by the sonar between signal reception and the logging of the backscatter
data [12]. To characterize the composition of the seafloor accurately by the use of
the backscatter strength, the effect of seafloor morphology on backscatter needs
to be well understood.

The effect seafloor morphology has on backscatter can be particularly strong and
unpredictable when the seafloor roughness is organized. For example, the presence
of small sand ripples had an effect of up to 10 dB on angular-response curves (ARCs)
according to [13]. In terms of sediment classification, an error of 10 dB could mean
that Sandy Mud would be classified as slightly Gravelly Sand, a difference of three
acoustic classes in [14]. It was further found that this effect was dependent on the
survey azimuth. Lurton et al. [13] showed this with experimental data collected by
sailing a compass rose survey pattern over the same area of the seafloor. ARCs
were mainly affected between beam angles of 5° to 30°. The sand ripples were too
small to be identifiable in the bathymetry measurements, despite their noticeable
effect on the backscatter. It was further found in [15] that for sandy seafloors the
backscatter values from a single area of seafloor changed significantly (>3 dB over
the full angular range) during a 13 hour time series. This change was attributed to
the changing of the seafloor roughness.

The fact that sand ripples affect the backscatter without them being detectable
in the measured bathymetry increases the complexity of correcting for their ef-
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fects. A means of detecting the presence of sand ripples might be by the use of
high-frequency Side Scan Sonar (SSS) imagery. In [16], statistics-based model-
ing was used to simulate the effect that sand ripples would have on SSS imagery.
The sand ripples in that study were larger, with a wavelength of ~0.5 m, than the
ones encountered in this study. In [17], very high resolution (~0.04 m pixel size)
SSS survey data were used to map stones and boulders for habitat mapping. In
addition, sand ripples of a similar size were visible as those in this study. How-
ever, the orientation of the lee- and stoss-side slopes could not be discerned. This
suggests that, in order for SSS data to be used to detect the sand ripple orien-
tation, the survey would have to be carried out specifically for this purpose and
with the SSS operating at its highest frequencies. As was the case for boulder
detection in [17], it is likely that only a specific and small range of the SSS data
would be usable for the detection of sand ripple orientations when operating with
such settings. By using an interferometric synthetic aperture sonar [18], sufficient
resolutions might be achievable.

Photographic and videographic methods can also be used to detect sand rip-
ples [19, 20]. In [20], stereo-photo images of the seafloor were used to create
digital terrain models (DTMs) of the sand ripples. Video methods can be used to
create statistics on the presence and organization of sand ripples [19] or to confirm
the presence and size of sand ripples [13].

The research site for this study is located in the Brown Bank area of the North
Sea. Here, superimposed sand wave structures of multiple sizes are found [11].
The largest of these, tidal ridges, have a wavelength of ten(s of) kilometers and
have been well studied [21–25]. Sand waves have a wavelength of (several) hun-
dreds of meters and have also been extensively studied in the southern North
Sea [11, 19, 23, 26, 27]. Megaripples have a scale of tens of meters [11, 26, 28].
All of the above bedforms are easily detectable in modern MBES bathymetry data.
There is, however, an even smaller sand wave like structure, referred to as a sand
ripple. These sand ripples have a wavelength of ten(s of) centimeters, and it will
be examined to what extent their size, form, and orientation can be ascertained
based on how they affect MBES backscatter.

The goal of this chapter is four-fold. Firstly, we link the patterns that deviate
from normal (ARCs) to physical seafloor features that are smaller than the bathy-
metric resolution of the MBES. We then use the acoustics to predict the orientations
of sand ripples at a given time. These two findings are confirmed with video data,
and matched with the oscillation of the modeled tidal currents. Then, we exam-
ine the relationship between the acoustic results and the angles of the stoss- and
lee-side ripple slopes. We furthermore examine how the backscatter of different
frequencies is affected by these seafloor ripples. Finally, we convey to the reader
that the effects that the bedforms, which are smaller than the MBES bathymet-
ric resolution, have on the backscatter should be viewed not only as a source of
ambiguity, but also as a powerful diagnostic tool.
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4.2. Study area, materials, and methods
4.2.1. Study area

T he The research data were collected in May of 2019 in the area of the Brown
Bank. The Brown Bank is in Dutch territorial waters close to the border with the

United Kingdom (Figure 4.1). This area was visited with the NIOZ research vessel
the R/V Pelagia. Two multibeam echosounders (MBESs) were used. The NIOZ
hopper camera was also deployed to collect video data of the seafloor [19, 29].

The main seafloor sediment at the Brown Bank is sand [11, 24]. In the troughs
of the Brown Bank, there is a wider distribution of sediments than on the crest,
but the mean grain size (𝜙 ≈ 1.65 or 𝜇𝑚 ≈ 318) is similar [11]. The average
water flow in this area is in the northern direction [30], but the tidal flows oscillate
between dominantly North and South in six-hour cycles. Based on modeled tide
data, the maximum northward flow during the time of the survey was ~0.8 m/s
and the maximum southward flow was ~0.7 m/s.

The seafloor in this area has repeating superimposed seafloor structures of at
least four different sizes. The first two are tidal ridges and sand waves, both of
which are visible in Figure 4.1a. The third are megaripples, which are detectable
in MBES bathymetry data and the last are sand ripples. The wavelengths of these
structures are ~10 km, ~200 m, ~15 m, and ~15 cm, respectively. The length 𝐿 of
the sand ripples can be determined from the video data. However, it is challenging
to measure the height 𝐻 of the sand ripples from the data collected during this
cruise. From the literature, there are a few estimates of typical ripple heights.
Ashley [31] gives two equations to calculate the height of sand ripples and sand
waves as a function of their length 𝐿 (Figure 4.2):

𝐻 = 0.0677𝐿 . (4.1)
𝐻 = 0.16𝐿 . (4.2)

Equation (4.1) is based on fitting a curve to the measurements of over a thou-
sand flow-transverse bedforms [32]. Equation (4.2) gives an upper bound of 𝐻
based on the same raw data. Baas [33] gives slightly different values in the form of
a vertical form index (or ripple index), given as 𝐿/𝐻, for which the most common
value is 8–9. However, Baas [33] also indicates that it is not uncommon for ripples,
of the type found in this study area, to have lower or higher values. The high values
can be as high as 20. Figure 4.2 depicts a typical variation of height along a ripple,
for several of these values of 𝐻. The length of the ripple in the schematic is based
on the average observed length of sand ripples in the current study area. The ripple
form is after [33]. The values of 𝐻 used here are 𝐻 = 𝐻 , 𝐻 = 𝐻 , 𝐻 = 𝐿/8,
and 𝐻 = 𝐿/20. Regardless of the value of 𝐻 used, these sand ripples will not be
detectable in the available MBES bathymetry.

4.2.2. Multibeam echosounder data
For this survey, two MBESs were used, a Kongsberg EM 302 (Kongsberg Mar-
itime, Kongsberg Gruppen ASA, Kongsberg, Norway) operating at 30 kHz, and a
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Figure 4.1: ( ) Bathymetry of the Brown Bank area with black lines indicating survey lines, red lines
indicating the location of video transects, and black arrows indicating the tidal ridge and superimposed
sand waves; ( ) geographic setting of the research site at the Brown Bank, color indicates bathymetry.
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Figure 4.2: Schematic structure of the sandripples expected in the survey area deduced from the ripple
wavelength.
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multi-spectral R2Sonic 2026 MBES (R2Sonic, Austin, Texas) operating at 90, 200,
and 450 kHz. While the EM 302 was hull mounted, the R2Sonic was mounted on
a pole on the side of the vessel. Because the R2Sonic was installed only for this
survey, a patch test was performed prior to survey operations, using a shipwreck
as a ground object. Location data were acquired with a global positioning system
(GPS). Ship motion data were supplied by a motion reference unit (MRU). The GPS
and MRU were both Kongsberg Seapath 360 (Kongsberg Seatex, Kongsberg Grup-
pen ASA, Trondheim, Norway) units. Just prior to this survey, the MRU system was
replaced on the R/V Pelagia. During the survey, an incorrect MRU offset was dis-
covered. In the Seapath software, an MRU yaw offset of 35°, towards starboard,
was registered when the actual yaw offset of the MRU was 0.57° towards port.
The ray-tracing error thus induced was corrected in post-processing. For the EM
302 data, there were no lingering artifacts after the correction. The R2Sonic op-
erated with roll compensation enabled some of the data collected before the MRU
offset error was corrected, falling outside the beam angles of −60° and 60° after
data correction in post-processing. This does not affect the reliability of the results.

The bathymetry and backscatter data from all EM 302 survey lines were logged
in the Kongsberg Seafloor Information System (SIS). For this sonar, the SIS software
is used for both data logging and sonar control. The R2Sonic, on the other hand,
was operated and controlled using R2Sonic’s Sonic Control software, while the data
were logged in the Quality Positioning Services (QPS) (Quality Positioning Services,
Zeist, The Netherlands) Qinsy software. Both bathymetry and backscatter data
were collected. During survey operations, the R2Sonic was constantly monitored
to ensure that the backscatter (BS) data would not be saturated (clipped). If there
was a danger of saturated data, then the gain was adjusted as needed.

After the cruise, the data from both MBESs were cleaned. As a first step, all
bathymetric outliers were removed using the QPS software Qimera. After this,
Qimera’s automated data-cleaning algorithm was applied. The spikes in the 90-kHz
data that resulted from the occasional interference from the 30-kHz sonar were
removed. In post-processing, it was noticed that there had been some movement
in the side pole from one survey to the next. This introduced lever-arm errors
in the R2Sonic data, mainly related to the yaw and minimally to the roll of the
R2Sonic MBES. These offset artifacts were also corrected, using Qimera and data
from overlapping survey lines. The side pole was also not perfectly stiff. When there
was wobble in the pole, it was very evident in the bathymetric data, especially in the
outer beams. Unlike the error introduced between surveys, which was correctable,
the errors induced by pole wobble were not correctable and the data containing
these errors were deleted.

The GPS data had a vertical accuracy of 0.5 m. Because the R2Sonic MBES sys-
tem had better precision than 0.5 m, unpredictable vertical offsets in the bathymetry
data were visible. Therefore, the vertical GPS data were disregarded, and the depth
measured based on motion-corrected MBES data in conjunction with the known ves-
sel draft. To overcome the effect of the tide, corrections were applied in Qimera
from known tide data. After all corrections were applied, the EM 302 data were
read into Qinsy and converted to ASCII format. The R2Sonic data were exported
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from Qimera in generic sensor format (gsf) from which the data were converted to
the ASCII format. The ASCII data were read into MATLAB for further processing.

The backscatter (BS) data were corrected for spreading and frequency specific
absorption. The corrections used ocean conditions as measured during the cruise
based on conductivity, temperature, and pressure (CTD) data collected at the survey
site. For the EM302 data, source levels applied during acquisition were used as
outlined in [34]. For the R2Sonic data, receiver gain and source level corrections,
which included directivity patterns, were applied in post-processing according to
manufacturer recommendations. The backscatter values should be considered to
be relative values, since absolute target strength calibrations were not performed.
Ensonified area correction was performed for both sonars. For the R2Sonic data,
an ensonified area correction was applied that took seafloor slopes into account,
as was done in [35]. For the EM 302 data, it was necessary to first remove a
flat seafloor based ensonified area correction that is implemented by Kongsberg.
After this, slope and ensonified area corrections were applied as was done in [11,
36] by the use of a digital terrain model based on the bathymetry from the MBES
data. As part of the verification process, data that are not corrected for slope,
receiver gain, and source levels are used; it is indicated when this is done.

The ARCs were computed by binning the beam angles from lowest to highest.
The number of bins was determined by the number of beams of the MBES. In the
case of the EM 302, there were 432 beams and in the case of the R2Sonic, 256
beams. All of the backscatter data within each angle bin were averaged per survey
line. The average backscatter value per bin was then plotted as a function of beam
angle to form the ARC.

For part of the analysis, the backscatter values are not plotted as a function of
angle relative to the transducer, but of angle relative to North (Figure 4.3). This
was done in order to obtain ARCs independent of sailing direction. This was only
done for lines that were sailed in the East and West directions.

4.2.3. Video data
Videos of the seabed were collected in the troughs on either side of the Brown Bank.
Video transects ranged in length from ~50 m to ~425 m (Figure 4.1). The NIOZ
hopper camera (Figure 4.4) that was used is described well in [19, 29]. It consists of
a custom-made drop frame with a downward-facing HD video camera, an underwa-
ter light source (100 W), and two parallel green lasers (30 cm apart). The camera
system was lowered to 0.5 m above the seabed, tethered to the vessel by a Kevlar
cable with a glass fiber core allowing real-time video transfer. During camera survey
operations a sailing speed of ~0.15 m/s was maintained.

In order to determine the orientation of the sand ripples on the seafloor from
the video data, the following methodology was used. Based on the modeled tide
data (Section 4.2.4), four video transects were selected, two of which were sailed
when the tide was the strongest in the northern direction and two when the tide
was the strongest towards the South. Of the selected transects, valid recordings
were selected. Invalid recordings were those in which the seabed was not (clearly)
visible, owing to particle clouds or motion, or in which at least one of the lasers was
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Figure 4.3: Schematic of the different ways the ARCs are calculated throughout the paper. ( ) backscat-
ter strength as a function of beam angle as calculated by the UW-APL model [37] at 90 kHz for medium
sand. The different colors for the negative beam angles and positive beam angles indicate what data
are used for the calculation of the ARCs as indicated in sub-figures ( ,c); ( ) a schematic of the data
typically used to calculate ARCs. The black arrow indicates the sailing direction of the survey vessel per
survey line. Red lines indicate port-side data, each line representing a ping. The red lines are the data
that would be averaged per angle and represented by the red portion of the ARC in sub figure ( ). Blue
lines indicate starboard-side data and correspond to the blue portion of the ARC in sub figure ( ); (c)
similar to sub figure ( ), but red lines are now always South of and blue lines are always North of the
survey vessel.
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Figure 4.4: Front view of the NIOZ hopper camera.

not visible. Of the valid recordings, seven images (still frames from the continuous
video) were selected. Because the orientation of the video camera was not known,
it was checked if the video camera was moving towards the top of the image, deter-
mined by observing the continuous video, or not. If not, the image was discarded
and a replacement was found. For one of the transects, the video camera domi-
nantly moved towards the bottom of the images. For this transect, images when
the video camera moved towards the bottom of the image had to be used. (Care
was taken to use the correct offset to calculate the sand ripple orientation also for
this transect.) After the images were selected, the software ImageJ was used to
draw seven lines on the images from crest to crest of the sand ripples. The statistics
for line direction, relative to the image, and line length, relative to the laser points
in the image were then computed in ImageJ. The mean compass direction of the
sailed video transect was computed in ArcGIS. Both the calculations from ImageJ
and from ArcGIS were then imported into the R software package and the ripple
directions, relative to the images, were corrected using the mean transect direction,
to have compass headings. The results indicated the compass direction that the
lee-side of sand ripples were facing towards, in degrees from 0 to 360. In this case,
0° and 360° are both due North.

The lines in ImageJ used to calculate the orientation of the sand ripples were also
used to determine the wave length 𝐿 of the ripples. The known distance between
the laser points in the image were used to scale the length of the lines drawn from
crest to crest of the sand ripple to a physically meaningful length.
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4.2.4. Tidal model data
The tide data for this research were generated by the Dutch Continental Shelf Model,
version 6 (dcsm v6) [38]. This model is maintained by Rijkswaterstaat and Deltares.
The tidal model covers the Dutch Continental Shelf (DCS) from 48° to 62.25° N and
12° W to 13° E. The resolution is 1/8 degrees in longitude and 1/12 (~6.5–9.3 km
and 9.25 km respectively) degrees in latitude. The model uses a set of eleven tide
stations at the boundaries and space and time varying wind and pressure fields as
boundary conditions and input parameters, respectively. A timestep of 10 min is
used. The output is validated by the use of nineteen tide stations on the DCS that
are not a part of the tide stations used for boundary conditions. The root mean
square error in the model output is less than 0.094 m.

Modeled tidal data were retrieved for the center of the survey area, at 52.6167°
N and 3.3167° E. The tidal flow velocities were obtained in the North and East
directions in meters per second. These data were read into and used in MatLab for
comparison to ARC types and the analyzed video data.

4.3. Results
4.3.1. Angular response curves

T he method of computing the ARCs that was described in Section 4.2.2 is ap-
plied to the backscatter data from both the EM 302 and the R2Sonic multibeam

echosounders (Figure 4.5). Backscatter data are often affected by errors induced
by the mechanical properties of the transducer [12]. A characteristic of such errors
is that they occur in all survey lines collected by the given sonar as long as the
settings are kept constant. This means that the errors are independent of survey
azimuths and sediment type. In the ARCs computed for all the different frequen-
cies, there are a few examples of this. The clearest of these is at ± 35° in the
450-kHz data (Figure 4.5d). This artifact is removed for the remainder of the fig-
ures by using the mean of the ARCs that were least affected by the sand ripples,
interpolating the area of the dip with a line, and adding the difference between this
line and the mean ARC to all the ARCs. The second most evident one is at 45° in
the 30-kHz data (Figure 4.5a). For the purpose of the analysis of this paper, it was
not necessary to remove this artifact.

The remaining artifacts are not present across all ARCs of a given frequency.
The most noticeable case of this is in the ARCs of the 200-kHz data at ± 30° (Figure
4.5c). At these angles, there is an increased backscatter intensity for some survey
lines but not for others. A further analysis reveals that the lines with increased
backscatter intensity were surveyed either from East to West or from West to East.
Unlike the typical behavior of an ARC (Figure 4.3) [37], these ARCs do not peak at
nadir but slightly off nadir. In addition, between 30° and 35°, there is a bump in
the ARC. When the backscatter data are corrected both with respect to the seafloor
slope and ensonified area, this behavior is still present (Figure 4.6c,d). The main
difference in the slope corrected data is that the peaks in question are more widely
distributed across more beam angles.

From Figure 4.5c, there is not a clear pattern, but some of the curves do show
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Figure 4.5: ARCs for frequencies 30, 90, 200, and 450-kHz in sub figures ( – ) respectively. Each
curve is obtained as an average over a full survey line. The artifacts at ±35° of the 450-kHz data are
removed from the remainder of the analysis.
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a mirrored pattern. An obvious hypothesis is that these inconsistencies are due to
sailing direction. Comparing only specific lines to each other as in Figure 5, this
hypothesis would be supported. However, a further investigation showed that the
ARC pattern is not consistent when only one sailing direction is considered (Figure
4.7). To investigate the cause for this change, ARCs were plotted not as a function
of beam angle relative to the transducer but relative to North (Figures 4.3 and 4.8).
This allowed the ARCs to be classified into four different types. ARCs which follow
a typical pattern, with the peak at nadir (Figure 4.3), are referred to as Type 0.
ARCs where the close-to-nadir peak is North of the transducer were called Type 1.
When there were symmetrical peaks on either side of nadir, it was defined as Type
2 (only 1 survey line was Type 2). In addition, when the close-to-nadir peak was
to the South, it was classified as Type 3. All of the East West lines that were sailed
occurred between the evening of 21 May and the night of 23 May 2019. During the
night of 21 May, acoustic surveys were carried out continuously for 11 h (ARC Type
indicated by solid blue line in Figure 4.9). Then, on the morning and evening of 22
May, and the evening of May 23, single East–West survey lines were sailed (ARC
type indicated by blue stars in Figure 4.9). It was found that the ARC type switched
from Type 1 to Type 3 on six hour intervals (Figure 4.9). There was one instance
of a Type 2 ARC on the evening of 22 May, at the point of a switch from Type 1 to
Type 3. When the times of the switch in ARC Type are compared to the modeled
tidal flow data, it is clear that the ARC Type change matches the switch in tidal flow
direction (Figure 4.9).

4.3.2. Video results
Video transects were selected and analyzed as explained in Section 4.2.3. An exam-
ple of a selected image from the video footage is seen in Figure 4.10. The seafloor
in this image is lit from the above right. Visible in this image is a seafloor with
sand ripples. The gentle stoss-side slopes of these ripples and the lee-side slopes
that are at the angle of repose1 (more on this in Section 4.4.1) are both clearly
visible. Also shown are small yellow lines with a black dot in the middle. These
are examples of the lines that were drawn in the software ImageJ to determine the
ripple direction. The black arrow indicates the resulting estimate for the direction
of these lines. Additionally, close to the top of the image are two greenish yellow
dots. These are from the laser pointers of the camera system that are positioned
exactly 30 cm apart.

The results from the analysis of the four video transects are shown in Table 4.1.
This table gives the date and time, the mean orientation, mean length, and the
associated standard deviations of the sand ripples for each transect. For the first
two of these transects, 𝑆1 and 𝑆2 , the lee side of the sand ripple was facing
South. For the last two transects, 𝑆2 and 𝑆2 , the lee side was facing North.
The southward facing sand ripples had a length just over 10 cm. The North facing
sand ripples had a length closer to 15 cm. The standard deviation for the orientation
of the sand ripples was much greater in the first line than in the others, but still

1Angle of repose is the maximum slope, measured in degrees from the horizontal, at which loose solid
material will remain in place without sliding.
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Figure 4.6: ( , ) ARCs using the “as logged” data for a survey line sailed from East to West and
vice versa. Each ARC is computed based on data from consecutive subsets of pings of the survey line
in question; (c, ) slope corrected ARCs from the same lines as in ( , ). All ARCs are of 200-kHz data.

Figure 4.7: ARCs from 200-kHz data for all survey lines sailed from West to East.
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Figure 4.8: ARCs by frequency and type in sub figures. ARCs depicted in blue are from lines surveyed
from East to West, and those depicted in red were sailed from West to East. The green curve is the
average backscatter intensity of all ARCs.



4.3. Results

4

77

May 22, 00:00 May 22, 12:00 May 23, 00:00
Time 2019   

III

II

I

A
R

C
 T

yp
e

0

0.2

0.4

0.6

0.8

1

F
lo

w
 v

el
oc

ity
 (

m
/s

)

Tide flow East
Tide flow North
Tide flow Total
ARC Type

Figure 4.9: ARC type superimposed on modeled tidal flows. Bold blue lines indicate times when multiple
consecutive lines were of a particular ARC type. The blue stars indicate times when single survey lines
of the given type were available. Northward tide velocity is shown in red, eastward in green, and total
tidal flow velocity is shown with narrow blue lines.

Table 4.1: Sand ripple statistics from video data.

sec D e i e ie e c SD SD c

S14 19-5-19, 08:40 179.7 10.6 32.2 2.5

S23 20-5-19, 09:00 149.3 11.0 5.9 1.9

S28 20-5-19, 14:30 351.6 14.8 7.8 1.2

S42 22-5-19, 15:00 41.1 17.7 10.2 3.9

mainly facing South.
In order to compare this information to the modeled tidal flows, the data are

superimposed on the tidal flow data in Figure 4.11. It is evident that the orientation
of the sand ripple as derived from the camera measurements matches the tidal flow
direction. This indicates that the ripple direction changes with the turning of the
tide. In the East and West direction, for which the tidal flow is less strong, there is
not a clear match with ripple directions (Figure 4.11).
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Figure 4.10: Still frame from video data. The black arrow in the frame indicates the direction of the
sand ripples. The arrow above the frame indicates the direction of camera movement. Yellow lines were
drawn in ImageJ to determine ripple orientation and length.
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Figure 4.11: The East and North components of the sand ripples calculated from video ground-truth
data given by the star symbols. The East and North components of the tidal flow data in thick lines,
and the respective zero crossings in thin vertical lines.
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4.4. Discussion

T hus far it has been shown that there are small sand ripples on the seafloor that
are not detectable in MBES bathymetry data. They are, however, visible in the

video data and they also cause a discernible pattern in the backscatter ARCs. These
sand ripples change direction with the changing of the tidal flow. The backscatter
behavior that was found, can be used as a diagnostic tool. On the one hand a
diagnostic tool to characterize the properties of the sand ripples themselves. Even
more powerfully, it is an acoustic tool with which the orientation of sand ripples can
be measured over the scales of kilometers. For the situation considered, the results
point to the complete reworking of the top layer of sediment in a matter of hours.

4.4.1. Quantifying sand ripple slopes based on backscatter data
Modeled results in [13] indicate that the angles at which the off-nadir peaks in the
ARCs occur should match the angles of the slopes of the sand ripples. For the
model, they used a “facet” model approach based on [39] for the close-to-nadir
angles. For the oblique angles, Lambert’s law was used to describe the backscatter
coefficient angle dependence. They simulated two seafloor ripple types. The first
was a strictly sawtooth shaped sand ripple and the second a rectified-sine-shaped
sand ripple. For the rectified-sine-shaped sand ripples, the resulting modeled ARC
had peaks at the beam angle 𝛾 , where 𝛾 was also the maximum slope in the
simulated sand ripples. For the simulated seafloor with a sawtooth-shaped sand
ripple, the stoss and lee slopes had angles of 𝛾 and 𝛾 , respectively. For this
simulated seafloor, there were peaks in the modeled ARCs at beam angles 𝛾 and
𝛾 . Based on this theory, it is expected that off-nadir peaks in the ARCs correspond
to the slopes of the seafloor sand ripples.

The ARCs of Type 1 and Type 3 show peaks around ~10° and ~35° (Figure
4.12). These peaks are a little easier to recognize if the difference between the
average ARC of either Type 1 or Type 3 and the average ARC of Type 0 is considered
(Figure 4.13a,b Types 1 and 3, respectively). Based on the location of these peaks,
sawtooth-shaped sand ripples with lee-side slopes of ~35° and stoss slopes of
~10° would be expected. Sawtooth-shaped sand ripples do indeed characterize
the corresponding ground-truth video data. Furthermore, during the analysis of
the video data, it was noticed that there were active avalanches on the lee side of
the sand ripples. This video evidence implies that the lee-side slopes of the sand
ripples are near the angle of repose. According to [40], this angle, for “water filled”
sand, is between 15° and 30° and, for dry sand, it is 34°. The peaks in the ARCs
(Figure 4.13) would indicate that the lee-side slopes are at ~35°. These values
are somewhat higher than the “water filled” values given in [40] and up to values
listed for dry sand. When the angle of repose was studied for non-uniform sediment
in [41], the “in water” angle of repose for the same sediment mixtures was found
to be higher than that of the “in air” angles. They listed angles of 38.29° (in air) to
40.96° (in water). These angles are higher than the ARCs would suggest, but this
could be explained by the fact that [41] considered larger grain sizes than those
found in the current study area. The match between the implied lee-side slopes
indicated by the ARCs and the theoretical and experimental angles of repose from
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Figure 4.12: Average ARC per type superimposed for each frequency. ARCs were vertically shifted to be
of similar intensity around nadir. ( ) ARCs of Type 1; ( ) ARCs of Type 3.

the literature supports the use of these acoustic methods to indicate the angles of
sand ripples. It should be noted that this angle measurement does not come from
the bathymetric measurements, but from the behavior of the backscatter at specific
beam angles.

For the lee side of the sand ripple, we get an accurate independent estimate of
the steepness of the slope, owing to the fact that avalanching occurs at a known
angle of repose. For the stoss-side slopes, it is much harder to obtain independent
information of the angles. From the video data, it is not possible to measure these
angles. Furthermore, the surfaces of the box cores that were taken in this survey
were deemed insufficient in size for accurate measurements. In addition, it is not
known whether the surfaces remained intact in the grab taking process. As such,
from the data in this research, we cannot conclusively say what the angles of the
stoss sides of the sand ripples are. However, because of what we know from the lee
slopes and the accuracy of their measurement, it is believed that the close-to-nadir
peak in the ARCs is an accurate measure of the stoss slopes of the sand ripples.
These slopes, thus, would be at ~10° (Figure 4.13).

To further investigate if these results are reasonably accurate, a strictly sawtooth-
shaped sand ripple, with the angles derived from the ARCs for the stoss- and lee-side
slopes, is superimposed on the schematic of typical sand ripples of the size found
in the study area. This comparison depicts that the derived slopes match well with
the expected slopes as reported in the literature (Figure 4.14). Using the stoss-
and lee-side angles as 10° and 35° would give a vertical form index of 7.5 when
assuming a strictly saw-tooth shape. Given that the sand ripples are unlikely to
have a perfect sawtooth form, a larger vertical form index is expected, which would
match well with the values given by [33]. We thus conclude that both the stoss-
and lee-side angles of 10° and 35° are reasonable values for the sand ripples in the
study area.
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Figure 4.13: ) the difference between the average ARC of Type 1 and Type 0 as a function of angle
away from nadir; ( ) the difference between the average ARC of Type 3 and Type 0 as a function of
angle away from nadir. Positive angles are towards North. The curves are based on the 200-kHz data.
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Figure 4.14: Schematic sand ripples from Figure 4.2, compared with a hypothetical, strictly sawtooth-
shaped sand ripple with angles deduced from ARC indications.
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Figure 4.15: ( ) the difference between the average ARC of Type 1 and Type 0 per frequency; ( ) the
difference between the average ARC of Type 3 and Type 0 per frequency.

4.4.2. Sand-Ripple Effects on Different Frequencies
We now analyze how the sand ripples affect different frequencies. For each fre-
quency, there are clear peaks around ~10° and ~35° (Figures 4.12, 4.13 and 4.15).
For the peaks corresponding to the steep lee slopes of the sand ripples lower fre-
quencies generally correspond to higher peaks, with a difference as large as 1.5
dB between the frequencies. For lower frequencies, the peaks are also closer to
nadir by up to 8°. For the peaks corresponding to the stoss-side slopes of the sand
ripples, no trend for the increasing or decreasing frequencies was found. However,
the 200-kHz peak was at 11° and the 30-kHz peak was at 15°, a difference of 4°.
The 450-kHz peaks were between the 200-kHz and 90-kHz peaks.

According to [13], different frequencies were similarly affected by sand ripples.
They used 300 kHz and 100 kHz, although they did not show the 100-kHz results.
They also claimed that angles higher than 40° would not be affected, which is
confirmed by our results for frequencies between 90 kHz and 450 kHz. For the
30-kHz data, however, angles higher than 40° were also affected. Furthermore,
the effect of the lee slopes was spread over more angles in the case of the 30 kHz
data. We hypothesize that this is because the flanks of the lee side slopes are
shorter than the 5 cm signal wave length at 30 kHz. As such, these flanks no
longer follow a specular scattering regime as assumed by the “facet” model [13],
but more of a roughness scattering regime.

For each of the frequencies considered here, the extent of the beam footprint
should not have a significant effect on the backscatter response at the angles of
the sand ripple slopes. Even in the case of the 450-kHz data, the beam footprint in
the shallowest water still had an across-track extent covering more than one sand
ripple (Figure 4.16). Additionally, the fact that the lee slopes of the sand ripples
affected more angles in the 30-kHz data were not due to a difference in beam
footprint. The 90-kHz beam footprint of the R2Sonic had a larger extent than that
of the 30-kHz EM 302, and the data were not affected over as many angles.
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Figure 4.16: Indications of beam footprint extents in comparison to the wavelength of the sand ripples.
Black, red, green, and blue rectangles correspond to the footprints for 30, 90, 200, and 450 kHz.
The smaller rectangles indicate the extents of the footprint at a 10° beam angle and with the shallowest
water depths encountered during the survey. The larger rectangles indicate the extents of the footprints
at a 35° beam angle and with the deepest water depths encountered during the survey. The lighter
and darker background areas correspond to troughs and crests of sand ripples of the size found in the
survey area.
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4.4.3. Implications for Backscatter-Based Sediment Classifi-
cation

Because backscatter is affected by sand ripples, the results in this paper also have
implications for the outcome from a number of different types of backscatter-based
classification algorithms [42]. These include algorithms where the classification is
based on parameter estimation by the fitting of curves to the ARCs [43], algorithms
where backscatter intensities are considered per beam angle [11, 14], and algo-
rithms where a correction curve for the mechanical properties of the transducer is
calculated [12] using survey data tainted by the presence of undetected sand rip-
ples.

This is not to say that such algorithms cannot be used in sandy areas with high-
velocity tidal currents. Algorithms based on ARC fitting may need to be adjusted
in such areas—for example, by giving the angles that are the most likely to be
affected less weight when fitting the curves. Algorithms considering single beam
angles should avoid using beam angles that are affected. According to [13] and
our results for frequencies 90 kHz and higher, angles farther from nadir than 40°
should not be affected by these types of seabed features. As for the calculation of
correction curves for the mechanical properties of the transducer, this research and
that of [13] strongly suggest that data from a sandy seafloor area with high current
velocities should not be used to calculate the correction curves.

It is common to correct backscatter values for the seafloor slope [11, 12, 36].
The slope correction is performed by using the bathymetry that comes from the
same data as the backscatter. As is clear from the case in this research, see Fig-
ure 4.6, and is also from [13], the seafloor features that affect the backscatter data
here are smaller than the resolution of the MBES bathymetry. As such, for these
features, a slope correction cannot be carried out. For future work, it would be
worth examining if new developments, like R2Sonic’s Ultra High Density (UHD) set-
tings, could resolve these seafloor features. If that is possible, then a slope or other
correction may also be within reach for these seafloor features.

However, if a survey was designed and carried out specifically to detect sand rip-
ples, with bathymetry, of the size found here, by mounting an MBES on a remotely
operated vehicle (ROV), using high enough frequencies, and slow sailing speeds,
the effect encountered here could still not be ruled out, although the effect would
then be caused by proportionally smaller ripples. On the flip side, it is also possi-
ble that mega ripples, which are easily detected in the bathymetry in this survey,
would similarly effect the backscatter of MBESs operating in the deep oceans with
low frequencies.

4.4.4. Sand Ripple Detection over Large Geographical Areas
The final and most important matter that this study shows, which would be difficult
to show by another methodology, are the large geographical scales at which the
sand ripples change. Tidal ridges [24, 25], sand waves [27, 44, 45], and megarip-
ples [28, 46, 47] have been studied at great length over the years, using grab
samples, MBES bathymetry, SSS data, and video data, along with sediment trans-
port models. Although these methods are effective for large seafloor structures, it
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would be challenging to use these in ocean environments for sand ripples. This is
due to the small scale of sand ripples and the difficulty of detecting them. Using
video systems would be an effective method to study sand ripples in the ocean.
However, detailed experiments, for the most part, have been carried out in the lab.
SSS imagery may also be able to show at least the presence of these sand ripples,
if operated correctly, but it is unknown if the orientation of the sand ripples could
be determined [16]. The use of the MBES backscatter, as an acoustic instrument,
allows the large-scale study of the behavior of the sand ripples in ways that the
other methodologies are unable to do. The results of the backscatter data in this
study conclusively show that the orientation of the sand ripples changes to opposite
directions across many kilometers of seafloor in a matter of hours.

The results from this research further apply to seafloor classification and moni-
toring efforts over most of the sandy southern portion of the North Sea. They also
apply to many other areas, including places such as the Outer Bristol Channel off
the Welsh coast [48], in the western part of the Barents Sea [49], small parts of
the Cook Strait [43], and large parts of the continental shelf of the East China Sea
and South China Sea [50], to name just a few. All of these areas are sandy areas
with a potential for high velocity currents.

4.4.5. Sand ripple detection over large geographical areas
The final and most important matter that the study shows, which would be difficult
to show by another methodology, is the large geographical scales at which the
sand ripples change. Tidal ridges [25], sand waves [44], and megaripples [27, 28,
45–47] have been studied at great length over the years. The methodologies of
these studies include the use of grab samples, MBES bathymetry, SSS data, and
video data, along with sediment transport models. Although these methods are
effective for large seafloor structures, it would be challenging to use these in ocean
environments for sand ripples. This is due to the small scale of sand ripples and
the difficulty of detecting them. Using video systems would be an effective method
to study sand ripples in the ocean. But detailed experiments for the most part,
have been carried out in the lab. The use of the MBES backscatter, as an acoustic
instrument, allows the large-scale study of the behavior of the sand ripples in ways
that the other methodologies are unable to do. The results of the backscatter data
in this study, conclusively show that the orientation of the sand ripples changes,
to be in opposite directions, in a matter of hours. And we are able to show this
behavior over scales of kilometers, something that another methodology is unable
to do at the present time.

4.5. Summary and conclusions

I n this chapter, we found that small-scale repeating seafloor structures (sand
ripples) have a profound impact on ARCs. These ARCs are calculated from MBES

backscatter data. Visible in these ARCs are unexpected off-nadir peaks. These
patterns were influenced by the survey azimuth, but not consistent when the survey
azimuth was held constant. It was found that the pattern switched on the same time
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intervals as the switch of the tidal flow direction. Lurton et al. [13] found similar
survey-azimuth-dependent backscatter patterns. We further show that, even for
the same area of seafloor and a constant survey azimuth, backscatter results can
differ in time. Video data confirmed that the switch in ARC pattern matched an
orientation switch in sand ripples on the seafloor. These results have implications
for several currently used classification algorithms. In particular, care must be taken
that it is not seafloor morphology, rather than seafloor sediment composition that is
being characterized when performing backscatter-based seafloor characterization.

We suggest that the pattern in the ARCs is useful as a diagnostic tool. Firstly,
the off-nadir peaks in the ARCs indicate the slope angles of the sand ripples.
The slopes indicated by the ARCs in this research matched well with typical sand
ripple slopes from the literature. From the two angles, the avalanching observed for
the lee-side ripples in the video data allowed the use of the known angle of repose
for sand in water to be compared with the angles indicated from the ARC patterns.
The indicated slopes of the stoss side of the sand ripples are harder to validate.

Another strength of this research is that we had four frequencies of MBES data
from the same areas of the seafloor, all gathered at the same time. This was possible
by operating two different MBESs simultaneously. The first of these operated at 30
kHz and the other operated at multiple frequencies, 90, 200, and 450 kHz. All
of these frequencies were affected similarly by the gentle stoss slopes of the sand
ripples. This was evident by similar peaks in the ARCs that matched with the angles
expected for these slopes. Furthermore, the ARCs were affected at different angles,
with the higher frequencies having a peak at higher beam angles. In addition,
for lower frequencies, the ARC peaks were more widely distributed. In the case of
the 30-kHz data, beam angles beyond 40° were also affected. For the sand ripples
encountered in this research, the 200-kHz data seemed to indicate the sand ripples
the best. As such, if a survey was designed with the purpose of detecting sand
ripples and only one frequency was available, then 200 kHz would be a good choice
to use.

The most important result of this research is that we show a clear link between
ARC pattern and sand ripple orientation on the seafloor. This was confirmed by
the use of both video ground-truth data and modeled tide-flow data. These pat-
terns could thus be predicted over spatial scales of kilometers. The use of MBES
bathymetry would have failed to yield this result, owing to the insufficient resolution
of the bathymetry data. Using our methodology, we were able to show that the top
centimeter of the seafloor undergoes a complete transformation every six hours in
this part of the North Sea. The capability to make such predictions from acoustic
data makes these types of measurements an invaluable tool for ocean monitoring.
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5
Classifying the seafloor with an

object-based image analysis
approach using bathymetry
and bathymetric derivatives

The aim of science is to make difficult things understandable in a
simpler way; the aim of poetry is to state simple things in an

incomprehensible way. The two are incompatible.

Paul A.M. Dirac

After a certain high level of technical skill is achieved,
science and art tend to coalesce in esthetics, plasticity, and form.

The greatest sceintists are always artists as well.

Albert Einstein

In this chapter, object-based image analysis methods are developed that do
not rely on backscatter to classify the seafloor. Instead, they make use of
bathymetry, bathymetric derivatives, and grab samples for classification.
The classification is performed on image object statistics. One of the methods
utilizes only texture-based features, that is, features that are related to the
spatial arrangement of image characteristics. The second method is similar,
but relies on a wider set of image object features. The methods were devel-
oped and tested using a dataset from the Røstbanken area off the coast of
Lofoten, Norway. The results were compared to backscatter-based classifica-
tion and to grab-sample ground-reference data. The algorithm that performed
the best was then also applied to a dataset from the Borkumer Stones area in
Dutch waters. This allowed testing the applicability of the algorithm for dif-
ferent datasets. Because the algorithms that were developed do not require
backscatter, the availability of which is much more scarce than bathymetry,
and because of the low computational requirements, they could be applied to
any area where high-resolution bathymetry and grab samples are available.

Parts of this chapter have been published in Geosciences (2), 45 (2021) [1]
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5.1. Introduction

S eafloor mapping has a long history with merchants in the Mediterranean mak-
ing some of the first organized efforts [2]. Further development of bathymetric

maps has continued to the present day [3]. Modern seafloor mapping extends be-
yond bathymetry and also includes backscatter, a co-located product delivered by
multibeam echosounder (MBES) sonars. Backscatter is increasingly used to char-
acterize or classify the seafloor [4–10]. Classification methods range widely, in-
cluding the use of neural networks [11–13], principle component analysis (PCA)
[7, 14–18], Bayesian decision rules [5–7, 9, 19, 20], and textural analysis [21],
among others. A recent development to further increase the use of backscatter
is the capability of some MBES systems to deliver multi-spectral backscatter data
[22] in a single pass over an area of seafloor [9, 10]. Currently, only R2Sonic MBES
systems [23] have this capability. Despite backscatter being the preferred datatype
for seafloor classification, it remains less available than bathymetry data [24]. Due
to the need for up-to-date navigational charts, large portions of the coastal seas
are already mapped with high-resolution bathymetry [25]. For the Dutch Continen-
tal Shelf (DCS), and the rest of European waters, full-coverage bathymetry data,
albeit at lower resolution, are also available for download via the European Ma-
rine Observation and Data Network (EMODNet) [26]. Although some backscatter
data were made available by the Rijksdienst voor Ondernemend Nederland (RVO)
for the De Rijke Noordzee project [27], a centralized backscatter data repository is
not in place. At the global scale, less than 18% of the oceans have been directly
measured by echosounders [28]. These efforts focus on bathymetry without the
mention of backscatter. It would, therefore, be desirable to develop a fast and ro-
bust classification method that uses bathymetry and bathymetric derivative layers
as input instead of backscatter.

An approach to use the more available bathymetry data, rather than backscat-
ter, for a classification algorithm is an object-based image analysis (OBIA)-based
method [29]. OBIA has been widely used for terrestrial mapping [30] and in the
past few years has also been increasingly used for seafloor classification [29, 31–
34]. Le Bas [35] also developed an arcGIS add-on for OBIA analysis. A strength of
the OBIA approach is that image objects can be formed at multiple layers, and the
wide range of sub-object features can all be harnessed for classification purposes.

The goal of this chapter is three-fold. The first goal is to develop an OBIA-based
classification method that only uses bathymetry, bathymetric derivatives, and grab-
sample ground-reference data as input. Secondly, an approach that only uses tex-
ture image object features, that is, features that relate to the arrangement of image
characteristics instead of the image values themselves, is implemented and tested.
Finally, the best performing method is used to investigate how transferable it is to
other geographical areas with minimal loss of classification accuracy and minimal
adjustment of the algorithm. The developed methods are validated by comparing
them to both backscatter-based classification and to grab-sample ground-reference
data. Finding a non-backscatter-based classification method would have significant
implications for the use of legacy bathymetry data as well as the 2030 global cov-
erage bathymetry [28] data for seafloor classification purposes.
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5.2. Study area, materials, and methods
5.2.1. Study area

D atasets from two study areas are considered in this chapter. The first of these
study areas is in the Norwegian Sea, ~50 km off the coast of Lofoten, more

specifically, off the coast of the Røst Islands (Figure 5.1a). For the remainder of the
chapter, this study area is referred to as the Røstbanken area. The dataset from the
Røstbanken area includes both backscatter and bathymetry. The data were made
available during the 2016 OBIA workshop of the GeoHab conference [36]. The
second dataset is from the Borkumer Stones area of the Dutch North Sea (Figure
5.1c). This area is close to the border between Dutch and German waters and the
dataset begins only ~10 km off the coast of the Dutch island of Schiermonnikoog,
one of the Frisian Islands.

For the Røstbanken study area, both bathymetry and backscatter data are avail-
able for a rectangular area ~22 km wide and ~32 km long. The water depth ranges
from just under 100 m to almost 300 m deep. The general Røstbanken area shows
the typical architecture and glacial land forms that are produced by slow-flowing
regions of an ice sheet [37]. During the last glacial maximum, slow moving ice
is thought to have covered the Røstbanken area [38]. Røstbanken is also heavily
scoured by linear to curvilinear depressions, likely produced by the keels of icebergs
[37]. Several such plow marks are visible in the Røstbanken data. For the Røst-
banken area, 157 grab samples are available, which indicate a very wide range of
sediments from sandy mud to rock.

The water depth in the Borkumer Stones study area ranges in depth from 10
to 35 m (Figure 5.1c). A triangular area of data was made available by the Hydro-
graphic Service of the Royal Netherlands Navy. In the south and north, the dataset
is ~23 and ~5 km wide, respectively. In the south to north direction, the dataset is
~50 km long. Much of the seabed of the Borkumer Stones area consists of coarse
sand [39], but stones and rocks have also been mapped in this area [40]. Through
the years, the presence of reefs have also been found [39–41]. Coolen et al. [39]
found areas of dense L. conchilega beds. For the Borkumer Stones area, 567 grab
samples were used for ground truthing the classification results [42, 43].

The base Geo-tiff images
All of the bathymetry and backscatter data for this study are in the form of geo-tiff
data images gridded at a 5 m × 5 m resolution. The images were geo-referenced,
that is, the exact geographic location of each pixel is known. The Røstbanken
data and the Borkumer Stones data used the World Geodetic System (WGS) 1984
UTM Zone 32N and the European Terrestrial Reference System (ETRS) 1989 UTM
Zone 31N spatial reference systems, respectively. Although the data had several
different coordinate systems, the results presented in this chapter are all projected
in the ETRS 1989 UTM Zone 31N spatial reference system for uniformity.

The Røstbanken bathymetry data were collected by multibeam echosounding.
The exact location of the sonar, and by extension the location of seafloor being
measured, is known based on GPS data combined with the use of MRU data. The
bathymetry data were cleaned and are of high quality. The backscatter data were
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Figure 5.1: ( ) Bathymetry of the Røstbanken study area. Grab sample locations are shown and the
symbols indicate the sediment type in Folk classes (R indicates rock). ( ) The locations of the two study
areas considered in this chapter (data source: [44]). (c) Bathymetry of the Borkumer Stones study
area. Grab sample locations are shown and the symbols indicate the sediment type in Folk classes.
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geo-referenced, and the angular dependence was removed as outlined in [45]. The
backscatter was also corrected to compensate for differences in ensonified area and
spreading.

For the Borkumer Stones area, only bathymetry, but not backscatter, was avail-
able. The northern part of the research area had some data gaps that were in-
terpolated in ArcGIS prior to the layer being used for analysis. Some MBES lines,
especially towards the south of the area, had motion artifacts. This was suspected
because there were swath wide artifacts perpendicular to the sailing direction, a
tell-tale sign of motion artifacts [46]. These types of artifacts can be corrected
when raw MRU motion and MBES time of travel information is available [46]. Be-
cause the raw data were not available for this research, these artifacts were not
removed. The effect of the artifacts on the classification performance is discussed
in Section 5.4.3.

Bathymetric derivative layers
In addition to the base layers, which are bathymetry and backscatter, several bathy-
metric derivative layers were created. These included slope, curvature, aspect, and
Bathymetric Position Index (BPI) layers.

Slo e The slope of the seafloor is calculated from the bathymetry with the values
indicating the deviation from the horizontal in degrees. The slope is calculated with
the built-in ArcGIS slope function from the 3D Analyst toolbox. The formula for the
calculation of the slope 𝑠 is as follows

𝑠 = 180
𝜋 𝑡𝑎𝑛 (√(𝑑𝑧𝑑𝑥) + (𝑑𝑧𝑑𝑦) ) (5.1)

where

𝑑𝑧
𝑑𝑥 =

(𝑧 + 2𝑧 + 𝑧 ) − (𝑧 + 2𝑧 + 𝑧 )
8𝑥 (5.2)

and

𝑑𝑧
𝑑𝑦 =

(𝑧 + 2𝑧 + 𝑧 ) − (𝑧 + 2𝑧 + 𝑧 )
8𝑦 (5.3)

where 𝑥 and 𝑦 refer to the cell (or pixel) size in the 𝑥 and 𝑦 (or north and east)
directions, respectively, and 𝑧 is the depth, or pixel value, where subscripts 1–9
refer to the pixels surrounding the pixel with subscript 5 as in Figure 5.2, where the
slope is being calculated for pixel 𝑧 .

S oo e slo e Additionally, a slope based layer was created namely, a smoothed
slope. Each pixel in this layer is the mean of the pixels within a radius of 1 km. This
layer will have larger values for pixels closer to areas of high slopes, and especially
to large areas of high slopes. Importantly, the values will not drop off just outside
of a high slope area like the slope layer itself does.
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𝑧 𝑧 𝑧
𝑧 𝑧 𝑧
𝑧 𝑧 𝑧

Figure 5.2: Schematic of the pixels used for the calculation of the slope and curvature

Figure 5.3: ( ) An exmample of a convex down seafloor, ( ) and a convex up seafloor

e The curvature of the seafloor is the slope of the slope, or second
derivative, of the seafloor and is created with the ArcGIS curvature function ac-
cording to the method set forth in [47]. The curvature is calculated for point 𝑧
(Figure 5.2) by taking the depth values at points 𝑧 – 𝑧 as defined in Figure 5.2 and
fitting a quadratic polynomial of the form

𝑧 = 𝐴𝑥 𝑦 + 𝐵𝑥 𝑦 + 𝐶𝑥𝑦 + 𝐷𝑥 + 𝐸𝑦 + 𝐹𝑥𝑦 + 𝐺𝑥 + 𝐻𝑦 + 𝐼 (5.4)

to these points. This 9-term polynomial exactly fits all 9 points in the 3 × 3 moving
grid. The curvature is the Laplacian −∇ of Equation (5.4) [48, 49] and, because 𝑧
can be defined such that 𝑧 is at (0, 0, 𝑧 ), simplifies to

∇ 𝑧 = 2(𝐸 + 𝐷) = −(4𝑧 − 𝑧 − 𝑧 − 𝑧 − 𝑧 )
𝐿 (5.5)

where 𝐸 = ( − 𝑧 ) /𝐿 , 𝐷 = ( − 𝑧 ) /𝐿 , and 𝐿 is the pixel size (𝐿 = 𝑥 =
𝑦 for this application). In our implementation, 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = −100∇ is used for
the actual resultant values in the curvature layer. Thus, a negative value indicates
a convex-down seafloor (Figure 5.3a) and a positive value a convex-up seafloor
(Figure 5.3b). A value of zero indicates an area where there is no curvature.

s ec The aspect indicates the compass direction of the steepest slope, and is
calculated with
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𝑎𝑠𝑝𝑒𝑐𝑡 =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

90 − 180𝜋 tan (
−

) if − 𝑑𝑧𝑑𝑥 > 0,

180
𝜋 tan (

−
) if

𝑑𝑧
𝑑𝑦 > 0,

180 + 180𝜋 tan (
−

) if
𝑑𝑧
𝑑𝑦 < 0,

270 − 180𝜋 tan (
−

) if − 𝑑𝑧𝑑𝑥 < 0,

−1 if − 𝑑𝑧𝑑𝑥 = 0 and
𝑑𝑧
𝑑𝑦 = 0.

(5.6)

where and are as defined in Equations (5.2) and (5.3). The aspect layer is
created using the Aspect tool in the ArcGIS 3D Analysis toolbox. The aspect can fall
between the values of 0 being true north and 360 again being north. A shortcoming
of using aspect in some situations is that there is a discontinuity at due north. That
is, a slope direction of north, northwest, will have values close to 360 and a similar
slope direction of north, northeast, will have values close to 0.

e ic osi io i e The BPI is the underwater equivalent of the ter-
restrial “Topographic Position Index” that is often used as a parameter for habitat
modeling [50–52]. The BPI is a measure of seafloor depth relative to the surround-
ing seafloor and is defined as follows

𝐵𝑃𝐼 = 𝑧 − 𝑧 (5.7)

where 𝑧 is the mean depth indicated by all pixels within a given radius 𝑟 of the
pixel 𝑧 . Needless to say, the resulting BPI layer depends strongly on 𝑟 . With
smaller 𝑟 , local features are accentuated, but, with large enough 𝑟 , regional fea-
tures are dominant. Ten different BPI layers were created with 𝑟 and 𝑟 radius, in
pixels and distance, respectively, shown in Table 5.1.



5

100 5. Classification using OBIA on bathymetry

Table 5.1: Radii in distances for BPI layers with radii measured in pixels .

𝑟𝑟𝑟 𝑟𝑟𝑟
𝐵𝑃𝐼 15 m
𝐵𝑃𝐼 25 m
𝐵𝑃𝐼 50 m
𝐵𝑃𝐼 125 m
𝐵𝑃𝐼 250 m
𝐵𝑃𝐼 500 m
𝐵𝑃𝐼 1 km
𝐵𝑃𝐼 2 km
𝐵𝑃𝐼 4 km
𝐵𝑃𝐼 5 km

5.2.2. Methods
All of the layers described in the previous section are used in a segmentation algo-
rithm to create image objects. Statistics from the image objects are then used for
seafloor classification. The creation of both the image objects and the classification
methods is now addressed. The segmentation and classification is carried out using
the Trimble software eCognition (versions 9.2.1 and 9.5.0).

Object-based image analysis
e o ec s The principle for OBIA is that instead of considering an image

only on the basis of its pixels, it is considered on the bases of image objects, where
an image object is defined as a set of image pixels. Image objects are furthermore
organized into different levels. At the pixel level the image objects are the same as
the pixels (see Figure 5.4a). A segmentation of the image, starting from the pixel
level, creates a higher level of image objects (this layer is called “Fine” in Figure
5.4a). Further segmentation can then be carried out on the image object level to
create even higher levels of image objects (“Medium” and “Coarse” in Figure 5.4a).

For each of these image objects, a host of statistics can be calculated to create
image object features. These features are later used during the classification stage.
Image object features include statistics about the size, shape, or the mean color1

of any of the layers of an object. They can also include features of image objects
at different levels. For example, to carry out a classification at image object Level
3 (Figure 5.4c), image object features of sub-objects at Level 2 (objects with white
borders in Figure 5.4d) or at Level 1 (objects with black borders in Figure 5.4e) can
be used. Finally, the use of features from neighboring image objects are also used
in this chapter.

e i i e o ec s l i esol io se e io A very commonly
used image segmentation algorithm in OBIA is the multiresolution segmentation

1Color, here and for the rest of the chapter, refers to the pixel value (or the mean value of sub-objects
in the case of higher level segmentations) of a particular image.
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Figure 5.4: ( ) Examples of meaningful hierarchical image object levels and relationships between image
objects and image object levels (sub-figure after [53] and [54]). ( ) Bathymetry of the Røst study area,
black rectangles indicate the extents depicted in (c), (d), and (e). (c) Blue polygons indicate Level 3
(”Coarse” in (a)) image objects, the black rectangles indicate the extents of (d) and (e), the background
color indicates bathymetry (also holds for (d) and (e)). ( ) White polygons indicate Level 2 (”Medium”
in (a)) image objects, borders shared between image objects of Level 2 and 3 have a blue outline, the
black rectangle indicates the extent shown in (e). (e) Black polygons indicate Level 1 image objects
(”Fine” in (a)), borders shared between image objects of Level 1 and 2 have a white outline, and borders
shared between image objects of Level 1 and 3 have a blue outline.
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algorithm [55]. This algorithm starts by considering every pixel within an image
to be an image object. Neighboring image objects are iteratively merged to form
larger image objects while minimizing the within object heterogeneity ℎ [56]. The
heterogeneity, as described by [54], is a combination of both color 𝑐 and shape 𝑠
heterogeneity. The heterogeneity change Δℎ is defined as

Δℎ = 𝑤 Δℎ + 𝑤 Δℎ (5.8)

where 𝑤 and 𝑤 are user specified weights such that 0 ≤ 𝑤 ,𝑤 ≤ 1 and 𝑤 +𝑤 =
1. These weights allow the value of the heterogeneity to be adapted for emphasis
on color or shape heterogeneity. For example, a bathymetry layer might have the
value of −32 that corresponds to the depth at that pixel location. The amount of
color heterogeneity change Δℎ is defined as

Δℎ =∑
ℓ

𝑤ℓ (𝑛 𝜎ℓ, − (𝑛 𝜎ℓ, + 𝑛 𝜎ℓ, )) . (5.9)

Here, 𝑁 is the number of image layers considered in the segmentation process
(see Table 5.2), 𝑤ℓ is the weight assigned to the ℓth image layer, 𝑛 refers to the
number of pixels in the image object, and 𝜎ℓ, is the within object standard deviation
of image object 𝑖 of image layer ℓ. The subscript 𝑖 ∈ (1, 2,𝑚) refers to the separate
objects 1 and 2 that are being considered for merging or to the potential image
object 𝑚 that would result from merging image objects 1 and 2.

The shape 𝑠 of an image object is dependent on the compactness 𝑐𝑜𝑚 and
smoothness 𝑠𝑚 of an image object. Compactness is the ratio of the perimeter
length of the image object and the area of the image object. Smoothness is the
ratio of the perimeter length of the image object and the perimeter length of the
bounding box within which the image object would fit [54]. The change in the
shape heterogeneity Δℎ is given by

Δℎ = 𝑤 Δℎ + 𝑤 Δℎ . (5.10)

where 𝑤 and 𝑤 are user specified and restricted as 𝑤 and 𝑤 are.
Compactness change Δℎ is given as

Δℎ = 𝑛 𝑝
√𝑛

− (𝑛 𝑝
√𝑛

+ 𝑛 𝑝
√𝑛

) (5.11)

where 𝑛 is the number of pixels in the object and 𝑝 is the perimeter of the image
object. The subscripts 𝑚, 1 and 2 refer to the merged object, object 1, and object
2, as defined above. The change in smoothness Δℎ is given as

Δℎ = 𝑛 𝑝
𝑏 − (𝑛 𝑝𝑏 + 𝑛 𝑝𝑏 ) (5.12)

where 𝑏 is the perimeter of a box that bounds the object and 𝑛, 𝑝, and the subscripts
are defined as above.
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For every loop of the algorithm, each image object is “visited” once [56] (p. 68).
For a starting “seed” image object 𝑜 , the algorithm looks for the neighboring image
object 𝑜 such that, if they were merged, the heterogeneity change Δℎ would be
minimum, i.e. the best fit. If the best fit for image objects 𝑜 and 𝑜 is not mutual,
then object 𝑜 becomes the seed to continue the search for objects to merge. This
process is stopped when no more image objects can be merged such that Δℎ is less
than a certain, user specified, threshold called a “scale parameter” 𝑆 .

For this research, three levels of segmentation were performed (Figure 5.4c–
e) with different settings per segmentation level (Table 5.2). For the first of the
image object levels, the finest level, the image objects were intended to conform to
the smallest features in the bathymetry. To accomplish this, the generated image
layers were examined to see which layers most clearly showed small-scale seabed
features. Small scale features, as referred to in this work, are of such size that
they are present over at least a few image pixels. They are the smallest distinct
features that can be reliably perceived in the data by visual inspection. Because
they span a few image pixels, they are likely to measure several tens of meters
physically. Image layers that were useful at first level were layers such as slope,
BPI layers with a small radii, and aspect. Although the aspect layer accentuates
small features, it was not used, because of its discontinuity at due north. The
image layer weights and the scale parameter 𝑆 were selected such that the shapes
of the image objects conformed to the small-scale seafloor features. Additionally,
the heterogeneity used during the segmentation process depended largely on color
and not on image object shape (see Section 5.2.2). This allowed the shapes of
the image objects to better conform to the shapes of small-scale seafloor features,
which allowed shape related image object features (statistics) to better indicate the
presence of seafloor features.

At the second level of image objects, it was still desired that image objects would
conform to small seafloor features. However, to gain the most benefit from having
multiple image object layers, it was necessary to select a scale parameter such that
each image object at this level was composed of at least a few image objects from
the lower level. As was the case for the segmentation at Level 1, the heterogeneity
of the segmentation was set to mostly be dependent on the color parameter and
not on the shape parameter.

At the third level of image object segmentation, the focus changed significantly.
At this level, much more emphasis was placed on image object shape and less on
image object color. In addition, the choice of layer(s) was made such that larger
scale seafloor features would fall within image objects. Based on a subjective exam-
ining of the different layers, 𝐵𝑃𝐼 was a good layer to use for this segmentation
level. The larger the image objects were, the more lower level sub-objects they
contained. Because the texture-based features were calculated from sub-objects,
larger image objects and more sub-objects also meant that the discrimination power
of texture features was greater. However, because making the image objects too
large would decrease the resolution of the classification results, a balance in image
object size was sought. In any case, the scale parameter was selected such that
multiple image objects of Levels 1 and 2 were contained in the highest level of
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Table 5.2: Parameters and layers used for each level of image object creation. The image objects from
segmentation Level 1 correspond to those seen in Figure 5.4 (e), Level 2 to Figure 5.4 (d), Level 3 to
Figure 5.4 (c)

Se e
le el

Sc le
e e

𝑆𝑆𝑆
S e
𝑤𝑤𝑤

o c
𝑤𝑤𝑤

e
ei s
𝑤ℓ𝑤ℓ𝑤ℓ

e s

1 3 0.02 0.5

1
1
1
2
2
2
2
2
2
1
2

Bathymetry
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼

Curvature
Slope

2 10 0.02 0.5

1
1
1
2
2
2
2
2
2
1
2

Bathymetry
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼
𝐵𝑃𝐼

Curvature
Slope

3 50 0.5 0.5 1 BPI 400

image objects at Level 3.

Classification
Three methods of classification are used in this chapter. Each of the methods is
performed on image objects features which were discussed in the previous section.
The three classification methods are as follows:

• e o is threshold based and uses image object features from the backscat-
ter, bathymetry, and 𝐵𝑃𝐼 layers. The thresholds are those used in the 2016
OBIA workshop of the GeoHab conference [36] and were developed at the
Center for Environment Fisheries and Aquaculture Science (CEFAS) [57]. This
approach was not developed within the current research, but its results are
considered as a standard to which Methods 2 and 3 can be measured.

• e o uses a Classification And Regression Tree (CART), a binary tree
predictive model to go from observations about an item to conclusions about
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the items target value or class (a more in-depth description follows below)
[58]. The CART provides the thresholds which are then used in a similar way
as in Method 1. This method uses only texture features from image objects.

• e o is similar to Method 2, however, it uses both texture and direct layer
image object features. That is, it does not only use texture-based features,
which relate to the arrangement of layer values, but it also references layer
values directly, such as the average depth within an image object.

The image objects at Level 3, created by the third application of the multires-
olution segmentation, are used to classify the seafloor sediments. Grab samples
classified according to Folk are used to create a training dataset for a CART. Firstly,
each image object that coincides with the location of a grab sample is classified
according to the Folk class of that grab sample. Based on these classified image
objects the CART is constructed.

The CART is constructed in a top down greedy approach. At each step, an
image object feature at Level 3 is chosen that best splits the set of classified image
objects. The Gini impurity index is used to measure the “best” split. It is calculated
for each candidate subset and the results are combined to form a measure of the
quality of the split. The Gini impurity at node 𝑛 is calculated as

𝐼 (𝑛 ) = 1 −∑𝑝 (5.13)

where 𝑝 is the fraction of items labeled as class 𝑖 and 𝑖 ∈ {1, 2, ..., 𝐽} where 𝐽 is the
number of classes. 𝐼 reaches its minimum (𝐼 = 0) when all cases in a node are
of the same class.

After the classification tree is constructed, every image object at Level 3 is clas-
sified using the tree. Given the attributes of the image object, the decision tree
is traversed from the root node until it is classified at a leaf node (brightly colored
rectangles in of the tree.

To compare the classification to grab sample ground-reference data, the grab
sample sets were subdivided to create a training and a validation set. For the
comparisons against other classification methods, the full grab sample set was used
as a training set for the CART.

The final classification map was greatly improved by cleaning up the classifica-
tion results as follows. For each research area, the most common seafloor sediment
type was used such that any image object classified in a different class, but sur-
rounded or largely surrounded by the sediment type that was most dominant, was
reclassified into the most dominant class. For the Røstbanken data, this dominant
class was sandy mud. For the Borkumer Stones area, this class was sand. Making
use of a clean up step similar to this is common practice in OBIA classification

5.3. Results

I n this section, the classification results are shown. Firstly, Method 1 (see Section
5.2.2) is applied to the data from the Røstbanken area. These results are then
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Table 5.3: Error matrix comparing backscatter-based class to grab-sample based class. The data are
also shown in Figure 5.6.
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used to validate the results of Methods 2 (Figure 5.5b) and 3 (Figure 5.5c). The
quality of the classification results from Method 1 is checked by comparison to grab-
sample ground-reference data (Figure 5.6). The results from Methods 2 and 3 are
compared to grab-sample ground-reference data as well, and to the backscatter-
based results of Method 1. After this, Method 3 is applied to the Borkumer Stones
area (Section 5.3.2).

5.3.1. Røstbanken results
Method 1, backscatter-based classification
Firstly, a baseline classification is established by the use of Method 1 (Figure 5.5a).
For this classification, thresholds on the different layers are used to classify the area.
The most prominently used layer is the backscatter layer. Aside from backscatter,
bathymetry is also used repeatedly and the within object standard deviation of 𝐵𝑃𝐼
is used once.

The deeper northwestern half (Figure 5.1a) of the study area has the largest
area of uniform sediment, of type sandy mud (sM, Figure 5.5). On the northwestern
edge of the study area, some coarser mixed sediments are also found. In the
southeastern half of the study area, a mixture of sediments is found ranging from
sand to rock.

When these classification results are compared to the ground-reference data
(Figure 5.6 and Table 5.3), it is seen that there is a good agreement. For each
sediment type, the classification matches the grab-sample type the majority of the
time. Overall, 71% of the time the match was perfect, and 98.7% of the time the
classification was within ±1 class of the grab-sample type.
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(a)

(b) (c)

Figure 5.5: Classification maps of the Røstbanken study area. ( ) Classification based on backscatter
data (Method 1), ( ) texture features only (Method 2), and (c) texture and layer features (Method 3).
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Figure 5.6: Correlation between backscatter-based classification (Method 1) and sediment type at grab-
sample locations. Dots, with the associated text, indicate the number of matches class and sediment
type.

Method 2, classification using only textural image object features
Next, Method 2, a texture only-based classification, is performed (Figure 5.5b). For
this method, none of the layers mentioned in Section 5.2.1 are directly referenced.
Rather, texture-related image object features are used. The backscatter layer is not
used at any point, that is, not in the classification and also not in the segmentation
stage, of the procedure. The segmentation was carried out with the layers and
layer weights given in Table 5.2. The CART utilized 11 different object features at
24 different nodes (Figure 5.7a and Table 5.4). The object feature as well as its
deciding value is given for each node in Figure 5.7. Left branches are followed if the
values are less than the value indicated at the node. Right branches are followed
if the values are equal to or greater than the decision point. The leaves of the
tree indicate the class label for the image object in question. Table 5.4 gives a
description of each of the image object features that are used in the CART.

When using only texture-based image object features (Method 2), the resulting
classification map is mixed. The large sM area (northwest half of the research area,
Figure 5.5a) is distinguishable (Figure 5.5b). There is also a rocky area close to
7,540,000 N and 854,000 E that is resolved well with this method. However, the
large sM area is not cleanly classified as sM, but has small areas that are classi-
fied as harder substrate, up to and including gravel. In the mixed sediment area
(southeast), there is a trend of the coexistence of harder and softer substrates
in agreement with Figure 5.5a. However, the exact spatial occurrence of classes
differs between the two maps.

For the results shown in Figure 5.5b, all the grab samples were used for training
the CART. To further assess the performance of Method 2, a different approach is
also taken, where the grab-sample dataset is subdivided into non-overlapping train-
ing and validation subsets. Figure 5.8a explicitly shows the correlation between the
classification and the grab samples. The area around sand grab samples is seen to
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be classified as gravely sand more often than as sand. Sandy gravel areas, in turn,
are just as likely to be classified as gravely sand and almost as likely to be classi-
fied as gravel. Of the 78 validation grab samples, the texture-based classification
produced a perfect match 35 times, or with 45% accuracy (Table 5.5 and Figure
5.8a). The classification was accurate to ±1 class 57 times, or 73% of the time.
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Figure 5.7: ( ) Diagram of the CART for texture only based classification (Method 2) (see Figure 5.5
(b)). ( ) Diagram of the CART for texture and layer based classification (Method 3) (see Figure 5.5 (c)).
Text in each box indicates the object feature used and its value for the decision rule. Left branches
indicate the less than direction and right branches indicate the greater than or equal to direction.



5.3. Results

5

111

Figure 5.8: ( ) Correlation between classification results from Method 2 and sediment type at grab-
sample locations. ( ) Correlation between classification results from Method 3 and sediment type at
grab-sample locations. Corresponding error matrices are shown in Tables 5.5 and 5.7.
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Table 5.4: A list of each of the image object features that formed a node in the CART of Figure 5.7(a).
Also listed is the number of times each of these object features appears as a node, and a description of
what the object feature is.

e e
e
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e e e ce

ec e e
esc i io

Slope(2) 4

The standard deviation of the means of the
slope values within sub-objects at Level 1 [56,
p. 402-403] or the average of the mean dif-
ferences of each sub-object to its neighboring
objects at Level 1 [56, p. 403-404].

Std area of
sub-obj(2) 4

The standard deviation of the area of the image
objects at Level 1 that fall into the image object
in question at Level 3.

Mean of dir.
sub-obj(1) 4

The mean of the main direction of all of the
sub objects at Level 2 that are in the object in
question at Level 3.

Slope(1) 3

The standard deviation of the means of the
slope values within sub-objects at Level 2 [56,
p. 402-403] or the average of the mean dif-
ferences of each sub-object to its neighboring
objects at Level 2 [56, p. 403-404].

Mean
asymmetry of
sub-objects(1)

2

The mean of the asymmetry of sub-objects at
Level 2 that fall within the object in question at
Level 3. Asymmetry is the relative length of an
image object compared to a regular polygon (a
similar measure as the Length / Width) [56, p.
357-358]

Std of dir.
sub-obj(2) 2

The standard deviation of the main direction of
all of the sub objects at Level 2 that are in the
object in question at Level 3.

Std of dir.
sub-obj(1) 1

The standard deviation of the main direction of
all of the sub objects at Level 1 that are in the
object in question at Level 3.

Bathymetry(2) 1

The standard deviation of the means of the
bathymetry values within sub-objects at Level
1 [56, p. 402-403] or the average of the mean
differences of each sub-object to its neighbor-
ing objects at Level 1 [56, p. 403-404].

Mean area of
sub-obj.(1) 1

The mean area of the image objects at Level
2 that fall into the image object in question at
Level 3.

Std of area
of sub-obj(1) 1

The standard deviation of the area of the image
objects at Level 2 that fall into the image object
in question at Level 3.

Std of dir.
sub-obj(2) 1

The standard deviation of the area of the image
objects at Level 1 that fall into the image object
in question at Level 3.
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Table 5.5: Error matrix comparing classification results using Method 2 to grab-sample-based class. The
data are also shown in Figure 5.8a.
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Table 5.6: A list of each of the image object features that formed a node in the CART of Figure 5.7(b).
Also listed is the number of times each of these object features appears as a node, and a description of
what the object feature is.

e e
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Bathymetry 4
The mean of the within object pixels (at Level
3) of the bathymetry layer.

Length / width 3
The ratio of the length / width of an image ob-
ject at Level 3 [56, p. 353-354]

Elliptic fit 2

The shape of the image object at level three
is compared to an ellipse the same length and
width as the image object. The area of the
image object that falls outside the ellipse vs.
the area inside the ellipse yields the fit value
[56, p. 362-363]

Std of dir.
sub-obj(1) 2

The standard deviation of the main direction of
all of the sub objects at Level 2 that are in the
object in question at Level 3.

Bathymetry(2) 2

The standard deviation of the means of the
bathymetry values within sub-objects at Level
1 [56, p. 402-403] or the average of the mean
differences of each sub-object to its neighbor-
ing objects at Level 1 [56, p. 403-404].

Std of dir.
sub-obj(2) 2

The standard deviation of the main direction of
all of the sub objects at Level 1 that are in the
object in question at Level 3.

𝐵𝑃𝐼 1
The mean of the within object pixels (at Level
3) of the 𝐵𝑃𝐼 layer.

𝐵𝑃𝐼 1
The mean of the within object pixels (at Level
3) of the 𝐵𝑃𝐼 layer.

𝐵𝑃𝐼 (1) 1

The standard deviation of the means of the
𝐵𝑃𝐼 values within sub-objects at Level 2 [56,
p. 402-403] or the average of the mean dif-
ferences of each sub-object to its neighboring
objects at Level 2 [56, p. 403-404].

𝐵𝑃𝐼 (2) 1

The standard deviation of the means of the
𝐵𝑃𝐼 values within sub-objects at Level 1 [56,
p. 402-403] or the average of the mean dif-
ferences of each sub-object to its neighboring
objects at Level 1 [56, p. 403-404].

𝐵𝑃𝐼 (2) 1

The standard deviation of the means of the
𝐵𝑃𝐼 values within sub-objects at Level 1 [56,
p. 402-403] or the average of the mean dif-
ferences of each sub-object to its neighboring
objects at Level 1 [56, p. 403-404].

Mean area of
sub-obj.(2) 1

The mean area of the image objects at Level
1 that fall into the image object in question at
Level 3.
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Method 3, classification using image object parameters and non backscat-
ter data
A significant improvement in classification is achieved, still not using the backscatter
data, when referencing the image layer values directly, during the implementation of
Method 3 (Figure 5.5c). The image object features and deciding values of the CART
are seen in Figure 5.7b. How many times each feature is used and a description of
what the features represent are given in Table 5.6.

When the classification is compared to ground-reference data, the improvement
to Method 2 becomes clear (Figure 5.8b). For every grab type, except sand, the
majority of the classification classes match the grab-sample class. For sand, the
classification results was equally likely to be sandy gravel. Of the 78 grab samples,
the classification matched exactly 48 times (or 61%) (Table 5.7 and Figure 5.8b)
and (or 87%) the classification results were within ±1 class of the grab-sample
class 68 times.

Comparing non-backscatter-based classification to backscatter-based clas-
sification
Assuming that the backscatter-based classification is accurate, then we can com-
pare the results from Methods 2 and 3 with the backscatter-based classification
results from Method 1, in a pixel-by-pixel comparison. For the area that has a spe-
cific class based on Method 1, Figure 5.9 shows, by percentage, how those areas
were classified by Methods 2 and 3. Figure 5.9a shows this relationship where the
results of Method 3 are compared to the results from Method 1. Figure 5.9b shows
the results of Method 2 compared to the results of Method 1.

When using Method 3, the sM area was correctly classified above 90% of the
time. For the rest of the classes, the correct classification was between 30% and
just over 40%. The percentage of correct classification with a tolerance of ±1 class
was 86% for the entire area. Per sediment type, it was as follows: sandy mud 92%,
sand 81%, gravely sand 86%, sandy gravel 83%, gravel 77%, and rock 73%.

For Method 2 (Figure 5.9b), the results were not as good. Only sandy mud was
correctly classified most of the time. The ±1 class percentage was 52% for the
entire area, and per sediment type it was as follows: sandy mud 86%, sand 55%,
gravely sand 59%, sandy gravel 71%, gravel 60%, and rock 8%.
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Figure 5.9: ( ) Comparison of class result from Method 3 for areas having a specific class based on
Method 1. ( ) Comparison of class result from Method 2 for areas having a specific class based on
Method 1.

Table 5.7: Error matrix comparing classification results using Method 3 to grab-sample-based class. The
data are also shown in Figure 5.8b.
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5.3.2. Borkumer Stones results
By using the Røstbanken dataset where backscatter, a good sampling of grab sam-
ples, and high quality bathymetry data were available to develop a bathymetry and
bathymetric derivative OBIA-based classification method, insights into the perfor-
mance of the OBIA classification method were obtained. These insights can be
applied to the DCS dataset. Based on its performance, Method 3 was used. How-
ever, some minor changes to the scale parameter were needed. This was done in
order to have the first two levels of image objects conform to small-scale features,
as was the case for the Røstbanken data.

For the Bokumer Stones area, a very similar CART was trained as for the Røst-
banken data. The branches and leaves, along with the layer at each node, including
the deciding value, are shown in Figure 5.10. The object features that were used in
the CART, along with their description, and the number of times each feature was
referenced in the CART are presented in Table 5.8.

To ground truth the classification results (Figure 5.11a) with grab-sample data,
the grab samples were divided into training and validation sets. In the validation
set, there were 139 grab samples, of which 123 were of class sand (Figure 5.12).
For 91 of the 139 samples (65%), there was a perfect match between the OBIA
class and the grab-sample class (Table 5.9 and Figure 5.12). For 117 of the samples
(or 84%), the OBIA results were within ±1 class of the grab-sample class.

For the Røstbanken area, it was possible to compare the OBIA classification re-
sults to results from a separate classification method based on backscatter (Method
1). However, for the Borkumer Stones area, backscatter was not available. Al-
though a comparison to grab-sample ground-reference data was made, it would be
preferable to also have a second comparison method. For this, a different feature
of the ground-reference data was used, namely the D50 values, which are similar to
the Folk classes that were used to train the CART, but not identical. These are used
to generate a second full-coverage map for comparison. This map, shown in Figure
5.11b, is a Kriging-based interpolation of the D50 values of the grab samples. By
visual comparison of Figure 5.11a,b, large-scale trends are found to agree.
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Table 5.8: A list of each of the image object features that formed a node in the CART of Figure 5.10.
Also listed is the number of times each of these object features appears as a node, and a description of
what the object feature is.
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Smoothed slope 6
The mean of the within object pixels (at Level
3) of the smoothed slope layer.

Elliptic fit 4 See Table 5.6

Bathymetry 3
The mean of the within object pixels (at Level
3) of the bathymetry layer.

𝐵𝑃𝐼 3
The mean of the within object pixels (at Level
3) of the 𝐵𝑃𝐼 layer.

Bathymetry(2) 3 See Table 5.4

𝐵𝑃𝐼 2
The mean of the within object pixels (at Level
3) of the 𝐵𝑃𝐼 layer.

𝐵𝑃𝐼 (2) 2

The standard deviation of the means of the
𝐵𝑃𝐼 values within sub-objects at Level 1 [56,
p. 402-403] or the average of the mean dif-
ferences of each sub-object to its neighboring
objects at Level 1 [56, p. 403-404].

Smoothed
slope(1) 2

The standard deviation of the means of the
smoothed slope values within sub-objects at
Level 2 [56, p. 402-403] or the average of
the mean differences of each sub-object to its
neighboring objects at Level 2 [56, p. 403-
404].

Slope(1) 2

The standard deviation of the means of the
slope values within sub-objects at Level 2 [56,
p. 402-403] or the average of the mean dif-
ferences of each sub-object to its neighboring
objects at Level 2 [56, p. 403-404].

𝐵𝑃𝐼 1
The mean of the within object pixels (at Level
3) of the 𝐵𝑃𝐼 layer.

𝐵𝑃𝐼 1
The mean of the within object pixels (at Level
3) of the 𝐵𝑃𝐼 layer.

𝐵𝑃𝐼 (2) 1
Similar to 𝐵𝑃𝐼 (2) Object feature above, but
with 𝐵𝑃𝐼 layer.

𝐵𝑃𝐼 (1) 1

The standard deviation of the means of the
𝐵𝑃𝐼 values within sub-objects at Level 2 [56,
p. 402-403] or the average of the mean dif-
ferences of each sub-object to its neighboring
objects at Level 2 [56, p. 403-404].

Mean area
of sub-obj.(2) 1

The mean area of the image objects at Level
1 that fall into the image object in question at
Level 3.

Mean area
of sub-obj.(1) 1

The mean area of the image objects at Level
2 that fall into the image object in question at
Level 3.
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Figure 5.11: ( ) Classification results from the Borkumer Stones area of the Dutch North Sea. ( ) A D50
map interpolated from grab samples. Grab-sample locations are shown classified according to Folk.
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Table 5.9: Error matrix comparing classification results, from the Borkumer Stones area, using Method
3 to grab-sample-based class. The data are also shown in Figure 5.12.
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5.4. Discussion
5.4.1. The performance of OBIA methods

O ne of the research questions addressed in this chapter is if a fast and reliable
texture-based classification method can be found. It should be noted that

there is a family of texture-based methods, such as those based on Haralick texture
features, that are commonly used in the literature which were not tested. This is
because these methods tend to be exceedingly computationally intensive [59, 60]
and the interest is in a fast method. Therefore, an OBIA approach was investigated.
For this research, the software package eCognition was used. Once the rule sets
for the OBIA-based classification were developed, the methods were applied to a
dataset covering hundreds of square kilometers in a matter of minutes. Because of
the speed of the OBIA methods, they were well suited to get a rapid overview of
large areas of the seafloor. It should be noted that the OBIA methods were only
used on image datasets with a resolution of 5 m × 5 m. Of the different stages
of the classification process, the segmentation stage was the most computationally
expensive. The run-time of the multi segmentation algorithm grows linearly with
an increase in number of pixels [61]. Given the run times of Methods 2 and 3 with
the datasets used in this study, it is expected that, for datasets covering areas up
to the entire DCP ( 59,000 km ) at resolutions currently available (5–25 m pixel
sizes) [25], this algorithm would remain well suited when used on modern high
performance desktop computers (Quad core processor or better, 64 GB of RAM or
better). However, if the method were applied to datasets that either cover much
larger areas or have a much higher resolution than those mentioned in this chapter,
then computation time and memory bottlenecks would need to be considered [62].

As far as the reliability of the classification results are concerned, the two meth-
ods that were developed in this chapter (Methods 2 and 3, Section 5.2.2) had dif-
fering reliability results. When compared to grab samples, classification accuracies
of 98.7%, 73%, and 87% were achieved with a tolerance of ±1 class for Methods
1–3, respectively. Assuming Method 1 to yield a correct classification allowed for
Methods 2 and 3 to be compared to it on a pixel by pixel bases. When this was
done, Methods 2 and 3 had an accuracy of 52% and 86%, respectively, again with
a tolerance of ±1 classes. Since the layer and grab sample inputs for Methods 2
and 3 are the same, and given the fact that they differed little in computational
requirements, the use of Method 3 is recommended instead of Method 2. How-
ever, the texture features that Method 2 is based on should certainly be included
in future OBIA methods. This is recommended based on the fact that they were
included in Method 3 and were used for almost half of the nodes of the CART of
Method 3 (Figure 5.7b and Table 5.6).

5.4.2. Application of the algorithm to different datasets
A testament to the robustness of the OBIA methods developed in this chapter is
the fact that very little needed changing when Method 3 was applied to a different
dataset in order to achieve good classification results. Some changes were neces-
sary for the image objects at Levels 1 and 2 to conform to the shape of small-scale
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seafloor features. To accomplish this, the scale parameter was adjusted for these
two levels of image segmentation. The weights of the image layers used during the
segmentation was also adjusted to utilize the best layers for the given area. This
indicates that, as long as image objects are allowed to conform to the shapes of
small-scale seafloor features at the lower levels of image objects, then this method
remains applicable to new datasets.

5.4.3. The effect of bathymetry flaws
From the data that were used in this research, the dataset from the Borkumer
Stones area had some bathymetric flaws. These errors were likely the result of
uncorrected or poorly corrected motion sensor or lever arm artifacts [46]. The arti-
facts were consistent in their across track, along track, and sailing direction specific
patterns that is typical of this kind of error. Because of these flaws, there were
some areas where the lower level image objects conformed to artifacts instead of
to real seafloor features. This may explain why the classification from the Borkumer
Stones data, when compared to grab-sample ground-reference, was not quite as
good as the results for the Røstbanken data (when using an accuracy measure of
±1 acoustic class). Because of the OBIA-based classification method’s reliance on
image objects conforming to actual seafloor features, clean bathymetry data are of
high importance for the classification method developed in this chapter.

Another research question that would be worth investigating, is to see what
effect using bathymetry of different resolutions would have on the classification
accuracy. This could be done by using a high-resolution data set and succes-
sively decreasing the resolution while repeatedly carrying out the same classifi-
cation method. This would also answer the question of how well the OBIA methods
developed in this chapter could be applied to lower resolution legacy bathymetry
data.

5.4.4. Good use cases for bathymetry-based OBIA based clas-
sification

Because of the need for up-to-date navigational charts, many countries collect
high-resolution bathymetry data covering big sections of their territorial waters on
regularly scheduled intervals [25]. This means that high-quality bathymetry data
are widely available. Furthermore, as a part of the 2030 project, high-resolution
bathymetry data will become available for the entirety of the world’s oceans [28].
Unlike bathymetry, backscatter data remain much harder to come by.

It is difficult to quantify the ratio of the seafloor for which bathymetry is available
but backscatter is not. There is little focus on the gathering of backscatter at the
global scale, and with good reason, as even the well-funded and well-organized
MAREANO, Norway’s national offshore mapping program, had difficulty dealing with
the size of such backscatter datasets [63]. Of the efforts to collect full-coverage
backscatter data, MAREANO is a good example, as well as Germany where side scan
sonars are widely used [64, 65]. For the DCS, full-coverage bathymetry data are
available via EMODnet [26]. In addition to this, bathymetry data up to a resolution
of 25 m ×25m (and in some cases 5 m ×5m), can be requested of the Hydrographic
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Service of the Royal Netherlands Navy. The Navy surveys the entirety of the DCS
on scheduled intervals. Backscatter is not available through any of these means.
The Royal Netherlands Institute for Sea Research (NIOZ) can at any moment have
some backscatter data available, but they do not have a long-term storage plan
for backscatter data gathered during their cruises. An example where backscatter
data were made available by the RVO on the DCS is the case of the “De Rijke
Noordzee”, who were able to analyze ~1200 km that was gathered during surveys
for the placing of wind farms [27]. Because there is no centralized gathering point
for backscatter data, it is difficult to quantify the area for which backscatter data
exist for many regional coastal waters, while it is well known that full-coverage
bathymetry exists.

At the global scale, there are organized efforts, especially after the disappear-
ance of Malaysia Airlines flight MH370 and the subsequent search, to collect bathymetry
data [28, 66]. Due to this, there are also good estimates on how much of the global
seafloor has been measured by echosounders, and it is less than 18% [28]. The
fact that backscatter is much less available is also demonstrated by the fact that it
is not even mentioned in these efforts [28, 66]. This is further confirmed by the
fact that the standardization for the acquisition and interpretation of backscatter
data is still a very active field of research [24].

Because bathymetry is more readily available than backscatter, it is desirable
to develop fast and accurate classification methods that do not rely on backscatter
data. Such methods could then be applied in order to provide classification results
of large areas of many European and American coastal seas, among others. When
full-coverage bathymetry data of the entire globe become available, such methods
can then be applied at the global scale. Although backscatter-based classification
still yields better results, OBIA classification results using only bathymetry and its
derivatives yielded classification results with a 10% loss in accuracy. As such, the
methods developed in this chapter should be considered as good options in circum-
stances where backscatter data are not available.

5.5. Summary and conclusions

I n this chapter, two seafloor classification methods were developed that use an
OBIA approach. The methods use bathymetry, bathymetric derivatives, and grab

samples as input, and they do not rely on the use of backscatter. The transferability
of the best method was tested by applying it to two datasets. The first dataset was
from Norwegian waters, specifically the Røstbanken area off the coast of Lofoten.
The second dataset was from Borkumer Stones area close to the island of Schier-
monnikoog in Dutch waters. The classification results were compared to the results
from an existing backscatter-based classification method (Method 1) in the case of
the Røstbanken data, and to grab-sample ground-reference data for both datasets.

The first of the developed methods (Method 2) used a purely texture-based
OBIA approach. The second method (Method 3) was similar, but used additional
image object features. Both methods are fast enough to be used over large coastal
areas with data resolutions of 5 m × 5 m. To apply the method(s) to new areas,
adjustments to the scale parameter of the segmentation algorithm were necessary.
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Additionally, when creating the first two levels of image objects, image layer choice
was important in order for the shapes of the image objects to conform to small-scale
features of the seafloor. With these adjustments, the algorithm was transferable to
new research areas.

When comparing Methods 1–3 to grab-sample ground-reference data, a respec-
tive classification accuracy of 98.7%, 73%, and 87% was found when a tolerance of
±1 class was used. When only perfect matches are considered, then the accuracies
are 71%, 45%, and 61%, respectively. When compared to the results from Method
1, Method 2 had an accuracy of 52% and Method 3 an accuracy of 86% with a ±1
class tolerance. Because the input requirements and computation cost do not differ
significantly between Methods 2 and 3, the use of Method 3 is recommended.

Having a bathymetry and bathymetric derivative-based classification method is
important given that bathymetry data are more available than backscatter data for
many coastal seas. This importance is even greater when considering full global
coverage of bathymetric data being available through projects such as the GEBCO
seabed 2030 project [28]. As such, the results presented in this chapter should be
of wide interest to the seafloor classification community.
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6
Bringing different sampling

methodologies together
If you want to lift yourself up, lift up someone else.

Booker T. Washington

If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton

DISCLOSE is a multi-disciplinary project, of which acoustic measurements
are one part. The other parts use video and grab sample methods to study
the seafloor. In this chapter we link acoustic results to the work and results
produced in the rest of the project. The dataset comes from the Brown Bank
where hydrodynamic forces fromwinds and tidal currents cause nested mul-
tiscalemorphological features ranging frommeter-scale (mega)ripples, to sand
waves and kilometer-scale linear sandbanks. This multiscale habitat het-
erogeneity is generally disregarded in the ecological assessments of benthic
habitats. In this chapter, we firstly discuss a novel approach to inverting
multibeam echosounder backscatter data for sediment property parameters
without the use of grab samples. Next, we consider a multiscale assess-
ment toolbox that combines bathymetry, multibeam backscatter classifica-
tion, video based surveying of epibenthos and box core grab samples of sed-
iment and macrobenthos. We find that these methods are greatly comple-
mentary and allow for more detail in the interpretation of benthic surveys.
Acoustic and video data characterized the seafloor surface and subsurface,
and macrobenthos communities are found to be structured by both sandbank
and sand wave topography. The results further indicate that acoustic tech-
niques can be used to determine the location of epibenthic reefs.

Parts of this chapter have been published in Estuarine, Coastal and Shelf Science , 106687 (2020)
[1], Geosciences (7), 292 (2019) [2], and Journal of Sea Research , 85 - 94 (2019) [3].
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6.1. Introduction

W ithin the DISCLOSE project a significant portion of the research focused on
the Brown Bank area. Much of the research did not focus on the acoustics but

on the benthic component. As such, the results presented in this chapter should
be placed in that context. The Brown Bank area is referred to as a soft-sediment
subtidal area. Subtidal, soft-sediment beds form the most widespread benthic habi-
tat type on earth and result from the interplay of geological, physical and biological
drivers [4, 5]. When occurring within the depth range affected by hydrodynamic ac-
tivity from wind and currents (e.g. < 50 m deep on coastal shelves), these sediment
beds typically form clear, multiscale nested structures, such as sandbanks, sand
waves, or (mega)ripples [6, 7]. Consequently, heterogeneous seafloor landscapes
are created, in which topographic features shape soft-sediment habitat diversity
with respect to hydrodynamic exposure. This impact of topography on habitat het-
erogeneity is additionally complemented by variations in the physico-chemical com-
position of the sediment. In a sandbank system, for example, a clear spatial sed-
iment distribution can be distinguished, with generally finer and carbonate-poorer
sediments in the troughs than on the crest [8, 9]. Habitat variation resulting from
this physico-chemical heterogeneity of the seafloor creates important variation in
habitat conditions for benthic fauna. Spatial heterogeneity therefore influences im-
portant ecosystem features at various scales, including species diversity, density
and biomass, community composition, and several ecosystem processes [10, 11].
In marine ecosystems, for example, macrobenthic communities tend to be richer,
denser, and different in species composition in troughs than on crests of sandbanks
[12], but also of sand wave crests [13] and small-scale ripples [14].

In terms of biodiversity, underlying gradients in the physical habitat template
can be greatly amplified by biological mechanisms. Especially where the so called,
’ecosystem engineers’ are present [15]. Ecosystem engineers are organisms that
modify their physical habitat. Such biogenic landscape boundaries are well known
from coral reefs, but also from intertidal habitats where several autogenic ecosys-
tem engineers form complex three-dimensional structures, e.g. at the boundary of
vegetated and non-vegetated tidal flats or seagrass meadows [16, 17], or in the
vicinity of oyster reefs and other bivalve beds [18, 19]. Through density-dependent
feedbacks, ecosystem engineers can buffer the impact of physical forces, although
their occurrence is generally limited in locations where these physical forces ex-
ceed critical thresholds. In heavily trawled subtidal soft-sediment areas with high
substrate mobility, such as sand wave-dominated sediments, their presence seems
limited but not absent [20]. Some reef-forming organisms, such as tube worms,
may occur in sandbank troughs, where food and suspended sediment needed to
build their tubes are sufficiently present [3, 21]. The presence of these reefs in-
duces high local biodiversity, sustained by increased local habitat heterogeneity,
physical shelter and better food supply [22–24].

Anthropogenic physical disturbance, e.g. bottom trawl fisheries, tends to ho-
mogenise soft-bottom sediments by removing smaller-scale habitat heterogeneity
in subtidal soft sediments, jeopardising their structure, function and biodiversity
[25, 26]. Epibenthos is particularly vulnerable to this influence [3, 27], but infaunal
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organisms are also affected, resulting in a shift of benthic communities towards a
dominance of shorter-lived species [28, 29]. Given the high prevalence and inten-
sity of demersal fisheries in shallow coastal seas such as the North Sea [30–32],
benthic surveys may not be sufficiently able to reveal the biodiversity potential of
many benthic (sub)habitats created by the interplay between hydrodynamic and
biological forces. An approach that resolves the underlying physical gradients and
evaluates both the potential of this template for biogenic self-reinforcing biodiversity
development, and vulnerability/sensitivity to disturbance, is therefore needed.

The most important constraint for biodiversity-oriented benthic surveys is the
trade-off between extent and grain1 of the different observational methods. As
sampling is often costly and time-consuming, and areas needing coverage are large,
a balance between extent and resolution needs to be found [33, 34]. With respect
to the identification of the physical habitat template, a very promising approach is
the use of multibeam echo-sounding (MBES). Especially when the full information in
the returning acoustic signals (including backscatter intensity) is used, this acoustic
technique allows for a detailed characterization of the seafloor bathymetry, but can
also give information about the sediment type variation of the seafloor as seen in
the previous chapters [35, 36]. However, the method does not give direct infor-
mation to link the topography and acoustic classes to the species composition of
benthic assemblages [37]. In situ sampling remains necessary to link topography to
seafloor ecology. To map seafloor communities, multibeam data can be combined
with camera surveying, such as video transects, photos of the seafloor by landing
frames or Sediment Profile Imaging i.e. SPI camera (Section 6.3.3). Between these
techniques, there is also a trade-off between the area covered per unit effort, and
taxonomic resolution of the biodiversity surveys. An optimal combination of several
techniques is likely the best compromise between these approaches.

Within the DISCLOSE project it was tested how MBES, video, photographic (SPI)
and box core sampling data of the seafloor can be combined to accurately link bio-
diversity to seafloor morphology. It was also explored if this allows locally sampled
biodiversity patterns to be interpolated and extrapolated to the wider seafloor land-
scape. Since different seafloor morphologies can offer different substrate charac-
teristics and varying food availability to the benthic fauna, the relationships between
benthic macrofauna abundance, biodiversity, and sediment grain size and organic
matter quantity and biochemical composition were also explored. Additionally, an
inversion method to obtain three sediment parameters from backscatter is pre-
sented and used to quantify the correlation between the outcomes of the different
approaches of DISCLOSE and to generalize this information in the design of optimal
survey approaches for larger areas of the North Sea.

6.2. The Brown Bank study area

T he Brown Bank study area considered in this chapter is also described in Sec-
tion 3.2.1. A summary description of the area, including some of the outcomes

1Grain refers to the resolution in space and time, and in terms of variables estimated of an observational
method.
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mentioned earlier in this thesis, follows. At the Brown Bank there is a large sand-
bank with a height difference of about 26 m between crest and trough, belonging
to the north-south oriented Dutch Banks in the southern North Sea (Figure 6.1).
The sandbank is located nearly halfway between the Netherlands and the United
Kingdom, at about 85 km from the Dutch coast. The seafloor in this region addi-
tionally forms smaller-scale sand waves that are roughly east-west oriented, with
wavelengths of about 200 m and heights of 2 m, and smaller megaripples, with
wavelengths and heights of about 10 m and 0.5 m respectively. The even smaller
sand ripples discussed in Chapter 4 are not considered in this chapter. Both sand
waves and megaripples migrate over the seafloor, at rates in the order of several
meters per year for sand waves and within weeks or even hours for megaripples
[38–40]. The area is heavily fished by bottom trawlers, especially the troughs be-
tween the large sandbanks [32]. The sampling took place from 26 October till 5
November 2017, during a campaign on board RV Pelagia.

6.3. Materials and methods
6.3.1. Multibeam echosounding, classification based on the

full angular response

I n this section we present a method that was also used in [2]. This method is im-
portant because it provides further information from the MBES measurements,

separating the contribution of roughness and volume scattering. The observed
backscatter strength of MBESs is a function of the signal frequency, grazing angle,
and sediment type. The angular dependence of the received backscatter data in
combination with an established seafloor interaction model allows for an inversion
to estimate the geoacoustic parameters. There is one complication; the fact that
there is often no good calibration of the sonar systems with respect to backscatter
strength. Amiri-Simkooei et al. [2] proposes an innovative calibration method that
does not rely on the use of grab samples. The full method thus consists of three
steps. Firstly, a calibration curve, together with the sediment parameters mean
grain size (𝑀 ), volume scattering (𝜎 ), and spectral strength (𝑤 ) are estimated
per Bayes class, see Section 3.3.1. In [2] the validity of this calibration approach is
assessed by using different sets of measurements. It was found that the estimated
calibration curve is independent of the set used, providing further validation of the
method. Second, the backscatter data is corrected by use of the estimated calibra-
tion curve. Thirdly, the corrected backscatter is utilized to estimate the sediment
parameters 𝑀 , 𝜎 , and 𝑤 for the full area. To have a better spatial resolution, this
process is implemented for the port (−65∘ ≤ 𝜃 ≤ 0∘) and starboard (0∘ ≤ 𝜃 ≤ 65∘)
sides of the sonar separately.

In addition to obtaining the geo-acoustic parameters just mentioned, the bathy-
metry was used to calculate slope and the Bathymetric Position Index (BPI) (Section
5.2.1). We used BPI (with a 2000 m radius) as a measure for sandbank topog-
raphy, BPI for sand waves and BPI for megaripples. All of these features were
used to search for the best MBES based output to link to macrofauna data.
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Figure 6.1: Location of the 22 sampling stations on and around the Brown Bank, with background colour
indicating ( ) bathymetry, ( ) backscatter-based acoustic classes, (c) volume scattering ( ) and ( )
surface roughness ( ). The inset (e) shows the location of the Brown Bank in the southern North Sea.
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6.3.2. Box core samples
The locations and grain size analysis of the 22 grab samples used in this chapter
have been previously described in Section 3.2.4. The sampled stations were further
classified according to their topographic position (TP):

• Crest

• Flank

• Trough

• Transitional

• Beyond

relative to the Brown Bank. At each station, three replicate box core samples were
taken with a box corer (30 cm internal diameter).

In addition to the grab sample locations relative to the Brown Bank, the samples
gathered in sand wave areas were also categorized according their position in a sand
wave. Within these samples three stations were located in a sand wave trough
(stations 1, 10 and 15) and one (station 5) on a crest. A further two stations were
located on the stossside flank (stations 6 and 11).

In addition to the grain size analysis, which was described in a previous section
(Section 3.2.4), the chemical and macrobenthic information was also determined
and is now described. After extraction in a bullet blender with 90% acetone, chloro-
phyll a was analyzed using a Specord 210 spectrophotometer (Analytik Jena, Jena,
Germany). Total organic carbon (TOC) and total nitrogen (TN) were analyzed ac-
cording to the Dumas method [41], using a Thermo Flash 2000 Element Analyzer
(Thermo Fisher Scientific, Waltham, Massachusetts, USA).

The grab samples were further sieved over a 0.5 mm mesh to extract the mac-
robenthos (organisms large enough to be caught in the 0.5 mm sieve). Animals
were fixed in 4–6% formalin and transported to the laboratory, where they were
counted and identified to the lowest possible taxonomic level. For each sample,
densities, species richness (𝑆) and Pielou’s evenness (𝐽 ) were calculated. Pielou’s
evenness indicates how comparable the number of individuals per species is be-
tween the various species. Furthermore, functional groups were defined based on
combinations of sediment reworking mode as follows:

• E: epifauna

• S: surficial modifiers

• C: conveyor-belt feeders

• B: biodiffusors

• R: regenerators,

and motility, how easily they can move, in the sediment [42, 43] as follows
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• A: in a fixed tube

• B: sessile, but not in a tube

• C: slow movement through the sediment

• D: free movement through a burrow system.

6.3.3. Sediment profile imaging
Another observation system, not previously used in this thesis, is the Sediment
Profile Imaging (SPI) camera. It was used at the Brown Bank to determine the
subsurface seabed structure. The SPI consists of a galvanized frame with a camera-
comprising prism, which penetrates the seafloor when lowered onto the seabed
[44]. The SPI was lowered three times at each station, except at Station 23. At each
drop, two pictures were taken, resulting in 6 pictures per station. The penetration
depth was measured and the presence of shell fragments was classified as follows

• 0: no shell fragments

• 1: few shell fragments

• 2: medium shell fragments

• 3: many shell fragments,

and the dominant sediment type was identified (Sand or Mud).

6.3.4. Video transects
An important sensor within DISCLOSE is the optical camera, as previously used
and described in Sections 3.2.3 and 4.2.3. Within DISCLOSE a dedicated optical
camera system, called Bruce, was developed. In addition to Bruce an additional
drop camera from NIOZ was also used. The optical camera is key to bridge the
gap between the large-scale MBES, providing a proxy for the habitat, and the very
detailed grab sample that covers a very limited area. Additionally, videos of the
seafloor are perhaps the most intuitive method to perceive a habitat type.

Video transects were performed at 10 stations, on the crest and in both troughs
of the Brown Bank, as well as for the transitional station (Station 23, Figure 6.1).
Two transects were performed for each station except the transitional station. Va-
lidity and superficial landscape type were deduced from the video footage, as well
as shifts between landscape types and the number of observed organisms. The
observed species were identified to the lowest taxonomic level possible. For each
transect, the surveyed area was defined as the summed surface of grid cells, of size
0.5 × 0.5 m, that the camera traversed. The number of individuals of each species
could hence be converted to densities (m ) per transect. The number of switches in
landscape type was determined as an indicator of small-scale habitat heterogene-
ity. For this, the number of landscape switches was divided by the length of the
transect, which was determined as the sum of distances between valid recordings.
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Figure 6.2: Two typical examples of the optimization problem in which three geoacoustic parameters
were searched for, Port side (left), Starboard side (right). Indicated in plots are observed backscatter
curve (dashed blue line), corrected backscatter curve after applying calibration curve (solid red line),
and modeled backscatter curve (solid green line).

6.4. Results of DISCLOSE measurement methods
6.4.1. Acoustic characterization of the seafloor

T he procedure described in Section 6.3.1 is now implemented to estimate the
backscatter calibration curve. Then the inversion is performed for the three

geoacoustic parameters 𝑀 , 𝑤 , and 𝜎 for each measured backscatter curve. As
stated before, this is done separately for the port and the starboard sides. The
unknown parameters were constrained as −1 ≤ 𝑀 ≤ 9, 0.001 ≤ 𝑤 ≤ 0.01, and
0.0001 ≤ 𝜎 ≤ 0.02. Figure 6.2 shows two typical mean backscatter curves for
which the geoacoustic inversion was applied to estimate 𝑀 , 𝑤 , and 𝜎 . Also
shown are the observed BS curves (dashed lines). The difference between the
corrected and observed backscatter curves represents the calibration curve. The
modeled BS curves are seen to closely follow the corrected backscatter curves after
the optimization method was applied.

The inverted geoacoustic parameters are presented in Figure 6.1 (𝑀 is not
shown), and smoothed full coverage maps of all three parameters are shown in
Figure 6.3. The mean grain sizes mainly range from 1 - 2.5 𝜙 with the dominant
values in the range of 1.5 - 2 𝜙. This is in agreement with the grab samples
collected in this survey area. The estimated mean grain sizes show high spatial
variability, which may indicate that the survey area has an almost non-distinctive
and heterogeneous sedimentary composition. However, the parameters 𝑤 and 𝜎
(Figure 6.3 middle and bottom) show clear spatial patterns.

6.4.2. Importance of inverting the MBES data for three param-
eters

For the inversion method, the results indicate that a search for at least three geoa-
coustic parameters is required. Empirical models relate the roughness parameter



6.4. Results of DISCLOSE measurement methods

6

141

Figure 6.3: Smoothed maps of inverted mean grain size (top), spectral strength (middle), and
volume scattering parameters (bottom). Also indicated in the top frame are the mean grain sizes
of the grab samples based on the Folk classification scheme. Dashed lines indicates square patches
connected to each other using the LS-BICSA method [45].
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Figure 6.4: Smoothed maps of inverted mean grain size along with Folk classes of grab samples
when spectral strength and volume scattering parameter were kept fixed to their average values.

𝑤 and the volume scattering parameter 𝜎 , to the mean grain size 𝑀 [46]. These
relations are known to be rather weak, as there is a considerable range of vari-
ations in these two parameters and hence they are not much correlated with 𝑀
[47]. Therefore, the optimization was performed by using the three parameters
𝑀 , 𝑤 and 𝜎 .

To further elaborate on this issue, the optimization method was implemented
only for the mean grain size, while keeping𝑤 and 𝜎 fixed to their average values or
to those predicted by the empirical model of [46]. We thus search only for𝑀 values
in the optimization method. The estimated 𝑀 values are presented in Figure 6.4.
As indicated, the range of 𝑀 variations has been significantly increased compared
to the results presented in Figure 6.3 (significant green areas having 𝑀 ≃ 2.5
and red areas having 𝑀 ≃ 1 appeared), which cannot be justified based on the
grab samples taken. These areas indeed correspond to those having smallest and
largest 𝜎 , respectively, and to some extent having largest and smallest 𝑤 values.
Ignoring these two independent geoacoustic parameters in the inversion may thus
cause an overestimated or underestimated mean grain size.

6.4.3. Grab sample results
Abiotic properties of the sandbank sediments
In the following, a parameter denoted topographic position (TP) (see Section 6.3.2)
is used. When analyzing the grab-sample data the main idea is to investigate
weather the grabs show differences between the major topographic regions. The
total organic carbon (TOC) differed significantly between nearly all TPs. Among
these, the ‘Flank’ was similar to the ‘Beyond’, and the ‘Trough’ was similar to
the ‘Transitional’ TP. The TOC was highest in the ‘Transitional’ (0.59 ± 0.19)%2

and lowest on the ‘Crest’ (1.2 ± 0.3) × 10 %. The total nitrogen (TN) values
were significantly different between the ‘Transitional’ and other TPs, and between

2values are represented as (mean ± standard deviation)
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the ‘Trough’ and other TPs, but not between ‘Transitional’ and ‘Trough’. Values
were lowest on the ‘Crest’ (4.7 ± 3.2) × 10 % and highest in the ‘Transitional’
(6.1 ± 1.4) × 10 %. Chlorophyll a content showed significant patterns, with high-
est values in the ‘Trough’ (0.5±0.3𝜇𝑔/𝑔) and lowest on the ‘Crest’ (0.1±0.02𝜇𝑔/𝑔).

With respect to the sediment properties within the sand waves only chlorophyll
a content was found to be significantly different between the flanks and troughs.
Higher values were found in the troughs than on the flanks.

Biotic results of the grab sample analysis
All variables concerning macrobenthos density and diversity were analyzed, again
aiming to relate them to the five TPs. The methods were performed in the open
source statistical software R [48], are described in detail in [1], and not repeated
here.

Total densities were lowest on the ‘Crest’ (380.40 ± 224.52 individuals/m ) and
highest in the ‘Trough’ and ‘Transitional’ (2092.99± 2834.49 and 1872.13± 1092.39
individuals/m , respectively) TPs. Densities on the ‘Crest’ were significantly lower
than all other TPs and densities in the ‘Trough’ significantly higher than all others
except the ‘Transitional’. The species richness was lowest with 9.44 ± 3.50 species
per sample on the ‘Crest’ and highest with 28 ± 9.54 species in the ‘Transitional’,
and showed significant differences between all TPs, except between the ‘Flank’ and
‘Beyond’ and between the ‘Trough’ and the ‘Transitional’. Pielou’s evenness ranged
from 0.79 ± 0.08 in the ‘Trough’ to 0.84 ± 0.09 on the ‘Crest’ and did not differ
significantly among TPs.

When investigating if species patterns were similarly effected by sand wave
topology as sand bank topology, it was found that the species richness, but not
Pielou’s evenness, was significantly different between sand wave crests and troughs.
In general, our results indicate that total densities and species richness vary with
the large-scale morphology. The same pattern, albeit less pronounced, holds for
the smaller scale sand wave morphology.

6.4.4. Subsurface seabed structure
The penetration depth for the SPI pictures was tested using a linear mixed model
(LMM), with topographic position as explanatory and station as random variable.
The log likelihood ratio was determined between this model and a null model with
only the random effect of station included. The average penetration depth was 6.3
± 2.9 cm, with 39 pictures having a penetration depth of < 5 cm. Penetration depth
was much larger on the crest (11.5 ± 2.9 cm) than at the other locations (5.6 ±
2.1 cm) (log likelihood ratio of LMM: -6.8).

In addition to the penetration depth, the images were also classified according
to the sediment. From this, the main insight from the SPI data is that the amount
of shell fragments was higher in the troughs compared to the crest locations. The
crest pictures were all classified as no shell fragments (class 0), while the trough
pictures showed the highest percentages of class 1 and 2 (medium and many shell
fragments, respectively).
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6.4.5. Video transects
For the video transects species types were identified, counted, and linked to TPs.
In addition, it was noted if the habitat type changed significantly in the course of a
video transect. A total of 1813 individuals of 16 species were observed, over a total
observed area of 1358 m . The most recorded species was the starfish Asterias
rubens (1378 individuals), followed by Ophiuroidea brittle stars (256 individuals)
and the hermit crab Pagurus bernhardus (65 individuals). Compared to the crest
(0.128 ± 0.057), the troughs (East: 3.079 ± 4.502; West: 0.770 ± 0.298) had
higher densities of organisms (log likelihood ratio LMM: -4.9). Moreover, the troughs
(East: 3.463 ± 2.876; West: 5.315 ± 3.183) showed 3 to 5 habitat type changes
per 100 m transect, while the crest showed none (log likelihood ratio LMM: -4.9).
Crest transects only showed sandy sediment with hardly any shell fragments, while
all other stations alternated between sandy sediments with shell fragments and
sandy sediments with shell fragments and incidental large stones. Sandy sediments
with shell fragments, incidental stones and Sabellaria reef fragments (Sabellaria
landscape) were observed in the northern station in the eastern trough (station 4)
and the middle station in the western trough (station 7). Moreover, the transitional
station (station 23) showed some Sabellaria habitat, but also the unique “sand with
clay” and “sand with clay and incidental stones” habitats.

6.5. Integration of the different DISCLOSE methods

T he video footage, SPI images, and MBES data show similar features, with the
more topographically diverse seafloor habitats outside the sandbank crest cor-

responding with a higher backscatter signal. To link the results from the different
sampling methods, a redundancy analysis (RDA) was performed [49]. RDA can be
considered a constrained version of Principal Component Analysis (PCA), where it
is desired to find linear relationships between a set of dependent variables that are
influenced by a set of independent variables. As such, a linear regression is first
performed to explain the dependent variables as a function of the independent vari-
ables and PCA is then performed on these results to select only those independent
variables that best explain the dependent variables [50]. For this research the fol-
lowing were chosen to be the independent variables: 𝑀 , 𝑤 , 𝜎 , slope, backscatter,
bathymetry, BPI , BPI , BPI , TOC, TN and chlorophyll a content. All variables
were linearized prior to the RDA analysis. The model explained 46.7% of the total
variation in the macrobenthic data. Bathymetry mostly separated the macroben-
thos communities in the different topographic positions from each other, as well as
sand wave flanks/crests from the sand wave troughs in the ‘Beyond’ TP. TOC and
𝜎 separated the ’transitional’ and the trough stations with Sabellaria from the rest
of the sampling stations. When the RDA model was based on functional groups,
then 𝜎 and backscatter were selected as significant contributors to the variation
in community structure. These variables separated the ‘Trough’, ‘Transitional’, and
stations in sand wave troughs in the ‘Beyond’ region from the rest of the stations.
This model explained 31.1% of the total variation in the data.

The observation of stones and shell fragments in the troughs matches between
the video footage and SPI photographs. These are further found to coincide with
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higher backscatter values [40, 51], specifically volume scattering. The resulting
mixed sediment beds explain the higher volume scattering observed in the sandbank
troughs.

Macrobenthic community compositions appear to be largely determined by to-
pographic position (as determined by hydrodynamics), with higher biodiversity in
the sandbank troughs than on the crest, confirming earlier research [12, 52]. Fur-
thermore, in the sand wave regions in the ’beyond’ TP it was found that the grab
samples from the sand wave troughs were more similar to the samples from the
trough of the tidal ridge. The samples from the sand wave crest were more similar
to the samples from the crest of the tidal ridge. This pattern was evident despite
the samples from the sand waves being poorly distributed relative to the crests,
troughs, and flanks of the sand waves. The higher biodiversity in troughs of dif-
ferent scales has been associated with a higher organic matter or mud content
[12–14]. However, our communities from the sand wave-dominated areas were
hardly separated based on their organic matter content, and we could only find
this distinction in sediment properties for the large-scale sandbank. We therefore
suggest that, next to sediment properties, physical stress caused by the dynam-
ics of water and sediment is an important factor in determining which species will
dominate communities in sand wave environments.

6.5.1. Implications for monitoring
By combining different sampling methods, we obtained a more detailed image of the
seafloor than would otherwise be possible. Traditional designs that merely focus on
grab or box core samples do not take small-scale heterogeneity of the seafloor into
account and interpolate the findings of sampling points to their direct surroundings.
Great care should therefore be taken in the spatial interpolation between samples.
Although macrobenthos communities largely corresponded with the Brown Bank
topology, we showed that additional techniques are useful to obtain information
about smaller-scale variability. Acoustic data were crucial to identify sand waves,
allowing us to compare patterns in community structure on the sandbank and the
sand wave scale. Furthermore, video footage revealed that the Sabellaria found
in the box core samples formed (fragmented) reefs, which occurred only in areas
with high volume scattering. Not only can we therefore use these techniques to add
detail to our interpretation of seafloor heterogeneity, they may also be useful to de-
lineate regions where biogenic structures can be present, and therefore potentially
serve as an important tool in conservation management. The box core samples, in
contrast with the other survey techniques, allowed inferring the correlation struc-
ture between the occurrence of all species of macrobenthos. This is needed in order
to properly evaluate the community effects of features like Sabellaria reefs.

6.5.2. Sabellaria reefs and the impact of bottom trawling
In the DISCLOSE project Sabellaria spinulosa reefs were discovered in the area of
the Brown Bank during a cruise with OCEANA [3] (Figure 6.5). Sabellaria spinulosa
is considered an important species because it is an ecosystem engineer. Related
to the presence of this species, the analysis of the video and box core data did
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Figure 6.5: Pictures of the S. spinulosa reefs in low abundance (a,b) and reef structure (c,d), with asso-
ciated species (a: Common starfish (Asterias rubens); b: Common starfish (A. rubens) and dragonets
(Callionymus spp.); c: Edible crab (Cancer pagurus); d: Small-spotted catshark (Scyliorhinus canicula)).

not always lead to the same conclusions. At the transitional station, high abun-
dances of individual Sabellaria worms were found in the box cores, whereas the
video showed only few reef fragments. Likewise, in the northernmost station in
the western trough one box core sample contained Sabellaria worms, but no reef
fragments were observed in the video transects. For the northernmost station in
the eastern trough and the central station in the western trough, video observations
of Sabellaria reef fragments did not automatically coincide with frequent presence
of Sabellaria worms in the box core samples. This indicates that this species has
a larger distribution area, but forms reefs (Figure 6.5) only in specific locations,
and its patchy distribution demands a sampling approach covering multiple scales.
Our samples suggest that the presence of both Sabellaria reefs and individuals
stimulates the establishment of diverse and – both taxonomically and functionally –
distinct macrobenthos communities. Earlier studies have emphasized the ecological
importance of reef-forming benthic species, especially through promoting habitat
heterogeneity and organic matter entrapment [22, 23, 53]. Interestingly, we show
that high abundances of Sabellaria individuals might have the same effect. Fur-
thermore, the specific locations where reef fragments were observed appeared to
occur in areas characterized by high acoustic volume scattering, suggesting that
this parameter can be used to identify potential Sabellaria reef locations.

The presence of Sabellaria reefs and more diverse and dense macrobenthos
communities in the Brown Bank troughs can promote a higher fish diversity, since
several species of demersal3 fish are known to feed near these reefs [54]. Van der

3Demersal fish are those that live close to the seafloor. The so called demersal zone is in the water
column but so close to the seafloor that it is significantly affected by the seafloor and the benthos. The
demersal zone is just above the benthic zone. The benthic zone refers to the ecological region on the
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Figure 6.6: A simulation of the seabed topography in relation to fishing activities. The top view (a)
shows a beam trawl net (blue). The small-scale megaripples (shown by a light top and dark valley) are
perpendicular to the main fishing direction. The side view (b) shows a cross-section of the seabed with
the megaripples and the potential refuge areas (black ovals) in the troughs.

Reijden et al. [32] showed that beam trawl fisheries strongly prefer the Brown
Bank troughs, resulting in intense local fishing. Beam trawling is known to destroy
epibenthic structures such as reefs and disrupt endobenthic communities by drag-
ging heavy gear over the seafloor [55, 56]. This intense trawling is therefore a likely
reason why only sparse reefs are known around the Brown Bank, whereas higher
amounts of reefs still occur in British waters, where they have enjoyed a longer
protection [3, 57]. The macrobenthos communities of the Brown Bank troughs
are probably adapted to high disturbance, as the region has already been trawled
since the thirteenth, and more intensively since the middle of the twentieth century
[58, 59]. As the communities are either influenced by anthropogenic disturbance
(bottom trawling in the troughs and lower flanks) or by a higher physical stress
(high hydrodynamic regime on the crests and higher parts of the sandbank), their
current functional composition lacks a clear distinction. Given these considerations,
we hypothesize that the Sabellaria reefs survive at the Brown Bank by being located
in the troughs of mega ripples (Figure 6.6). These troughs likely form refuge areas
where they are spared the full-weight heavy fishing gear.

6.6. Conclusion
The combined use of multiple sampling techniques for seafloor and benthos charac-
terisation allowed us to make a detailed interpretation of our findings. As standard
sampling schemes tend to inadvertently ‘homogenise’ the studied region when spa-
tially extrapolating data, we recommend the complementary use of the MBES, video
footage, SPI imagery, together with grab sampling. This allows for a greater detail
of the surveys, allowing predictions about the interlaying seafloor characteristics
that can potentially serve for conservation management.

sediment surface and some sub-surface layers.



6

148 References

6.7. Acknowledgments

T he authors would like to thank Karline Soetaert (NIOZ) for organizing the NIOZ
cruise and acknowledge Rob Witbaard (NIOZ) for his role as chief scientist dur-

ing the cruise. The crew of RV Pelagia is also acknowledged for their practical
assistance on board. Peter van Breugel is thanked for performing the particle size
analysis in the NIOZ lab, and Matthew Parsons and Maria Bacelar Martinez for
processing of the macrobenthos samples. Finally, the authors acknowledge the
Gieskes-Strijbis Fonds for financial support of the DISCLOSE project, within which
this research took place.

References
[1] S. Mestdagh, A. Amiri-Simkooei, K. J. van der Reijden, L. Koop, S. O’Flynn,

M. Snellen, C. Van Sluis, L. L. Govers, D. G. Simons, P. M. Herman, H. Olff,
and T. Ysebaert, Linking the morphology and ecology of subtidal soft-bottom
marine benthic habitats: A novel multiscale approach, Estuarine, Coastal and
Shelf Science , 106687 (2020).

[2] A. R. Amiri-Simkooei, L. Koop, K. J. van der Reijden, M. Snellen, and D. G.
Simons, Seafloor characterization using multibeam echosounder backscatter
data: methodology and results in the North Sea, Geosciences , 292 (2019).

[3] K. J. Van Der Reijden, L. Koop, S. O’flynn, S. Garcia, O. Bos, C. Van Sluis, D. J.
Maaholm, P. M. Herman, D. G. Simons, and H. Olff, Discovery of sabellaria
spinulosa reefs in an intensively fished area of the Dutch continental shelf,
North Sea, Journal of Sea Research , 85 (2019).

[4] P. V. Snelgrove, Getting to the bottom of marine biodiversity: sedimentary
habitats: ocean bottoms are the most widespread habitat on earth and sup-
port high biodiversity and key ecosystem services, BioScience , 129 (1999).

[5] M. Zeiler, K. Schwarter, K. Ricklefs, and A. Bartholomä, Seabed morphology
and sediment dynamics, Die Küste, 74 ICCE , 31 (2008).

[6] A. Mazières, H. Gillet, D. Idier, T. Mulder, T. Garlan, C. Mallet, V. Marieu,
and V. Hanquiez, Dynamics of inner-shelf, multi-scale bedforms off the south
aquitaine coast over three decades (southeast bay of biscay, france), Conti-
nental Shelf Research , 23 (2015).

[7] S. Passchier and M. Kleinhans, Observations of sand waves, megaripples, and
hummocks in the Dutch coastal area and their relation to currents and com-
bined flow conditions, Journal of Geophysical Research: Earth Surface
(2005).

[8] A. Heathershaw and J. Codd, Depth-controlled changes in grain size and car-
bonate content on a shelf-edge sand bank, Marine geology , 211 (1986).

[9] A. Trentesaux, A. Stolk, B. Tessier, and H. Chamley, Surficial sedimentology of
the middelkerke bank (southern North Sea), Marine Geology , 43 (1994).

http://dx.doi.org/ https://doi.org/10.1016/j.ecss.2020.106687
http://dx.doi.org/ https://doi.org/10.1016/j.ecss.2020.106687


References

6

149

[10] J. A. García-Charton, A. Pérez-Ruzafa, P. Sánchez-Jerez, J. Bayle-Sempere,
O. Reñones, and D. Moreno, Multi-scale spatial heterogeneity, habitat struc-
ture, and the effect of marine reserves on western mediterranean rocky reef
fish assemblages, Marine Biology , 161 (2004).

[11] G. M. Lovett, C. G. Jones, M. G. Turner, and K. C. Weathers, Ecosystem func-
tion in heterogeneous landscapes, in Ecosystem function in heterogeneous
landscapes (Springer, 2005) pp. 1–4.

[12] T. A. van Dijk, J. A. van Dalfsen, V. Van Lancker, R. A. van Overmeeren, S. van
Heteren, and P. J. Doornenbal, Benthic habitat variations over tidal ridges,
North Sea, the Netherlands, in Seafloor Geomorphology as Benthic Habitat
(Elsevier, 2012) pp. 241–249.

[13] J. H. Damveld, K. J. van der Reijden, C. Cheng, L. Koop, L. R.
Haaksma, C. A. J. Walsh, K. Soetaert, B. W. Borsje, L. L. Govers,
P. C. Roos, H. Olff, and S. J. M. H. Hulscher, Video transects re-
veal that tidal sand waves affect the spatial distribution of benthic organ-
isms and sand ripples, Geophysical Research Letters , 11,837 (2018),
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018GL079858 .

[14] P. A. Ramey, J. P. Grassle, J. F. Grassle, and R. F. Petrecca, Small-scale, patchy
distributions of infauna in hydrodynamically mobile continental shelf sands:
Do ripple crests and troughs support different communities? Continental Shelf
Research , 2222 (2009).

[15] C. G. Jones, J. H. Lawton, and M. Shachak, Organisms as ecosystem engi-
neers, Oikos , 373 (1994).

[16] E. W. Koch, J. D. Ackerman, J. Verduin, and M. van Keulen, Fluid dynamics
in seagrass ecology—from molecules to ecosystems, in Seagrasses: biology,
ecologyand conservation (Springer, 2007) pp. 193–225.

[17] S. Temmerman, T. J. Bouma, G. Govers, Z. B. Wang, M. De Vries, and P. Her-
man, Impact of vegetation on flow routing and sedimentation patterns: Three-
dimensional modeling for a tidal marsh, Journal of Geophysical Research:
Earth Surface (2005).

[18] E. M. van der Zee, T. van der Heide, S. Donadi, J. S. Eklöf, B. K. Eriksson,
H. Olff, H. W. van der Veer, and T. Piersma, Spatially extended habitat
modification by intertidal reef-building bivalves has implications for consumer-
resource interactions, Ecosystems , 664 (2012).

[19] B. Walles, J. S. De Paiva, B. C. van Prooijen, T. Ysebaert, and A. C. Smaal, The
ecosystem engineer crassostrea gigas affects tidal flat morphology beyond the
boundary of their reef structures, Estuaries and Coasts , 941 (2015).

[20] J. Houziaux, F. Kerckhof, K. Degrendele, M. Roche, and A. Norro, The hinder
banks: yet an important region for the belgian marine biodiversity, Brussels:
Belgian Science Policy , 249 (2008).

http://dx.doi.org/https://doi.org/10.1029/2018GL079858
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018GL079858
http://dx.doi.org/https://doi.org/10.1016/j.csr.2009.08.020
http://dx.doi.org/https://doi.org/10.1016/j.csr.2009.08.020
http://www.jstor.org/stable/3545850


6

150 References

[21] V. Van Lancker, G. Moerkerke, I. Du Four, E. Verfaillie, M. Rabaut, and S. De-
graer, 14 - fine-scale geomorphological mapping of sandbank environments
for the prediction of macrobenthic occurrences, belgian part of the North Sea,
in Seafloor Geomorphology as Benthic Habitat, edited by P. T. Harris and E. K.
Baker (Elsevier, London, 2012) pp. 251 – 260.

[22] S. Dubois, C. Retière, and F. Olivier, Biodiversity associated with sabellaria
alveolata (polychaeta: Sabellariidae) reefs: effects of human disturbances,
Marine Biological Association of the United Kingdom. Journal of the Marine
Biological Association of the United Kingdom , 817 (2002).

[23] M. F. Gravina, F. Cardone, A. Bonifazi, M. S. Bertrandino, G. Chimienti,
C. Longo, C. N. Marzano, M. Moretti, S. Lisco, V. Moretti, G. Corriero,
and A. Giangrande, Sabellaria spinulosa (polychaeta, annelida) reefs in the
Mediterranean Sea: Habitat mapping, dynamics and associated fauna for
conservation management, Estuarine, Coastal and Shelf Science , 248
(2018).

[24] M. Rabaut, K. Guilini, G. Van Hoey, M. Vincx, and S. Degraer, A bio-engineered
soft-bottom environment: The impact of lanice conchilega on the benthic
species-specific densities and community structure, Estuarine, Coastal and
Shelf Science , 525 (2007).

[25] R. A. McConnaughey, K. L. Mier, and C. B. Dew, An examina-
tion of chronic trawling effects on soft-bottom benthos of the east-
ern Bering Sea, ICES Journal of Marine Science , 1377 (2000),
https://academic.oup.com/icesjms/article-pdf/57/5/1377/1882024/57-5-
1377.pdf .

[26] S. F. Thrush and P. K. Dayton, Disturbance to marine benthic habi-
tats by trawling and dredging: Implications for marine biodiver-
sity, Annual Review of Ecology and Systematics , 449 (2002),
https://doi.org/10.1146/annurev.ecolsys.33.010802.150515 .

[27] C. Jenkins, J. Eggleton, J. Albrecht, J. Barry, G. Duncan, N. Golding, and
J. O’Connor, North norfolk sandbank and saturn reef csac, SCI Management
Investigatio n Report (2015).

[28] A. D. Rijnsdorp, S. G. Bolam, C. Garcia, J. G. Hiddink, N. T. Hintzen, P. D.
van Denderen, and T. van Kooten, Estimating sensitivity of seabed habitats
to disturbance by bottom trawling based on the longevity of benthic fauna,
Ecological Applications , 1302 (2018).

[29] M. Sciberras, J. G. Hiddink, S. Jennings, C. L. Szostek, K. M. Hughes,
B. Kneafsey, L. J. Clarke, N. Ellis, A. D. Rijnsdorp, R. A. McConnaughey,
R. Hilborn, J. S. Collie, C. R. Pitcher, R. O. Amoroso, A. M. Parma, P. Su-
uronen, and M. J. Kaiser, Response of benthic fauna to experimental bot-
tom fishing: A global meta-analysis, Fish and Fisheries , 698 (2018),
https://onlinelibrary.wiley.com/doi/pdf/10.1111/faf.12283 .

http://dx.doi.org/ https://doi.org/10.1016/B978-0-12-385140-6.00014-1
http://dx.doi.org/ https://doi.org/10.1016/j.ecss.2017.11.017
http://dx.doi.org/ https://doi.org/10.1016/j.ecss.2017.11.017
http://dx.doi.org/https://doi.org/10.1016/j.ecss.2007.05.041
http://dx.doi.org/https://doi.org/10.1016/j.ecss.2007.05.041
http://dx.doi.org/10.1006/jmsc.2000.0906
http://arxiv.org/abs/https://academic.oup.com/icesjms/article-pdf/57/5/1377/1882024/57-5-1377.pdf
http://arxiv.org/abs/https://academic.oup.com/icesjms/article-pdf/57/5/1377/1882024/57-5-1377.pdf
http://dx.doi.org/10.1146/annurev.ecolsys.33.010802.150515
http://arxiv.org/abs/https://doi.org/10.1146/annurev.ecolsys.33.010802.150515
http://dx.doi.org/https://doi.org/10.1111/faf.12283
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/faf.12283


References

6

151

[30] R. O. Amoroso, C. R. Pitcher, A. D. Rijnsdorp, R. A. McConnaughey, A. M.
Parma, P. Suuronen, O. R. Eigaard, F. Bastardie, N. T. Hintzen, F. Althaus,
S. J. Baird, J. Black, L. Buhl-Mortensen, A. B. Campbell, R. Catarino, J. Col-
lie, J. H. Cowan, D. Durholtz, N. Engstrom, T. P. Fairweather, H. O. Fock,
R. Ford, P. A. Gálvez, H. Gerritsen, M. E. Góngora, J. A. González, J. G.
Hiddink, K. M. Hughes, S. S. Intelmann, C. Jenkins, P. Jonsson, P. Kainge,
M. Kangas, J. N. Kathena, S. Kavadas, R. W. Leslie, S. G. Lewis, M. Lundy,
D. Makin, J. Martin, T. Mazor, G. Gonzalez-Mirelis, S. J. Newman, N. Pa-
padopoulou, P. E. Posen, W. Rochester, T. Russo, A. Sala, J. M. Semmens,
C. Silva, A. Tsolos, B. Vanelslander, C. B. Wakefield, B. A. Wood, R. Hilborn,
M. J. Kaiser, and S. Jennings, Bottom trawl fishing footprints on the world’s
continental shelves, Proceedings of the National Academy of Sciences ,
E10275 (2018), https://www.pnas.org/content/115/43/E10275.full.pdf .

[31] O. R. Eigaard, F. Bastardie, N. T. Hintzen, L. Buhl-Mortensen, P. Buhl-
Mortensen, R. Catarino, G. E. Dinesen, J. Egekvist, H. O. Fock, K. Geit-
ner, H. D. Gerritsen, M. M. González, P. Jonsson, S. Kavadas, P. Laffar-
gue, M. Lundy, G. Gonzalez-Mirelis, J. R. Nielsen, N. Papadopoulou, P. E.
Posen, J. Pulcinella, T. Russo, A. Sala, C. Silva, C. J. Smith, B. Vanel-
slander, and A. D. Rijnsdorp, The footprint of bottom trawling in Euro-
pean waters: distribution, intensity, and seabed integrity, ICES Journal of
Marine Science , 847 (2016), https://academic.oup.com/icesjms/article-
pdf/74/3/847/31244877/fsw194.pdf .

[32] K. J. Van der Reijden, N. T. Hintzen, L. L. Govers, A. D. Rijnsdorp, and H. Olff,
North Sea demersal fisheries prefer specific benthic habitats, PloS one ,
e0208338 (2018).

[33] C. R. Bates, G. Scott, M. Tobin, and R. Thompson, Weighing the costs and
benefits of reduced sampling resolution in biomonitoring studies: Perspectives
from the temperate rocky intertidal, Biological Conservation , 617 (2007),
forests in the Balance: Linking Tradition and Technology in Lanscape Mosaics.

[34] J. R. Bennett, D. R. Sisson, J. P. Smol, B. F. Cumming, H. P. Possingham,
and Y. M. Buckley, Optimizing taxonomic resolution and sampling effort to
design cost-effective ecological models for environmental assessment, Journal
of applied ecology , 1722 (2014).

[35] C. De Moustier and H. Matsumoto, Seafloor acoustic remote sensing with
multibeam echo-sounders and bathymetric sidescan sonar systems, Marine
Geophysical Researches , 27 (1993).

[36] L. Hellequin, J. . Boucher, and X. Lurton, Processing of high-frequency multi-
beam echo sounder data for seafloor characterization, IEEE Journal of Oceanic
Engineering , 78 (2003).

[37] C. J. Brown, S. J. Smith, P. Lawton, and J. T. Anderson, Benthic habitat
mapping: A review of progress towards improved understanding of the spa-

http://dx.doi.org/10.1073/pnas.1802379115
http://dx.doi.org/10.1073/pnas.1802379115
http://arxiv.org/abs/https://www.pnas.org/content/115/43/E10275.full.pdf
http://dx.doi.org/10.1093/icesjms/fsw194
http://dx.doi.org/10.1093/icesjms/fsw194
http://arxiv.org/abs/https://academic.oup.com/icesjms/article-pdf/74/3/847/31244877/fsw194.pdf
http://arxiv.org/abs/https://academic.oup.com/icesjms/article-pdf/74/3/847/31244877/fsw194.pdf
http://dx.doi.org/ https://doi.org/10.1016/j.biocon.2007.03.019
http://dx.doi.org/10.1109/JOE.2002.808205
http://dx.doi.org/10.1109/JOE.2002.808205


6

152 References

tial ecology of the seafloor using acoustic techniques, Estuarine, Coastal and
Shelf Science , 502 (2011).

[38] M. A. Knaapen, Sandbank occurrence on the Dutch continental shelf in the
North Sea, Geo-marine letters , 17 (2009).

[39] M. Knaapen, Sandwave migration predictor based on shape information, Jour-
nal of Geophysical Research: Earth Surface (2005).

[40] L. Koop, A. Amiri-Simkooei, K. J van der Reijden, S. O’Flynn, M. Snellen, and
D. G Simons, Seafloor classification in a sand wave environment on the Dutch
continental shelf using multibeam echosounder backscatter data, Geosciences
, 142 (2019).

[41] J. Nieuwenhuize, Y. E. Maas, and J. J. Middelburg, Rapid analysis of or-
ganic carbon and nitrogen in particulate materials, Marine Chemistry , 217
(1994).

[42] A. M. Queirós, S. N. R. Birchenough, J. Bremner, J. A. Godbold, R. E. Parker,
A. Romero-Ramirez, H. Reiss, M. Solan, P. J. Somerfield, C. Van Colen,
G. Van Hoey, and S. Widdicombe, A bioturbation classification of Euro-
pean marine infaunal invertebrates, Ecology and Evolution , 3958 (2013),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.769 .

[43] M. Solan, B. J. Cardinale, A. L. Downing, K. A. Engelhardt, J. L. Ruesink, and
D. S. Srivastava, Extinction and ecosystem function in the marine benthos,
Science , 1177 (2004).

[44] D. C. Rhoads and S. Cande, Sediment profile camera for in situ study of
organism-sediment relations 1, Limnology and Oceanography , 110 (1971).

[45] A. Amiri-Simkooei, M. Hosseini-Asl, and A. Safari, Least squares 2d bi-
cubic spline approximation: Theory and applications, Measurement , 366
(2018).

[46] E. Hamilton, Prediction of deep sea sediment properties state of the art. deep
sea sediments, in Physical & Mechanical Properties (Plenum Press, 1974).

[47] D. Jackson, Apl-uw high-frequency ocean environmental acoustic models
handbook, Applied Physics Laboratory, University of Washington, Technical
Report (1994).

[48] R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria (2018).

[49] A. Ramette, Multivariate analyses in microbial ecology, FEMS Microbi-
ology Ecology , 142 (2007), https://academic.oup.com/femsec/article-
pdf/62/2/142/18101219/62-2-142.pdf .

[50] S. Glen, Principal component analysis, regression and parafac, Online (2021).

http://dx.doi.org/https://doi.org/10.1016/0304-4203(94)90005-1
http://dx.doi.org/https://doi.org/10.1016/0304-4203(94)90005-1
http://dx.doi.org/https://doi.org/10.1002/ece3.769
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.769
http://www.R-project.org/
http://dx.doi.org/ 10.1111/j.1574-6941.2007.00375.x
http://dx.doi.org/ 10.1111/j.1574-6941.2007.00375.x
http://arxiv.org/abs/https://academic.oup.com/femsec/article-pdf/62/2/142/18101219/62-2-142.pdf
http://arxiv.org/abs/https://academic.oup.com/femsec/article-pdf/62/2/142/18101219/62-2-142.pdf
https://www.statisticshowto.com/principal-component-analysis-2/


References

6

153

[51] V. K. Bellec, V. R. Van Lancker, K. Degrendele, M. Roche, and S. Le Bot, Geo-
environmental characterization of the kwinte bank, Journal of coastal Research
, 63 (2010).

[52] J. Ellis, T. Maxwell, M. Schratzberger, and S. Rogers, The benthos and fish of
offshore sandbank habitats in the southern North Sea, Journal of the Marine
Biological Association of the United Kingdom , 1319–1335 (2011).

[53] L. Godet, J. Fournier, M. Jaffré, and N. Desroy, Influence of stability and
fragmentation of a worm-reef on benthic macrofauna, Estuarine, Coastal and
Shelf Science , 472 (2011).

[54] B. Pearce, The ecology of Sabellaria spinulosa reefs, Ph.D. thesis, University
of Plymouth (2017).

[55] S. Bolam, R. Coggan, J. Eggleton, M. Diesing, and D. Stephens, Sensitivity
of macrobenthic secondary production to trawling in the English sector of the
greater North Sea: A biological trait approach, Journal of Sea Research ,
162 (2014).

[56] J. B. Jones, Environmental impact of trawling on the seabed: A review,
New Zealand Journal of Marine and Freshwater Research , 59 (1992),
https://doi.org/10.1080/00288330.1992.9516500 .

[57] N. Gibb, H. Tillin, B. Pearce, and H. Tyler-Walters, Assessing the sensitivity of
sabellaria spinulosa to pressures associated with marine activities. (2014).

[58] S. De Groot, The impact of bottom trawling on benthic fauna of the North Sea,
Ocean management , 177 (1984).

[59] C. J. Frid, K. Harwood, S. Hall, and J. Hall, Long-term changes in the benthic
communities on North Sea fishing grounds, ICES Journal of Marine Science

, 1303 (2000).

http://dx.doi.org/ 10.1017/S0025315410001062
http://dx.doi.org/ 10.1017/S0025315410001062
http://dx.doi.org/ https://doi.org/10.1016/j.seares.2013.05.003
http://dx.doi.org/ https://doi.org/10.1016/j.seares.2013.05.003
http://dx.doi.org/ 10.1080/00288330.1992.9516500
http://arxiv.org/abs/https://doi.org/10.1080/00288330.1992.9516500




7
Conclusion and outlook

The history of energy use is a sequence of transitions
to sources that are cheaper, cleaner, and more flexible.

Vaclav Smil

I would like to die on Mars. Just not on impact.

Elon Musk

7.1. Recapitulation
The main focus of this thesis was to investigate the role of acoustics for habitat
mapping with an interdisciplinary approach. The research area was the Dutch sector
of the North Sea. One of the specific goals of this research was to expand the
areas of the North Sea for which the relationship between backscatter and seafloor
characteristics is understood well. Much of the previous research was focused on
the Cleaverbank area of the North Sea. Since a big part of the southern North Sea
is a sand wave area, specific attention was paid to gaining a better understanding
of acoustic mapping for this area.

A particularly important question to investigate for MBES backscatter-based clas-
sification of sandy seafloors was the resolution of classification results. This is be-
cause these seafloors have repeating bedforms i.e., sand waves, of multiple sizes.
Of these, the megaripple, has a wave length of only a few tens of meters. To de-
tect changes at these scales, a high spatial resolution was needed, such that there
were multiple classification points on the period of one megaripple. Furthermore,
because the phenomena of interest was to detect the sorting of sediments that
ranged from sand to coarse sand, a high geo-acoustic resolution was needed to
detect these small differences in sediment composition. To answer these questions
a dataset from the Brown Bank was used.

In a different dataset, also from the Brown Bank area, it was found that there is a
sand ripple smaller than the megaripple present in this area. These sand ripples are
too small to be captured by bathymetry measurements. However, a careful analysis
of the backscatter showed the effects these sand ripples have on the backscatter
signal. The presence of the sand ripples was confirmed by video data.

One of the most common data types that is used for seafloor classification in
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acoustics is backscatter. However, currently large gaps in backscatter coverage
exist in the North Sea. It is not known when full coverage backscatter data of the
North Sea in the Dutch sector will become available. However, the Hydrographic
Service of the Royal Netherlands Navy collects bathymetric data for the entirety
of the Dutch sector of the North Sea on regular intervals. Because of this, it was
investigated if a classification method can be developed that is applicable for these
areas of the North Sea where backscatter is not available but bathymetric data is
available.

Finally, it was investigated how to best link acoustic seafloor data to habitat data
such as video and grab-sample data. The end goal of the acoustic mapping is to
create maps not just of the bathymetry or sediment type but of the habitats of the
seafloor in full coverage and in high detail. It is important for future projects that
the DISCLOSE project creates links between these methods. This is a necessary
step towards creating full coverage habitat maps with good resolutions.

7.2. Conclusions
In Chapter 3 it was investigated how to characterize the seafloor in a sand wave
environment the Bayesian classification method was applied to MBES backscatter
data gathered in the Brown Bank area of the North Sea. To obtain reliable classi-
fication results, steep and rapidly changing slopes over tens of meters had to be
corrected for. Acoustic classification results were then compared with video and
grab-sample data.

Based on the results of the sediment grain size analysis from the grab samples,
it was found that the seafloor sediments of the Brown Bank area are very homoge-
neous. At each sampling station three grab samples were taken, and the variance
in the mean grain size over the entire survey area was similar to the variance within
the triplicate grab samples from the individual sampling stations. However, Folk
classification of grab samples, as well as, the acoustic classification results were
more discriminative. A further analysis showed that for areas like the Brown Bank,
the full grain size distribution should be used when classifying the grab samples and
when relating this ground truth data to the acoustic classification results.

For acoustic classification of sediments in relatively homogeneous environments,
especially over megaripple structures, high spatial and geoacoustic resolutions are
required. There is, however, a trade off in these resolutions. Therefore, depending
on the aim of a classification application, either of these resolutions can be priori-
tized for. It was found that the Bayesian classification method remains statistically
sound when optimizing for the spatial resolution, as long as the number of scatter
pixels used in the averaging satisfies the central limit theorem requirements. This
is a pivotal result that underscores the validity of the acoustic classification results
over megaripples.

The results further revealed that there was a significant sorting of sediments
over megaripples. Higher acoustic classes, and therefore coarser sediments, were
found in the troughs and on the crests. Low acoustic classes were consistently
found to be on the steepest part of the stoss side of a megaripple. On the, even
steeper, lee side slope of the megaripple a mixture of all acoustic classes was found.
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These detailed results related to megaripples have a number of implications. First,
for detailed habitat maps, the size of the megaripple and not that of the sand wave
should define the resolution scale of the map. Next, researchers gathering ground
truth data, such as grab samples and video data, should strive to geo-reference
the point measured on the seafloor with an accuracy well below the wavelength
of megaripples to avoid ambiguities. Finally, it confirms that the classification of
backscatter data from MBES systems is a powerful method to further study and
display the spatial distribution of sediments over megaripple bed forms. As such,
it can provide valuable information for habitat mapping, engineering projects such
as offshore wind farms or pipe laying, or to serve as field validation data for sand
wave modelers.

From the second data set that was collected in the area of the Brown Bank, and
discussed in detail in Chapter 4, it was found that small-scale repeating seafloor
structures (sand ripples), have a profound impact on angular response curves
(ARCs) of MBES backscatter data. Visible in the ARCs, were unexpected off nadir
peaks. These patterns were influenced by the survey azimuth, but not consis-
tent when the survey azimuth was held constant. It was found that the pattern
switched on the same time intervals as the switch of the tide flow direction. These
survey-azimuth dependent ARC patterns were consistent with prior findings, but in
this thesis it was further shown that even from the same area of seafloor and a
constant survey azimuth, backscatter results differed in time. Video ground truth
confirmed that the switch in ARC pattern matched an orientation switch in sand
ripples on the seafloor. These results have implications for several different classi-
fication algorithms. Many of these classification algorithms make use of the rela-
tionship of increased backscatter intensity corresponding to larger mean grain sizes
to estimate the mean grain size of parameter of the seafloor sediment composition.
There are other factors that can increase backscatter strength, and the results of
this research indicate that the sand wave topology of the seafloor can also result
in an increase in backscatter strength. Therefore, care must be taken that it is not
seafloor topology, rather than seafloor sediment composition, that is being charac-
terized when performing backscatter-based seafloor characterization in sand wave
environments.

We further suggest that the pattern in the ARCs is useful as a diagnostic tool.
Firstly, the off nadir peaks in the ARCs indicate the slope angles of the sand ripples.
The slope angles indicated by the ARCs in this research, matched well with typical
lee and stoss side slope angles of sand ripples from the literature. From the two
angles, the avalanching observed for the lee side measurements in the video data,
allowed the use of the known angle of repose for sand in water to be compared
with the angles indicated from the ARC patterns. The indicated slopes of the stoss
side of the sand ripples were harder to validate.

Importantly, a clear link between ARC pattern and sand ripple orientation on
the seafloor was shown. This was confirmed by the use of both video ground
truth data and modeled tidal flow data. It was possible to predict the orientation
of sand ripples on the seafloor based on patterns in the acoustic data. By this
method it was possible to make these predictions over spatial scales of kilometers.



7

158 7. Conclusion and outlook

Another methodology, such as using video data, would not be able to make such
predictions over such large areas cost effectively. Furthermore, the use of MBES
bathymetry would have failed to yield this result, due to the insufficient resolution of
the bathymetry data. These results showcase the advantage of combining different
sampling methods such as acoustics and video cameras. The results further showed
that the top centimeter of the seafloor undergoes a complete transformation every
six hours in this part of the North Sea. The capability to take such measurements
from acoustic data shows that the methods employed in this thesis are an invaluable
tool for habitat mapping.

To overcome the large gaps in coverage in backscatter data for the Dutch sector
of the North Sea, two seafloor classification methods were developed in Chapter 5
that use an object-based image analysis approach. The methods use bathymetry,
bathymetric derivatives, and grab samples as input, and do not rely on the use of
backscatter. The transferability of the best method was tested by applying it to
two data sets. The first data set was from Norwegian waters, specifically the Røst-
banken area off the coast of Lofoten. The second data set was from the Borkumer
stones area close to the island of Schiermonnikoog in Dutch waters. The classi-
fication results were compared to the results from an existing backscatter-based
classification Method (referred to as Method 1 in the chapter) in the case of the
Røstbanken data, and to grab sample ground truth data for both data sets.

The first of the developed methods (referred to as Method 2) used a purely
texture-based object-based image analysis approach. The second method (Method
3) was similar, but used additional image object features. Both methods are fast
enough to be used over large coastal areas with data resolutions of 5 × 5 m.
To apply the method(s) to new areas, adjustments to the scale parameter of the
segmentation algorithm were necessary. Additionally, when creating the first two
levels of image objects, image layer choice was important in order for the shapes
of the image objects to conform to small-scale features of the seafloor. With these
adjustments, the algorithm was transferable to new research areas.

When comparing Methods 1, 2 and 3 to grab sample ground truth data, a respec-
tive classification accuracy of 98.7%, 73%, and 87% was found. These accuracies
were measured by splitting the grab samples into a training and testing subset.
The algorithms where trained using the training subset. After the classification was
performed, then the classification accuracy was tested using the testing subset of
grab samples. For the mentioned accuracies, a tolerance of ±1 class was used.
When compared to the results from Method 1, then Method 2 had an accuracy of
52% and Method 3 an accuracy of 86%, again with a ±1 class tolerance. Because
the input requirements and computation cost does not differ significantly between
Methods 2 and 3, the use of Method 3 is hence recommended.

Having a bathymetry and bathymetric derivative based classification method was
important given that bathymetry data is more available than backscatter data for
many coastal seas. This importance was even greater when considering full global
coverage of bathymetric data being available through projects such as the GEBCO
seabed 2030 project [1]. As such, the results presented in this chapter should be
of wide interest to the seafloor classification community.
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Furthermore, in the DISCLOSE project strong links between the use of acoustic
results, video results, and grab sample results were made in Chapter 6. It was
clear that the combining of these methods improved the overall habitat mapping
capability. It was also found that links between benthic habitats and acoustic results
were often not linked directly to bathymetry or backscatter. Often these links were
strongest between bathymetric derivatives such as the bathymetric position index
or backscatter parameters such as volume scattering. This strengthens the case not
just for multidisciplinary data gathering, but also that within acoustic data gathering
as many different data types should be gathered as possible.

The North Sea played an integral part in Dutch history, and will continue to do
so in the coming years. This is due to activities such as shipping and fishing that
take place there. The North Sea is also one of the busiest seas in the world. All of
this industrial and fishing activity must have an effect on seafloor habitats of the
North Sea. But even if this was not the case, it would still be of scientific benefit to
establish a good habitat baseline for the North Sea that could be referenced in the
years, decades, and centuries to come. The work accomplished in the DISCLOSE
project is a vital step in the direction to make a full-coverage baseline habitat map
a possibility. As such, this work has high scientific, and social value to our society
that is so dependent on the North Sea.

7.3. Outlook
As is often the case, an answer to question 1 raises questions 2 and 3. The research
results from this thesis also provide numerous directions for future research. From
the research results related to sediment sorting on megaripples it was found that
for different areas the lee side steepest slopes of the megaripples showed the entire
range of acoustic classes. Future research should uncover what the cause for this
mixed result is. It is recommended that multiple frequencies be used for such
research. Good notes should be taken on the tidal flow velocities and directions
to investigate if the changes are related to the flow of the tide. This could help
to investigate if the changes are related to avalanching on these slopes. Another
possible cause would be the directions of sand ripples towards the bottom of the
lee side slope. It is known that flow separation can happen over megaripples,
with a backwards flowing eddy in the trough of the megaripple. It is possible that
the directions of sand ripples change in the troughs of the megaripple. If video
camera ground truth data is collected, then very careful geo-referencing should be
performed to know precisely what part of the megaripple is observed in the footage.

Another question to investigate, is if the stoss and lee side slopes of tide driven
sand ripples can be accurately measured by use of a multibeam echosounder. This
would easiest to do in the controlled environment of a tank, such that sand ripple
slope angles could be more easily measured.

The object-based image analysis based seafloor classification was applied to two
research areas. An obvious next step would be to apply it to the entire Dutch sector
of the North Sea. For this it would need to be investigated what effect the resolution
of bathymetry data has on the classification results. Another research question is if
the use of different bathymetry derivative layers could be used to make predictions
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not just about the superficial sediment, but of the subsurface sediments. It would
also be worthwhile to investigate if a generic rule set could be developed that did
not rely on grab sample training data.

In a more general sense, a deeper integration of the different methods used
in the DISCLOSE project should be pursued. In this thesis video camera data was
compared to acoustic data in order to validate acoustic classification. In the fu-
ture, it would be of value to automate classification of video data by use of trained
machine learning methods to classify the seafloor visible in the video data. These
classified video frames should further be accurately geo-referenced, and could then
be used as a training set for acoustic data in order to automatically extrapolate the
video based classification to large areas.

A goal for the distant future would be to use autonomous video drones and au-
tonomous MBES drones to go to sea to gather data from a target research area. The
video data could then be used to train the classifiers for the acoustic data to create
full coverage habitat maps of the seafloor. To create such a system would require
significant investment for research and development, but once operational, would
greatly decrease the personnel and ship time overhead that is currently needed for
habitat mapping.
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