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Abstract. We consider nine elementary problems in optimization. We
simply explore the conditions for optimality as known from the duality
theory for convex optimization. This yields a quite straightforward solu-
tion method for each of these problems. The main contribution of this
paper is that we show that even in the harder cases the solution needs
only O(n) time.

Keywords: optimization problems, linear time methods, optimality con-
ditions

1 Introduction

This paper was inspired by a result in [2]. In that paper we needed the
optimal objective value of the minimization problem

min
y,z,β

{

‖z‖ : y ≥ 0, 1T y = 1, y = z + βv, zT v = 0
}

,

where v is a given vector and 1 the all-one vector in Rn; the variables
are the scalar β and the vectors y and z in Rn. It is a so-called second-
order cone problem [1]. It turned out that the problem can be solved
analytically in O(n log n) time. To obtain this result the entries of v
must be ordered; this explains the factor log n. The approach that led us
to this surprising result is quite straightforward. It simply explores the
conditions for optimality as known from the duality theory for convex
optimization.
It is a natural question whether there are more nontrivial problems that
can be solved analytically in a similar way. In this paper we show this
true for problems of the following form:

min
x

{

‖a− x‖p1 : ‖x‖p2 ≤ 1
}

,

where a denotes a given vector in Rn, and p1 and p2 are 1, 2 or ∞. In
words, given a point a ∈ Rn, we look for a point x in the unit sphere

⋆⋆ The first author was supported by the National Natural Science Foundations of
China, Grant #11771275.
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– with respect to the p2-norm – that has minimal distance to a – with
respect to the p1-norm. Figure 1 provides a graphical illustration of the
solution of each of the nine problems considered in this paper when n = 2,
and a = [1.3; 0.8].

Obviously, there are nine different (ordered) pairs (p1, p2). For each of
these nine pairs we show that the above problem can be solved in linear
time. In doing so, we always assume without saying that the vector a is
ordered nonincreasingly:

a1 ≥ a2 ≥ . . . ≥ an.

It turns out that in some cases (specifically, if p1 = p2 or p2 = ∞) the
solution is trivial, or almost trivial; in other cases this is certainly not
obviously the case. But as we show, in each case the problem can be
solved in linear time. As far as the authors know, the method leading
to this result is new; at least we are not aware of any such result in the
existing literature.

In our analysis duality plays a crucial role. As a consequence we also
need the so-called dual norm of ‖.‖

p
, for p ∈ {1, 2, ∞}, which is defined

by

‖y‖
p∗

= max
x

{

xT y : ‖x‖
p
= 1

}

,

where x and y are vectors in Rn. For future use we also recall an impor-
tant consequence of this definition, namely the so-called Hölder inequal-
ity:

‖x‖
p
‖y‖

p∗
≥ xT y, ∀x, y ∈ R

n.

The outline of the paper is as follows.

Section 2 is preliminary. It consists of four subsections. Section 2.1 de-
scribes the fundamental role of duality in our approach. It recalls the
so-called vanishing gap condition for optimality. For the problems that
we consider in this paper this condition implies the primal and dual fea-
sibility conditions, which is quite exceptional. Section 2.2 contains three
lemmas dealing with the question of when the Hölder inequality holds
with equality, for each of the three values of p considered in this paper.
Section 2.3 serves to show that we may restrict our investigations to
the case where the given vector a is nonnegative (cf. Lemma 4), and in
Section 2.4 we distinquish easy types from harder types (p1, p2).

Section 3 contains the analysis of the nine problems, each in a separate
subsection. Finally, Section 4 contains some recommendations for further
research.

2 Preliminaries

2.1 Duality

As announced in the previous section, we consider problems of the fol-
lowing form:

min
x

{

‖a− x‖
p1

: ‖x‖
p2

≤ 1
}

, (1)
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Fig. 1. Illustration of the optimal solutions of the nine problems considered in this
paper, for n = 2 and a = [1.3; 0.8]. The blue dot represents the origin, the red dot
a and the green dot the (or sometimes ‘an’) optimal solution x. The blue curve sur-
rounds the region where the p2−norm is less than 1, whereas the red curve depicts the
p1−neighborhood of a that just touches the blue region.

where a denotes a given vector in Rn, and p1 and p2 are 1, 2 or ∞. The
dual problem of (1) is given by

max
y

{

aT y − ‖y‖
p∗
2

: ‖y‖
p∗
1

≤ 1
}

, (2)

where ‖.‖
p∗
1

refers to the dual norm of ‖.‖
p1
, and similarly for p2.

In one case the solutions of problem (1) and problem (2) are immediate,
namely if a is feasible for the primal problem, i.e., ‖a‖

p2
≤ 1. Then

x = a solves the primal problem, because then the objective value equals
zero, which is minimal. On the other hand, y = 0 is feasible for the dual
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problem, yielding zero as dual objective value. Hence, if we take x = a
and y = 0 then the feasibility conditions are satisfied and the primal
and dual objective values are equal. This means that we have solved the
problem in case ‖a‖

p2
≤ 1. We call this the trivial case of the problem.

In the sequel we only consider the nontrivial case, i.e., ‖a‖
p2

> 1. In that
case any optimal solution x will satisfy x 6= a. Since then ‖a− x‖

p1
> 0,

the optimal value of the primal problem will be positive. As a conse-
quence, y = 0 does not close the duality gap. Therefore, at optimality
we also have y 6= 0.
Now let x and y be primal and dual feasible, respectively. Then the
duality gap can be reduced as follows:

‖a− x‖
p1

−
(

aT y − ‖y‖
p∗
2

)

= ‖a− x‖
p1

− aT y + ‖y‖
p∗
2

≥ ‖a− x‖p1 ‖y‖p∗1 − aT y + ‖y‖p∗
2

‖x‖p2
≥ (a− x)T y − aT y + yTx

= 0.

where the second inequality follows by using the Hölder inequality twice.
Thus we see that the duality gap vanishes if and only if

‖a− x‖
p1

= ‖a− x‖
p1

‖y‖
p∗
1

= (a− x)T y (3)

and

‖y‖
p∗
2

= ‖y‖
p∗
2

‖x‖
p2

= yTx. (4)

Since x 6= a, (3) implies ‖y‖
p∗
1

= 1, whence y 6= 0. The latter implies

‖y‖p∗
2

> 0. But then (4) implies ‖x‖p2 = 1. We conclude that in the

nontrivial case the duality gap vanishes if and only if

‖x‖
p2

= 1 = ‖y‖
p∗
1

(5)

‖y‖
p∗
2

= yTx (6)

‖a− x‖p1 = yT (a− x) . (7)

Obviously (5) implies that the feasibility conditions in (1) and (2) are
satisfied. Therefore, it suffices to solve the above system, under the as-
sumption that x 6= a.
As stated before, we assume p1, p2 ∈ {1, 2,∞}. For the sake of conve-
nience we call the problems (1) and problem (2) of type (p1, p2).
Next we include a section with some lemmas that enable us to restate
the conditions (6) and (7) in a way that is more tractable.

2.2 Basic lemmas

For future use we deal in this section with three elementary lemmas; they
deal with the question when Hölder’s inequality holds with equality. The
first lemma concerns the well-known lemma of Cauchy-Schwarz, where
p∗ = p = 2.
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Lemma 1. The inequality ‖x‖2 ‖y‖2 ≥ xT y holds with equality if and
only if x = λy or y = λx for some λ ≥ 0.

Proof. We omit the proof, because the result is well-known. ⊓⊔
Less well-known are the next two lemmas that deal with the cases p = 1
and p = ∞.

Lemma 2. The inequality ‖x‖1 ‖y‖∞ ≥ xT y holds with equality if and
only if xiyi ≥ 0 for each i and xi 6= 0 implies |yi| = ‖y‖∞.

Proof. We may write

‖x‖1 ‖y‖∞ =

n
∑

i=1

|xi| ‖y‖∞ ≥
n
∑

i=1

|xi| |yi| ≥
n
∑

i=1

xiyi = xT y.

For each i, the i-th terms in the three subsequent summations are not
increasing. Hence it follows that ‖x‖1 ‖y‖∞ = xT y holds if and only if
these terms are mutually equal. In other words,

|xi| ‖y‖∞ = |xi| |yi| = xiyi, 1 ≤ i ≤ n.

The first equality holds if and only if xi 6= 0 implies |yi| = ‖y‖∞. The
second equality holds if and only if |xiyi| = xiyi, which is equivalent to
xiyi ≥ 0. ⊓⊔

Lemma 3. The inequality ‖x‖∞ ‖y‖1 ≥ xT y holds with equality if and
only if xiyi ≥ 0 for each i and yi 6= 0 implies |xi| = ‖x‖∞.

Proof. This lemma follows from the previous lemma by interchanging x
and y. ⊓⊔

2.3 Simpifying observations

In this section we mention some properties of optimal solutions x and
y of respectively (1) and (2) that are easy to understand. They lead us
to the conclusion that in the following nine sections we only need to
consider the case where a is a nonnegative vector, and also that we may
safely assume that the optimal solutions x and y are nonnegative.
First we note that the contribution of xi to ‖x‖

p2
, with p2 = 1, 2 or ∞, is

determined completely by the absolute value |xi| of xi. As a consequence,
if x is feasible for (1) this will remain so if we change the sign of one or
more of the entries in x.
Now consider the expression that we want to minimize: ‖a− x‖

p1
. The

contribution of xi to this expression depends monotonically on |ai − xi|.
If xiai ≥ 0 then |ai + xi| ≥ |ai − xi|. Therefore, we may safely assume
that each xi has the same sign as ai. A similar argument makes clear
that we may assume that each entry yi has the same sign as ai, because
changing the sign of yi leaves ‖y‖

p∗
1

and ‖y‖
p∗
2

invariant in (2). On the

other hand, the contribution of the product aiyi to the dual objective
value is maximal if the sign of yi is the same as that of ai. Therefore, if
y is optimal then aiyi ≥ 0.
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We use the above observations as a preparation for the following lemma
that makes clear that in the analysis of the system (5)-(7) we may safely
assume a ≥ 0. In this lemma we use a map fS , where S is a subset of the
indices 1 to n, which is defined as follows: for each vector z ∈ Rn, fS(z)
is the vector that arises from z by changing the signs of the entries zi,
i ∈ S. Obviously, when S is fixed, fS is one-to-one, and idempotent, i.e.,
f2
S = fS .

Lemma 4. Let x and y denote solutions of the system (5) – (7) and
S ⊆ {1, 2 . . . , n}. Then fS(x) and fS(y) solve the system when a is
replaced by fS(a).

Proof. Let x, y and S be as in the lemma. It is obvious that ‖x‖
p2

does
not change if x is replaced by fS(x), because the norm of a vector does
only depend on the absolute values of its entries. So, the same holds for
the other norms in the system, in particularly also for ‖a− x‖

p1
, since if

i ∈ S then also ai−xi changes sign, because (−ai)− (−xi) = −(ai−xi).
Also the inner products do not change, because, e.g., (−xi)(−yi) = xiyi
for each i ∈ S. Hence the lemma follows. ⊓⊔
We apply this lemma as follows. If the vector a has negative entries we
define the index set S = {i : ai < 0}. Then fS(a) ≥ 0. We then solve the
system (5)-(7) with a replaced by fS(a). Let the solution be denoted as
x′ and y′. Then it follows from Lemma 4 that x = fS(x

′) and y = fS(y
′)

are the solutions of the original system. As a consequence, below we may
always assume that the vector a is nonnegative.

2.4 Easy and harder cases

In the following sections we deal with each of the nine types separately. It
will turn out that for five of the nine problem-types a specific solution of
(1) can be expressed nicely in a, as shown in Table 1. These are the types
with p1 = p2 or p2 = ∞. We call these types for the moment easy. It
maybe worth pointing out that x = min(a,1) solves the primal problem
in all cases with p2 = ∞, also if p1 = ∞. From Figure 1 one easily
understands that – at least in some cases – multiple solutions exist. In
general, we are not satisfied with the specific solution in Table 1 alone,
but we intend to describe the whole set of optimal solutions.

p1\p2 1 2 ∞
1

a

‖a‖1
min(a,α1) min(a,1)

2 (a− α1)+
a

‖a‖2
min(a,1)

∞ (a− α1)+ (a− α1)+
a

‖a‖∞
Table 1. A specific solutions of (1) for each of the nine cases.
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For the remaining four cases Table 1 also shows a specific solution of
(1), but their descriptions need besides the vector a also a parameter α.
Below we describe in more detail how α can be obtained, for each of the
four hard cases. The notation x+ is used to denote the vector that arises
from a vector x by replacing its negative entries by zero. In other words,
x+ = max(x, 0).

Table 2 shows that in all cases one specific dual optimal solution can be
expressed in a alone or in a and an arbitrary primal optimal solution
x; this will become apparent in the related sections below. In this table
x > 0 is used to denote the set of indices i for which xi is positive. In a
similar way a ≥ 1 denotes the index set {i : ai ≥ 1} and a = max(a) the
index set {i : ai = max(a)}. For any index set I , we use aI to denote
the vector that arises from a by putting ai = 0 if i /∈ I . This explains
the meaning of the notations 1a≥1 and 1a=max(a) in Table 2. It may be
verified that if p1 = 2 and p2 = ∞ the dual optimal solution can be
expressed in a alone; this follows by substitution of the primal optimal
solution in Table 1 into a− x, which yields the vector (a− 1)a>1.

p1\p2 1 2 ∞
1 1

x

‖x‖∞
1a≥1

2
a− x

‖a− x‖2
a

‖a‖2
a− x

‖a− x‖2
∞ 1x>0

‖1x>0‖1
x

‖x‖1
1a=max(a)

∥

∥1a=max(a)

∥

∥

1

Table 2. Solutions of (2) for the all cases.

As far as the authors know, up till now problems that are not ‘easy’ in
the above sense, can be solved only algorithmically. The main motivation
of this paper, however, is to show that these problems are also easy in
the sense that they can be solved analytically in O(n) time. So, formally,
in terms of computational complexity all nine types belong to the same
class. Nevertheless, we will refer to the four types that are not ‘easy’
in the above sense as the harder-types, just to separate them from the
‘easy’ types.

The O(n) time solution method for each of the four harder-type problems
is achieved by introducing the parameter α that was mentioned before.
It divides the index set {1, . . . , n} into two classes I and J , according
to

I = {i : ai > α} , J = {i : ai ≤ α} .

The number α is uniquely determined by a linear or quadratic equation
f(α) = 0, with f(α) as in Table 3. We use |I | to denote the cardinality
of the index set I . The number α and hence also I can be computed in
linear time. After this the solution of the problem at hand needs O(n)
additional time. For the details we refer to the related sections below.
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type f(α) α

(1, 2) 1− ‖aJ‖22 − |I |α2 ‖x‖∞
(2, 1) 1− ‖aI‖1 + |I |α ‖a− x‖∞
(∞, 1) 1− ‖aI‖1 + |I |α ‖a− x‖∞
(∞, 2) 1− ‖aI‖22 + 2α ‖aI‖1 − |I |α2 ‖a− x‖∞

Table 3. Definition of the number α.

3 Analysis of the nine problems

3.1 Problems of type (1, 1)

With ‖a‖1 > 1, the primal problem is given by

min
u

{

‖a− x‖1 : ‖x‖1 ≤ 1
}

, (8)

and the dual problem by

max
y,z

{

aT y − ‖y‖∞ : ‖y‖∞ ≤ 1
}

. (9)

We recall from (5) – (7) the optimality conditions for x and y:

‖x‖1 = 1 = ‖y‖∞ (10)

‖y‖∞ = yTx. (11)

‖a− x‖1 = (a− x)T y (12)

As explained in Section 2.3 we may assume that a, and also x and y are
nonnegative. According to Lemma 2, if (10) holds, then (11) is equivalent
to
(i) for each i: xi 6= 0 implies yi = ‖y‖∞ = 1.
Similarly, by Lemma 3, if (10) holds, then (12) is equivalent to
(ii) for each i: (ai − xi) yi ≥ 0 and ai − xi 6= 0 implies yi = ‖y‖∞ = 1,
Next we derive properties from the above conditions. Suppose that ai > 0
for some i. Then either xi 6= 0 or ai − xi 6= 0. Hence, by (i), (ii) and
(10), yi = ‖y‖∞ = 1. But then (ii) also implies xi ≤ ai. This justifies
the first line in Table 4.

ai xi yi

> 0 ≤ ai 1

0 0 0 ≤ yi ≤ 1

Table 4. Optimal solutions for type (1, 1).
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The second line deals with the case where ai = 0. If xi > 0, we get from
(i) that yi = 1. As in the previous case, then (ii) gives xi ≤ ai, whence
xi = 0. Since ‖y‖∞ = 1, this justifies the second line in Table 4.

This is all the information we can extract from the system (10) – (12). It
means that the two (lower) lines in Table 4 represent all the possibilities
for the triples (ai, xi, yi), provided that ‖x‖1 = 1. In general multiple
optimal solutions for problem (8) exist, because every vector x satisfying

0 ≤ x ≤ a, ‖x‖1 = 1

is optimal. Since ‖a‖1 > 1, one of these vectors is x = a/‖a‖1, as given
in Table 1.

If a has only positive entries then (9) has only one optimal solution,
namely y = 1. If a has zero entries, then also other solutions exist. Then
any vector y satisfying

1a>0 ≤ y ≤ 1,

is optimal, where 1a>0 denotes the vector whose entries are 1 where a is
positive and zero elsewhere.

3.2 Problems of type (1, 2)

In this section the primal problem is

min
x

{

‖a− x‖1 : ‖x‖2 ≤ 1
}

, (13)

where ‖a‖2 > 1. Its dual problem is

max
y

{

aT y − ‖y‖2 : ‖y‖∞ ≤ 1
}

, (14)

According to (5) – (7), x is optimal for (13) and y for (14) if and only if

‖x‖2 = 1 = ‖y‖∞ (15)

‖y‖2 = yTx (16)

‖a− x‖1 = (a− x)T y. (17)

As established in Section 2.3, we may take for granted that a ≥ 0, x ≥ 0
and y ≥ 0.

We have ‖y‖∞ = 1, by (15). So y 6= 0. Also, ‖x‖2 = 1. As a consequence,
(16) holds if and only if ‖x‖2 ‖y‖2 = yTx. This in turn is equivalent with

(i) x =
y

‖y‖2
,

by Lemma 1. Moreover, by Lemma 3 (17) holds if and only if

(ii) for each i: (ai − xi)yi ≥ 0 and if ai − xi 6= 0 then yi = ‖y‖∞ = 1.

Since y = ‖y‖2 x, by (i), and y 6= 0, we may conclude that xi and yi have
the same sign, for each i, and they vanish at the same time. Therefore,
(ii) implies xi ≤ ai, for each i. We define

I := {i : xi < ai} , J := {i : xi = ai} , (18)
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Now let i ∈ I and j ∈ J . Since ai > xi, (ii) implies yi = ‖y‖∞. Since
y = ‖y‖2 x, we also have xi = ‖x‖∞. It follows that

ai > xi = ‖x‖∞ ≥ xj = aj , i ∈ I, j ∈ J. (19)

This shows that the entries in aI are strictly larger than those in aJ .
Recall that we always assume that the entries of a are ordered nonin-
creasingly. Therefore, (19) implies the existence of an index q such that

I = {i : i ≤ q} , J = {i : i > q} . (20)

Putting α = ‖x‖∞, we see that (19) holds if and only if

aq > α ≥ aq+1, (21)

Moreover, when knowing q and α, x uniquely follows from (18) and (19),
according to

xi =







α, if i ≤ q

ai, if i > q.
(22)

Since x is nonzero and ‖y‖∞ = 1, we deduce from y = ‖y‖2 x that

y =
x

‖x‖∞
. (23)

Next we arrive at the main objective of this paper, namely to show that
in the current case q and also α can be found in O(n) time. Because
of (22) and (23) we may therefore conclude that (13) and (14) can be
solved in O(n) time.
From (15) we get ‖x‖2 = 1. Also using (22) we may write

1 = ‖x‖22 =

n
∑

i=1

x2
i =

∑

i≤q

xi
2 +

∑

i>q

xi
2 = qα2 +

∑

i>q

a2
i .

Since q = |I | and ∑

i>q a
2
i = ‖aJ‖22, we recognize at this stage that α

satisfies f(α) = 0, with f(α) as defined in Table 3 for type (1,2). Since
α is nonnegative, α uniquely follows from q, because f(α) = 0 holds if
and only if

α2 =
1−∑

i>q
a2
i

q
.

As the next lemma reveals, q uniquely follows from (21). In order to
prove this we define the vector τ as follows:

τk =
1−

∑

i>k a
2
i

k
, 1 ≤ k ≤ n. (24)

We then must find q such that α2 = τq, with τq satisfying

a2
q > τq ≥ a2

q+1. (25)

Lemma 5. q is the first index such that

τq = max
k

{τk : 1 ≤ k ≤ n} . (26)
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Proof. For k < n the definitions of τk and τk+1 imply

(k + 1)τk+1 = 1−
∑

i>k+1

a2
i = a2

k+1 + 1−
∑

i>k

a2
i = a2

k+1 + kτk. (27)

This can be rewritten in the following two ways:

(k + 1) (τk+1 − τk) = a2
k+1 − τk

k (τk+1 − τk) = a2
k+1 − τk+1.

From this we deduce

τk+1 > τk ⇔ a2
k+1 > τk ⇔ a2

k+1 > τk+1. (28)

So, τ is (strictly!) increasing at k if and only if a2
k+1 > τk and this

holds if and only if a2
k+1 > τk+1, for each k < n. From this we draw two

conclusions. First that (25) holds if and only if τ is increasing at k = q−1
and nonincreasing at k = q. Second, if τ is nonincreasing at some k < n it
remains nonincreasing if k increases. This can be understood as follows.
Suppose that τ is nonincreasing at some k < n, i.e., τk+1 ≤ τk. Then
a2
k+1 ≤ τk+1. Since 0 ≤ ak+2 ≤ ak+1, it follows that also a2

k+2 ≤ τk+1.
This in turn implies τk+2 ≤ τk+1, which proves the claim. The above two
properties imply the statement in the lemma. ⊓⊔
The vector τ can be computed in O(n) time by first computing τ1 and
then using (27), which gives:⋆ ⋆ ⋆

τ1 = 1 + a2
1 − ‖a‖2 , τk+1 =

a2
k+1 + kτk

k + 1
, 1 ≤ k < n. (29)

Then (26) yields the value of q, still in O(n) time. As mentioned before,
this means that the current approach solves problem (13) and problem
(14) in O(n) time. Obviously, both solutions are unique.

Example 1. Table 5 shows the outcome of our analysis for a randomly
generated vector a. It shows that τ is maximal at k = 5. So I =
{1, . . . , 5}, and α =

√
τ5 = 0.3554. So xi = 0.3554 for i ∈ I and

xi = ai for i > 5.

3.3 Problems of type (1,∞)

With ‖a‖∞ > 1, we consider the problem

min
x

{

‖a− x‖1 : ‖x‖∞ ≤ 1
}

. (30)

The dual of this problem is

max
y

{

aT y − ‖y‖1 : ‖y‖∞ ≤ 1
}

. (31)

⋆ ⋆ ⋆ It may be worth mentioning that (29) reveals that τi+1 is a convex combination of
a2
i+1 and τi.
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i ai τi xi a− x yi

1 0.9293 −1.0048 0.3554 0.5739 1.0000

2 0.8308 −0.1573 0.3554 0.4754 1.0000

3 0.6160 0.0216 0.3554 0.2606 1.0000

4 0.5853 0.1019 0.3554 0.2299 1.0000

5 = q 0.4733 0.1263 0.3554 0.1179 1.0000

6 0.3517 0.1259 0.3517 0.0000 0.9897

7 0.3500 0.1254 0.3500 0.0000 0.9849

8 0.2511 0.1176 0.2511 0.0000 0.7066

9 0.2435 0.1111 0.2435 0.0000 0.6852

10 0.0000 0.1000 0.0000 0.0000 0.0000

Table 5. Numerical illustration type (1, 2).

The conditions for optimality are

‖x‖∞ = 1 = ‖y‖∞ (32)

‖y‖1 = yTx (33)

‖a− x‖1 = (a− x)T y. (34)

As always we assume that a ≥ 0, x ≥ 0 and y ≥ 0. According to Lemma
3, if (32) holds, then (33) holds if and only if

(i) for each i: yi 6= 0 implies xi = ‖x‖∞;

and, by the same lemma, if (32) holds, then (34) holds if and only if

(ii) for each i: (ai − xi) yi ≥ 0 and ai − xi 6= 0 implies yi = ‖y‖∞.

We consider three cases, according to the value of ai.

Let ai > 1. Since xi ≤ ‖x‖∞ = 1, we then have ai − xi > 0. Then (ii)
implies yi = ‖y‖∞ = 1, and because of this (i) implies xi = ‖x‖∞ = 1,
where we also used (32). So, if ai > 1, then xi = 1 and yi = 1.

If ai < 1, we must have yi = 0. Because otherwise yi > 0, and then
(i) would give xi = 1 again. But then ai − xi < 0. This would imply
(ai − xi) yi < 0, contradicting (ii). So yi = 0. But then we have yi <
‖y‖∞, which implies xi = ai, by (ii).

Finally, let ai = 1. Suppose xi 6= ai. Then (ii) implies yi = 1. Then, as
before, (i) implies xi = 1, whence xi = ai. Note that in that case (i) and
(ii) are satisfied.

We conclude that at optimality x and y are as given in Table 6.

The primal solution is unique, and as given in Table 1, namely x =
min(a,1). On the other hand, if all entries of a differ from 1, y is also
unique. More precisely, then y = 1a>1. Otherwise there are multiple
optimal solution. Every vector y such that

1a>1 ≤ y ≤ 1a≥1

is dual optimal.
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ai xi yi

> 1 1 1

= 1 1 ∈ [0, 1]

< 1 ai 0

Table 6. Optimal solutions for type (1,∞).

3.4 Problems of type (2, 1)

The problem that we consider in this section is

min
x

{

‖a− x‖2 : ‖x‖1 ≤ 1
}

, (35)

where ‖a‖1 > 1. Its dual problem is

max
y,z

{

aT y − ‖y‖∞ : ‖y‖2 ≤ 1
}

. (36)

According to (5) – (7), x is optimal for (35) and y for (36) if and only if

‖x‖1 = 1 = ‖y‖2 (37)

‖y‖∞ = yTx (38)

‖a− x‖2 = (a− x)T y. (39)

As before, under reference to Section 2.3, we assume that a, x and y are
nonnegative. Then Lemma 2, (37) and (38) imply
(i) for each i: xi 6= 0 implies yi = ‖y‖∞,
whereas, by Lemma 1, (37) and (39) imply

(ii) y =
a− x

‖a− x‖2
.

We define
I := {i : xi > 0} , J := {i : xi = 0} . (40)

Let i ∈ I . Then (i) implies yi = ‖y‖∞. Due to (37), y 6= 0. Hence yi > 0.
Because of (ii) we thus obtain ai > xi. From yi = ‖y‖∞ and (ii) we
deduce that ai − xi = ‖a− x‖∞. Now defining

α = ‖a− x‖∞ , (41)

we get ai − xi = α > 0, whence

xi = ai − α, i ∈ I. (42)

Hence
‖x‖1 =

∑

i∈I

(ai − α) = ‖aI‖1 − |I |α.

Since ‖x‖1 = 1, we obtain f(α) = 0, where f(α) = 1− ‖aI‖1 + |I |α, as
announced in Table 3 for type (2,1). This gives

α =
‖aI‖1 − 1

|I | . (43)
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Thus we find that if the index set I is known, then we can compute x and
y: first one computes α from (43), and then xI from (42). Since xJ = 0,
we then know x, and y follows from (ii).
The question remains how we can find I . For that purpose we first observe
that if i ∈ I and j ∈ J then

ai = xi + α > α = ‖a− x‖∞ ≥ aj − xj = aj . (44)

This shows that the entries in aI are strictly larger than those in aJ .
Since the entries of a are ordered nonincreasingly, there must exist an
index q such that

I = {i : i ≤ q} , J = {i : i > q} .

Then (44) holds if and only if

aq > α ≥ aq+1, (45)

with α as in (43). We define the vector τ according to

τk =

∑

i≤k
ai − 1

k
, 1 ≤ k ≤ n. (46)

Then (45) holds if and only if

aq > τq ≥ aq+1, (47)

and then we necessarily have α = τq . We are now in a similar situation
as in Section 3.2, and we proceed accordingly with the next lemma.

Lemma 6. q is the first index such that

τq = max
k

{τk : 1 ≤ k ≤ n} . (48)

Proof. For k < n the definition of τk implies

(k + 1)τk+1 =
∑

j≤k+1

aj − 1 = ak+1 +
∑

j≤k

aj − 1 = ak+1 + kτk. (49)

This can be rewritten in the following two ways:

(k + 1) (τk+1 − τk) = ak+1 − τk

k (τk+1 − τk) = ak+1 − τk+1.

From this we deduce

τk+1 > τk ⇔ ak+1 > τk ⇔ ak+1 > τk+1, (50)

which proves that τ is increasing at k if and only if ak+1 > τk and this
holds if and only if ak+1 > τk+1, for each k < n. From here on we can use
the same arguments as in the proof of Lemma 5. From (47) we conclude
that τ is increasing at k = q − 1 and nonincreasing at k = q. Next, if τ
is nonincreasing at some k < n it remains nonincreasing if k increases,
because if τk+1 ≤ τk then ak+1 ≤ τk+1. Since 0 ≤ ak+2 ≤ ak+1, it follows
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that also ak+2 ≤ τk+1. This in turn implies τk+2 ≤ τk+1, proving the
claim. From this the lemma follows. ⊓⊔
As in Section 3.4, the vector τ can be computed in O(n) recursively
from†

τ1 = a1 − 1, τk+1 =
ak+1 + kτk

k + 1
, 1 ≤ k < n. (51)

Then (48) yields the value of q, still in O(n) time. Due to (42) this means
that problem (35) and it dual problem can be solved time in O(n) time.
Obviously, the solutions of (35) and (36) are unique.

Example 2. Table 7 demonstrates our analysis for a randomly generated
vector a. It shows that τ is maximal at q = 5. So I = {1, . . . , 5}, and
τ = 1.2799.

i ai τi xi ai − xi yi

1 1.6363 0.6363 0.3564 1.2799 0.4181

2 1.6351 1.1357 0.3552 1.2799 0.4181

3 1.4449 1.2388 0.1650 1.2799 0.4181

4 1.3639 1.2701 0.0841 1.2799 0.4181

5 = q 1.3192 1.2799 0.0393 1.2799 0.4181

6 1.0433 1.2405 0.0000 1.0433 0.3409

7 0.2997 1.1061 0.0000 0.2997 0.0979

8 0.0000 0.9678 0.0000 0.0000 0.0000

9 0.0000 0.8603 0.0000 0.0000 0.0000

10 0.0000 0.7742 0.0000 0.0000 0.0000

Table 7. Numerical illustration type (2, 1).

3.5 Problems of type (2, 2)

The primal problem is

min
x

{

‖a− x‖2 : ‖x‖2 ≤ 1
}

, (52)

with ‖a‖2 > 1, and its dual problem

max
y

{

aT y − ‖y‖2 : ‖y‖2 ≤ 1
}

. (53)

According to (5) – (7) the optimality conditions are

‖x‖2 = 1 = ‖y‖2 (54)

‖y‖2 = yTx (55)

‖a− x‖2 = (a− x)T y. (56)

† It may be worth mentioning that (51) reveals that τk+1 is a convex combination of
ak+1 and τk.
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According to Lemma 1, (54) and (55) hold if and only if

(i) x =
y

‖y‖2
,

and by the same lemma, (54) and (56) hold if and only if

(ii) y =
a− x

‖a− x‖2
.

From (i) we derive that x and y have the same direction. Since x and y
are both unit vectors, we must have y = x. By (ii), the vectors y and
a − x have the same direction. Since y 6= 0 this implies a − x = αy for
some α > 0. Thus we obtain (1 + α)x = a. This proves that x has the
same direction as a. Since x is a unit vector, it follows that x = a

‖a‖
2

, as

in Table 1. Since y = x, we have solved (52) and (53). In this case both
the primal and the dual solution are unique.

3.6 Problems of type (2,∞)

The problem can then be stated as

min
u

{

‖a− x‖2 : ‖x‖∞ ≤ 1
}

. (57)

The dual problem is

max
y,z

{

aT y − ‖y‖1 : ‖y‖2 ≤ 1
}

. (58)

As in previous sections, we assume ‖a‖∞ > 1 and that x, y and a are
nonnegative. According to (5) – (7), x is optimal for (57) and y for (58)
if and only if

‖x‖∞ = 1 = ‖y‖2 (59)

‖y‖1 = yTx (60)

‖a− x‖2 = (a− x)T y. (61)

Let us assume (59). Then Lemma 3 states that (60) holds if and only if

(i) for each i: yi 6= 0 implies xi = ‖x‖∞ = 1,

whereas Lemma 1 states that (61) holds if and only if

(ii) y =
a− x

‖a− x‖2
.

At optimality ‖a− x‖2 > 0, whence x 6= a. Let i be such that yi > 0.
Then (i) implies xi = 1. Since yi and ai − xi have the same sign, we get
ai > xi = 1.

We just showed that yi > 0 implies ai > 1. As a consequence we have
yi = 0 if ai ≤ 1. By (ii) we then have xi = ai. We conclude that at
optimality x and y are as given in Table 8. It follows that both x and
y are unique, with x as in Table 1: x = min(a,1).
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ai xi yi

> 1 1 (ai − xi)/ ‖a− x‖2
≤ 1 ai 0

Table 8. Optimal solutions for type (2,∞).

3.7 Problems of type (∞, 1)

With ‖a‖1 > 1, we consider the problem

min
x

{

‖a− x‖∞ : ‖x‖1 ≤ 1
}

. (62)

The dual of this problem is

max
y

{

aT y − ‖y‖∞ : ‖y‖1 ≤ 1
}

. (63)

As before, we only consider the case where a, x and y are nonnegative.
The optimality conditions are

‖x‖1 = 1 = ‖y‖1 (64)

‖y‖∞ = yTx (65)

‖a− x‖∞ = (a− x)T y. (66)

According to Lemma 2, if (64) holds, then (65) is equivalent to
(i) for each i: xi 6= 0 implies yi = ‖y‖∞;
and, for the same reason, then (66) is equivalent to
(ii) for each i: yi 6= 0 implies ai − xi = ‖a− x‖∞.
We partition the index set in the same way as in Section 3.4. So

I = {i : xi > 0} , J = {i : xi = 0} .

Then (i) implies
yi = ‖y‖∞ , i ∈ I. (67)

Since y 6= 0, by (64), we get yi > 0. So (ii) applies, which implies
ai − xi = ‖a− x‖∞. Defining

α = ‖a− x‖∞ , (68)

it follows that
xi = ai − α, i ∈ I, (69)

and hence we may write

‖x‖1 =
∑

i∈I

(ai − α) = ‖aI‖1 − |I |α.

Since ‖x‖1 = 1 we obtain

α =
‖aI‖1 − 1

|I | . (70)
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So, when we know I we can compute α from (70), and then the nonzero
entries of x follows from (68). An interesting observation is that the
formula for α is the same as (43) in Section 3.4. Like there, we also may
write

ai = xi + α > α = ‖a− x‖∞ ≥ aj − xj = aj , i ∈ I, j ∈ J, (71)

Hence we have, for some index q,

I = {i : i ≤ q} , J = {i : i > q} .

Then (71) holds if and only if

aq > α ≥ aq+1, (72)

with α as in (69). Thus the problem of finding q is the exactly the same
as in Section 3.4. So we may state without further proof the following
lemma.

Lemma 7. One has α = τq, where q is the first index such that

τq = max
k

{τk : 1 ≤ k ≤ n} , (73)

and where the vector τ is defined recursively by

τ1 = a1 − 1, τk+1 =
ak+1 + kτk

k + 1
, 1 ≤ k < n. (74)

This means that problem (62) can be solved in O(n) time, and the solu-
tion is unique.
In Section 3.4 the dual vector y was uniquely determined by x. This
is now different, as becomes clear below. We derived from (i) that for
indices i ∈ I , where x is positive, the entries yi are positive and equal
to ‖y‖∞. If i ∈ J , where x is zero, (ii) requires that if ai 6= ‖a− x‖∞
then yi = 0. So, if ai = α then condition (ii) is void, and hence the
only condition on yi becomes 0 ≤ yi ≤ ‖y‖∞. This can happen only if
aq+1 = α. Since α = τq this is equivalent to τq+1 = τq , by (74). Stated
otherwise, we can have 0 ≤ yq+1 ≤ ‖y‖∞ if and only if τ is not decreasing
at q. More generally, if q′ is the highest index at which τ is maximal,
with q′ ≥ q, i.e., if

τq = τq+1 = . . . = τq′ = α,

which happens if and only if

aq = aq+1 = . . . = aq′ = α. (75)

then for any i such that q ≤ i ≤ q′ we can have 0 ≤ yi ≤ ‖y‖∞. Any
such vector y is obtained by first defining a vector z as follows:

zi =



















1 if i ≤ q,

∈ [0, 1] if q < i ≤ q′,

0 if i > q′,

(76)
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and then taking

y =
z

‖z‖ 1

. (77)

We then have ‖y‖1 = 1 and, because of (69) and (75), for each positive
yi that ai − xi = α = ‖a− x‖∞. This implies that y is dual feasible and
also optimal.

Example 3. Table 9 demonstrates our analysis for a given vector a. It
shows that τ is maximal at q = 5. So I = {1, . . . , 5}, and α = τ5 = τ6 =
0.5362.

i ai τi xi ai − xi yi

1 0.9174 −0.0826 0.3812 0.5362 0.1772

2 0.7655 0.3415 0.2293 0.5362 0.1772

3 0.7384 0.4738 0.2022 0.5362 0.1772

4 0.6834 0.5262 0.1472 0.5362 0.1772

5 = q 0.5762 0.5362 0.0400 0.5362 0.1772

6 = q′ 0.5362 0.5362 0.0000 0.5362 0.1142

7 0.2691 0.4980 0.0000 0.2691 0.0000

8 0.2428 0.4661 0.0000 0.2428 0.0000

9 0.1526 0.4313 0.0000 0.1526 0.0000

10 0.0000 0.3882 0.0000 0.0000 0.0000

Table 9. Numerical illustration type (∞, 1).

3.8 Problems of type (∞, 2)

With ‖a‖2 > 1, we consider the problem

min
x

{

‖a− x‖∞ : ‖x‖2 ≤ 1
}

. (78)

The dual of this problem is

max
y

{

aT y − ‖y‖2 : ‖y‖1 ≤ 1
}

. (79)

As always, a ≥ 0, x ≥ 0 and y ≥ 0. The conditions for optimality are

‖x‖2 = 1 = ‖y‖1 (80)

‖y‖2 = yTx (81)

‖a− x‖∞ = (a− x)T y (82)

According to Lemma 1, if (80) holds, then (81) is equivalent to

(i) x =
y

‖y‖2
;
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and, by Lemma 2, (82) is equivalent to

(ii) for each i: yi 6= 0 implies ai − xi = ‖a− x‖∞.

With

I = {i : xi > 0} , J = {i : xi = 0} ,
the pair (I, J) is a partition of the index set. Let i ∈ I . So, xi > 0.
Now (i) implies yi > 0. Therefore, (ii) implies ai −xi = ‖a− x‖∞. Since
‖a− x‖∞ > 0, we get xi < ai. To simplify the presentation we define

α = ‖a− x‖∞ . (83)

Then we have

xi = ai − α, i ∈ I. (84)

Now let j ∈ J . Then using xj = 0, we may write

ai = xi + α > α = ‖a− x‖∞ ≥ aj − xj = aj . (85)

This proves that the entries in aI are strictly larger than those in aJ .
Since the entries of a are ordered nonincreasingly, we get, for some q,

I = {1, 2, . . . , q} , J = {q + 1, . . . , n} .

Assuming that J is not empty, (85) implies

aq > α ≥ aq+1. (86)

Otherwise, i.e., when q = n, we define an+1 = 0; so we can always work
as if (86) holds. Because of (80) we may write

1 = ‖x‖22 =
∑

i∈I

x2
i =

∑

i∈I

(ai − α)2 = ‖aI‖22 − 2α ‖aI‖1 + |I |α2.

Thus we obtain that α is one of the two roots of the equation f(α) = 0,
where

f(α) := 1− ‖aI‖22 + 2α ‖aI‖1 − |I |α2.

Before proceeding, it will be convenient to introduce the notation

σjk :=
k

∑

i=1

ai
j , j ∈ {1, 2} , k ∈ {1, . . . , n} . (87)

Then ‖aI‖1 = σ1q and ‖aI‖22 = σ2q , and hence f(α) can be rewritten as

f(α) = 1− σ2q + 2ασ1q − qα2. (88)

Now the sum of the two roots equals 2σ1q/q. So their average value is
σ1q/q. By (86) we have aq > α. Combining this with a1 ≥ a2 ≥ . . . ≥ aq,
we conclude that σ1q > qα, whence σ1q/q > α. It thus follows that the
root α is smaller than the other root. This means that the discriminant
of the equation f(α) = 0 is positive. In other words

σ2
1q − q (σ2q − 1) > 0. (89)
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Motivated by the solution technique developed in some of the preceding
sections, we define

fk(ξ) = 1− σ2k + 2ξσ1k − kξ2, 1 ≤ k ≤ n. (90)

and

ωk := σ2
1k − k (σ2k − 1) , τk :=

1

k
(σ1k −√

ωk) , 1 ≤ k ≤ n.

(91)
Obviously, ωk is just the discriminant of the equation fk(ξ) = 0 and
if ωk ≥ 0 then τk is its smallest root. In particular, τq = α. Hence,
according to (86) we need to find q such that

aq > τq ≥ aq+1. (92)

When knowing q, α follows from α = τq, and then x follows from (84).
The question remains how much time it takes to solve q from (92) and
similarly for x and y. We claim that all this can be done in O(n) time.
This can be understood as follows.
Clearly, ω1 = 1 and τ1 = a1 − 1. For j = 1, 2, the recursive computation
of σj1, . . . , σjq requires O(q) time, and so does the computation of ωq

and τq . If we have found q such that τq satisfies (92), then we also know
α, because α = τq . Then x follows from xi = ai − α if i ≤ q and xi = 0
otherwise. Finally, from (i) we derive that

y =
x

‖x‖1
.

Thus we have shown that problem (78) and its dual problem can be
solved in O(n) time.

Example 4. Table 10 shows the outcome of our analysis for a randomly
generated vector a. Because of (92) the optimal value of q is 6 in this
example. Note that the sequence τk is increasing, until it becomes unde-
fined due to ωk < 0.

In Table 10 one may observe that the vector ω shows behaviour that
we recognize from the vector τ in preceding sections: (i) when ωk is
nonincreasing at some k it remains nonincreasing when k grows, and (ii)
the optimal index q occurs at the moment when ω attains its maximal
value. It turns out that this surprising observation can be turned into
the next lemma. A consequence of this lemma is that the index q can
be obtained without computing τ . One only needs to compute the first
q + 1 entries of the vector ω.

Lemma 8. q is the first index such that

ωq = max
k

{ωk : 1 ≤ k ≤ n} . (93)

Proof. We first derive from (92) that the index q satisfies

fq(aq) > 0 ≥ fq(aq+1). (94)
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k ak fk(ak) ωk τk xk ak − xk yk

1 2.9667 1.0000 1.0000 1.9667 0.6736 2.2932 0.3023

2 2.7888 0.9683 1.9683 2.1763 0.4957 2.2932 0.2224

3 2.6370 0.8683 2.8366 2.2361 0.3439 2.2932 0.1543

4 2.5963 0.8241 3.6607 2.2689 0.3031 2.2932 0.1360

5 2.5521 0.7629 4.4236 2.2876 0.2590 2.2932 0.1162

6 = q 2.4462 0.5415 4.9651 2.2932 0.1530 2.2932 0.0687

7 2.0900 −1.1531 3.8120 2.3035 0.0000 2.0900 0.0000

8 1.7484 −4.3254 −0.5134 − 0.0000 1.7484 0.0000

9 1.6817 −5.1398 −5.6532 − 0.0000 1.6817 0.0000

10 0.0000 −52.0241 −57.6773 − 0.0000 0.0000 0.0000

Table 10. Numerical illustration for a problem of type (∞, 2).

Recall that τq is the smallest roots of the quadratic equation fq(ξ) = 0.
For the moment, let τ ′

q denote the second (i.e., largest) root. By its
definition (90), fq(ξ) is concave. We therefore have

fq(ξ) > 0 ⇔ τq < ξ < τ ′
q, (95)

where τq and τ ′
q are such that

qτq = σ1q −√
ωq

qτ ′
q = σ1q +

√
ωq.

By (92), aq+1 ≤ τq < aq. The first inequality makes clear that aq+1 does
not belong to (τq, τ

′
q). Therefore, we immediately get the second inequal-

ity in (94): fq(aq+1) ≤ 0. According to (95), the first inequality in (94)
holds if and only if τq < aq < τ ′

q. We already have aq > τq. So it remains
to prove aq < τ ′

q. Since the entries of a are ordered nonincreasingly, we
have qaq ≤ σ1q. Since σ1q < σ1q +

√
ωq = qτ ′

q, we obtain aq < τ ′
q, as

desired. Thus (94) has now been proven.

We proceed by showing that the sequence fk(ak) is nonincreasing for
1 ≤ k ≤ n. By the definition (90) of fk(ξ) we may write

fk(ξ) = 1−
∑

i≤k

a2
i + 2ξ

∑

i≤k

ai − kξ2 = 1−
∑

i≤k

(ai − ξ)2. (96)

Since ak ≥ ak+1, we get ai − ak+1 ≥ ai − ak for each i. So one also has

∑

i≤k+1

(ai − ak+1)
2 =

∑

i≤k

(ai − ak+1)
2 ≥

∑

i≤k

(ai − ak)
2 .

Thus it follows from (96) that, for any k < n,

fk+1(ak+1) = fk(ak+1) ≤ fk(ak). (97)
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This proves that the sequence fk(ak) is nonincreasing when k increases.
Because of this, (94) implies that fk(ak) is positive if and only if k ≤ q.
This has important consequences for the sequence ωk, 1 ≤ k ≤ n. This
becomes clear by considering ωk+1−ωk. This expression can be reduced
as follows.

ωk+1 − ωk = σ2
1,k+1 − (k + 1) (σ2,k+1 − 1)−

(

σ2
1k − k (σ2k − 1)

)

= σ2
1,k+1 − (k + 1)σ2,k+1 + (k + 1)− σ2

1k + kσ2k − k

= 1 + σ2
1,k+1 − σ2

1k − k (σ2,k+1 − σ2k)− σ2,k+1

= 1 + (σ1,k+1 − σ1k) (σ1,k+1 + σ1k)− k a2
k+1 − σ2,k+1

= 1 + ak+1 (ak+1 + 2σ1k)− k a2
k+1 − σ2,k+1

= 1− σ2k + 2ak+1σ1k − ka2
k+1

= fk(ak+1) = fk+1(ak+1).

We may conclude that ωk+1 > ωk holds if and only if fk+1(ak+1) > 0.
Since we have fk(ak) ≥ fk+1(ak+1) for each k and because of (94) it
follows that fk+1(ak+1) > 0 holds if and only if k + 1 ≤ q. So, when k
runs from 1 to n then ω increases at k if and only if k ≤ q− 1, and from
k = q on ω is nonincreasing. Hence the lemma follows. ⊓⊔

3.9 Problems of type (∞,∞)

While assuming ‖a‖∞ > 1 we consider the problem

min
x

{

‖a− x‖∞ : ‖x‖∞ ≤ 1
}

. (98)

The dual of this problem is

max
y

{

aT y − ‖y‖1 : ‖y‖1 ≤ 1
}

. (99)

As in the previous eight sections, we assume a ≥ 0, x ≥ 0 and y ≥ 0.
The conditions for optimality are given by

‖x‖∞ = 1 = ‖y‖1 (100)

‖y‖1 = yTx (101)

‖a− x‖∞ = (a− x)T y. (102)

According to Lemma 3, (100) and (101) imply
(i) for each i: yi 6= 0 implies xi = ‖x‖∞;
and, by Lemma 2, (100) and (102) imply
(ii) for each i: yi 6= 0 implies ai − xi = ‖a− x‖∞.
Let yi > 0. Then (i) and (ii) imply xi = ‖x‖∞ and ai − xi = ‖a− x‖∞.
By adding these two equalities we obtain

ai = ‖x‖∞ + ‖a− x‖∞ .

Hence, for any other j 6= i, since xj ≤ ‖x‖∞ and aj − xj ≤ ‖a− x‖∞,
we get

ai ≥ xj + (aj − xj) = aj .
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Hence, since the entries in a are ordered nonincreasingly, ai = a1. So, yi
is zero for each i with ai < a1 and maybe also for one or more indices i
with ai = a1. Therefore, if I denotes the set of indices with yi > 0 and
J its complement, then

I ⊆ {i : ai = a1} , J = {i : i /∈ I} ⊇ {i : ai < a1} ,

with I nonempty, whereas yI > 0 with ‖yI‖1 = 1 and yJ = 0. The dual
objective value at y equals aT y−‖y‖1 = a1−1. Since the optimal primal
objective value has the same value, this implies ‖a− x‖∞ = a1 − 1. This
value is positive, because ‖a‖∞ = a1 > 1.
For x we are left with the following conditions. By (i), xi = 1 for i ∈ I ;
then (ii) also holds because ai − xi = a1 − 1 = ‖a− x‖∞. For the
remaining indices i (i ∈ J) there is a lot of freedom. The only condition
for each i ∈ J is that the value of xi does not change the given values of
‖x‖∞ (= 1) and ‖a− x‖∞ (= a1 − 1). So, with α = a1 − 1, we must have

0 ≤ xJ ≤ 1J

−α1J ≤ aJ − xJ ≤ α1J .

Summarizing, a vector x is optimal for problem (98) if and only if

xI = 1I , max(0, aJ − α1J ) ≤ xJ ≤ min(1J , aJ + α1J ). (103)

Example 5. For a randomly generated vector a, Table 11 shows two so-
lutions, x(1) and x(2). In x(1) we took for each entry the smallest possible
value, and in x(2) the largest possible value, according to (103). All other
optimal vectors x are obtained by taking for each xi a value between
these two extreme values. One of these solutions is x = a/‖a‖∞, as men-
tioned in Table 1, and as easily can be verified. Another ‘nice’ solution
is x = min(1, a).

4 Concluding remarks

This paper was inspired by a result in [2], where a nontrivial second-order
cone optimization problem was solved analytically in linear time. This
raised the question whether there exist other (classes of) problems that
can be solved in linear time, by a variant of the same method. In this
paper we consider a class of nine potentially important, easily stated and
fundamental problems that form such a class. It is worth noting that in
the four harder cases an important characteristic of the new method is
that it first yields an ‘optimal partition’ of the variables in the problem.
After this the values of the variables can be easily found. Though the
problems considered in this paper are quite basic, hopefully it will inspire
further research in this direction.
Figure 1 and the tables in this paper were generated by using Mat-
lab. On the web site xxx one my find a Matlab file with the name
easy problems.m. It generates the results depicted in the Figure 1 if
one calls this file by typing easy problems(a), with a = [1.3; 0.8]. One
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i ai x
(1)
i ai − x

(1)
i x

(2)
i ai − x

(2)
i yi

1 1.9154 1.0000 0.9154 1.0000 0.9154 0.5354

2 1.9154 1.0000 0.9154 1.0000 0.9154 0.0000

3 1.9154 1.0000 0.9154 1.0000 0.9154 0.4646

4 1.2754 0.3600 0.9154 1.0000 0.2754 0

5 1.0543 0.1389 0.9154 1.0000 0.0543 0

6 1.0361 0.1207 0.9154 1.0000 0.0361 0

7 0.9148 0 0.9148 1.0000 −0.0852 0

8 0.8802 0 0.8802 1.0000 −0.1198 0

9 0.5620 0 0.5620 1.0000 −0.4380 0

10 0 0 0 0.9154 −0.9154 0

Table 11. Two numerical solutions for a problem of type (∞,∞).

may use any vector a of any length ≥ 2 as input. It then generates
the nine tables for this particular vector. The tables in the paper are
obtained by typing easy problems(1). When typing easy problems(n)

with n ≥ 2, it solves each of the nine problems, for each problem with a
newly randomly generated vector of length n.
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