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ARTICLE OPEN

Designing quantum networks using preexisting infrastructure
Julian Rabbie1,2, Kaushik Chakraborty 1,2,3, Guus Avis 1,2,3 and Stephanie Wehner1,2✉

We consider the problem of deploying a quantum network on an existing fiber infrastructure, where quantum repeaters and end
nodes can only be housed at specific locations. We propose a method based on integer linear programming (ILP) to place the
minimal number of repeaters on such an existing network topology, such that requirements on end-to-end entanglement-
generation rate and fidelity between any pair of end-nodes are satisfied. While ILPs are generally difficult to solve, we show that our
method performs well in practice for networks of up to 100 nodes. We illustrate the behavior of our method both on randomly-
generated network topologies, as well as on a real-world fiber topology deployed in the Netherlands.

npj Quantum Information             (2022) 8:5 ; https://doi.org/10.1038/s41534-021-00501-3

INTRODUCTION
The quantum internet will provide an infrastructure for
quantum communication between any two devices in the
world1–5. This can be used to perform tasks which are provably
impossible with the classical internet. Many of these are
cryptographic in nature6 and allow unconditional security, such
as quantum key distribution7,8, secure multi-party cryptogra-
phy9 and blind quantum computation10. Other applications of
the quantum internet include fast byzantine agreement11 and
clock synchronization12.
A major challenge in the construction of terrestrial quantum

networks is to overcome exponential loss in optical fibers. In
order to enable quantum communication over large distances,
quantum repeaters are required. These can form a quantum-
repeater chain in which consecutive nodes are connected by
elementary links. Quantum repeaters are a very active research
area and major advances have been achieved recently13–18.
However, the technology is not yet at the stage of practical
deployment, and we anticipate that the first practical quantum
repeaters will be costly. It seems likely that before a global
quantum internet is effected, smaller quantum networks
connecting a limited number of end nodes are deployed. A
cost-efficient way of deploying such networks is using existing
classical infrastructure by converting already-deployed optical
fiber and installing quantum repeaters at strategic locations.
We model a classical fiber network which forms the basis of a

quantum network as an undirected, weighted graph
G ¼ ðN ;F ;LÞ. The nodes N are partitioned into a set of end
nodes C � N and a set of potential repeater locations
R ¼ N n C. The goal of the quantum network is to enable
quantum communication between end nodes. Potential repeater
locations are any location in the network where a quantum
repeater could be placed. Such a location could, for example, be
a hub in the classical network with the facilities required to run a
quantum repeater. The edges of the graph are the fibers of the
network, F , where Lðf Þ is the length of fiber f 2 F . In case a
quantum repeater is installed at a potential repeater location, the
potential repeater location becomes a quantum-repeater node.
When deploying a quantum network based on a classical fiber
network, it is essential to determine which potential repeater
locations should be turned into quantum-repeater nodes.

In order to have an operational quantum network, nodes
must be connected by elementary links. For many quantum-
repeater schemes (such as those using heralded entanglement
generation19), elementary links consist of fibers with active
elements measuring qubits. Therefore, when deploying a
quantum network based on a classical fiber network, it must
also be determined which fibers to convert into elementary
links. Here, we consider that elementary links can be
constructed from any number of consecutively-adjacent fibers
in the graph G (passing through potential repeater locations).
Both fibers and potential repeater locations can be part of
multiple elementary links, which is motivated by the fact that
fibers are typically constructed in bundles (meaning that each
elementary link could, in fact, use the same fiber bundle but a
different fiber). Additionally, multiplexing over different wave-
lengths could be used to enable the use of a single fiber in
multiple elementary links. For an example of how a (very) small
classical fiber network can be used to create a quantum
network, see Fig. 1.
Here, we introduce the problem of determining how to

construct a quantum network using a pre-existing classical fiber
network as the repeater-allocation problem. We define it as
follows:
Given a classical fiber network corresponding to the undirected,

weighted graph G ¼ ðN ;F ;LÞ with end nodes C � N . Which of
the potential repeater locations R ¼ N n C should be turned into
quantum-repeater nodes, and which fibers should be converted
into elementary links, such that a quantum network is obtained
which satisfies a set of network requirements, while the associated
costs are minimized?
In this paper we present a method which solves the repeater-

allocation problem. Here, we only consider the costs associated
to installing quantum repeaters, as we expect that the first
practical quantum repeaters will come at a high cost.
Furthermore, the set of network requirements that we consider
are the following:

● Rate and fidelity. The quantum network must be able to
distribute bipartite entangled quantum states between any pair
of end nodes at some minimum rate, which we denote Rmin.
Furthermore, the states must have some minimum fidelity to a
maximally entangled state, which we denote Fmin. The network
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must be able to do this for every pair of end nodes
simultaneously.
In a quantum-repeater chain with fixed hardware, the rate of

entanglement distribution is limited by loss and noise in
elementary links and in quantum repeaters. Therefore, it is
generally possible to lower bound the rate by upper bounding
the number of quantum repeaters (and thereby the number of
elementary links), and the length of each elementary link
(assuming the photon loss probability per unit length is
constant). Similarly, fidelity is limited by noisy operations in
quantum repeaters, while it can also be a decreasing function of
the elementary link length (this can be, for example, due to dark
counts in detectors). Therefore, fidelity too can be lower
bounded by upper bounding the number of quantum repeaters
and the elementary link length.
We use these bounds to assess whether the rate and fidelity

between a pair of end nodes is sufficient. For any Rmin and Fmin,
we can find Nmax and Lmax such that a repeater chain of Nmax
repeaters and elementary links of length Lmax can deliver
entangled states at rate Rmin with fidelity Fmin. Then, we consider
two end nodes capable of receiving entangled states with at
least rate Rmin and at least fidelity Fmin if there is a free path
between them which contains at most Nmax repeaters and of
which each elementary link is at most Lmax long.
How exactly Nmax and Lmax can be determined from Rmin and

Fmin is specific to the quantum-repeater architecture and
depends on various performance parameters. We give a toy-
model calculation in Section “Toy-model calculation of Nmax and
Lmax from Rmin and Fmin” as an example. Note that when
considering a quantum-repeater architecture which is not based
on entanglement distribution, the method presented in this
paper is still applicable if a performance metric like rate and
fidelity can be determined which can be lower bounded by
upper bounding the number of repeaters and the elementary
link lengths of a repeater chain.

● Robustness. When a part of a quantum network breaks down,
all other requirements should still be met. We quantify this using
the minimum number of quantum-repeater nodes or elementary
links (it can be any combination) that need to break down before
one of the other requirements can no longer be met. Here, we
use the symbol K to refer to this number.

● Repeater capacity. Quantum-repeater nodes should never be
required to operate above their capacity in order to meet all
other network requirements. We define the capacity of a
quantum-repeater node as the maximum number of
quantum-communication sessions it can facilitate simulta-
neously. In an entanglement-based network, this could be
directly related to the number of entangled states that can
be stored in memory or the number of Bell-state measure-
ments that can be performed simultaneously. Here, we use
the symbol D to refer to the capacity of the quantum-
repeater nodes.

RESULTS
In this section we present a method, detailed below, which aids in
the design of a quantum network using existing classical
infrastructure. Specifically, given a fiber network, our method
makes it possible to choose at which locations quantum repeaters
should be installed. This is done such that entangled states can be
distributed between all pairs of end nodes simultaneously with a
minimum rate and fidelity. Furthermore, our method guarantees
that the resulting quantum network is robust against failure of
quantum repeaters and elementary links, and can take finite
capacity of quantum repeaters into account. At the same time, our
method minimizes the total number of quantum repeaters that
need to be installed. We dub the problem that our method solves
the repeater-allocation problem.
Method 1: Solving the Repeater-Allocation Problem
Input

● Fiber network graph G ¼ ðN ;F ;LÞ.
● Set of end nodes C � N .
● Minimum rate Rmin and fidelity Fmin required by end nodes.

Instead of a minimum rate and fidelity, one can also use the
minimum value(s) for other performance metric(s), as long as
these can be lower bounded by upper bounding the number
of repeaters and elementary link lengths of a quantum-
repeater chain.

● Required robustness parameter K (number of quantum-
repeater nodes and elementary links that must be incapaci-
tated before network operation is compromised).

● Capacity parameter D (number of quantum-communication
sessions that one quantum repeater can facilitate
simultaneously).

Method

1. Determine values for the parameters Lmax and Nmax such
that a quantum-repeater chain consisting of Nmax repeaters
and elementary links of length Lmax is able to deliver
entangled states at rate Rmin with fidelity Fmin to a maximally
entangled state.

2. Construct the set of potential repeater locations

R ¼ N n C: (1)

3. Construct the set

Q ¼ ðs; tÞjðs; tÞ2Rfði; jÞ; ðj; iÞg; i; j 2 C; i ≠ jf g; (2)

where∈ R implies picked uniformly at random.
4. For every ðs; tÞ 2 Q, construct the set

Eðs;tÞ ¼ ðn1; n2Þjn1 2 R∪ fsg; n2 2 R∪ ftg; n1 ≠ n2f g; (3)

and then construct the set

E ¼
[
q2Q

Eq: (4)

5. For every ðu; vÞ 2 E, determine the shortest path from u to v
in the fiber-network graph G. Store the length of the path as
L ðu; vÞð Þ and the fibers making it up as F ðu; vÞð Þ.

6. Solve the link-based formulation, provided in Section “Link-
based formulation”, using an integer linear programming
solver. Store the values of the variables xq;kuv and yu.

7. Apply the path extraction algorithm, i.e. Algorithm 1, to
obtain the set P�. For every ðu; vÞ 2 E, set xq;kuv ¼ 0 if there is
no p 2 P� such that (u, v)∈ p.

Solution

● Every potential repeater location u 2 R for which yu=
1 should be used as a quantum-repeater node.

Fig. 1 Example of how a quantum network can be constructed. a
Graph representing a simple fiber network. Nodes A and B are end
nodes, while the other two nodes are potential repeater locations. b
Quantum network that is constructed using the pre-existing fiber
network. The first node from A is used as a quantum-repeater node
(blue hexagon) and there are two elementary links. One elementary
link is made from A to the quantum-repeater node, while the other
starts at the quantum-repeater node and ends at B.
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● For every ðu; vÞ 2 E for which xq;kuv ¼ 1 for some value of q and
k, an elementary link should be constructed using the fibers
F ðu; vÞð Þ.

Key to our method is integer linear programming (ILP), which
can be used to obtain the optimal repeater placement with an
optimization solver such as Clp20, Gurobi21 or CPLEX22. Our
method has been tested both using a real fiber network and a
large number of randomized graphs, on which we report in
Discussion. The real network contains four end nodes and 50
potential repeater locations, and a solution was found in 74 s
using a computer running a quad-core Intel Xeon W-2123
processor at 3.60 GHz and 16 GB of RAM, demonstrating that
the method is feasible for realistically-sized networks.
Here, we put forward two different ILP formulations. The first,

which we call the path-based formulation (see Section “Path-
Based Formulation”), is based on enumerating and then choosing
paths between end nodes of the quantum network. It is relatively
easy to show and understand that this formulation indeed solves
the repeater-allocation problem (see Section “Explanation of path-
based formulation”). However, it is not efficient, as the number of
variables and constraints in the formulation grows exponentially
with the size of the network. The second formulation is the link-
based formulation (see “Link-based formulation”). This formulation
is much more efficient than the path-based formulation, as it only
grows polynomially with the size of the network. Therefore, our
method uses the link-based formulation. It is, however, harder to
see that the link-based formulation can be used to solve the
repeater-allocation problem. Yet, the link-based formulation is
equivalent to the path-based formulation, as we show in Section
“Proof of equivalence”.
The structure of the paper is as follows. In the remainder of this

section, we introduce both the intuitive path-based formulation
and the efficient link-based formulation. Next, in Discussion, we
first give an example of the use of our method on a real fiber
network in the Netherlands. We also study the behavior and
performance of the method on a large number of randomly-
generated network graphs. Furthermore, we present ways in
which our method can be extended, and we discuss its limitations.
Finally, in Methods, we argue that the path-based formulation can
indeed be used to solve the repeater-allocation problem, we give
an example of a rate-fidelity analysis, we sketch a proof of the
equivalence of the path-based formulation and the link-based
formulation, we explain how we generate random network graphs
and we present the scaling of the two ILP formulations.

Path-based formulation
The main idea behind the path-based formulation is to enumerate
and then choose paths for every ðs; tÞ 2 Q, where Q is the set of
all ordered pairs of end nodes as defined in Eq. (2). A path
between s and t is a sequence of elementary links that does not
contain any loops and connects s and t. Quantum-repeater nodes
are then allocated in such a way that they enable the chosen
paths to be used. This can be considered an instance of the set
cover problem23. To guarantee a minimum rate Rmin and fidelity
Fmin, we require every chosen path to contain at most Nmax
quantum-repeater nodes, and we require every elementary link in
the path to be at most Lmax long. Nmax and Lmax are functions of
Rmin and Fmin, and what these functions look like depends on the
specific quantum-repeater implementation under consideration.
For an example of how Nmax and Lmax can be derived from Rmin
and Fmin, see Section “Toy-model calculation of Nmax and Lmax

from Rmin and Fmin”. Furthermore, to guarantee the network is
robust, we choose K different paths per source-destination pair.
They are chosen such that none of the K paths share a quantum-
repeater node or an elementary link. Finally, to account for the
finite capacity of quantum repeaters, we choose the paths such
that every quantum-repeater node is only used by at most D

different paths. It can be intuitively understood that any quantum
network accommodating the use of all these paths, will satisfy all
network requirements considered in this paper.
Linear Programming Formulation 1: Path-Based Formulation

min
X
u2R

yu (5)

s.t. L ðu; vÞð Þxp � Lmax 8ðu; vÞ 2 p; p 2 P (6)

jpjxp � Nmax þ 1 8p 2 P (7)

X
p2Pq

xp ¼ K 8q 2 Q (8)

X
p2Pq

rupxp � 1 8u 2 R; q 2 Q (9)

X
p2P

rupxp � Dyu 8u 2 R (10)

xp 2 f0; 1g 8p 2 P (11)

yu 2 f0; 1g 8u 2 R (12)

where rup ¼
1 if path p uses u as a quantum-repeater node

0 otherwise

�
8u 2 R; p 2 P

(13)

Key to the path-based formulation are the binary decision
variables xp, which are defined for every path
p 2 P ¼ ∪ ðs;tÞ2QPðs;tÞ, where Pðs;tÞ is the set of all possible paths
from end node s to end node t. The elementary links that can be
contained by a path p 2 Pðs;tÞ must all be in Eðs;tÞ, which is defined
in Eq. (3). Each xp has value 1 when p is considered part of the
chosen set of paths, and 0 otherwise. Furthermore, there are the
binary decision variables yu for all u 2 R. yu is 1 if a quantum
repeater is placed at potential repeater location u, and 0
otherwise. Constraints (6) to (10) guarantee that these variables
are chosen such that all network requirements are satisfied. The
objective function (5) ensures that they are chosen such that the
total number of quantum-repeater nodes is minimized. It is
argued that solutions to the path-based formulation are indeed
solutions to the repeater-allocation problem in Section “Explana-
tion of path-based formulation”.
The path-based formulation requires us to define one variable

xp corresponding to each path p 2 P. Hence, the total number of
variables as well as the number of constraints are at least jPj,
which is OðjN j!Þ. Therefore the size of the input to the ILP solver
scales exponentially with the number of nodes. This makes the
path-based formulation unsuitable for designing quantum net-
works based on large fiber networks. Our implementation of the
path-based formulation in CPLEX can be found in the repository24.
In the next section, we give a more efficient formulation.

Link-based formulation
Here we present the link-based formulation, which is inspired by
the capacitated facility location problem23. Instead of choosing
which paths to use, we choose which elementary links to use.
Quantum repeaters can then be placed such that each chosen
elementary link is enabled. To this end, for each end-node pair
q 2 Q, for every elementary link ðu; vÞ 2 Eq and for k= 1, 2,…, K,
we define the binary decision variable xq;kuv . It can be thought of as
indicating whether elementary link (u, v) is used in the kth path
used to connect end node s to end node t, where q= (s, t).
Furthermore, we again use the variables yu that indicate whether
node u 2 R is used as a quantum-repeater node.

J. Rabbie et al.
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Linear Programming Formulation 2: Link-Based Formulation

min
X
u2R

yu (14)

s:t:
P
v

ðu;vÞ2Eq

xq;kuv � P
v

ðv;uÞ2Eq

xq;kvu

¼
1; if u ¼ s

�1; if u ¼ t

0; if u 2 R

8><
>: 8u 2 R∪ fs; tg; q ¼ ðs; tÞ 2 Q; k ¼ 1; 2; ¼ ; K

(15)

L ðu; vÞð Þxq;kuv � Lmax 8ðu; vÞ 2 Eq; q 2 Q; k ¼ 1; 2; ¼ ; K (16)
X

ðu;vÞ 2 Eq

xq;kuv � Nmax þ 1 8q 2 Q; k ¼ 1; 2; ¼ ; K (17)

X
v

ðu;vÞ 2 Eq

XK
k¼1

xq;kuv � 1 8u 2 R; q 2 Q (18)

XK
k¼1

xq;kst � 1 8q 2 Q (19)

X
q2Q

X
v

ðu;vÞ 2 Eq

XK
k¼1

xq;kuv � Dyu 8u 2 R (20)

xq;kuv 2 f0; 1g 8ðu; vÞ 2 Eq; q 2 Q; k ¼ 1; 2; ¼ ; K (21)

yu 2 f0; 1g 8u 2 R (22)

Because the number of elementary links scales polynomially
with the number of nodes, both the number of variables and the
number of constraints also scale polynomially with the number of
nodes jN j. In particular, they are OðjN j2Þ (see Section “Scaling of
the formulations” for a derivation). Our implementation of the link-
based formulation in CPLEX can be found in the repository24.
In Section “Proof of equivalence”, we sketch the proof of the

equivalence of the path-based formulation and the link-based
formulation. Furthermore, we sketch why the variables xq;kuv and yu
still provide a solution to the link-based formulation after
performing step 7 of Method 1. The reason this step is included
in our method is because, otherwise, elementary links could be
included in the solution which are not necessary to meet the
network requirements. The detailed version of the proof can be
found in Supplementary Note 2. Since the link-based formulation
scales much more favorably with the size of the fiber network
under consideration, it is more efficient to use this formulation
when solving the repeater-allocation problem for large networks.

DISCUSSION
In this section we illustrate our method as implemented by the
link-based formulation using the Python API of CPLEX version
12.922. The corresponding code can be found in the repository24.
Furthermore, we investigate the effect of varying network-
requirement parameters and discuss possible extensions and
limitations of our method.
We first demonstrate our method by solving the repeater-

allocation problem for a real fiber network. The fiber network that
we consider is the core network of SURFnet. The latter is a network
provider for Dutch educational and research institutions and has
provided us with the network data, which is available in the
repository24. The network graph is depicted in Fig. 2.
As end nodes of the network, we have chosen the cities of Delft,

Enschede, Groningen and Maastricht. In this example, we consider
an entanglement-based quantum network utilizing massive
multiplexing as described in e.g.25. For the end nodes, we require

a minimum rate of Rmin ¼ 1 Hz (one entangled state per second)
and a fidelity to a maximally entangled state Fmin ¼ 0:93.
Furthermore, we set the robustness parameter to K= 2 (thus
requiring that any single quantum repeater or elementary link in
the network can break down without compromising network
functionality), and we set the capacity parameter to D= 4 (which,
in this case, means that we assume each quantum repeater can
perform four Bell-state measurements simultaneously).
The first step of our method requires us to calculate the Lmax and

Nmax corresponding to the minimal rate and fidelity we have chosen.
This requires us to study the behavior of a quantum-repeater chain
consisting of N+ 1 elementary links of length L each. Lmax and Nmax
then have to be chosen as the largest possible values for L and N
respectively such that the repeater chain still achieves the required
rate and fidelity. Here, we make a couple of simplifying assumptions
to make the calculations more tractable. Particularly, we assume
elementary links generate Werner states, and we assume that the
only losses are due to fiber attenuation and probabilistic Bell-state
measurements (which we take to have a 50% success probability). In
Section “Toy-model calculation of Nmax and Lmax from Rmin and Fmin”,
we perform the calculation and find that for an elementary-link
fidelity Flink= 0.99, number of multiplexing modes M= 1000, speed
of light in fiber cfiber= 200, 000 km s−1 and attenuation length Latt=
22 km, we have Nmax ¼ 6 and Lmax ¼ 136 km.
The rest of the steps of the method in Results have been

performed using a Python script and CPLEX24. The resulting solution
is shown graphically in Fig. 3. All chosen repeater nodes are shown as
blue hexagons, while all fibers that are used in elementary links are
drawn as thick lines. We see that repeaters are placed around
Groningen in order to bridge the large distance to the other end
nodes without exceeding the maximum elementary-link length Lmax.
Additionally, placing quantum-repeater nodes close to Groningen
means they can be used for several of Groningen’s outgoing
connections. There are multiple such nodes close together because
each only has a limited capacity (D= 4), and the redundancy
increases the robustness of the network.
On our setup (see Results), it took us approximately 74 s to find

the optimal solution to the link-based formulation for this network.
Note that a feasible solution is a combination of decision variable
values that satisfy all the constraints, while the optimal solution is a
feasible solution that also minimizes the objective function.
Next, we demonstrate and investigate the effect of the different

network-requirement parameters on the outcome of our method.
The network-requirement parameters are, in principle, the
minimum rate Rmin, the minimum fidelity Fmin, the robustness
parameter K and the capacity parameter D. However, since Rmin
and Fmin are translated into a maximum number of repeaters Nmax
and a maximum elementary-link length Lmax in our method, we
here consider the network-requirement parameters to be Nmax,
Lmax, K and D. This way, we can keep our discussion agnostic about
the exact hardware used to create a quantum network and how
Rmin and Fmin are mapped to Nmax and Lmax.
First we give a visual demonstration on how the different network-

requirement parameters affect the repeater placement. To this end,
we have created a network graph with end nodes in the corners of
the network and 10 possible repeater locations randomly distributed
in between the end nodes. For details on how the graph was
obtained, see Section “Generating random networks”. While keeping
the network fixed, we vary the network-requirement parameters D, K
and Lmax. In Fig. 4a to c, we explore how the robustness parameter
influences the total number of required quantum repeaters. Since
each repeater has a capacity of D= 6 to distribute entanglement
between the six end-node pairs, and because the network is set up in
such a way that each path needs exactly one quantum-repeater
node to connect end nodes without elementary links exceeding
Lmax ¼ 0:9, the optimal solution always contains K repeaters. In
Fig. 4d to f on the other hand, we see that as the capacity of
quantum repeaters is varied from D= 1 to D= 3, the required
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Fig. 3 Solution to the repeater-allocation problem on SURFnet network. Solution to the repeater-allocation problem for Rmin ¼ 1 Hz,
Fmin ¼ 0:93, K= 2 and D= 4. The network graph used as input corresponds to the SURFnet network, depicted in Fig. 2. End nodes are shown
as orange squares, quantum-repeater nodes are shown as blue hexagons and the fibers that are used in the elementary links are highlighted
with thick lines.

Fig. 2 Graph representation of SURFnet core network. Node locations roughly correspond to geographical locations but have been
adjusted for readability. Lengths of fibers connecting nodes are not shown. Nodes that are used as end nodes are shown as orange squares.
Potential repeater locations are shown as white circles. A'dam and R'dam are used as abbreviations for Amsterdam and Rotterdam
respectively.

J. Rabbie et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2022)     5 



number of quantum repeaters decreases when D increases. Note
that since K= 1, the optimal solution here always happens to contain
jQj=D repeaters. Finally, in Fig. 4g–i, we see that as we allow for
longer elementary links to be used, the total number of repeaters is
decreased. If we would increase Lmax even further, at a certain point
every end node can be connected to another end node with a direct

elementary link and hence the number of repeaters will drop to zero.
The degeneracy of the optimal solution is visible from the fact that
the solutions with two repeaters for K= 2 (Fig. 4b), D= 3 (Fig. 4f) and
Lmax ¼ 0:75 (Fig. 4h) are not equal. Later, in this section, it is
discussed how this degeneracy can be lifted (see Linear Program-
ming Formulation 3). We do not show the effect of Nmax. Since the

Fig. 4 Solutions obtained using our method for an example network graph. Solutions obtained using our method for an example network
graph using the network-requirement parameters Lmax ¼ 0:9, Nmax ¼ 3, K= 1 and D= 6, unless noted otherwise in the caption of a specific
solution. a–c Visualization of the effect of K. A higher robustness implies that we require more repeaters. d–f Visualization of the effect of D. As
the capacity of quantum-repeater nodes increases, multiple paths can use the same repeater and hence the overall number of repeaters
decreases. g–i Visualization of the effect of Lmax. When longer elementary-link lengths are allowed, less quantum-repeater nodes are required
to bridge the distance between end nodes.
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total number of repeaters is already minimized, changing the value
of Nmax does not change the repeater allocation, but only determines
whether a feasible solution exists at all.
Considering how the repeater placement on a single network

varies with the network-requirement parameters can offer insight
into how our method operates. However, it does not provide a
general investigation into the properties of our method. In order
to make more general and quantitative statements about our
method, we will next consider the effect of varying network-
requirement parameters on the repeater allocation for an
ensemble of random networks. In this work, we construct random
network graphs using random geometric graphs. That is, network
graphs are constructed by scattering nodes randomly on a unit
square. Edges are put only between nodes if the Euclidean
distance separating them is smaller than some number, which is
called the radius of the random geometric graph. The nodes
which form the convex hull of the network are chosen as end
nodes, so that the others are potential repeater locations. This
choice is motivated by the fact that any potential-repeater
locations that do not lie between end nodes would probably
not play an important role anyway. For a more elaborate account
of how we generate random network graphs, see Section
“Generating random networks”.
We here report how the number of placed repeaters and the

(vertex) connectivity of quantum networks designed using our
method vary as a function of the network-requirement parameters.
The number of placed repeaters is interesting to consider since the
aim of our method is to minimize this. On the other hand, the
connectivity is interesting since it lower bounds the minimum
number of quantum repeaters that need to break down before any
pair of end nodes becomes disconnected, thereby giving an
indication of how robust a quantum network is. Note that

connectivity is not the same as the robustness parameter K, which
lower bounds the minimum number of quantum repeaters or
elementary links that need to break down before end nodes can no
longer distribute entanglement with a minimum rate and fidelity,
while at the same time taking repeater capacity into account. We
have first generated 1000 random network graphs for which our
method was able to find solutions for the parameter values
Lmax ¼ 0:9, Nmax ¼ 6, K= 6 and D= 4. Then, while keeping all other
parameters constant, we have varied each of the parameters D, K and
Lmax. This has been done in such a way that all considered values are
less restrictive than the original values, such that we can be sure that
a solution exists for each parameter value. Of each resulting quantum
network, we determine the number of repeaters and the
connectivity, and for each parameter value we determine the
average number of repeaters and the average connectivity over all
1000 quantum networks.
In Fig. 5a, b we show the number of repeaters and the

connectivity as a function of the repeater capacity D. We see
that both the number of repeaters and the connectivity
decrease as D increases, and they both accurately follow an
exponential fit in the domain under consideration. In Fig. 5c, d,
we show how the number of repeaters and connectivity vary as
a function of the robustness parameter K. We see that both
increase linearly in the domain under consideration. For D (K)
the number of repeaters decreases (increases) following the
same line of reasoning as we mentioned above for the visual
demonstration. Generally, we expect the connectivity to follow
the change in the number of repeaters, because a network with
less quantum repeaters is easier to disconnect. Finally, in Fig.
5e, f, we investigate the effect of Lmax on the number of
repeaters and connectivity. While the number of repeaters
decreases, the connectivity increases, although they both

Fig. 5 Simulation on random geometric graphs. Simulation on 1000 random geometric graphs with a radius of dmax ¼ 0:9 and n= 25 nodes
for varying network parameters. We use Lmax ¼ 0:9, Nmax ¼ 6, K= 6 and D= 4, except for the varied parameter. In the plots, each of the points
represents the average number of placed repeaters or average connectivity over all samples for each value of (a, b) the capacity parameter D,
(c, d) the robustness parameter K or (e, f) the maximum elementary-link length Lmax. We either use a linear or an exponential function for the
fits. The error bars represent one standard deviation of the mean. Solving an instance to optimality requires approximately 30 s on average.
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flatten from Lmax ¼ 1:2. The number of repeaters does not
decrease to zero because K= 6. Therefore, even if Lmax is large
enough to allow for paths between end nodes with zero
quantum-repeater nodes, there are still at least five quantum-
repeater nodes required to make the network robust against
the breakdown of direct elementary links between end nodes.
On the other hand, the connectivity increases since it also takes
paths through other end nodes into account in its computation,
and with an increasing value of Lmax, we expect more direct
elementary links to appear.
Even though the link-based formulation has a scaling of

OðjN j2Þ in terms of the number of variables and constraints, it
remains an ILP. In general, ILP’s are NP-hard and thus generally
require an exponentially increasing amount of time to solve. In
order to investigate the performance of our method for
varying network sizes, we determined the computation time
for finding an optimal solution as a function of the number of
nodes. The result is shown in Fig. 6, in which we see that the
computation time indeed increases exponentially. Nonetheless,
instances on random geometric graphs with 100 nodes can be
solved to optimality in about 1 min on our setup (see
Results).
The computation time can be strongly affected by the

network topology and the chosen parameter values, since these
can alter the difficulty of finding an optimal solution as well as
the number of variables and constraints (see Section “Scaling of
the formulation”). However, the parameters that we use for Fig.
6 are neither very strict nor loose and provide us with insight
into the approximate scaling of the computation time, rather
than the worst-case behavior. Note that we expect that, in
practical use cases, the topology and the parameter values will
be determined once and remain more or less fixed, which
implies that the repeater-allocation problem will not need to be
solved repeatedly. This makes the increasingly large computa-
tion time for sizable graphs or stringent parameters less
problematic.
There are various ways in which our method can be extended.

Here, we present two possible extensions. Such extensions change
the ILP formulation in Section “Link-based formulation”. The result of
these is the generalized link-based formulation, which is presented in
Linear Programming Formulation 3. In order to incorporate the
extensions into Method 1, the generalized link-based formulation
must be used where otherwise the link-based formulation would
be used.

Linear Programming Formulation 3: Generalized Link-Based
Formulation

min
X
u2R

yu þ α
X
q2Q

X
ðu;vÞ2Eq

XKq

k¼1

L ðu; vÞð Þxq;kuv (23)

s:t:
X

v
ðu;vÞ 2 Eq

xq;kuv �
X

v
ðv;uÞ 2 Eq

xq;kvu

¼
1; if u ¼ s

�1; if u ¼ t

0; if u 2 R

8><
>: 8u 2 R∪ fs; tg; q ¼ ðs; tÞ 2 Q; k ¼ 1; 2; ¼ ; Kq

(24)

L ðu; vÞð Þxq;kuv � Lqmax 8ðu; vÞ 2 Eq; q 2 Q; k ¼ 1; 2; ¼ ; Kq (25)

X
ðu;vÞ 2 Eq

xq;kuv � Nq
max þ 1 8q 2 Q; k ¼ 1; 2; ¼ ; Kq

(26)

X
v

ðu;vÞ 2 Eq

XKq

k¼1

xq;kuv � 1 8u 2 R; q 2 Q (27)

XKq

k¼1

xq;kst � 1 8q 2 Q (28)

X
q2Q

X
v

ðu;vÞ2Eq

XKq

k¼1

xq;kuv � Duyu 8u 2 R (29)

xq;kuv 2 f0; 1g 8ðu; vÞ 2 Eq; q 2 Q; k ¼ 1; 2; ¼ ; Kq (30)

yu 2 f0; 1g 8u 2 R (31)

The first extension we can make is solving the repeater-allocation
problem in case of heterogeneous network requirements. So far, we
have considered the network requirements to be homogeneous, i.e.
the same throughout the network. However, it can be the case that
some end nodes require a higher rate and fidelity, that some end
nodes need access to more robust quantum communication, or that
quantum repeaters with a larger capacity can be placed at some
potential repeater locations than at other. Then, we can define the
network-requirement parameters on a per-end-node-pair or per-node
basis. Specifically, for every pair of end nodes q 2 Q, we define the
minimum rate Rqmin and fidelity Fqmin of entanglement generation, and
the required robustness parameter Kq (in order to break communica-
tion between the end nodes q, at least Kq quantum repeaters or
elementary links must be incapacitated). Furthermore, for every
potential repeater location u 2 R, we define the quantum-repeater
capacity Du. To incorporate this into the method, the input
parameters must be adapted accordingly, and the maximum number
of repeaters and maximum elementary-link length must be calculated
for every pair of end nodes separately (i.e. Lqmax and Nq

max must be
determined from Rqmin and Fqmin for each q 2 Q).
A second extension has to do with the fact that the link-based

formulation in Section “Link-based formulation” typically has a
highly-degenerate optimal solution. That is, often there are multiple
possible quantum-repeater placements for which all constraints are
satisfied and the total number of quantum-repeater nodes is
minimal. However, it might be the case that some solutions are
more desirable than others. To pick out these solutions, one can
define a secondary objective. This secondary objective can then be
taken into account by defining a corresponding objective function,
and adding it to the existing objective function, while scaling it such
that it does not influence the optimal number of repeaters. In
particular, the scale factor α should be chosen such that the
secondary objective value does not exceed 1. This can be seen as a
form of weighted goal programming26. As an example, in Linear

Fig. 6 Computation time for random geometric graphs. Computa-
tion time in seconds for 100 random geometric graphs with
dmax ¼ 0:9, Lmax ¼ 1, Nmax ¼ 6, K= 2 and D= 8 for varying number
of nodes n. The error bars represent one standard deviation of the
mean. For the fit we have used an exponential function of the form
aðebn3 � 1Þ, where a and b are free parameters.
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Programming Formulation 3, we use as secondary objective to
minimize the total length of all used elementary links. Other
secondary objectives, such as minimizing the largest elementary-link
length, could be implemented in a similar fashion.
Finally, we discuss some of the limitations of the method we

present in this work. Each limitation represents a way that our
method could be further extended, but is beyond the scope of
this paper.
A first major limitation is the complexity of ILP’s. While we provide

an efficient ILP formulation, in which the number of variables and
constraints scales polynomially with the network size, it remains an
ILP. This cannot be helped, as choosing whether a repeater should be
placed at a certain potential repeater location is inherently binary. In
general, it is NP-hard to solve an ILP. While we indeed observe
exponential scaling of the computation time in Fig. 6, we are able to
find optimal solutions of realistically-sized networks within tractable
time using CPLEX, which is also demonstrated using a real network in
Fig. 3. Conceivably, one can use heuristics or approximation
algorithms to obtain solutions faster, although the solutions then
may no longer be optimal.
Another limitation that we consider here is the fact that our

method is agnostic about how elementary links are constructed.
We assume that any number of fibers can be combined to form an
elementary link. However, quantum-repeater protocols relying on
heralded entanglement generation typically require the presence
of a midpoint station with the capability to perform Bell-state
measurements19. If there are constraints on the placement of such
stations, our method is insufficient. Conceivably, if such stations
can only be placed at potential repeater locations, a modified
version of our method could be used. Furthermore, we assume
that an elementary link between two nodes is always constructed
from the fibers which minimize the elementary-link length such
that rate and fidelity are maximized. However, if one would like to
incorporate the number of fibers (rather than elementary links)
that need to be disabled before the quantum network is
incapacitated as an additional network requirement (thereby
guaranteeing more robustness), this may no longer be a useful
assumption. It may then be better to try to construct different
elementary links from different fibers as much as possible, such
that individual fibers do not become too critical.

METHODS
Explanation of path-based formulation
In Section “Path-based formulation”, we introduced the path-based
formulation and we claim that solutions to the path-based formulation
can be used to construct solutions to the repeater-allocation problem.
Here, we show how and why this can be done.
The idea behind the path-based formulation is to choose a combination of

feasible paths that minimize the overall number of utilized repeaters. If a path
is chosen that uses potential repeater location u 2 R as a quantum-repeater
node, a repeater should be placed at u. The binary variables xp are used to
parameterize the chosen paths, while the binary variables yu are used to
parameterize where quantum repeaters should be placed. A coupling
between these variables is realized by Constraints (10): if a path p is chosen
in which a node u 2 R is used as quantum-repeater node, the corresponding
yu variables must have value 1. Conversely, when yu= 1 for a given repeater
node u 2 R, up to D paths can use this repeater node in order for the
corresponding constraint to hold, thereby also imposing a limit on the
repeater capacity. After all, if

P
p2P rupxp >D then more than D paths are

chosen in which node u 2 R is used as a repeater, which renders the solution
infeasible.
Paths are moreover only considered useful if they can be used to deliver

entanglement between end nodes with the minimum required rate Rmin
and fidelity Fmin. In the path-based formulation, this is implemented by
requiring chosen paths to contain at most Nmax þ 1 elementary links, each
with a length of at most Lmax. The values of Nmax and Lmax can be
determined from Rmin and Fmin as detailed in Results. These requirements
are straightforwardly enforced by Constraints (6) and (7). Constraints (6)
can only hold when xp= 0 for all paths that contain an elementary link

((u, v)∈ p) which is too long (Lððu; vÞÞ> Lmax). Similarly, Constraints (7) can
only hold when xp= 0 for all paths for which the number of elementary
links (∣p∣) exceeds the maximum (Nmax þ 1).
Furthermore, the choice of paths must be such that it is guaranteed that

up to K potential repeater nodes or elementary links can break down
before there is no path available between any pair of end nodes that can
deliver entanglement at the required rate and fidelity. This is implemented
by choosing, per pair of end nodes, K different paths. All of these paths are
chosen such that none of them share a quantum-repeater node. Since
elementary links connect quantum-repeater nodes, this automatically also
means that none of the paths share an elementary link. Therefore, when a
quantum-repeater node or elementary link becomes incapacitated, this
can disrupt at most one path between a pair of end nodes. When there are
K break downs, in the worst case, this can disrupt all paths between a pair
of end nodes. But as long as there are fewer break downs, there will be at
least one path available.
Since every chosen path can deliver entanglement at the required

rate and fidelity, this guarantees robustness of the quantum network
against up to K break downs. It is enforced by Constraints (8) that there
are exactly K paths chosen between every pair of end nodes.
Furthermore, Constraints (9) make sure that the number of chosen
paths connecting a pair of end nodes using u as a quantum-repeater
node (

P
p2Pq

rupxp) is at most one, thereby guaranteeing that all K paths
are disjoint. Note that, when considering the quantum-repeater
capacity, all chosen paths are taken into account. In other words,
Constraints (10) guarantee that the repeater capacity is not exceeded
when all paths are used simultaneously. Therefore, if one path between
a pair of end nodes is disrupted and they are forced to switch to
another path, it is guaranteed that none of the quantum repeaters
along that path are overloaded.
It is now easy to obtain a solution to the repeater-allocation problem

from the solution to the path-based formulation. Every potential repeater
location u 2 R for which yu= 1 in the solution to the path-based
formulation should be used as a quantum-repeater node. Furthermore,
each elementary link which is part of a chosen path ((u, v)∈ p for which
xp= 1) should be constructed. This is done using the fibers making it up
(F ðu; vÞð Þ). Then, the resulting quantum network will be such that all
network requirements are satisfied. Furthermore, the number of quantum-
repeater nodes will be minimal. This is because this number, which is
exactly

P
u2Ryu , is minimized by the objective function (5) of the path-

based formulation. Therefore, the path-based formulation can indeed be
used to solve the repeater-allocation problem.

Toy-Model calculation of Nmax and Lmax from Rmin and Fmin

In this section we calculate the maximum number of repeaters and
maximum elementary-link length from the minimum required rate Rmin

and fidelity Fmin using a toy model of a quantum-repeater chain. The
quantum-repeater architecture that we consider is of the massively-
multiplexed type as described in e.g.25. The toy model that we consider
here makes the following simplifying assumptions:

● the states distributed over elementary links are Werner states,
● the noise in the states distributed over elementary links is the

only noise,
● the only sources of photon loss are fiber attenuation and non-

deterministic Bell-state measurements,
● all processes except light traveling through fiber are instantaneous.

It is shown in Supplementary Note 1 that in this model, a repeater chain
with N quantum repeaters, M entanglement-distribution attempts per
round per elementary link, elementary-link length L, elementary-link
fidelity Flink, speed of light in fiber cfiber and a 50% Bell-state measurement
success probability has the following end-to-end rate R and fidelity F:

R ¼ cfiber
L

1
2

� �N

1� 1� 1
2
e�L=Latt

� �M
" #Nþ1

; (32)

F ¼ 1
4

1þ 3
4F link � 1

3

� �Nþ1
" #

: (33)

Nmax can now be obtained from the fidelity. Specifically, it is the lowest-
integer solution to the equation

F>Fmin: (34)
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To find Lmax, we can put the resulting value of Nmax into the equation

R>Rmin: (35)

The smallest value for L that solves Equation (35) is then Lmax. Note that the
calculation here is somewhat simplified because the fidelity is not a
function of Lmax. If both fidelity and rate would be functions of N and L,
there would not exist a unique solution. In that case, there is some
freedom in choosing Nmax and Lmax.
The calculation of Nmax and Lmax for the example parameters

Fmin ¼ 0:93, Rmin ¼ 1 Hz, Flink= 0.99, cfiber= 200, 000 km s−1, M= 1000
and Latt= 22 km results in Nmax ¼ 6 and Lmax ¼ 136 km (rounded down).

Proof of equivalence
In this section we briefly outline the proof of why the path-based
formulation and the link-based formulation are equivalent. The main
idea is to use an optimal solution to the path-based formulation to
construct a feasible solution to the link-based formulation and vice
versa. We prove that this is always possible in such a way that the value
of the objective function of the constructed feasible solution is the
same as that of the original optimal solution. This can be used to show
that the optimal objective values of both formulations are always the
same. Therefore, the feasible solution to one formulation constructed
from an optimal solution to another formulation is itself an optimal
solution. We say that two ILP formulations are equivalent if optimal
solutions to one can be obtained from the other and vice versa, and
therefore we conclude that the path-based formulation and the link-
based formulation are equivalent.
To construct a solution to the link-based formulation using a solution

to the path-based formulation, we use the elementary links that appear
in chosen paths. More specifically, for each q ¼ ðs; tÞ 2 Q and k= 1, 2,
…, K, we set xq;kuv ¼ 1 if elementary link ðu; vÞ 2 Eq is in the kth chosen
path connecting s and t. Conversely, Constraints (15) guarantee that, for
every q ¼ ðs; tÞ 2 Q and k= 1, 2,…, K, the elementary links ðu; vÞ 2 Eq

for which xq;kuv ¼ 1 can be used to form exactly one path between s and t.
These paths can be obtained by using Algorithm 1, which outputs the
set P� that contains the extracted paths over all q 2 Q and k= 1, 2,…,
K. Thus, we can construct a solution to the path-based formulation from
a solution to the link-based formulation by setting xp= 1 for all p 2 P� .
Furthermore, the repeater-placement variables yu are kept the same
when translating between formulations.
By comparing the different constraints, it can be understood that if a

solution to one formulation is feasible, the solution to the other
formulation that can be obtained from it is also feasible. Constraints (6)
and (16) both guarantee that elementary-link lengths do not exceed
Lmax, while Constraints (7) and (17) both guarantee that each path
includes Nmax quantum-repeater nodes at maximum. Constraints (8)
and (15) make sure there are K paths between each pair of end nodes.
These paths are guaranteed to be disjoint for the path-based
formulation by Constraints (9) and for the link-based formulation by
Constraints (18) and (19). Lastly, Constraints (10) and (20) couple the x
variables to the y variables and make sure the quantum-repeater
capacity is taken into account.
In step 7 of Method 1, we manually set xq;kuv ¼ 0 for all elementary links

ðu; vÞ 2 E which are not in one of the paths p 2 P� . We do this because,
on some occasions, the variables xq;kuv are allowed to have value 1 in such
a way that they form loops (which are disjoint from the path between s
and t). For example, it could be the case that for some q 2 Q, k= 1, 2,
…, K and u1; u2 2 R, it holds that xq;ku1u2 ¼ xq;ku2u1 ¼ 1, which does not
violate any of the constraints in Section “Link-based formulation”, and
also does not influence the objective function (14). Since these loops do
not connect end nodes, they do not contribute to realizing any of the
network requirements. Therefore, any variable xq;kuv with value 1 such
that it is part of a loop can safely be set to 0 without violating any
constraint. This is shown rigorously in Supplementary Note 2. Only
allowing for elementary links which are part of paths between end
nodes realizes the removal of such loops. Since the method in Results
recommends the construction of elementary link ðu; vÞ 2 E if xq;kuv ¼ 1,
setting them to 0 whenever this is possible helps to prevent the
construction of unnecessary elementary links. One way in which the
appearance of loops in optimal solutions can be prevented in the first
place by is to use the generalized link-based formulation in Discussion.
In this formulation, the minimization of the total elementary-link length
is used as secondary objective and hence the presence of loops will
increase the objective function.

Algorithm 1. Path extraction algorithm.

Generating random networks
Here, we describe how we generate random network graphs based on
random geometric graphs. These networks are used to demonstrate our
method and study the effect of different network-requirement
parameters in Discussion.
The recipe for generating a random geometric graph on a two-

dimensional Euclidean space with n nodes and radius dmax is as
follows27. First, n points are distributed uniformly at random on a unit
square, by sampling both their horizontal and vertical coordinates
uniformly at random. To every two points p1, p2 we associate d(p1, p2),
which is the Euclidean distance between the two points. From this, an
undirected weighted graph is constructed in which every node
corresponds to one of the points, and edges between nodes
corresponding to points p1, p2 are added if dðp1; p2Þ � dmax. The
weight that is given to the edge is d(p1, p2).
To turn a random geometric graph into a suitable network graph, it

must be decided which of the nodes are end nodes, and which are
potential repeater locations. To this end, we determine the convex hull of
the graph. We choose to use nodes corresponding to vertices of the
convex hull of the graph as end nodes, i.e. they make up the set C. All
other nodes are thus considered potential repeater locations, i.e. they
make up the set R. This method is used because it is expected that
potential repeater locations lying outside of the area spanned by the end
nodes will only rarely be chosen as quantum-repeater nodes. When the
end nodes form the convex hull, there are no such potential repeater
locations, and the number of nodes that are not of relevance to the
repeater-allocation problem is minimized. We generate the random
geometric graphs using NetworkX28 and determine the convex hull using
an algorithm29 which is included in SciPy30.
The random network graph used in Fig. 4 has been based on a

random geometric graph with n= 10 and dmax ¼ 0:6, but has been
further edited to be made suitable for demonstration purposes. Some
nodes were displaced manually. Additionally, end nodes have been
added at the corners of the unit square and connected to the three
closest potential repeater locations.

Scaling of the formulations
The path-based formulation relies on the enumeration of all the paths
between two end nodes. For every pair ðs; tÞ 2 Q we must consider all
possible permutations of intermediate nodes in which r repeaters are
placed on a path. For r= 0, we get a single path directly from s to t and for
r= 1 we should consider all possible paths that utilize one repeater, which
are jRj in total. Next, when r= 2 we must consider all paths that contain
exactly two repeaters and additionally all permutations of the repeater
placements in these paths, which gives jRjðjRj � 1Þ paths in total, et
cetera. The number of yu variables is jRj, so that the number of variables
npbfvar of the path-based formulation is given by

npbfvar ¼ jRj þ jQjjPqj (36)

¼ jRj þ jQj
XjRj

r¼0

jRj!
ðjRj � rÞ! : (37)

If jRj> 1, this simplifies to

npbfvar ¼ jRj þ jQj e jRj!½ �; (38)
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where e denotes Euler’s number and [⋅] represents the rounding operator.
We assume that the number of end nodes, and therefore the number of
end-node pairs jQj ¼ jCjðjCj � 1Þ=2 is constant and therefore does not
scale with the total number of nodes jN j in our graph. This implies that the
number of possible repeater locations R ¼ N n C scales linearly with the
number of nodes. The number of variables, as well as the number of
constraints, is thus O jN j!ð Þ.
One important detail of our implementation of the path-based formulation

is that we take Constraints (6) and (7) into account while enumerating all the
paths. If we encounter a path which contains an elementary link with a length
that exceeds Lmax or which uses more than Nmax repeaters, we simply exclude
it from the formulation. This can greatly reduce the total number of variables,
although it will remain to scale exponentially with jN j.
In the link-based formulation, we need to enumerate all the elementary

links in the network. To this end, we need to count every elementary link
from s to every node v 2 R∪ ftg, and from u 2 R to t which results in
2jRj þ 1 elementary links. Next, we also need to consider the elementary
link from every node u 2 R to v 2 R and back, in order to allow for
directional paths from s to t, which are jRjðjRj � 1Þ in total. Additionally,
since we use the index k for our xq;kuv variables in order to keep track of the
redundant paths that are required for the given level of robustness, we
need to make a copy of these variables for every value of k= 1, 2,…, K.
When we combine this with the jRjyu variables, we get that the total
number of variables of the link-based formulation is given by

nlbfvar ¼ jRj þ K jQjjEqj (39)

¼ jRj þ KjQjðjRj2 þ jRj þ 1Þ; (40)

which is O jN j2
� �

, if we assume that K is a fixed constant. Note that the

link-based formulation therefore also has O jN j2
� �

constraints.
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