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Implementation and intelligent gain tuning
feedback–based optimal torque control of
a rotary parallel robot

Farzam Tajdari1 and Naeim Ebrahimi Toulkani2

Abstract
Aiming at operating optimally minimizing error of tracking and designing control effort, this study presents a novel

generalizable methodology of an optimal torque control for a 6-degree-of-freedom Stewart platform with rotary actuators.

In the proposed approach, a linear quadratic integral regulator with the least sensitivity to controller parameter choices is

designed, associated with an online artificial neural network gain tuning. The nonlinear system is implemented in ADAMS,

and the controller is formulated in MATLAB to minimize the real-time tracking error robustly. To validate the controller

performance, MATLAB and ADAMS are linked together and the performance of the controller on the simulated system is

validated as real time. Practically, the Stewart robot is fabricated and the proposed controller is implemented. The method

is assessed by simulation experiments, exhibiting the viability of the developed methodology and highlighting an im-

provement of 45% averagely, from the optimum and zero-error convergence points of view. Consequently, the experiment

results allow demonstrating the robustness of the controller method, in the presence of the motor torque saturation, the

uncertainties, and unknown disturbances such as intrinsic properties of the real test bed.

Keywords
Stewart platform, optimal torque control, validation, nonlinear system, robustness

1. Introduction

In applications where higher acceleration and velocity and
better accuracy and lighter weight are essential or where
a comparatively high bearing capacity per robot weight is
required, parallel mechanisms are alternatively preferred to
serial manipulators (Taghirad 2013, Tajdari et al. 2017b).
Namely, some of the applications are space interferometry,
spacecraft communication devices (Furqan et al., 2017),
flight simulator (Huang et al., 2016), surgery (Orekhov
et al., 2016) production line, and scanning (Huang et al.,
2018). Among the other things, the high accuracy scanning
of the human body for the purpose of surgeries, designing
anatomical adaptable rehabilitation devices (Nomura et al.,
2016), and next generation of Ultra Personalized Products
and Services (UPPS) (Kwon and Kim 2012, Yang et al.
2020) attract more attention. It shows the importance of
health and humanity survival and how it is influenced by
robots’ high precision. One of the interesting scanning
scenarios is fast automated breast scanning (Chen et al.
2015, Merouche et al. 2015, Sun et al. 2018) which is
supposed as the future application of this study. However,
because of the flexibility and deformation of the breast
tissue, it is a very complex action. The needs of such robots
are revealed especially during motion scanning.

High accuracy needs good knowledge of kinematic,
dynamic, and control of a parallel robot to investigate
complex dynamic and accordingly sophisticated control
approaches (Shoham et al., 2003). Well-known parallel
robots with wide usage in the aforementioned applications
were extracted from the mechanism presented by Gough
(1962) and Stewart (1965) based on the fundamental of the
recent parallel robots.

Addressing the first issue, solving the kinematics of the
parallel robots is considerably complicated because they do
not have a definite solution. Also, there is no closed form
for these kinds of equations (Sosa-Méndez et al., 2017).
Kinematics of the robot with linear manipulator was
widely studied in recent years, namely Geng et al. (1992);
Petrescu et al. (2018); and Tajdari et al. (2020c), whereas
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mechanisms with rotary actuators are less studied due to
additional complexity of rotation. Thus, in this article,
a Stewart robot with rotary manipulator is investigated,
owing to the fact that it is faster than a Stewart platform with
linear actuators in control responses (Van Nguyen and Ha,
2018). Also, it has less production and maintenance cost,
less weight, easier installation procedure (e.g., surgical
goals), and powerful ability of integration with other
mechanisms (Patel et al., 2018).

Regarding the complex mechanism, the kinematic
equation of the robot is a key to dynamical analysis of the
parallel robot. In addition, main challenges in the deriving
of the dynamic equations are the relationship description
between internal or external forces and torques, the states of
end effector for controller design, and feasibility study of
the robot. Considering the dynamical analysis, several
approaches were used such as the comprehensive approach
based on momentum (Lopes, 2009), the Newton–Euler
methodology (Dasgupta and Mruthyunjaya, 1998), and
the Lagrangian approach (Bingul and Karahan, 2012).
Furthermore, based on the assumptions for using either of
the approaches, different solutions were proposed. One of
the solutions assumed dynamic simplifications to the robot
such as ignoring friction joints in the links and concluding
a basic legs dynamic Do and Yang (1988), Fichter (1986),
Merlet (1990), Sugimoto (1989). Some other studies, such
as Dasgupta and Mruthyunjaya, 1998), developed a gen-
eralized model according to the Newton–Euler formulation
to study the effectiveness of the viscous friction in the joints.
Also, the Lagrange formulation was used in Lebret et al.
(1993).

To assess the automation and the equation of motions,
and because there are nonlinearity and uncertainty in the
fabricated robot, a computing software capable of simu-
lating inverse kinematic, dynamic motion, and state variable
is necessary. To this end, ADAMS is used in this study. The
aforementioned software was also used in Cafolla and
Marco (2015), Gough (1957), and Stewart (1965). Ac-
cordingly, a proper ADAMS model is used in the current
article based on the proposed model in Tajdari et al.
(2020b). This model is capable to verify any controller
approach for the rotary robot dynamic.

The main objective of controller design in parallel robots
is to move end effector of the robot precisely, so that it can
follow a desired trajectory and orientation of dynamic or
static variables (Merlet, 2006). There are many control
schemes, which are based on the models and applicable for
linear manipulator Stewart robots, namely optimal feedback
linearization control (Tajdari et al. 2021a; Tourajizadeh
et al. 2016), control of inverse dynamic (Lee et al.,
2003), backstepping tracking adaptive control (Huang
and Fu, 2004), sliding mode, and PID controllers (Kizir
and Bingul 2012; Tajdari et al. 2017a), whereas there are
less control approaches for a rotary Stewart robot due to the
additional complexity of the robot’s dynamic. Moreover, in

the most of the latter methods, controlling the length of links
in the robots was used to control the states of the end ef-
fector. As a result, a comprehensive methodology for direct
controlling from manipulators to the end effector was
missed. Consequently, using the position control method-
ology solely limits the robot design to the joint space
(Hopkins and Williams, 2002). In particular, the control
methodologies based on the inverse dynamic are substantial
to control the end effector motion through the manipulators,
directly. Then, there is the possibility of investigating ex-
perimental constraints, for example, manipulator saturation,
and uncertainty considerations. However, there are limited
studies discussing the rotary robot torque control.

Thus, this article aims to develop and test a novel integral
torque control methodology for the complicated parallel
mechanism to optimize the torques and minimize the
tracking error. This is an opening for further implementation
of identification approaches, nonlinear control methods, and
impedance manipulator control (Yang et al., 2019). The
scientific contributions of this article are as follows:

1. Introducing the design architecture of the robust in-
tegral controller integrated with an anti-windup
scheme, which solves unknown disturbances and
manipulator saturation;

2. Integrating an intelligent optimizer gain tuner in the
metric for establishing a robust optimal controller
with faster zero-error convergence performance;

3. Extensively investigating the sensitivity level, ro-
bustness, and attraction region of the controller pa-
rameters, and demonstrating the global stability of the
controller, which guarantees the global zero-error
convergence; and

4. Implementing the controller on a reliable nonlinear
system, via ADAMS to validate the robustness, and
convergence in different scenarios and also on a
fabricated Stewart robot to assess the performance
in presence of naturalistic disturbance, manipulators’
saturation, and uncertainties.

An introductory version of this study was presented in
Tajdari et al. (2020b), which is collaborated here with
a more rigorous concept; a comprehensive demonstration
on stability of controller properties for the suggested control
law; investigation on level of robustness with respect to
parameter choices through numerical experiments; and
additional numerical experiments, containing a scenario
which presents a state-of-the-art conventional control
methodology and a scenario, which includes additional
disturbances through the fabricated robot.

2. Stewart platform: Dynamical equations

To derive the equations of motion of a Stewart mechanism,
kinematics and kinetics analyses of the dynamical system
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are required. This step is crucial toward obtaining the re-
lationships between the position and the velocity of the end
effector before dynamic analysis.

2.1. Kinematics equation

In a Stewart platform which is actuated with rotary motors,
controllable variables are the output torques of motors and
their rotational angels. In the following equations, a re-
lationship between the motors’ variables and the position of
the end effector is presented

X ¼

2
6666664

f
θ
ψ
x
y
z

3
7777775
, L ¼

2
6666664

L1

L2

L3

L4

L5

L6

3
7777775
¼ f

�
X
�
, θM ¼

2
6666664

θM1

θM2

θM3

θM4

θM5

θM6

3
7777775
¼ g

�
L
�

(1)

Vector X represents the end effector’s variables which
are the rotation angles f, ψ, and θ of the moving plate about
the X, Y, and Z axis, respectively, and the position of the end
effector center of mass as x, y, and zwith respect to the fixed
coordinate XYZ. Moreover, the vector L refers to the dis-
tance between the joints on the fixed base ðP!iÞ and the
corresponding joints on the movable frame ð p!iÞ. Even-
tually, θM is the motor angular shown in Figure 1(a). The
connecting vector from P

!
i to p!i can be written as

L
!

i ¼
�
R�1
xyz p
!

i þ G
�
� P
!

i ¼ f
�
X
�

(2)

where

Rxyz ¼ RxðfÞRyðθÞRzðψÞ

¼
2
4 CfCψ CθSψ �Sθ
CψSθSf� CfSψ CfCψ þ SθSfSψ CθSf
CθCψSθ þ SfSψ CfSθSψ � cψSf CθCf

3
5

(3)

considering the fact that Cθx = Cos(θx), Sθx = Sin(θx). And,
G, position vector of the end effector center of mass, is
determined as

G ¼ ½ x, y, z �T (4)

Considering the length of each legs in equation (2), the
length of each link connecting the end effector to the base is
written as ��� l!i

��� ¼ ���R�1
xyzð p!i þ GÞ �

�
P
!

i þ u!i

���� (5)

where u!i is the vector representing the link connected to the
motor. The vector is shown in Figure 1(a) and calculated as
follows

u!i ¼ j u!ijRzðθhÞSinðθMÞCosðβÞ i!þ CosðθM Þ j!

þ SinðθM ÞSinðβÞ k!
(6)

where θh is the angle between P
!

i and X
!

in global axis, and
β is the installation angle between the motor and the ho-
rizon. Thus, by replacing equation (6) with equation (5), and
considering that length l

!
i is always constant, θMi can be

extracted as

Figure 1. Schematic of a Stewart platform. (a) Defined variables and vectors. (b) Dynamic force–torque diagram.
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θMi ¼ �

0
B@a sin d

0
B@ Ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
i þ B2

i

q
1
CA

� a cos d

0
B@ Biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
i þA2

i

q
1
CAþ 180

1
CA

(7)

where Ai,Bi, Ci 2UðX Þ

Ai ¼ 2j u!ij
���� L!ix

���SinðθhÞ � ��� L!iy

���CosðθhÞ� (8)

Bi ¼ 2j u!ij
��� L!ix

���CosðβÞCosðθhÞ
þ
��� L!iy

���CosðβÞSinðθhÞ � ��� L!iz

���SinðβÞ (9)

Ci ¼
��� l!i

���2���� L!i

���2 (10)

Equation (7) defines that practically having the X
through a sensor on the end effector leads to have the angle
value of each motor. This is helpful for position control of
these kinds of robots.

2.2. Kinetics equations

In this section, the dynamical equations of a Stewart
platform actuated by six rotary motors are obtained using
the Newton–Euler method. The derivations are summarized
just to show different dynamic features of the systems and
the effects. Figure 1(a) shows a Stewart mechanism with six
rotary motors as actuators. As it can be seen, the platform
consists of a moving plate as the end effector, a fixed plate as
the base, and six legs connected to six rotary actuators, as
the manipulators to move the end effector. The spherical
joints are used to connect the six legs, the end effector, and
the base. The kinetics equations for the end effector can be
written as

ΣM
!¼ I α! (11)

ΣF
!¼ m a! (12)

"
I 03×3

03×3 m

#
2
666666664

€f
€θ

€ψ

€x

€y

€z

3
777777775
¼

�
M

F

	
(13)

where α! is the angular acceleration vector and a! is the
linear acceleration vector of the end effector. In addition, m

contains the mass value (m) of the end effector and I defines
the end effector moment of inertia around x, y, and z axis,
denoted as

I ¼
2
4 Ixx 0 0

0 Iyy 0
0 0 Izz

3
5, m ¼

2
4m 0 0
0 m 0
0 0 m

3
5 (14)

and

M ¼ ½Mx,My,Mz �T , F ¼ ½Fx,Fy,Fz �T (15)

In Figure 1(b), M and F represent the torques and the
exerted forces on the end effector, respectively. Addressing
the rotary motors’ manipulated torques, the dynamic
equation should be derived as a controllable variable–torque
relationship discussed in the following

�
I 03×3

03×3 m

	
2
6666664

€f
€θ
€ψ
€x
€y
€z

3
7777775
¼

�
M
F

	
¼ τ6×6

2
6666664

T1

T2

T3

T4

T5

T6

3
7777775

(16)

where Ti is the manipulated torque with motor i. The ki-
netics equations can also be formed by using their unit
vectors. It can be written as

ΣM
!¼Σ r!i× F

!
li ¼Σ p!i× e!li

���F!li

���¼Σ e!Mi

���F!li

��� (17)

where e!Mi ¼ p!i × e!li, that is, e
! denotes the unit vector of

its corresponding vector. Then

ΣF
!¼ Σ e!li

���F!li

��� (18)

Thus

�
M
F

	
¼

�
eM1 … eM6

el1 … el6

	24Fl1

«
Fl6

3
5 (19)

where

τ1 ¼
�
eM1 / eM6

el1 / el6

	
(20)

As F
!

li ¼ e!li � e!NijT
!

ij=j u!ij, where e!Ni is the unit

vector of T
!

i, therefore

2
4Fl1

«
Fl6

3
5 ¼

e!l1 � e!N1

j u!1j
… 0

« 1 «

0 …
e!l6 � e!N6

j u!6j

2
6666664

3
7777775
2
4 T1

«
T6

3
5 (21)
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Considering

τ2 ¼

e!l1 � e!N1

j u!1j
/ 0

« 1 «

0 /
e!l6 � e!N6

j u!6j

2
6666664

3
7777775

(22)

the equation of motion would be

�
I 03×3

03×3 m

	
2
6666664

€f
€θ
€ψ
€x
€y
€z

3
7777775
¼

�
M
F

	
¼ τ6×6

2
6666664

T1

T2

T3

T4

T5

T6

3
7777775
¼ τ1τ2

2
6666664

T1

T2

T3

T4

T5

T6

3
7777775
(23)

Thus, the ultimate dynamic transfer matrix, from the end
effector to the base, can be obtained as

τ ¼
�
eM1 … eM6

el1 … el6

	 e!l1 � e!N1

j u!1j
… 0

« 1 «

0 …
e!l6 � e!N6

j u!6j

2
6666664

3
7777775
(24)

where τ is a transfer matrix that defines the equations of
motion based on the end effector states and the applied
torques by the actuators. It provides suitable circumstance
to implement the torque control method, directly, and is
shown as below

€X ¼ τtotT (25)

where

τtot ¼
�

I 03× 3
03× 3 m

	�1

τ (26)

2.3. Evaluation of equations of motion and
derivation of the nonlinear model

Providing a valid nonlinear model, which is able to rep-
resent the actual system, is crucial for the controller design
and evaluation process. Some physical constraints such as
collision of objects, hardness and elasticity of rigid bodies,
and friction between hard surfaces could not be addressed in
MATLAB. Therefore, ADAMS is used to simulate the
Stewart model. However, lacking the capability of coding
and implementation of different control methods in
ADAMS makes it an insufficient tool for evaluating the
system. To overcome this problem, MATLAB and ADAMS

are connected together to implement the online control
method on MATLAB and evaluate the controller perfor-
mance on the nonlinear system modeled in ADAMS.

First, the 3D model of the system is designed in Sol-
idWorks (Figures 2 (a) and (b))). Next, the 3D model is
imported into the ADAMS and then the essential constraints
such as joint types, materials and densities of the bodies,
rigidity of them toward each other, and frictions between
hard surfaces are applied to the modeled robot. Tables 2 and
1 show the considered values and assumptions for the
design variables. As it is reported in Table 2, the system
consists of 14 components of mass and moment of inertia.
Figure 2(c) shows all the applied constraints to the 3D

Figure 2. 3D model of the Stewart platform. (a) In SolidWorks

top view. (b) In SolidWorks perspective view. (c) In ADAMS with

the applied constraints.

Tajdari and Ebrahimi Toulkani 5



model. As shown, a bidirectional torque, represented by red
vectors, is applied on each leg.

3. Controller design

According to the fact that the designed dynamical system in
ADAMS consists of nonlinear parameters of an actual
system, it is definitely a nonlinear Stewart platform. Hence,
to control these kinds of systems, the proposed controller
needs to be capable of reducing the tracking errors in the
presence of nonlinearities (Åström and Hägglund, 1995). In
addition to robustness, optimization of the input signals in
parallel manipulators to achieve an efficient performance is
a challenge. The issue needs to be addressed in the con-
troller design process. Therefore, a linear quadratic integral
(LQI) optimal controller is an appropriate option to control
the nonlinear system effectively.

3.1. State-space equations

The state space and dynamic equations of the Stewart robot
can be formulated as follows

_x ¼ AcxðtÞ þ BcðtÞTðtÞ þ dcðtÞ (27)

where x consists of the main states in X , and the speed of the
states. Consequently, the dynamic of the error can be de-
fined as

_e ¼ AceðtÞ þ BcðtÞTðtÞ þ dcðtÞ (28)

which is discretized as

eðk þ 1Þ ¼
�
I þ ΔtAc

�
eðkÞ þ ΔtBcðkÞTðkÞ þ ΔtdcðkÞ

(29)

where Δt is the time step. Considering A ¼ I þ ΔtAc,
B ¼ ΔtBc, and d ¼ Δtdc, then

eðk þ 1Þ ¼ AeðkÞ þ BðkÞTðkÞ þ dðkÞ (30)

where matrix T includes the manipulated torques and vector
d represents the time-variant disturbances. e is the error
matrix of the states and is defined as e ¼ x� xd , where xd
denotes the desired values of the states. Matrix A includes
all the ai,j elements in equation (31) which represent the
system dynamics. Finally, matrix B includes bi,j elements in
equation (32) which represent the interconnections between
the applied torques and corresponding states

ai,j ¼
8<
:

1 if i ¼ j
Δt if i ¼ 2n� 1, and j ¼ iþ 1
0 otherwise

(31)

bi,j ¼
8<
:Δt τtot



i

2
, j

�
if i ¼ 2n

0 otherwise

(32)

where n = 1,…, 6. Because the existence of the disturbances
is inevitable in any actual system, an integral controller
(Tajdari et al., 2020a, 2019) is used. It helps to eliminate the
constant disturbances (Åström and Hägglund, 1995), such
as uncertainties in dynamical parameters. Accordingly, the
main control problem coming from equation (28) should be
reformulated by considering integral states (z) of S (i.e., as
many as the number of links), described as

Table 1. The choice of options.

Parameter Value Description

Rup 0.12 (m) Length pi
Rdown 0.22 (m) Length Pi
θ0 5° Angle joint on base

θ1 15° Angle joint on end effector

β 70° The motor installing angle

Table 2. Dynamical features of the robot’s components.

Component Dimension (m) Inertia (kg.m2) Mass (kg) Quantity

li 0.404 Ix ¼ 0:0016
Iy ¼ 0:0016

Iz ¼ 0:000001

0.08 6

ui 0.11 Ix ¼ 0:000001
Iy ¼ 0:000058
Iz ¼ 0:000060

0.04 6

End effector Circle (Rup = 0.12) Ix ¼ 0:003
Iy ¼ 0:003
Iz ¼ 0:006

4 1

Base Circle (Rdown = 0.22) Ix ¼ 0:027
Iy ¼ 0:027
Iz ¼ 0:054

7 1
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zðk þ 1Þ ¼ zðkÞ þ ΔtCeðkÞ
¼ zðkÞ þ CeðkÞ (33)

where C consists of ci,j denoted as follows

ci,j ¼
�
Δt if i ¼ n, and j ¼ 2i� 1
0 otherwise

(34)

Therefore, the resulted dynamic error of the system which
appears after adding the integral states can be written as

eðk þ 1Þ ¼ AeðkÞ þ BðkÞTðkÞ þ dðkÞ (35)

accordingly

e ¼
�
e
z

	
, d ¼

2
4 d
���
0S×1

3
5 (36)

A ¼
2
4 A j 0H×S

�� �� ���
C j IS×S

3
5, B ¼

2
4 B
���
0S×F

3
5 (37)

C ¼ 
C IS×S

�
(38)

where H is the number of dynamic states and F is the
number of inputs, that is, number of actuators. Now, a qua-
dratic cost function over an infinite time horizon can be
defined as below. It is defined to minimize all the states’ error
and the control inputs

min J ¼
X∞
k¼0


eT ðkÞQeðkÞ þ TTðkÞRTðkÞ� (39)

where

Q ¼ ωQI3S×3S ,R ¼ ωRIS×S (40)

Matrices Q and R are weight matrices aiming to mini-
mize all the states’ error and the control signals. And the
weighting matrices are formulated by ωQ > 0 and ωR > 0.

The resultant optimal control problem in equations (39)
and (40) is solved by using a linear quadratic regulator
(LQR). The goal is to stabilize feedback gains through the
assumption (Tajdari and Roncoli, 2021), whereas stability
and detectability criteria of Lewis et al. (2012) in chapter 2
should be satisfied by the original system in equation (35).

3.2. Stability and detectability

Stabilizability and detectability of the system in equation
(35) are studied by conductin the Hautus test (Williams and
Lawrence, 2007). Referring to Williams and Lawrence
(2007), B is assumed to include more linearly in-
dependent columns in comparison with the number of
unstable (λ ≤ 0) modes, to be able to guarantee stability of

the pair (A, B). Depending on the system topology, matrix A
has the number of zero columns as many as links, which is
cancelled with the columns of B and satisfies stabilizability
criteria as

rank½ ðλI � AÞ B � ¼ S þ H (41)

Now, the detectability of the system can be addressed in
the pair (A, CTQC); regarding Hespanha (2009), because
Q > 0, this is essentially equal to study of the detectability of
the pair (A, C). In the existing problem, the Hautus test
condition is validated as follows in the situation that C
contains at least one nonzero element in each column ac-
cording to the marginally stable mode (λ = 0). By con-
sidering that, in all the discussed scenarios, the system is
assumed to be observable

rank

�
λI � A
C

	
¼ S þ H (42)

3.3. Controller design and anti-windup

To solve the LQI problem, a linear feedback control law is
proposed as follows

TðkÞ ¼ �KeðkÞ (43)

where

K ¼ �
Rþ BTPB

��1
BTPA (44)

P ¼ CTQC þ ATPA� ATPB
�
Rþ BTPB

��1
(45)

resulted K in equation (44) as optimal gain, and the
algebraic Riccati equation equation (45) is investigated in
Navvabi andMarkazi (2019). Moreover, regarding practical
implementation, the gain K is divided into two sections as
follows

K ¼ ½KP KI � (46)

which leads to reformulate the optimal control law as

TðkÞ ¼ �KPeðkÞ � KIzðkÞ (47)

The final control law equation (47) is substantially ef-
fective for practical implementations because the compu-
tational effort manipulated by the feedback gains KP and KI

presents considerably lower values.
In practical applications, achieving the exact values of

the desired states may not be always possible due to un-
certainties such as input saturation problem. Hence, it is
prerequisite to use an anti-windup scheme within the
proposed controller. The proposed scheme in Åström and
Rundqwist (1989) is used in this study. In the case of this
research, the scheme modifies the integral part of the dy-
namic controller equation (47) as
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zðk þ 1Þ ¼ ðI þΛKIÞzðkÞ þ
�
CþΛKP

�
eðkÞ þΛ satðTðkÞÞ

(48)

where Λ2R
S×F and ðI þ ΛKIÞ 2R

S×S . Because the torque
saturation is practically included on the real system input
T(k), the operator of the saturation is denoted as follows

satðToÞ ¼

8>><
>>:

Tmin
o ifTo ≤ Tmin

o

Tmax
o ifTo ≥ Tmax

o

To, otherwise

(49)

where o shows the corresponding index of each controlled
input within the vector T, and Tmin

o and Tmax
o are the lower

and upper borders, respectively, in regard to input To.
Therefore, the ultimate equations of the dynamic regu-

lator are equations (47) and (48), which are practically
effective and robust. Because it may affect the offline
computation of the feedback gains KP, KI, in solving
equations (44) and (45) (where B is time-varying), online
calculations are restricted to solving equations (47)
and (48).

It should be noted that while T(k) does not exceed the
saturation boundaries, the dynamics equation (48) is re-
duced to equation (33). Also, the numerical experiments
clarify that the selection of different nominal values of T has
explicitly no influence on the controller execution. It can be
determined by the ability of the integral controller to dismiss
the disturbances (Åström and Hägglund, 1995).

3.4. Anti-windup stability analysis in the closed-loop
system

An essential constraint for the stability of the closed-loop
system with the anti-windup scheme which conveys matrix
Λ must be properly selected so that I +ΛKI has stable ei-
genvalues λ (Kapoor et al., 1998). This can be provided, for
example, through classical pole placement or through
a particular algorithm (look, e.g., Kapoor et al., 1998). Note
the fact that while inputs are not saturated, the stability of
the system is proved and ensured by the circumstances
expressed in the Stability and detectability section. The
section explains that the pair (A, B) and (A,C) are equivalent
in the two cases; in addition, for the case that inputs are
saturated, Λ must be opportunely designed, whereas it may
influence the stability of equation (48).

To demonstrate the closed-loop system stability for the
case that the inputs are saturated, equation (35) is re-
formulated as

eðk þ 1Þ ¼ AeðkÞ þ ðBþ RawΛÞsatðTðkÞÞ (50)

where

Referring to da Silva Jr and Tarbouriech (2006), if
a symmetric positive definite matrix is found as
Waw 2 R

ðHþSÞ×ðHþSÞ, a diagonal positive definite matrix
is found as Saw 2 R

F×F , and a matrix is found as
Zaw 2 R

S×F , subjects to

Ξ ¼

2
664

Waw �WawK
0 �WawA

0

�KWaw 2Saw SB0 þ Z 0
awR

0
aw

�AWaw BSaw þ RawZaw Waw

3
775 > 0

(52)

Then, for Zaw =ΛSaw, the system in equation (50) is globally
asymptotically stable. In this formulation, matrix Waw can
be defined as follows

Waw ¼ ζ IðHþSÞ×ðHþSÞ (53)

where ζ is a single parameter which should be properly
computed. This investigation explains that by assessing
circumstances of equation (52) for a satisfactory domain of
λ and ζ , indicating the global asymptotic stability of the
closed-loop system will be possible during optimizing
controller parameters. This demonstrates the globally ro-
bustness of the closed-loop system in presence of dis-
turbances and uncertainties as described in Khalil and
Grizzle (2002).

3.5. Sensitivity analysis

To test the suggested strategy, the dynamic compensator
equations (47) and (48) is applied to the nonlinear ADAMS
model, whereas λ is considered as 0.5 for all the six stable
poles of I + ΛKI in equation (48). First, a series of ex-
periments are conducted to adjust the controller parameters.
In the experiments with the time domain of 10 (s), the time
step is considered as Δt = 0.067 (s) (it is same as the sample-
rate frequency of the fabricated robot, 15 Hz, in the section
of Experiment Setup). The desired values for f, ψ, and θ are
changing with peak-to-peak amplitude 30° and the fre-
quency of 1 Hz, and the desired value of z is supposed to
oscillate with peak-to-peak amplitude of 16 cm and the
frequency of 1 Hz. Moreover, x and y desired values move
periodically with frequency of 1 Hz and peak-to-peak
amplitude of 8 cm.

Regarding investigating the sensitivity of the controller
to select parameters wQ, wR, and λ, we are using as as-
sessment metric of the average percentage of final error. The
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percentage of the final error Ep for each variable of the
matrix X in equation (1) is explained as

Epi ¼ X
tend
i � X

tend

di

Ami

× 100 (54)

where i ¼ 1,…,H=2, tend = 10 (s), and Ami denotes the peak-
to-peak amplitude of the desired values ðX diÞ of relative
variable ðX iÞ (for the cases that the desired value is constant,
Ami is considered as 1). Thus, the average percentage of final
error ðEpÞ is formulated as

Ep ¼ 2

H

XH=2

i¼1

Epi (55)

Figure 3(a) shows how the achieved Ep differs by
choosing fixed weights (as a pair) in the cost function
equations (39) and (40). It can be inferred that the controller
is able to obtain a low Ep value (blue areas) for an extensive
range of the parameters. This demonstrates the controller is
considerably impervious to the selection of the parameters. This
is an advantage for real applications and explains less effort for
tuning the control parameters to obtain satisfactory results.

Although the reasonable results (with acceptable Ep

value) are achieved via numerical experiments, probably
there are some cases (e.g., the saturation of several inputs)
which might not occur in software simulations. These cases
may lead the system to unstable conditions. Therefore, the
stability of the closed-loop system is studied by the results
extracted from the section of Anti-windup stability analysis
in the closed-loop system. For instance, the fact that
whether matrix Ξ in equation (52) is positive definite re-
garding an extensive range of λ, and ζ is assessed. Con-
cisely, the results for λ≡ λ1 ¼ … ¼ λ6 are explicated in
Figure 3(b), where it can be seen that no unstable ei-
genvalues exist for the domain of 0 ≤ λ ≤ 1. This implies that
Ξ is positive definite. Consequently, it illustrates that

allocating eigenvalues λ1,…, and λ6 within the range (0,1)
produces proper results in terms of Ep (Figure 3(b)), and
guarantees the asymptotic stability of the closed-loop
system. Thus, λ is chosen as λ ¼ 0:5. According to
Figure 3(b), at this point, the global stability of the system
has the least sensitivity to changes of λ.

Because the parameters of dynamic equations in equa-
tion (27) are time variants, BðkÞ is accordingly time variant.
As a result, and based on equation (32), it is expressed that
the error dynamic in equation (35) is nonlinear. Hence, it is
logically expected that the system has different behavior in
response to a different path. Therefore, nonlinearity of the
system and the optimization method, and complexity of the
problem, imply the use of intelligent methods (Ghaffari
et al., 2018; Khodayari et al., 2015), which are capable to
overcome the complexity and nonlinearity of the problem
(Tarvirdizadeh et al., 2017; Tajdari et al., 2021b). Because
of the fact that the cost function of the optimal problem in
equation (39) is dependant on wQ and wR, obtaining
a method to estimate the true values of wQ and wR in each
time step is a key to solve the nonlinearities. Then, an
innovative input–output ANN-based estimator is designed
to estimate wQ and wR online. In the proposed methodology,
as a common challenge in the intelligent methods, choosing
appropriate inputs and outputs is substantially the most es-
sential step. According to equation (39), wQ defines the level
of penalizing the states’ error, and wR optimizes the designed
torques. Thus, state error functions and torque functions are
suitable parameters as the estimator’s inputs.

The functions are selected based on Tarvirdizadeh et al.
(2018). Therefore, in this problem, density functions of
error state and torques are appropriate functions to describe
the changes, which are elaborated as follows

ρeðkÞ ¼ VeðeðkÞÞ ¼ ℜ
eðkÞPk

i¼k�meðiÞ
(56)

Figure 3. Numerical analysis. (a) Sensitivity analysis based on Ep for a domain of wQ and wR, where λ ¼ 0:5. (b) Number of negative

eigenvalues in Ξ, where wQ = 1, wR = 4 for a domain of λ nad ζ . ANN estimator design for wQ and wR.
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ρT ðkÞ ¼ VT ðTðkÞÞ ¼ ℜ
TðkÞPk

i¼k�mTðiÞ
(57)

where ρe is density of state errors and ρT is the torques’
density. Actually, equations (56) and (57) are sensitive when

eðkÞ and T(k) are sufficiently greater than average of the
variables with window size ℜ. These criteria explain
a smooth and logical stimulation to changes of the variables
(Tarvirdizadeh et al., 2018). Consequently, the inputs of the
intelligent estimator are ρe1×6 and ρT1×6, and the outputs are
wQ1×1, and wR1×1 as shown in Figure 4. According to the
figure, there are 18 neurons in the input layer, 10 neurons in
the hidden layer, and 2 neurons in the output layer. Also,
activation function for the input and the output layers is
linear and for the hidden layer is sigmoid. In addition, the
training algorithm of the ANN is a Levenberg–Marquardt
backpropagation method based on Kosko and Burgess
(1998), Levenberg (1944), and Marquardt (1963). To de-
sign an ANN-based estimator, a set of data including the
inputs–outputs is essential. Therefore, the controller of
equation (47) is used as a master for the estimator. To collect
data, the output of the controller in the stable regions (blue
areas) of Figure 3(a) is used, whereasℜ ¼ 31, Tmax

o ¼ 1:5
N.m, and Tmin

o ¼ �1:5 N.m. Going into detail, all the ex-
periments of the figure where wR > wQ and 0.001 < wQ < 4
are considered. To check the effects of the desired value
frequency, the mentioned experiment is repeated with the
frequencies of 0.5 Hz, 2 Hz, 4 Hz, and 6 Hz. Thus, the
appropriate inputs–outputs of the estimator are generated
with a sample number of 11,250.

To design the estimator, the dataset is randomly divided
into two subsets: the training and the testing data subsets.
The first data subset is used to develop and fine-tune the
estimator. Afterward, the second data subset is used to
assess the estimator performance, which does not affect the

Figure 5. Closed-loop control diagram.

Figure 6. Fabricated rotary parallel robot.

Table 3. Motor specifications.

Item Specification

Motor Coreless (Maxon)

Motor type Rotary MX-64 DYNAMIXEL

Input voltage 10.0–14.8 (V) (recommended: 12.0 (V))

No load speed 58 (rev/min) (at 11.1 (V))

Resolution 4096 (pulse/rev)

Weight 165 (g)

Dimensions (WxHxD) 40.2 × 61.1 × 41 (mm)

Stall torque 5.5 (N.m) (At 11.1 (V), 3.9 (A))

Physical connection RS485/TTL multidrop bus

Figure 4. Designed artificial neural network estimator structure.
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training data subset. Thus, the first data subset, which
contains 70% of the master dataset, is considered for
training and the remaining of 30% is used to validate the
obtained model. Figure 5 shows the closed-loop optimal

feedback control diagram of the proposed system, where
the ANN estimator based on the error states and the
torques’ values, updates the controller gains of wQ and wR

in each time step.

Figure 7. Controlled case performance through the ADAMS model. Main states ðXÞ: (a) constant mass value of m = 4 kg and (c) time-

varying mass value in equation (60). Error of Main states ðX � XdÞ: (b) constant mass value of m = 4 kg and (d) time-varying mass value

in equation (60).
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4. Experiment setup

To evaluate the controller in a real nonlinear system with
natural disturbances, the introduced robot in Figure 2 was
fabricated. As Figure 6 depicts, 6 servo motors of mx-64 are
used as torque manipulators and are controlled directly with
MATLAB through USB2Dynamixel (Robotis, (2019b).
These motors are selected due to having incremental en-
coder and torque meter with acceptable resolution. More-
over, the stall torque for these motors is 5.5 N.m, which is
relatively high. The specifications of the motor extracted
from Robotis (2019a) are reported in Table 3. Moreover, to
measure the end effector position and angles ðX Þ, a 9-DOF
absolute orientation IMU fusion breakout - BNO055 is used
and data of the sensor are filtered and imported to MATLAB
through an Arduino Mega 2560. The BNO055 sensor, which
is located in the center of the end effector, spits out Euler
angles and vectors as mentioned in Adafruit (2019). The
frequency of the final product for sending and receiving data is
averagely 15 Hz, which is obtained experimentally. Moreover,
the saturation boundary value of the motors is set as 1.5 N.m
according to safety and prevention of the motor damages.

5. Results

5.1. Simulation results

The simulation results are generated by implementing the
proposed controller of equations (47) and (48) on the
ADAMS model in Figure 2(c), where ℜ ¼ 31, Tmax

o ¼
1:5 N.m, and Tmin

o ¼ �1:5 N.m. Also, the desired variables
ðX dÞ are considered as following

X dðtÞ ¼

2
6666664

fdðtÞ
θdðtÞ
ψdðtÞ
xdðtÞ
ydðtÞ
zdðtÞ

3
7777775
¼

π
12

SinðtÞ
π

12
SinðtÞ

π
12

SinðtÞ
0:02 SinðtÞ
0:02 SinðtÞ

0:08 SinðtÞ þ 0:38

2
666666666666664

3
777777777777775

(58)

where t is time. Considering Figure 7(a), the three control
methodologies introduced in the Controller design section
as: I. the controller without integral states, ANN estimator,
and anti-windup; II. the anti-windup integral controller; and
III. the anti-windup integral controller with ANN estimator,
are investigated and compared. The anti-windup integral
controller with the ANN estimator is applied to achieve
perfect tracking (looking at Figure 7(a)) and reject the errors
by the time as shown in Figure 7(b). The reduction of
the error is concluded from the well-defined controller

parameters, wQ and wR by the ANN estimator. The time-
variant gains are reported in Figure 8(a), where they are
always showing the stable area of Figure 3(a). However, the
anti-windup integral controller without the estimator pro-
duces considerable errors, especially in the critical points of
the desired path (i.e., the performances of the controller
regarding the x, y, and z in Figure 7(b), showing the de-
viation, in spite of the fact that the controller tries to
generate a similar periodic movement as the desired values).
The final control scenario presents the implementation of
a destined linear quadratic regulator (LQR) controller based
on the dynamic error equation in equation (27). In this case,
the controller with no integral states and no anti-windup
scheme is designed. As shown in Figures 7(a) and (b), the
controller fails completely regarding the x, y, and z states,
and for the rest of the states, only a periodic movement with
huge error is generated.

Moreover, the implemented torques (Ti in equation (16))
on the system for the three control scenarios are shown in
Figure 9. Based on Figure 9(a), the controller I practically
generates no control signals due to no tracking actions of
the desired values in Figure 7(a). Comparing the torques in
Figure 9(c) with Figure 9(e), the anti-windup integral
controller with the ANN estimator offers less saturated
(especially for the upper boundary saturation) and smaller
torque values in comparison to the anti-windup integral
controller without the estimator. It is due to less tracking
error, and consequently less integral states’ values, which

Figure 8. Online estimated of wQ and wR for the ADAMS model

controlled case. (a) Constant mass value ofm = 4 kg. (b) The time-

varying mass value in equation (60).
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are achieved by the anti-windup integral controller with the
ANN estimator, rather than the integral controller without
the estimator. Furthermore, the torque analysis is used to
choose the electromotor discussed in the Experiment Setup
section.

Envisioning the motor torque saturation, it is worth
investigating the robustness of the controllers with respect
to different kinds of constant and dynamic time-variant load
torque with high probability of motor torque saturation.
Accordingly, the effect is numerically studied through the
following experiments.

Constant load torque investigation: Here, the experi-
ment condition is exactly same as the previous experiments
with an exception of the mass value (m). The value is
changing in each experiment as m = 4, 5, 6, 7 and 8 kg. To
compare the experiments in terms of the tracking error and
the anti-windup scheme, two criteria of accumulative

absolute percentage error Eac and total saturation time are
introduced as follows

Eac ¼ 2

H

XH=2

i¼1

Z t

0

���X iðtÞ � X diðtÞ
���

Ami

× 100

0
B@

1
CAdt (59)

where Eac is the accumulative absolute percentage error and
is denoted as the summation of the absolute percentage error
in each time step. All the variables are introduced in
equation (54). Then, the total saturation time which is called
tsat is the summation of all time intervals when each motor is
saturated. In other words, the maximum value of the total
saturation time will be 60 s (10 s for each motor), if the run
time of the experiment is 10 s. Accordingly, the controllers’
performances are individually reported based on the two
criteria in Table 4. Based on the table, the Eac for the

Figure 9. Motor torques for the ADAMS model controlled case. Controller I: (a) constant mass value of m = 4 kg and (b) time-varying

mass value in equation (60). Controller II: (c) constant mass value ofm = 4 kg and (d) time-varying mass value in equation (60). Controller

III: (e) constant mass value of m = 4 kg and (f) time-varying mass value in equation (60).
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controller I is increasing smoothly, and in comparison to the
other two controllers, it is higher in the most cases. This is
because the controller cannot track the desired values and
mostly the end effector stays sedentary-like in the initial
condition (e.g.,. Looking at the experiment in Figure 9(a),
the generated torques by the controller I, tackle mainly the
torque load and cannot follow the desired values). The
constant-like torques also result in zero saturation time.
Afterward, the controller II is using the anti-windup scheme
with integral states. Thus, perfect tracking is expected;
however, the degree of saturation is a restriction to the
perfect tracking as the integral states grow up during sat-
uration. It may result in more intensified reactions from the
controller and then may lead into instability. As can be seen

from the table, by increasing the m, the Eac and the tsat are
increasing as expected. Even for the case m = 8 kg, the Eac

for the controller II is higher than the controller I, showing
that the saturation time is the controller failure cause.
Hence, the controller III performs with higher robustness
rather than the controller II even in higher saturation time. It
highlights the positive impact of adding the ANN estimator
to tune the controller gains based on the errors. According to
Table 4, it also demonstrates an improvement of 45% and
46% for the controller III, in terms of the Eac, comparing to
the controller II and the controller I, respectively.

Time-variant load torque investigation: Accordingly, an
experiment is arranged where the mass of the end effector is
time-varying as follows

mðtÞ ¼ m0ð1þ 0:75 sinð2tÞÞ (60)

where m0 = 4 kg, and the frequency of changes is in the
trained data domain of the desired values, same as the
section of ANN estimator design for wQ and wR, which is
equal to 2 Hz. Accordingly, the tuned matrix on wQ and wR

is depicted in Figure 8(b), which shows higher fluctuating
graph for the gains in comparison with the constant mass
in Figure 8(a). Comparing Figure 7(b) with Figure 7(d) in
higher errors, the fluctuation is expected and is a reaction to
mass variation. Also, one important point in this figure is that
the wQ is fluctuating with higher amplitude than wR and the

Table 4. Accumulative absolute percentage error (Eac) and the

total saturation time report (tsat).

m (kg)

Controller I Controller II Controller III

Eac tsat (s) Eac tsat (s) Eac tsat (s)

4 219 0 213 3.8 111 6.2

5 221 0 214 4.0 112 9.0

6 223 0 214 6.2 114 10.4

7 224 0 217 7.6 120 13.6

8 225 0 229 10.8 143 18.8

Figure 10. Controlled case performance through the fabricated robot. (a) Main states ðXÞ. (b) Error of main states ðX � XdÞ.

14 Journal of Vibration and Control 0(0)



constant mass scenario. This is because the mass variation
impacts the error states more easily (or the Eac) in Figures
7(c) and (d) than the torques in Figures 9(b), (d), and (f),
which leads into bigger integral state values. Thus, the
fluctuation amplitude for wQ should be higher than wR be-
cause wQ is responsible for penalizing state errors.

5.2. Experiment results

To validate and investigate the reliability of the proposed
controller in the presence of real disturbances and un-
certainties, the controller is implemented on the robot in-
troduced in the Experiment Setup section. To have a

comparison with the simulation output, the same desired
values in equation (58) are used. All the other control
parameters and initial conditions are considered the same as
the Simulation results section. Performances of the con-
trollers for the main states are depicted in Figure 10(a).
Comparing the results of the three controllers in the figure
gives the same conclusion as the previous section because
the rate of the error rejection for the anti-windup integral
controller with the ANN estimator (controller III) is con-
siderably higher than the other two controllers. However,
more overshoot is observed in the beginning of the test. The
overshoot happened regarding the unexpected actuators’ lag
and unidentified dynamical parameters. This issue is also
detectable in the trajectories of the estimated wQ and wR in
Figure 11 as they have high fluctuating behavior in the
beginning of the test, whereas they are converging by the
time to specific values. In addition, the ANN estimator is
supposed to present the parameters in which the tracking
errors are minimized. Only for the control strategy with the
estimator, the tracking errors drawn in Figure 10(b) are
decreasing by the time due to wQ and wR identification. This
infers well-practical performance of the estimator. Com-
paring the torque diagrams in Figure 12 illustrates that
outputs of the controller with the ANN estimator (controller
III) in Figure 12(c) are saturated in more time span com-
paring to Figures 12(a) and (b), although the results show
zero-converging error for the controller. This implies a logic
cooperation between the estimator and the anti-windup

Figure 11. Online estimated of wQ and wR for the fabricated

robot controlled case.

Figure 12. Motor torques for the fabricated robot controlled case. (a) Controller I. (b) Controller II. (c) Controller III.

Tajdari and Ebrahimi Toulkani 15



scheme in equation (48), resulted from little sensitivity of
the parameters choice to performance of the controller.

6. Conclusion

In this article, an innovative control methodology for a
Stewart platform parallel robot with rotary actuators was
investigated. The equations of motion for the system were
derived and a 3Dmodel of the systemwas also implemented
in ADAMS. In addition, the analyses of the kinematic,
dynamic, and control of the robot were investigated based
on the obtained nonlinear model. To attain a desired amount
of the end effector tracking error, the gain tuning LQI
controller. The robustness and insensitivity of the parameter
choices, besides the adaptive component, that is, the ANN
estimator, made practical implementation easier, without
the necessity of lengthy and costly measurements of the
dynamic parameters. Finally, the simulation results revealed
that the optimal LQI controller with intelligent estimator
was able to control the dynamic of the system and eliminate
the tracking error 45% more than the other compared
controllers, averagely, considering the existence of the re-
alistic dynamic forces and saturation in the ADAMSmodel.
Also, the methodology was evaluated by the fabricated
rotary Stewart robot to investigate the robustness of the
controller with respect to the dynamic parameters, un-
certainty, and realistic noise. Future developments include
the optimal dimension design subject to the dynamic of the
system and the study of the controller sensitivity regarding
the dimension of the robot and dynamic parameters. In
addition, the fabrication of a faster and smaller robot in-
tegrated with a time-delay optimal controller is another
topic for the future studies to be easily adaptable to other
practical cooperative robots.
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