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Abstract

Tetralogy of Fallot (ToF) is a congenital structural heart
disease. While early diagnosis and corrective surgery al-
low most patients to live normal lives, some patients slowly
deteriorate. The current inability to quantify the deterio-
ration and predict these events prompts a data driven ap-
proach. Laplacian Eigenmaps (LEs) are a dimensionality
reduction technique that can be used to project multi-lead
ECGs onto a lower dimensional space. This pilot study
aims to evaluate the ability of LEs to characterize deterio-
ration of ToF patients.
A general LE model is constructed, based on the 12-lead
ECG recordings of 20 healthy controls. A set of distance
metrics are developed to quantify the overall changes be-
tween different ECG recordings within this LE model.

Statistically significant differences between control and
ToF subjects were observed for most of the distance met-
rics. The analysis of changes over time in ToF patients in-
dicates a general trend of increased distance over time in
all the metrics, which can be related to a worsening con-
dition. This indicates the relevance of LEs in multi-lead
ECG processing, particularly for deterioration analysis.

1. Introduction

Tetralogy of Fallot (ToF) is the most prevalent cyanotic
congenital heart defect. The survival rate of ToF patients
has improved drastically since surgical correction shortly
after birth became the preferred form of treatment. How-
ever, an increasing number of adults with corrected ToF
present late complications such as arrhythmias, heart fail-
ure and sudden cardiac death. These complications are the
effects of long-term pulmonary regurgitation and conse-
quently increased fibrosis in the right ventricle. Initially
the heart is able to compensate for this, but after years of
overload and deterioration, it can fail [1].

Longitudinal analysis of ECG recordings of corrected
ToF patients can be used to characterize the slow dete-

rioration of their heart. Laplacian Eigenmaps (LE) is a
machine learning technique that can assist this analysis by
representing 12-lead ECG data into a lower dimensional
space [2]. This framework captures and emphasises local
differences in the data. Good et al. [3] obtained promis-
ing results when using this technique to quantify induced
ischemia in animal subjects.
This work serves as a pilot study with the overall aim to
investigate the possibilities of LEs for longitudinal ECG
analysis of corrected ToF patients. The hypothesis pre-
sented is that the ability of the LEs to highlight local dif-
ferences makes it suitable to track small general changes
over time in multi-lead ECG data.

This overall aim is addressed with two concrete objec-
tives. The first objective is to create a general LE model to
which multiple ECGs can be mapped and compared. The
second is to quantify the overall changes between different
ECG recordings within this model.

2. Datasets

The dataset of corrected ToF patients consists of longitu-
dinal 12-lead ECG measurements of 100 patients recorded
in UZ Leuven. Most of these patients visit the hospital
for a yearly check-up. Out of these 100 patients, 6 died
of cardiac reasons. These are the patients considered in
the presented study, since this group of patients can be as-
sumed to have a comparable level of fibrosis in their last
visit.

The WFDB dataset from the PhysioNet/Computing in
Cardiology Challenge 2020 [4] is used in these experi-
ments as a source of control patients. It consists of 12-
lead ECG measurements of 6877 subjects with healthy and
deviating heart rhythms, obtained from multiple hospitals.
Only the 918 healthy recordings are further utilised.

3. Constructing the General LE model

The general LE model can be interpreted as a reference
space, further called the normal space, to which 12-lead
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Figure 1. Schematic for constructing the normal space

ECG recordings can be mapped. It is constructed based on
20 random 12-lead ECGs of healthy control subjects from
the WFDB dataset. The different steps needed for the im-
plementation of the normal space are depicted in Figure 1.

Flat line detection is necessary to ensure that no erro-
neous leads were included in the analysis. If one or more
of the 12 leads are missing, the complete recording is dis-
carded. The pre-processing step filters the raw signal with
a fourth order Butterworth bandpass filter with lower and
upper cut-off frequencies of 0.67 and 30 Hz respectively
[5].

After filtering, an R peak detection algorithm is applied
to lead I [6]. Only normal heartbeats are withheld for anal-
ysis, hence an ectopic beat removal step based on RR in-
tervals is applied to the detected R peaks.

Based on the locations of the R peaks, the 12-lead ECG
recordings are segmented in separate heartbeats. In order
to do so, the interval between two consecutive R peaks is
split into two equal pieces assigned to the adjacent heart-
beats. This segmentation technique allows to incorporate
the maximum amount of information in the ECG. Each
segmented heartbeat is then resampled to 200 Hz.

In order to synthesize the information from each patient
and make the model more robust, only the most repre-
sentative heartbeat of the complete recording is selected.
This selection happens fully automatic based on the cross-
correlation between heartbeats.

All the different steps mentioned before are repeated for
the 20 healthy control subjects who will conform the nor-
mal space. The 12-lead ECGs of each of the 20 represen-
tative heartbeats are concatenated into one signal. This
number of heartbeats allows the model to be based on a
heterogeneous set of heartbeats while keeping a low com-
putation time.

The selected heartbeats are fed to the LE algorithm,
which is a nonlinear dimensionality reduction technique
based on graph theory. It allows to capture the underlying
structures in high-dimensional data, into a lower dimen-
sional space. It consists of applying a radial basis function
(RBF) to all the points of the concatenated signal. As a re-
sult, a similarity matrix W is computed, which emphasizes
local differences in the signal. The underlying structures in
the data are then derived using singular value decomposi-
tion (SVD):

D−1W = USV−1, (1)

Figure 2. Normal space: (A) The LEs of six control sub-
jects mapped onto the normal space. (B) The last visit of
six ToF patients who died of cardiac events, mapped onto
the normal space.

where D is the degree matrix of W. SVD derives a
transformation that maps the points of the signal onto a
new space, where the amount of information is ranked
along the coordinates.

It is assumed that most of the information is contained in
the singular vectors corresponding to the highest singular
values, after excluding the largest one [2]. Therefore, the
”normal space” is defined as:

LEs = [V2,V3,V4] (2)

In machine learning terms, the construction of the nor-
mal space can be understood as the training phase. In the
mapping phase, the transformation obtained from the SVD
can be used to map any 12-lead ECG signal onto the nor-
mal space with a process called explicit mapping [2]. The
same steps as in Figure 1 need to be applied to the ECG of
a subject, except for the representative heartbeat selection.
In this case, the concatenated signal consists of multiple
heartbeats of the same recording. Each heartbeat is repre-
sented by a separate LE loop in the normal space, as shown
in Figure 2.

4. Distance Measures

Since an ECG recording of a patient, further referred to
as a visit, mapped onto the normal space consists of mul-
tiple loops, the average of those loops is taken to represent
the visit. A set of distance measures is proposed to analyze
the global differences between two average LE loops.
• Point-to-point Distance: It calculates the euclidean dis-
tance between the corresponding points of two average LE
loops, given that they are adjusted to the same length. A
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single value is obtained by summing over all the points of
the loop.
• Hausdorff Distance: This is a frequently used metric
that expresses how similar two sets of points are [7]. It
achieves this by searching for one point in both sets (i.e.
loop) with the furthest euclidean distance to its nearest
neighbor. This is the Hausdorff distance.
• Dynamic Time Warping Distance (DTW): DTW is an
algorithm used to align two time series. It looks for an
optimal alignment between the signals, by stretching them
in order to minimise the total euclidean distance between
them [8].
• Eigenshape distance: The eigenshape distance metric
is a method based on a technique frequently used in medi-
cal imaging [9]. This algorithm uses principal component
analysis (PCA) to construct an eigenshape model of a gen-
eral LE loop. This model consists of an average LE loop
and six modes of variation, called eigenshapes. Other LE
loops can then be expressed as instances of this model by a
linear combination of the eigenshapes. The associated co-
efficients are translated into a distance value that correlates
with how much the loop deviates from the model.

5. Experiments

5.1. Compare ToF Patients and Controls

This experiment compares the last visit of the six ToF
patients who died of cardiac events to six recordings from
control patients. The visits of both groups were mapped
onto the normal space (Figure 2). The distance measures
were used to calculate the difference between the average
loop of a subject and a reference loop, called the standard
loop. The latter was constructed as the average of the loops
of the 20 controls that were initially used to build the nor-
mal space. The eigenshape distance does not use the stan-
dard loop, but it alternatively creates an eigenshape model
based on the the loops of the 20 controls. The average loop
of the analyzed subject is then expressed as an instance of
this model.

The complete experiment was repeated 10 times. In
each of the 10 folds, 20 controls were randomly selected to
construct the normal space and the standard loop. Six other
controls were randomly selected to be compared against
the ToF patients. A Kolmogorov-Smirnov test was used
to compare the patients and control group, and p < 0.05
was considered significant. The hypothesis was that the
average distances of the control subjects are closer to the
standard loop than those of the patients.

5.2. Evolution over time

The second experiment investigated the changes in the
loops of the patients over time. Five of the six patients

Figure 3. Distance measures for patients (blue) and con-
trols (yellow), for 1 fold: The point-to-point distance (A),
DTW distance (C) and eigenshape distance (D) are in gen-
eral larger and depict a wider spread in the patient group.

were included, since one of them had only two ECG
recordings available. Additionally, to compensate for dif-
ferent deterioration rates of the patients, the amount of vis-
its included in the analysis were limited to five: the last
visit before death and the last visit of each year for the
previous four years. All the distance measures were cal-
culated relative to the average loop of the first included
visit of the patient. For the eigenshape distance, the model
was constructed on that same visit and the average loops
of later visits were expressed as instances of this model.
Since this model is unique to every patient, so are the
corresponding distance values. Therefore, they were nor-
malized before comparing the trends between different pa-
tients. The distance measures were expected to depict an
upwards trend over time.

6. Results and Discussion

6.1. Compare ToF Patients and Controls

The results of the individual folds were very similar.
One fold is given as an example in Figure 3. Statistically
significant differences were observed in 10/10, 2/10, 10/10
and 7/10 folds for the point-to-point, Hausdorff, DTW and
eigenshape distance, respectively.
For all folds, the mean of the distance measures in the
control group was lower than in the ToF patients. This
confirms the initial hypothesis. Additionally, the spread is
much larger in the results of the patients, suggesting that
they present different levels of fibrosis at their last visit.

Although the point-to-point and DTW distance were
able to distinguish between both groups in all the folds, the
DTW distance can generally be expected to deliver better
results since it is more robust against the misalignment of
the segments. However, the absolute values of the point-
to-point and DTW distance are very similar to each other
in this case. This indicates that not much alignment be-
tween the average loops and the standard loop is needed
before an optimum is reached in the DTW algorithm.

The Hausdorff distance scored worse than the other dis-
tance metrics. This is due to its sensitivity to outliers.

The eigenshape distance was slightly outperformed by
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Figure 4. Evolution over time of the distance metrics rela-
tive to the first visit (year zero). The blue line indicates the
average. The upper and lower boundary represent the 25th
and 75th percentile respectively.

the point-to-point and DTW distance. This can be ex-
plained by the amount of loops used for the construction of
the eigenshape model. Including more loops incorporates
more flexibility in the model to reproduce more unfamiliar
shapes. However, this comes with a high computational
cost related to the application of the kernel.

6.2. Evolution over time

The initial hypothesis expecting an upwards trend over
time in the distance measures is confirmed by the results
shown in Figure 4. These show that the normal space
in combination with the distance measures are capable of
capturing the deterioration in the patients, since the ToF
ECG segments show increasing differences over time.
In the eigenshape distance, this trend was less pronounced,
but the same limitations as in the previous experiment ap-
plied.

In contrast to the work of Good et al. [3], who re-
searched the effect of increased ischemic stress with LEs
by focusing on one particular point along the loops, the
distance metrics in this work incorporate information from
all the points of the loops to obtain a more general mea-
sure. This results in a loss of specificity, but offers a more
general analysis of the deterioration of the patients.

This work opens the path to apply LE to longitudinal
ECG data, allowing to find local changes between consec-
utive visits. Future research should explore the use of this
approach for specific parts of the ECG, in order to retrieve
more specific conclusions. Additionally, longitudinal anal-
ysis should also be performed on control data, which was
unavailable in this study.

7. Conclusion

This work serves as a proof of concept for the applica-
tion of LEs on 12-lead ECG data to track the general de-
terioration of corrected ToF patients. This was confirmed
in two different ways. First by creating a normal space
from control ECG data where healthy and ToF ECGs can

be compared using a set of 3D distance measures. Signif-
icant differences were found between both groups. Addi-
tionally, the longitudinal analysis of ToF ECGs in this nor-
mal spaced showed an increase in these distances that can
be related to deterioration. The promising results of this
pilot study suggest that the general LE model in combi-
nation with the distance measures can be applied in future
research for other longitudinal applications.
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[1] Dłużniewska N, et al. Long-term follow-up in adults after
Tetralogy of Fallot repair. Cardiovascular Ultrasound 2018;.

[2] Erem B, et al. Extensions to a manifold learning framework
for time-series analysis on dynamic manifolds in bioelectric
signals. Phys Rev E 2016;.

[3] Good W, et al. Temporal performance of laplacian eigen-
maps and 3D conduction velocity in detecting ischemic
stress. Journal of Electrocardiology 2018;.

[4] Classification of 12-lead ECGs: the phys-
ionet/computing in cardiology challenge 2020.
https://physionetchallenges.github.io/2020/.
Accessed: 2020-06-04.

[5] Kligfield P, et al. Recommendations for the standard-
ization and interpretation of the electrocardiogram. Part I:
the electrocardiogram and its technology, a scientific state-
ment. Journal of the American College of Cardiology 2007;
49(10):1109–1127.

[6] Moeyersons J, et al. R-deco: An open-source matlab based
graphical user interface for the detection and correction of
R-peaks. PeerJ Computer Science 2019;.

[7] Delfour M, et al. Shapes and geometries: metrics, analysis,
differential calculus, and optimization. Society for Industrial
and Applied Mathematics, 2011.

[8] Muller M, et al. Information Retrieval for Music and Motion.
Springer, Berlin, Heidelberg, 2007; .

[9] Suetens P. Fundamentals of Medical Imaging. Cambridge
University Press, 2009; .

Address for correspondence:

Amalia Villa
Department of Electrical Engineering (ESAT),
STADIUS, KU Leuven, Belgium
amalia.villagomez@kuleuven.be

Page 4


