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a b s t r a c t 

Gene-pool Optimal Mixing Evolutionary Algorithms (GOMEAs) have been shown to achieve state-of-the-art results 

on various types of optimization problems with various types of problem variables. Recently, a GOMEA for 

permutation spaces was introduced by leveraging the random keys encoding, obtaining promising first results 

on permutation flow shop instances. A key cited strength of GOMEAs is linkage learning, i.e., the ability to 

determine and leverage, during optimization, key dependencies between problem variables. However, the added 

value of linkage learning was not tested in depth for permutation GOMEA. Here, we introduce a new version 

of permutation GOMEA, called qGOMEA, that works directly in permutation space, removing the redundancy 

of using random keys. We additionally consider various linkage information sources, including random noise, 

in both GOMEA variants, and compare performance with various classic genetic algorithms on a wider range of 

problems than considered before. We find that, although the benefits of linkage learning are clearly visible for 

various artificial benchmark problems, this is far less the case for various real-world inspired problems. Finally, 

we find that qGOMEA performs best, and is more applicable to a wider range of permutation problems. 
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. Introduction 

Permutation problems are among the most important real-world

roblems. For example, scheduling problems, such as Permutation Flow-

hop or Jobshop Scheduling, and routing problems, such as Traveling

alesperson, are permutation problems that can be used to model real-

orld optimization tasks. Many of these problems belong to the class of

P-hard problems, making them very hard to solve to (near-)optimality.

volutionary algorithms (EAs) are known to have much potential when

t comes to finding high-quality solutions to such problems [1] . How-

ver, it is known that in the presence of strong non-linear dependen-

ies between problem variables, without a proper configuration of how

ariation combines solutions, EAs may suffer from poor scalability as

hey may disrupt key building blocks in the mixing process [2] . Sig-

ificant scalability improvements have been made by linkage learning ,

.e., the automatic accounting for dependencies between problem vari-

bles by deriving and exploiting them during optimization, for instance

hrough the estimation of probability distributions as done in Estima-

ion of Distribution Algorithms (EDAs) [3,4] . Of particular interest are

he more recent Gene–pool Optimal Mixing Evolutionary Algorithms -

OMEAs [5] , which have been shown to be able to outperform EDAs on

arious benchmark problems for problems with discrete Cartesian vari-
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bles as well as problems with real-valued variables by learning linkage

ore directly through information theoretic measures and by exploiting

his information through more extensive solution mixing in each gener-

tion [5–7] . 

A variant of GOMEA, known as permutation GOMEA or

GOMEA [8] , has been proposed to address problems in permuta-

ion spaces by making use of a random-key encoding scheme that

epresents permutations of variables [9] . The reported results are

romising, with pGOMEA outperforming a state-of-the-art permutation

DA, i.e., GM-EDA, and a Permutation Flowshop Scheduling solver,

.e., VNS4, on many problem instances [8,10] . However, an in-depth

nalysis of the impact of learning and exploiting linkage structures

f GOMEA in the permutation domain was not performed. Moreover,

lthough the random-key encoding facilitates a straightforward design

f permutation GOMEA, this encoding is also highly redundant due to

ariable permutations being encoded in the real-valued space. Such

edundancy may affect the ability to efficiently detect dependencies

nd may harm the overall performance as well. 

We here propose a new approach to the design of permutation

OMEA that circumvents these issues by operating on permutations di-

ectly, while still retaining the concepts of optimal mixing and linkage

earning. We call this new version qGOMEA, going to the next letter in
e Netherlands. 
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he alphabet. We do this specifically as this new variant is significantly

ifferent due to the encoding used and operators employed, and to avoid

onfusion between them. In problems where positioning is fuzzy, the

riginal approach still has its strengths, and hence cannot be replaced

n its entirety. 

We furthermore study the extent to which linkage learning actu-

lly influences the performance of GOMEA in the permutation domain,

nd how this performance compares to more conventional methods. We

hus compare qGOMEA and the original approach pGOMEA, against

arious variants of the simple Genetic Algorithm (SimpleGA) using dif-

erent crossover operators. The experiments are performed on a wide

ange of benchmark problems, chosen for their varying properties com-

only seen in many permutation problems. In addition to the Per-

utation Flowshop Scheduling Problem, a multi-machine scheduling

roblem as seen in [8] , we consider various benchmark instances from

he Quadratic Assignment Problem [11] , and Order Acceptance and

cheduling [12–14] . Most notably, the Order Acceptance and Schedul-

ng problem has commonly been solved using local search approaches,

uch as Tabu Search in [12] . The successful hybridization with a popula-

ion, such as in the memetic algorithm ALNS [14] , hints at the potential

ffectiveness of Evolutionary Algorithms for this problem. Furthermore,

his problem is a hybrid problem, containing both Travelling Salesper-

on, single-machine scheduling and knapsack-like traits. Moreover, scal-

bility experiments are also conducted on the inversions benchmark

unction. 

We summarize our contributions as follows: 

• We note that Permutation GOMEA may disrupt certain structure

without linkage learning being able to account for it due to the usage

of Random Keys. 

• We propose a new variant of GOMEA for permutation spaces,

qGOMEA, which operates directly in permutation space, to resolve

the aforementioned issue. 

• We compare qGOMEA against Permutation GOMEA and a simple ge-

netic algorithm utilizing classical permutation crossover operators. 

• We show that using linkage learning Permutation GOMEA and

qGOMEA can more effectively recombine on the Inversion Variants

benchmark functions. Much like the impact of linkage learning seen

for binary search spaces. 

• We find that qGOMEA is more widely applicable than its precursor

Permutation GOMEA. The results most notably show significantly

improved performance for the Quadratic Assignment Problem. It is

likely the encoding used in the original permutation GOMEA caused

issues for these problems. 

• We find that the effect of linkage learning on practical problems is

unclear and problem dependent, in contrast to the results reported

on a benchmark function. The evaluated problems either lack struc-

ture, or contain structure that was not learned effectively using cur-

rent approaches. 

• We conclude that improvements in how linkage learning is per-

formed and applied are required for more generalizable linkage

learning approaches. 

The remainder of this paper is organized as follows. In Section 2 we

escribe the EAs that we have considered in addition to qGOMEA;

hich is described in detail in Section 3 itself. In Section 4 we then de-

cribe the permutation problems used for benchmarking. Subsequently,

n Section 5 we describe the setup of our experiments, followed by a

resentation of obtained results in Section 6 . We discuss limitations and

otential future work in Section 7 , which is followed by our final con-

lusions in Section 8 . 

. Evolutionary algorithms for permutation problems 

This section provides relevant background of the proposed approach,

s well as the relevant background of other approaches evaluated. We

rst give an overview of ways to encode a permutation as a solution –
2 
irect encoding and random keys – which are used in these approaches

n Section 2.1 . Then, in Sections 2.2 –2.3.2 , we give an overview of the

ackground and structure of the evaluated approaches. 

.1. Representations 

A permutation problem consists of 𝑛 variables 𝒙 = ( 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 )
ith 𝑥 𝑖 ∈ {1 , 2 , … , 𝑛 } such that 𝑥 𝑖 ≠ 𝑥 𝑗 for all 𝑖 ≠ 𝑗 ∈ {1 , 2 , … 𝑛 } . I.e.,

ach solution contains each element in {1 , 2 , … 𝑛 } exactly once. Stan-

ard Cartesian recombination operators such as crossover can violate

he uniqueness constraint of this integer representation, and as such

annot be used on integer representations directly. For this reason, spe-

ialized recombination operators are used, or the solution is encoded

lternatively. 

A popular alternative encoding is the random keys encoding by

ean [9] . It encodes permutations using 𝑛 real values 𝒓 = ( 𝑟 1 , 𝑟 2 , … , 𝑟 𝑛 ) ,
ypically with 𝑟 𝑖 ∈ [0 , 1] for each 𝑖 ∈ {1 , 2 , … , 𝑛 } . The encoded permuta-

ion can be obtained by sorting, i.e., it is 𝝅 = ( 𝜋1 , 𝜋2 , … , 𝜋𝑛 ) such that

 𝜋𝑖 
≤ 𝑟 𝜋𝑗 

for all 𝑖, 𝑗 ∈ {1 , 2 , … 𝑛 } , 𝑖 < 𝑗. Consequently, standard crossover

perators can be used. 

.2. Classic evolutionary algorithms 

In this paper, we refer to classic EAs as EAs that perform recombi-

ation on full-length solutions to create new full-length offspring solu-

ions, after which all offspring solutions are evaluated so as to be able

o perform selection. Here, for simplicity, we use the same evolution-

ry scheme so as to be able to isolate and study the impact of the re-

ombination operators solely. In particular, we use a P+O scheme with

ournament selection and a tournament size of 4 so that the number of

opies of the best solution grows logistically over time. 

For the integer representation, we consider the specialized permu-

ation recombination operators of Order Crossover (OX) [15] , Partially

apped Crossover (PMX) [16] , Cycle Crossover (CX) [17] and Edge Re-

ombination (ER) [18] . All of these operators operate on the integer rep-

esentation of a permutation, and all – apart from ER – cross over a con-

inuous substring of the solution. The general difference between these

perators is the means by which they repair or preserve the uniqueness

onstraint. The way by which they do so can be briefly stated as fol-

ows. Order Crossover considers the original order to be key, and thus

nsures this order is preserved by adding the items outside the crossed

ver substring back in their original order. Partially Mapped Crossover

educes individual disruptions by performing a swap between the item

nd its original position. A cycle crossover copies over cycles – sub-

trings which contain the same items – crossing over extra elements to

reserve uniqueness. Finally, Edge Recombination considers undirected

dges key and constructs a complete solution by following edges in the

olutions to unvisited items, selecting randomly from the unvisited pool

f no such edge exists. For more details, we refer the interested reader

o the aforementioned papers. For the random-key representation, we

onsider only uniform crossover. 

While these operators can be regarded as old, they are well-known

nd understood. Furthermore, they perform well on many problems,

specially when the structure they utilize matches the problem. This

rovides an indicator to how much of a particular kind of structure is

resent. This is combined with the Interleaved Multi-start Scheme, pro-

iding high-quality online population sizing. Ensuring that the popula-

ion size is adjusted appropriately for any given problem configuration

s exceedingly important, and yet an often missing aspect degrading the

erformance of these operators. As such these configurations together

orm a useful baseline and reference point in addition the original Per-

utation GOMEA. This approach has shown excellent performance on

ermutation Flowshop against other state-of-the-art approaches, and is

o be discussed next. 
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.3. Gene-pool Optimal Mixing Evolutionary Algorithms 

Gene-pool Optimal Mixing Evolutionary Algorithms (GOMEAs) are

 form of EAs that combine the notion of crossover as found in classic

As, with that of estimating and re-sampling probability distributions

o model potential dependencies between problem variables as found

n Estimation-of-Distribution Algorithms (EDAs) [5] . Below, we first ex-

lain key concepts of GOMEA as it was originally introduced for dis-

rete Cartesian search spaces, followed by its adaptation to Permutation

OMEA that uses the random-key representation [5,8] . In Section 3 we

ropose qGOMEA, a new version of Permutation GOMEA that uses the

nteger representation. 

.3.1. Key concepts 

Solutions 𝒙 are encoded with 𝑛 variables 𝒙 = ( 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ) in the

riginal GOMEA [5] . The solution space is the Cartesian product 𝒙 ∈
𝑛 
𝑖 =1 𝔻 𝑖 , where 𝔻 𝑖 is the domain of variable 𝑖 . 

A linkage model, that models dependencies between problem vari-

bles, is built every generation. For this, the Family of Subsets (FOS)

oncept is used. A FOS  contains | | linkage sets, in which each linkage

et is a subset of all problem variable indices, i.e.,  = { 𝑭 1 , 𝑭 2 , … , 𝑭 | |} ,
here 𝑭 𝑖 ⊆ {1 , 2 , … , 𝑛 } . Variables in the same linkage set are considered

o be dependent to some degree. 

The most commonly used type of FOS is the Linkage Tree (LT). Con-

eptually, an LT is obtained by starting from 𝑛 singleton sets, each con-

isting of one variable index, and then iteratively merging two sets until

nly one set remains with all indices. All sets that have been created in

he process are part of the linkage tree. While an LT can be learned by

omputing a linkage metric between blocks of variables, this is costly.

nstead, the LT in GOMEA is learned over population individuals by

omputing a (dis)similarity matrix based on linkage and applying a Hier-

rchical Clustering algorithm known as Unweighted Pair Group Method

ith Arithmetic Mean (UPGMA) in  ( 𝑛 2 𝑃 ) time, where 𝑃 is the popula-

ion size [5] . 

A common variant of the Linkage Tree is the Random Tree. A Ran-

om Tree is constructed much like a Linkage Tree, but the (dis)similarity

sed to construct the tree consists of symmetric random noise. Providing

 similarly hierarchical collection of subsets, but without the additional

omplexity of using a linkage metric. 

There is no separate selection step in GOMEA as there is in classic

As. Instead, each generation, each solution 𝒑 in the current population

s transformed into an offspring solution 𝒐 using the Gene-pool Optimal

ixing (GOM) operator. Considering each linkage set 𝑭 𝑖 of  in a ran-

om order, GOM incrementally tries to improve 𝒑 by replacing values

f variables indicated in 𝑭 𝑖 with values copied from a random donor in

he population at the corresponding positions. If the partial modification

ields an improved (or equal) fitness value, it is accepted. Otherwise, the

hanged variables revert to their previous values. If a solution is not im-

roved during GOM or if the best solution ever found is not changed

fter a certain number of generations, a procedure called forced im-

rovement (FI) is performed [8] . Essentially, FI performs GOM again,

ut with the current best solution as the donor and halting as soon as

ny improvement is achieved. 

.3.2. pGOMEA 

Permutation GOMEA (pGOMEA) [8] uses the random-key encoding.

ssigning a random key to each object (e.g. an order in PFS, a city in

SP, ...) as opposed to positions; as a position in a permutation is com-

only closer to a continuous value than an arbitrary index. Because any

ixing of random-keys always results in an encoding of a permutation,

he GOM operator of Cartesian GOMEA can be straightforwardly used.

hen mixing a block of random-keys, only the relative sub-permutation

ertaining to those keys is maintained. In other words, depending on

he scaling of the random keys, the actual encoded integer permutation

ay still be different as this is dependent on the values of other random

eys outside the block. Acknowledging this and attempting to improve
3 
erformance, pGOMEA performs random re-scaling , where blocks of ran-

om keys are randomly re-scaled during mixing, and re-encoding , where

he population is re-encoded after each generation with a new set of

andom-key strings that still maintains the underlying permutations of

opulation individuals. This approach was successfully applied to Per-

utation Flowshop, outperforming GM-EDA in [8] and VNS4 in [10] . 

While the random-key encoding used in Permutation GOMEA pre-

erves ordering information within a subset of variables when copying

ver their values, this is not the case for the absolute position and rela-

ive offset. Both absolute position and their offset are dependent on the

ther random keys in the solution. This results in potential disruption of

uilding blocks during recombination for problems in which such struc-

ure is more important than ordering alone. This is contrary to what

OMEA is trying to achieve through linkage learning. 

It should be noted that this mismatch is inherent to the operator and

ncoding. The disruption that occurs when the aforementioned traits

re important cannot be completely avoided through the selection of

he right subset. As linkage learning operates by determining the right

ubsets, linkage learning will not be able to avoid disruption either. As

his nullifies the benefits of linkage learning, an alternative is necessary.

By operating directly in permutation space we can more freely pre-

erve linkage. However, encoding directly in permutation space is not

ithout its issues. 

First of all, in pGOMEA the uniqueness constraint is being preserved

y the use of the random-key encoding. When operating in permuta-

ion space directly this becomes the responsibility of the operators used

nstead. 

Furthermore, Permutation spaces are large; 𝑂( 𝑛 !) compared to 𝑂(2 𝑛 )
or binary Cartesian problems. The operators used should utilize the

tructure that permutations provide in order to operate efficiently within

his domain. 

An example of such structure would be that one order 𝑏 always fol-

ows order 𝑎 . If such patterns is an important aspect of a good solution,

n operator should be able to encode this pattern efficiently and apply

t in other situations. 

E.g. an EA utilizing only PMX as a crossover operator will have trou-

le reproducing this pattern under translation, requiring a schema for

ach position. 

In pGOMEA this pattern is encoded by using random keys in com-

ination with re-encoding and re-scaling. In the new approach we will

se a notion of locality, similar to that of local search approaches. 

. qGOMEA 

In this section we introduce qGOMEA and its new operators, the

ifferential Crossover in Section 3.2 and Reorder Crossover in Section 3.3 .

hese operators replace the copying operation within GOM, creating a

ariant of GOM preserving uniqueness constraints. 

Much like how the copying operation in binary GOM acts like a

opulation-informed multi-variable generalization of a single-variable

it-flip; these operators perform actions generalizing those of the block

ove and swap local search operators, allowing for utilization of com-

on notions of locality for permutation problems. The remainder of this

ection describes the other differences from Permutation GOMEA, most

otably the removal of operations working on Random Keys, and the

inkage metric in Section 3.4 . A pseudocode overview of qGOMEA can

e found in Algorithm 1 . 

.1. Notation 

Before describing the actual operators themselves, we first describe

ome supplementary notation. 

First of all, apart from numbering positions 1 through 𝑛 , we define 

o number objects – e.g., the cities in TSP, jobs in scheduling problems,

.. – by letters:  = 𝑎, 𝑏, … , 𝑦, 𝑧, 𝑎𝑎, 𝑎𝑏, … in order to clearly differenti-



A. Guijt, N.H. Luong, P.A.N. Bosman et al. Swarm and Evolutionary Computation 70 (2022) 101044 

Algorithm 1 qGOMEA. 

1: procedure StepqGOMEA (population) ⊳ Run a single generation 

of qGOMEA 

2: fos ← LearnFOS (population) 

3: Copy population to offspring 

4: for all 𝑜 ∈ offspring do 

5: improved ← GOM (o, fos, population) 

6: if not improved OR NIS reached then 

7: FI (o, fos, population) 

8: return offspring 

9: procedure LearnFOS (population) 

10: D ← DetermineD (population) ⊳ Obtain dissimilarity matrix 

11: lt ← UPGMA (D) ⊳ Learn tree through hierarchical clustering 

12: fos ← toFOS (lt) 

13: fos ← Filter (fos) ⊳ Filter preserving elements of size < 5∕6 𝑛 
14: return fos 

15: procedure GOM (solution, fos, population) 

16: improved ← False 

17: for all 𝑠 ∈ fos do 

18: 𝑑 ← RandomSample (population) 

19: for all 𝑜𝑝 ∈ { Differential Crossover , Reorder Crossover } do 

20: 𝑠 ′ ← RecombineEvaluate (s, d, fos, 𝑜𝑝 ) 

21: if 𝑠 ′ is better in fitness than 𝑠 then 

22: improved ← True 

23: if 𝑠 ′ is better or equal in fitness to 𝑠 then 

24: Replace 𝑠 with 𝑠 ′

25: procedure FI (solution, fos, population) 

26: 𝑑 ← Elitist (population) 

27: for all 𝑠 ∈ fos do 

28: for all 𝑜𝑝 ∈ { Differential Crossover , Reorder Crossover } do 

29: 𝑠 ′ ← RecombineEvaluate (s, d, fos, 𝑜𝑝 ) 

30: if 𝑠 ′ is better in fitness than 𝑠 then 

31: Replace 𝑠 with 𝑠 ′

32: return 
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v  
te between positions and objects. Furthermore, much like we use 𝑘 to

ndicate the 𝑘 th position, we use  𝑘 to indicate the 𝑘 th object. 

In general, we refer to solutions in a Permutation space ℙ 𝑛 , as a

ne-to-one assignment of objects to positions . For example in the case of

 ∈ ℙ 5 : 

𝑃 = 

1 2 3 4 5 [ ]
𝑎 𝑑 𝑏 𝑐 𝑒 

Such a solution has a corresponding assignment 𝑃 −1 of positions to

bjects as well in the corresponding inverse Permutation space ℙ 

−1 
𝑛 

. For

xample: 

𝑃 −1 = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
1 3 4 2 5 

An alternative perspective on permutations is that they define a dis-

rete Cartesian space of size 𝑛 , with each dimension having 𝑛 possible

alues, and the constraint that the value for each dimension must be

ifferent. Given a permutation 𝑃 ∈ ℙ 𝑛 : 

 𝑥 ≠ 𝑃 𝑦 ∀ 𝑥, 𝑦 ∈ [1 , … , 𝑛 ] , 𝑥 ≠ 𝑦 (1)

This holds similarly for the inverse 𝑃 −1 ∈ ℙ 

−1 
𝑛 

as well. As before,

n this space we index using the alphabet  instead to avoid overlap

etween the indices. 

Rather than performing a crossover by position, it may be more

eaningful to perform a crossover on the differences in position instead.
4 
or example when a permutation encodes a sequence, as is the case with

he Traveling Salesperson and many Machine Scheduling problems. 

Additionally, the constraint above can be rewritten to make use of

ifferences instead. A crossover on differences will therefore preserve

he constraints as well as a standard crossover would. 

 

−1 
𝑥 

− 𝑃 −1 
𝑦 

≠ 0 ∀ 𝑥, 𝑦 ∈ [  1 , … ,  𝑛 ] , 𝑥 ≠ 𝑦 (2)

.2. Differential crossover 

Given the commonality of problems in which a permutation is used

s a sequence, the first crossover operator in qGOMEA – Differen-

ial Crossover – is a hybrid between a crossover for absolute and relative

ositioning. 

The goal of this operator is to obtain a population-informed gener-

lization of the block-move operator, commonly used in local search

pproaches to permutation optimization. It generalizes this operator by

sing a subset rather than a continuous range / block of the permuta-

ion. Furthermore, it does so preserving the offsets - moving only the

nchor to the position of the donor. 

All mixing operators in GOMEA are provided a linkage subset from

he FOS, much like most genetic algorithms select a substring from the

wo parents to interchange. 

This operator assumes relative positioning, rather than the absolute

alues themselves, to be key within the subset. Relative positioning re-

uires a reference point – the anchor. We pick the anchor from the link-

ge subset. This operator moves the anchor to the position of the donor,

reserving the offsets of the original solution within the subset itself.

seudocode for this operator can be found in Algorithm 2 . 

lgorithm 2 Differential Crossover. 

1: procedure DifferentialCrossover (P, Q, ) 

2: % Determine virtual donor 

3: 𝐴 ← RandomSample ( ) ⊳ Pick Anchor index

4: for all 𝑖 ∈  do ⊳ Determine virtual donor

5: 𝐷 

−1 ← 𝑄 

−1 
𝐴 

+ ( 𝑃 −1 
𝐴 

− 𝑃 −1 
𝑖 

) 

6: 𝑂 ← max {0 , max 𝑗∈ { 𝐷 

−1 
𝑗 
} − 𝐿 + 1} ⊳ Determine overflow

7: 𝑈 ← min {0 , min 𝑗∈ { 𝐷 

−1 
𝑗 
}} ⊳ Determine underflow

8: for all 𝑖 ∈  do ⊳ Repair by shifting

9: 𝐷 

′−1 
𝑖 

← 𝐷 

−1 
𝑖 

− max {0 , max 𝑗∈ { 𝐷 

−1 
𝑗 
}} 

10: % Recombine (OX) 

11: for all 𝑖 ∈  do ⊳ Place in donor items

12: 𝑅 

𝐷 −1 
𝑖 

← 𝑖 

13: Mark position 𝐷 

−1 
𝑖 

as taken. 

14: 𝑗 ← 0 
15: for all 𝑖 ∈ 𝑃 do ⊳ For each item as ordered in P

16: if 𝑖 ∈  then ⊳ Skip over items already in R

17: continue 

18: while 𝑗 is taken do ⊳ Skip over positions already in R

19: 𝑗 ← 𝑗 + 1 
20: 𝑅 𝑗 ← 𝑃 𝑖 
21: 𝑗 ← 𝑗 + 1 
22: return R 

Given a linkage subset  ∈  from the FOS consisting of objects, and

olutions 𝑃 and 𝑄 . First, the anchor 𝐴 ∈  is chosen randomly within

he subset. Using 𝐴 as the reference point a new virtual donor 𝐷 is

onstructed, such that 𝐷 

−1 satisfies: 

 

−1 
𝑖 

= 𝑄 

−1 
𝐴 

+ ( 𝑃 −1 
𝑖 

− 𝑃 −1 
𝐴 

) ∀ 𝑖 ∈  (3)

It is possible that the resulting donor is invalid due to the position

nding up outside the domain of ℙ 

−1 
𝑛 

∶ [1 , 𝑛 ] . This would lead to an in-

alid permutation. We choose to resolve this issue by shifting back by
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he overflow 𝑂 or forward by the underflow 𝑈 . 

𝑂 = max {0 , max 
𝑗∈ 

{ 𝐷 

−1 
𝑗 
} − 𝑛 + 1} 

 = min {0 , min 
𝑗∈ 

{ 𝐷 

−1 
𝑗 
}} 

And then construct a partial solution 𝐷 

′ such that: 

 

′−1 
𝑖 

= 𝐷 

−1 
𝑖 

− 𝑂 − 𝑈 ∀ 𝑖 ∈  

This virtual donor 𝐷, or 𝐷 

′ if an error occurred, is then used in a

rossover on 𝑃 , copying the subset , performing repairs similarly to

he Order Crossover operator. This results in a new candidate solution

 for evaluation. 

For example, given 

𝑃 = 

1 2 3 4 5 [ ]
𝑎 𝑏 𝑑 𝑐 𝑒 𝑃 −1 = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
1 2 4 3 5 

𝑄 = 

1 2 3 4 5 [ ]
𝑒 𝑑 𝑐 𝑏 𝑎 𝑄 

−1 = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
5 4 3 2 1 

 = { 𝑑, 𝑒 } 

e first select an Anchor 𝐴 ∈  

𝐴 = 𝑑 

s such 𝑃 −1 
𝐴 

= 𝑃 −1 
𝑑 

= 3 and 𝑄 

−1 
𝐴 

= 𝑄 

−1 
𝑑 

= 2 . 

y Eq. (3) this results the following facts 

 

−1 
𝑑 

= 2 + (3 − 3) = 2 𝐷 

−1 
𝑒 

= 2 + (5 − 3) = 4 

he resulting virtual donor 𝐷 is therefore 

𝐷 = 

1 2 3 4 5 [ ]
_ 𝑑 _ 𝑒 _ 𝐷 

−1 = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
_ _ _ 2 4 

This resulting donor is then used construct a complete solution 𝑅 . As

 = { 𝑑, 𝑒 } , the remaining elements are ̄ = { 𝑎, 𝑏, 𝑐} . Which are ordered

a, b, c] in 𝑃 . The holes in 𝐷 are filled in from left-to-right in this

ame order. Yielding 𝑅 : 

 = 

1 2 3 4 5 [ ]
𝑎 𝑑 𝑏 𝑒 𝑐 𝑅 

−1 = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
1 3 5 2 4 

The donor in this case was valid, however, the resulting donor can

e invalid. Example of an invalid donor 𝐷 err : 

 err = 

1 2 3 4 5 6 [ ]
_ _ _ _ 𝑑 𝑒 𝐷 

−1 
err = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
_ _ _ 5 6 

Resolving this by shifting would result in 𝐷 

′
err becoming: 

 

′
err = 

1 2 3 4 5 [ ]
_ _ _ 𝑑 𝑒 𝐷 

′−1 
err = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
_ _ _ 4 5 

.3. Reorder crossover 

Yet another perspective on Permutations lies at the basis of the sec-

nd operator used in qGOMEA. A permutation may be seen as a transi-

ive ordering of elements as well. For example, instead of the objective

eing dependent on the exact position or the exact difference between
5 
wo dimensions, it may be dependent on the ordering implied by the

ositions. Reusing 𝑃 and 𝑄 from the previous example, an alternative

ay to denote this permutation would be: 

𝑃 = 𝑎 < 𝑏 < 𝑑 < 𝑐 < 𝑒 

 = 𝑒 < 𝑑 < 𝑐 < 𝑏 < 𝑎 

The idea of this operator is to transfer over the ordering of a subset,

estricted to the subset. For example, when transferring the ordering for

 pair, this will either lead to doing nothing when the ordering is already

he same, or performing a swap otherwise. 

More generally, the operator reorders the indices in a solution 𝑃 , re-

tricted to the linkage subset , such that the ordering within  is equal

o that of 𝑄 . In particular, this operator is identical to UOX operator de-

cribed in [19,20] with the mask originating from the Family of Subsets

nstead. Pseudocode for this operator can be found in Algorithm 3 . 

lgorithm 3 Reorder Crossover. 

1: procedure ReorderCrossover (P, Q, ) 

2: % Determine mapping 

3: 𝐿 𝑃 ← [ 𝑃 −1 
𝑖 

for 𝑖 ∈ ] 
4: 𝐿 𝑄 ← [ 𝑄 

−1 
𝑖 

for 𝑖 ∈ ] 
5: 𝐿 

sorted 
𝑃 

← Sort ( 𝐿 𝑃 ) 

6: 𝐿 

sorted 
𝑄 

← Sort ( 𝐿 𝑄 ) 

7:  ← { 𝑞 → 𝑝 for 𝑝, 𝑞 ∈ zip ( 𝐿 

sorted 
𝑃 

, 𝐿 

sorted 
𝑄 

) } ⊳ Construct mapping

by corresponding indices 

8: % Use mapping 

9: Copy P to R. 

10: for all 𝑖 ∈  do 

11: 𝑅 

−1 
𝑖 

← 𝑀[ 𝑄 

−1 
𝑖 
] 

12: return R 

Formally, given the recipient 𝑃 , the donor 𝑄 and the linkage subset

 ⊆  ∈  , with ̄ =  − . The resultant is the solution 𝑅 such that: 

 

−1 
𝑖 

= 𝑃 −1 
𝑖 

for 𝑖 ∈ ̄ (4) 

 

−1 
𝑖 
> 𝑅 

−1 
𝑗 

if 𝑄 

−1 
𝑖 
> 𝑄 

−1 
𝑗 

for 𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗 (5) 

his resultant 𝑅 can be created as follows. Construct two lists 

𝐿 𝑃 = [ 𝑃 −1 
𝑖 

for 𝑖 ∈ ] 

 𝑄 = [ 𝑄 

−1 
𝑖 

for 𝑖 ∈ ] 

ort both lists yielding, 𝐿 

sorted 
𝑃 

and 𝐿 

sorted 
𝑄 

. Construct a mapping  ∶
 

sorted 
𝑄 

→ 𝐿 

sorted 
𝑃 

which maps elements by index from Q to P (i.e., such

hat the first item of 𝐿 

sorted 
𝑄 

in is mapped to the first item of 𝐿 

sorted 
𝑃 

). 

Now initialize 𝑅 to be a copy of 𝑃 , and perform 

 

−1 
𝑖 

=  ( 𝑄 

−1 
𝑖 
) for 𝑖 ∈  

ssuming the 𝑃 and 𝑄 stated previously, and 𝑆 = { 𝑎, 𝑏, 𝑐} : 

𝑃 = 

[
𝑎 𝑏 𝑑 𝑐 𝑒 

]
𝐿 𝑃 = [1 , 2 , 4] 𝐿 

sorted 
𝑃 

= [1 , 2 , 4] 

 = 

[
𝑒 𝑑 𝑐 𝑏 𝑎 

]
𝐿 𝑄 = [5 , 4 , 3] 𝐿 

sorted 
𝑄 

= [3 , 4 , 5] 

he mapping  is therefore  ∶ {3 → 1 , 4 → 2 , 5 → 4} . Additionally, as

 is initially a copy of P: 

 

′−1 = 𝑃 −1 = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
1 2 4 3 5 𝑄 

−1 = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
5 4 3 2 1 

Finally, 𝑅 is constructed by apply the mapping  for all elements

n : 

 

−1 
𝑎 

=  ( 𝑄 

−1 
𝑎 
) =  (5) = 4 
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𝑓 0 otherwise 
 

 

−1 
𝑏 

=  ( 𝑄 

−1 
𝑏 
) =  (4) = 2 

 

−1 
𝑐 

=  ( 𝑄 

−1 
𝑐 
) =  (3) = 1 

esulting in the solution 𝑅 : 

 = 

1 2 3 4 5 [ ]
𝑐 𝑏 𝑑 𝑎 𝑒 𝑅 

−1 = 

𝑎 𝑏 𝑐 𝑑 𝑒 [ ]
4 2 1 3 5 

.4. Configuration 

The new operators allow qGOMEA to operate on permutations di-

ectly instead of using the random-key encoding. 

The new operators are not the only differences in qGOMEA. In gen-

ral, in a GOMEA the mixing operators use subsets of elements from a

amily of Subsets (see Section 2.3.1 ). In order to build a linkage tree as

sed in Permutation GOMEA, a measure for linkage (or the dependency

trength) needs to be defined. The pairwise linkage was derived from

ultiplying the inverse entropy of ordering with the average distance

etween the two items. 

However, in many permutation problems the fitness of an item is

ependent on the one preceding. An item that often precedes another

ence often forms a ‘block’. Conversely, the order does not necessarily

atter, for example in a symmetric problem, and may even be mislead-

ng. Items vying for the same spot, or one close to one another, may

hange ordering due to repairs, causing the inverse entropy to be no-

ably lower for nearby items. Resulting in known linkage in the structure

f the problems, including Permutation Flowshop, the original problem

ermutation GOMEA was tested on, to be ignored. qGOMEA utilizes only

istance as its – dissimilarity – linkage metric. Given the population 

onsisting of solutions 𝑝𝑖 ∈ ℙ 

−1 where objects are mapped to positions.

( 𝑖, 𝑗) = 

∑
𝜋∈population 

|||𝜋𝑖 − 𝜋𝑗 
||| (6)

Due to the aforementioned removal of random keys and its mutation

perators, qGOMEA has less diversification operators than the original

ermutation GOMEA. In order to preserve the diversity that we have,

e disable Forced Improvement. FI reduces diversity considerably by

ixing with the best solution found so far. 

Furthermore, mixing a larger subset into a solution has a larger like-

ihood of turning a solution into a copy of the other, effectively reducing

iversity. This effect is further exacerbated by the repairs performed to

reserve the uniqueness constraint. In order to prevent this, we prune

he Linkage Tree, keeping only the subsets of size < 5∕6 𝑛 . 
As we do not expect the performance of the approach to be sensitive

o the exact value given that the value is large enough; a tree mostly con-

ains smaller nodes. As such we did not extensively tune this parameter.

e tested values 1∕2 𝑛 , 3∕4 𝑛 , 5∕6 𝑛 and 11∕12 𝑛 on the inversion problem

ith 𝑛 = 100 to find the largest value where premature convergence does

ot occur. 

. Permutation problems 

In this section we describe the problems used in order to assess the

erformance of the aforementioned approaches. The first set of prob-

ems are chosen to both assess the performance in an idealized case, im-

roving our understanding of our approaches and the linkage learning

spects in a controlled environment. The second set focuses on problems

hat are more representative of real-world problems, such as scheduling

roblems. The goal of this set is to assess the performance and applica-

ility of the proposed approach on function landscapes that are more

ikely to occur in real-world situations. 

The first set of problems consist of the Number of Inversions function

nd variants. These functions will be used to determine the scalability of

he approaches as the problem becomes larger and more difficult. This
6 
ill also allow us to evaluate how well linkage learning works, as scal-

bility is the key improvement linkage learning provides. Furthermore,

ue to the sparse nature of the functions, these functions also bench-

ark how well the approaches recombine information from different

olutions to navigate plateaus and local optima. 

As these benchmark functions are not necessarily representative of

eal-world problems, we additionally assess the performance on a va-

iety of more realistic benchmark problems. This allows us to evaluate

ow capable of exploiting linkage the currently evaluated approaches

re in a more practical setting. Each problem is representative of a dif-

erent class such permutation problems: Permutation Flowshop is re-

ated to multi-machine scheduling, Order Acceptance and Scheduling

ith Sequence Dependent Setup Times is a (complex) single-machine

cheduling problem, and the Quadratic Assignment Problem as repre-

entatives is an assignment problem. 

.1. Inversion problems 

In this subsection we describe a family of functions whose objective

elates to the difference in ordering of the given permutation against the

eference permutation [ 1 , … , 𝑛 ] . 
The first function in this family – Number of Inversions – sums over

he product of all pairs in the permutation. This results in a function that

s easily solvable by hill climbing; after each swap there is immediate

eedback of whether this was a step in the right direction or not. The

ther two inversion problem functions described in this section aim to be

ore difficult by leaving out information by only awarding the score in

 fraction of the cases – creating a plateau that will have to be navigated

y the approaches. Therefore, these functions will be harder to navigate

nd will require recombination to find a global optimum, unlike the first

unction. 

Number of inversions The Number of Inversions function as defined

n the literature counts the number of inversions, i.e., the number of in-

orrectly sorted pairs. The function according to this definition should

e minimized. All other functions defined below are maximization func-

ions. For consistency, we define the Number of Inversions function to

ount the number of correctly sorted pairs instead: this definition is

quivalent, except that this function should be maximized. 

 1 ( 𝜋) = 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗= 𝑖 +1 

{ 

1 if 𝜋𝑗 > 𝜋𝑖 
0 otherwise 

(7)

Number of sequential inversions This first variant only evaluates se-

uential pairs, rather than the product of pairs, i.e., it counts the number

f cases in which two sequential items are ordered correctly. 

 2 ( 𝜋) = 

𝑛 −1 ∑
𝑖 =1 

{ 

1 if 𝜋𝑖 +1 > 𝜋𝑖 
0 otherwise 

(8)

The primary difference between the original and this variant lies in

he landscape of the improving moves. Take for example the solution

= [3, 4, 1, 2] , for which 𝑓 1 ( 𝜋) = 2 and 𝑓 2 ( 𝜋) = 2 . While improv-

ng swaps exist for the original objective function, no swap will yield

 higher objective value for 𝑓 2 pairs. In fact, only the optimal solution

= [1, 2, 3, 4] has a better objective value with 𝑓 2 ( 𝜋) = 3 . 
Number of sequential pairs The second and last variant are similar to

he previous problem; this function also sums over sequential pairs, not

he product. But rather than being well-ordered, it requires the numbers

n the pair to be sequential numbers. This property is more strict and

ess likely to appear in a random solution than in a well-ordered one.

et it may be easier: all pairs that cause the objective value to increase,

ppear in the optimal solution as well. 

 3 ( 𝜋) = 

𝑛 −1 ∑{ 

1 if 𝜋𝑖 +1 = 𝜋𝑖 + 1 
(9)
𝑖 =1 
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1 Source code can be found at https://github.com/8uurg/ 

GeneticPermutationBenchmark 
.2. Permutation Flowshop 

The first more realistic problem is the Permutation Flowshop prob-

em [21] . In this problem there are 𝑚 machines on which 𝑛 jobs need

o be performed. Each job has 𝑚 tasks which need to be performed on a

orresponding machine each – i.e., the 𝑘 -th task of a job, is performed on

he 𝑘 -rd machine – each costing a particular amount of time. A task can

nly be performed once prior tasks of the same job have been completed

nd the corresponding machine is available. 

Given a permutation 𝜋 of length 𝑛 , job 𝑖 , machine 𝑗, and correspond-

ng processing time 𝑝 ( 𝑖, 𝑗) , the completion time 𝑐( 𝑖, 𝑗) can be defined as: 

( 𝜋1 , 1) = 𝑝 ( 𝜋1 , 1) (10) 

( 𝜋1 , 𝑗) = 𝑐( 𝜋1 , 𝑗 − 1) + 𝑝 ( 𝜋1 , 𝑗) (11) 

( 𝜋𝑖 , 1) = 𝑐( 𝜋𝑖 −1 , 1) + 𝑝 ( 𝜋𝑖 , 𝑗) (12) 

( 𝜋𝑖 , 𝑗) = max { 𝑐( 𝜋𝑖 −1 , 𝑗) , 𝑐( 𝜋𝑖 , 𝑗 − 1)} + 𝑝 ( 𝜋𝑖 , 𝑗) (13) 

The resulting objective is to minimize either the maximum time spent

the Max Flow time – or the sum over each job – the Total Flow Time

respectively. 

 max ( 𝜋) = 𝑐( 𝜋𝑛 , 𝑚 ) (14)

 total ( 𝜋) = 

𝑛 ∑
𝑖 =1 

𝑐( 𝜋𝑖 , 𝑚 ) (15)

.3. Quadratic Assignment 

The Quadratic Assignment problem is a combinatorial optimization

roblem in which facilities with flows need to be assigned to locations

ith distances between them. The goal then is to minimize the product

f distances with flows. 

Unlike the previously listed problems, the interpretation of the un-

erlying permutation is no longer that of a sequence, but rather that of

 one-to-one assignment. For this reason we expect this problem to have

otably different performance characteristics. 

An instance is parameterized by two 𝑛 × 𝑛 matrices A and B. Given a

ermutation 𝜋 the function to be minimized is 

( 𝜋) = 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝐴 ( 𝑖, 𝑗) ⋅ 𝐵( 𝜋𝑖 , 𝜋𝑗 ) (16)

.4. Order acceptance and scheduling with sequence dependent setup times 

Many real world problems are more complex than the Permutation

lowshop problem. Many real world problems are hybrids of other –

impler – problems. In this section we cover the hybrid problem by

 ǧuz et al. [13] incorporates aspects of Traveling Salesperson, Schedul-

ng Problems and Knapsack in one problem. In short, one could interpret

his problem as a knapsack problem where weight is replaced by time,

ith the allocation of time involving a scheduling problem with TSP-like

raveling time between jobs. 

More specifically, following O ǧuz et al. [13] a problem instance is

arameterized for a given permutation 𝜋, and 𝑛 orders 𝑖 ∈ {1 , 𝑛 } , 𝑗 ∈
0 , 𝑛 } – where 0 is the initial order, using a collection of 𝑛 release times

 𝑖 , processing times 𝑝 𝑖 , due dates 𝑑 𝑖 , deadline 𝑑 𝑖 , revenue 𝑒 𝑖 , penalty

eight 𝑤 𝑖 and 𝑛 ( 𝑛 + 1) sequential setup times 𝑠 𝑗,𝑖 . 

In the original problem specification an order can go past their dead-

ine and cause a solution to be invalid. This resulted in the solutions be-

ng sequences, where each order appeared at most once. This is different

rom permutations, where each order should appear exactly once. To en-

ure every permutation encodes a valid solution, we use the approach

y Chaurasia and Singh [22] . In their work they propose to ignore such
7 
rders entirely during evaluation. This results in the introduction of prev

n the following formulas; it keeps track of the previous order in the so-

ution – ignoring any dropped orders – such that the sequence dependent

etup time can be calculated properly. 

A solution can be evaluated as follows. 

rev ( 𝜋1 ) = 0 (17) 

rev ( 𝜋𝑖 ) = 

{ 

𝜋𝑖 −1 if 𝑐′𝜋𝑖 −1 < 𝑑 𝜋𝑖 −1 
prev ( 𝜋𝑖 −1 ) otherwise 

(18) 

 

′( 𝜋1 ) = 𝑟 ( 𝜋1 ) + 𝑠 0 ,𝜋1 + 𝑝 𝜋1 
(19) 

 

′( 𝜋𝑖 ) = max { 𝑐( 𝜋𝑖 −1 ) , 𝑟 𝜋𝑖 } + 𝑠 prev ( 𝜋1 ) ,𝜋1 + 𝑝 𝜋1 
(20) 

( 𝜋𝑖 ) = 

{ 

𝑐 ′( 𝜋𝑖 ) if 𝑐 ′( 𝜋𝑖 ) < 𝑑 𝜋𝑖 
𝑐( 𝜋𝑖 −1 ) otherwise 

(21) 

Every order has a corresponding profit. The full revenue is awarded

f an order was completed before the due date. If an order was completed

fter the due date, but before the deadline, a penalty is subtracted from

he revenue for each time unit after the due date. Orders completed at

r after the deadline are ignored and do not incur any profit. 

The objective of this problem is to maximize the sum of these prof-

ts. 

( 𝜋𝑖 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑒 𝜋𝑖 

if 𝑐 ′( 𝜋𝑖 ) < 𝑑 𝜋𝑖 
𝑒 𝜋𝑖 

− 𝑤 𝜋𝑖 
⋅ ( 𝑐 ′( 𝜋𝑖 ) − 𝑑 𝜋𝑖 

) if 𝑐 ′( 𝜋𝑖 ) < 𝑑 𝜋𝑖 
0 otherwise: 𝑐 ′( 𝜋𝑖 ) ≥ 𝑑 𝜋𝑖 

(22) 

 total ( 𝜋) = 

𝑛 ∑
𝑖 =1 

𝑓 ( 𝜋𝑖 ) (23) 

. Experimental setup 

All experiments are performed on an Intel Core i7-8750H CPU @

.20GHz, with 16 GB of RAM, running Windows, unless noted other-

ise. The approaches are implemented in Julia, 1 and evaluated in Julia

.3, using a single thread. Approaches are as follows, and summarized

n Table 1 . 

In addition to the GOMEAs – pGOMEA and qGOMEA – with both

inkage Tree and Random Tree (implemented as a linkage tree based on

andom linkage) models, we also evaluate the performance of standard

ermutation crossover operators – CX [17] , PMX [16] , OX [15] , ER [18]

and uniform crossover on Random Keys [9] in a simple-GA setup.

n this setup each generation individuals are randomly paired up, with

ach mating pair producing two offspring. Both the parents and their

ffspring compete in a tournament of size 4, selecting the two best solu-

ions. ER was dropped from tables due to extremely poor performance. 

All approaches use the same Interleaved Multi-start Scheme (IMS) as

he GOMEAs. This scheme operates on various populations of increasing

ize in an interleaved fashion. Starting at a particular base population

ize 𝑝𝑜𝑝 base a generational step is being performed by said population.

fter running 𝑝𝑜𝑝 f generations of a size, the next rank up runs once. Note

hat this pattern recurses. If there exists no next rank up, one is created

ith double the population size. While populations that have converged

r no longer provide any improvement are pruned. 

This removes the need to configure the population size without a

ignificant loss in performance. For the GOMEAs the parameters are set

o 𝑝𝑜𝑝 base = 4 and 𝑝𝑜𝑝 f = 4 . As the standard GAs perform notably fewer

valuations per generation ( 𝑂( 𝑛 ) compared to 𝑂( 𝑛 2 ) ), these values are

et to 𝑝𝑜𝑝 base = 16 and 𝑝𝑜𝑝 f = 8 to avoid excessive population growth

nd corresponding memory usage. 

https://github.com/8uurg/GeneticPermutationBenchmark
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Table 1 

Table summarizing the listing of approaches evaluated in this work. 

Approach Population Sizing Operators 

𝑝𝑜𝑝 base 𝑝𝑜𝑝 f 

Random Key SimpleGA 16 8 UX 

Integer Permutation SimpleGA 16 8 CX [17] / PMX [16] / OX [15] 

Permutation GOMEA [8] 4 4 Copy (LT/RT) 

qGOMEA 4 4 Reorder & Differential (LT/RT) 
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Table 2 

Computational budget of evaluations, dependent on 𝑛 and 𝑚 , from Ceberio 

et al. [23] , for permutation Flowshop. 

J x M # evaluations J x M # evaluations 

20 x 5 182 224 100 100 x 5 235 879 800 

20 x 10 224 784 800 100 x 10 266 211 000 

20 x 20 256 896 400 100 x 20 283 040 000 

50 x 5 220 712 150 200 x 10 272 515 500 

50 x 10 256 208 100 200 x 20 287 728 850 

50 x 20 275 954 150 500 x 20 260 316 750 
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Apart from population size, qGOMEA and the SimpleGAs are param-

terless, requiring no further tuning of parameters. Permutation GOMEA

ontains an additional parameter, the probability for the re-scaling op-

rator. The impact of this parameter is dependent on the problem and

nstance. This would therefore require per-problem tuning. As none of

he aforementioned problems employ per instance tuning ahead of time,

oing so would incur an unfair advantage. As such we utilize the default,

 = . 1 , which we have validated to work well overall. 

For each problem, all results are reported as the median of the gap

o the optimum as a percentage. In case no optimum is known, bounds

n this solution are used instead, as specified in respective problem sec-

ion. Results in bold either correspond to the approach with the best

ean gap, or are not statistically significantly different according to the

ann-Whitney U-test from this approach with 𝑝 < 0 . 05 8 – with the Bon-

erroni correction applied. The background color of each cell is colored

roportional to the value, compared against the other approaches for

he same instance. The best performer on an instance is therefore col-

red with a white background, whereas the worst performer has a dark

ray background. 

For each of the permutation problems in Section 4 an experiment is

erformed. These experiments are described in the following sections. 

.1. Inversion benchmark 

The experiments for the Inversion variants benchmark functions are

efined to be a scalability experiment, in which we measure the number

f evaluations that are required to reach the optimum in 90% of the runs.

A total of 10 runs are performed for each approach/function/ 𝑛 com-

ination, with a time limit of 100. If the approach had no successful runs

or 𝑛 on the same function, we skip evaluating larger 𝑛 . Possible values

or 𝑛 are 10 , 15 , 20 , 25 , 50 , 100 , 200 , 400 and 800. 

For the inversion benchmark function the optimum is known ahead

f time to be the ascending ordering: (1 , 2 , … , 𝑛 ) . As this ordering is eas-

er to find due to initialization biases and programmatic errors, we ran-

omly rename the items but not positions in half of the cases to remove

ny potential bias to this solution. 

.2. Permutation Flowshop 

We perform an experiment similar to the one performed for Permuta-

ion GOMEA in [8] . We use the same configuration as [23] , but utilize

he max-flow objective instead of the total flow. For this experiment

aillard’s instances [21] are used, using the bounds on his website [24] .

very approach is given a computational budget of evaluations accord-

ng to 𝑛 and 𝑚 , as stated in Table 2 . A total of 20 runs is performed for

ach approach/instance combination. Because of the higher computa-

ional workload, we performed this set of experiments on a server with

4 cores (AMD Opteron Processor 6386 SE, 2.8 GHz). The experiment

as performed using Julia 1.4.2 using a single thread. 

.3. Quadratic Assignment Problem 

The QAP instances originate from QAPLIB [11] using the upper

ounds on the optimal solutions reported on the website [25] . For the
8 
uadratic Assignment Problem the time budget for each run is 10 min-

tes, independent of dimensionality. Each approach/instance configu-

ation has a total of 12 runs – but the first run is dropped. 

The approaches were evaluated on the same hardware as Permuta-

ion Flowshop; on a server with 64 cores (AMD Opteron Processor 6386

E, 2.8 GHz) running Julia 1.4.2. 

.4. Order Acceptance and Scheduling 

We use the instances by O ǧuz et al. [13] , with bounds on the op-

imal solutions for these instances provided by Silva et al. [26] . These

nstances are parameterized by 𝜏, 𝑅 and 𝑛 ; with 𝜏 ∈ [0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9]
eing the variability in release times, 𝑅 ∈ [0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9] be-

ng the variability in the availability window (i.e., 𝑑 𝑖 − 𝑟 𝑖 ) and 𝑛 ∈
10 , 15 , 20 , 25 , 50 , 100] being the number of orders. Each run has a time

udget of 𝑛 2 + 100 ms – e.g., 100.1 s for 𝑛 = 100 . Each approach/instance

ombination has a total of 11 runs. 

. Results 

.1. Inversion Variants 

The scalability of the approaches on each of these three benchmark

unctions can be found in Fig. 1 . This graph shows the 90th percentile of

he number of evaluations required to find the optimum (lower is better)

iven a problem of certain size. Both axes are plotted logarithmically,

low) polynomial scalability will result in a straight line (increasing with

ize of the problem), whereas exponential growth will cause the graph

o curve upwards. 

In general, the SimpleGA using Edge Recombination crossover per-

orms badly. This is likely due to the symmetry assumption used in the

mplementation, while none of the benchmark functions are symmet-

ic. In fact, the reverse of the optimum is for every inversion variant the

orst solution possible. All other approaches scale well on the inversion

enchmark, whereas the variants – Sequential Inversion and Sequential

airs – appear to be more difficult in general for all approaches evalu-

ted. 

In particular, qGOMEA outperforms on the Sequential Inversion

unction independent of the linkage structure used. Furthermore, un-

ike the other approaches qGOMEA exhibits polynomial scalability. As

GOMEA does not display polynomial scalability and the improve-

ent is independent of linkage structure used, we can conclude that

GOMEA’s new operators provide a considerable performance and scal-

bility improvement on the Sequential Inversion benchmark function. 
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Fig. 1. Scalability for the inversion variants benchmark functions. 
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For Sequential Pairs a clear benefit for approaches utilizing Linkage

earning appears: both Permutation GOMEA and qGOMEA have notably

mproved performance when using a Linkage Tree as opposed to a ran-

om tree. This is caused by the blocks being used by both qGOMEA and

ermutation GOMEA in performing Differential Crossover and Random

escaling respectively. In combination with the Linkage Tree contain-

ng the right building blocks these operations exemplify the prowess of

inkage learning: recombining smaller correctly ordered subsequences

nto larger correctly ordered subsequences. 

The lack of this occurring for the other two benchmarks indicates

hat the current configuration is far from perfect however, and the effi-

acy of linkage learning and its current metric is strongly dependent on

he problem itself. 

.2. Permutation Flowshop 

The results for the Permutation Flowshop benchmark are listed in

able 3 . 

The GOMEA family of approaches outperform all SimpleGAs on the

ermutation Flowshop problem instances. We note that linkage learn-

ng provides only a minor benefit, with the Linkage Tree performing

imilarly to the Random Tree for most instances. 

A potential explanation for this is that the usage of random keys in

ermutation GOMEA and the repair in qGOMEA, in combination with

he random nature of Taillard’s instances, may not contain any strong

ependencies for which the univariate factorization is inadequate. As

ny tree-based FOS contains the univariate factorization, no perfor-

ance difference between the Random Tree and Linkage Tree would

e expected. 

Furthermore, using a Random Tree and mutation aids in exploration

n exchange for reduced exploitation, i.e. performing variation on cor-

elated parameters. 

We note that the instances with a larger number of jobs seem to

e easier given the same number of machines and fewer evaluations (as

isted in Table 2 ). This could be caused by a machine being a bottleneck.

f a machine is a bottleneck all machines before it are less important:

he processing times for these tasks do not appear in the critical path

nd are not reflected in the objective. 

This does provide additional difficulties for black-box model-based

pproaches, such as qGOMEA. With the available information it could be

ery difficult to infer important structure using linkage learning. Provid-

ng additional information, for example through multi-objectivization

using additional secondary objectives, could provide a way forward

ere. 
9 
Comparing against state-of-the-art approaches from literature pro-

ides other insights. For instances with few machines, performance is

omparable, whereas the state-of-the-art approaches HGM-EDA and DEP

erform better on instances with larger numbers of machines. As hav-

ng more machines may cause more orders to incur waiting time on the

ritical path, the potential interactions between orders may also span

 larger distance. This causes a misalignment between the repair and

ncoding discussed previously, as well as the subsets found by using a

inkage Tree. 

An important difference that should be noted however, is that we

ave not hybridized pGOMEA nor the newly proposed qGOMEA with a

ocal searcher that is known to work well on PFS such as VNS4, as is the

ase for HGM-EDA and DEP. Moreover, the initialization for the state-

f-the-art approaches employs problem-specific heuristics to seed the

opulation with better solutions. As the hybrid HGM-EDA outperforms

he GOMEA variants, while the non-hybrid GM-EDA does not, hybridiz-

ng GOMEA in such ways may well also result in considerable additional

erformance improvements. Such hybridization is however outside the

cope of our article. 

Another point of note is that comparing the Evolutionary Algorithms

sed themselves based on the results as reported here is difficult due to

ifferences in employed settings. We have not tuned any algorithm to

erform best on any problem or problem class in particular. The param-

ters for HGM-EDA and DES were however tuned on similar scheduling

nstances. The GOMEAs are designed with as few parameters as possi-

le. A specific example of this is the population size. The population

ize in the variants of GOMEA as we have used them here, is controlled

nline using a population sizing scheme. While this scheme may even-

ually provide a better population size than a fixed value, especially

ithout a (low) limit on the evaluations budget, it introduces an over-

ead compared to determining a good value beforehand. However, such

re-tuning of parameters (to specific problem instances or classes) may

ot always be possible in real-world practice. 

Altogether, it is therefore hard to ascertain whether the observed

mproved performance for instances with a larger number of machines

s due to the EA performing more effective variation or due to the use

f specialized additional operators for the PFS problem. 

.3. Quadratic Assignment Problem 

The results for the Quadratic Assignment Problem benchmark are

isted in Table 4 . 

The original permutation GOMEA has noticeably worse performance

or this problem. We notice that the use of random keys negatively im-
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Table 3 

Results for a subset of PFS instances (with index 1 & 2) as gap in percentage deviation for the Makespan criterion. 

n m idx (1) (2) (3) (4) (5) (6) (7) (8) (a) (b) (c) (d) 

20 5 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 5 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 

20 10 1 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 

20 10 2 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.00 

20 20 1 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 18.94 0.00 0.00 

20 20 2 0.29 0.26 0.10 0.10 0.00 0.00 0.00 0.00 0.00 35.59 0.00 0.00 

50 5 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 

50 5 2 0.07 0.14 0.07 0.14 0.00 0.00 0.07 0.00 0.10 0.42 0.00 0.00 

50 10 1 1.81 2.35 1.12 1.71 1.12 1.12 1.12 1.12 0.46 1.22 0.00 0.00 

50 10 2 1.93 1.95 1.04 1.51 0.62 0.68 1.41 0.50 1.47 1.81 0.45 0.33 

50 20 1 1.57 2.33 1.18 1.71 1.10 1.18 1.17 1.21 1.19 2.14 0.49 0.59 

50 20 2 1.70 2.19 0.54 1.62 0.56 0.71 0.71 0.67 1.93 3.18 0.27 0.08 

100 5 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 

100 5 2 0.13 0.28 0.13 0.28 0.00 0.00 0.00 0.00 0.13 0.32 0.00 0.13 

100 10 1 0.52 0.52 0.20 0.47 0.02 0.00 0.16 0.02 0.19 0.78 0.00 0.10 

100 10 2 0.78 0.94 0.24 0.78 0.24 0.00 0.00 0.00 0.30 0.71 0.06 0.24 

100 20 1 2.70 3.93 1.94 2.93 1.61 1.51 1.52 1.55 2.18 2.50 0.58 0.06 

100 20 2 2.63 3.22 1.25 2.82 1.10 1.13 1.12 1.05 2.34 1.84 0.66 0.13 

200 10 1 0.21 0.80 0.21 0.80 0.09 0.09 0.09 0.09 0.16 0.33 0.00 0.31 

200 10 2 0.74 1.07 0.48 1.01 0.19 0.16 0.24 0.15 0.47 0.45 0.03 0.79 

200 20 1 1.94 3.52 1.53 2.53 1.23 1.17 1.18 1.17 1.98 1.46 0.56 0.24 

200 20 2 2.25 4.60 1.76 3.31 1.52 1.30 1.62 1.48 2.71 1.59 0.40 0.09 

500 20 1 1.51 3.67 1.07 2.42 0.84 0.67 0.86 0.72 1.15 3.38 0.23 0.02 

500 20 2 1.79 3.49 1.21 2.26 0.80 0.72 0.79 0.59 0.83 2.77 0.18 0.05 

(1) RKSGA (2) IPSGA - CX (3) IPSGA - OX (4) IPSGA - PMX (5) Permutation GOMEA - LT (6) Permutation GOMEA - RT (7) qGOMEA - 

LT (8) qGOMEA - RT The following approaches are from literature and have been copied from [27] for reference. As no distributional 

data was available we could not perform a statistical test. (a) IG [28] (b) GM-EDA [29] (c) HGM-EDA [29] (d) DEP [27] . 

Table 4 

Results for a subset of QAP instances, with a time limit of 10 minutes each, as gap in percentage 

deviation. 

instance (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

chr22b 2.99 0.00 4.30 1.15 4.40 5.56 2.16 0.77 1.34 0.98 

els19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

esc128 53.95 3.03 27.27 0.00 26.35 20.98 0.00 0.00 0.00 0.00 

esc32b 15.14 8.70 12.50 4.35 16.82 12.50 0.00 0.00 0.00 0.00 

kra30b 0.32 0.25 0.25 0.13 0.73 0.70 0.23 0.00 0.00 0.00 

lipa30b 0.00 0.00 11.85 0.00 14.24 13.83 10.83 0.00 0.00 0.00 

lipa90a 1.52 0.91 1.09 0.84 1.11 1.04 0.98 0.70 0.75 0.69 

lipa90b 21.77 18.82 19.75 18.41 19.84 19.54 19.12 17.63 17.86 17.49 

nug30 0.79 0.07 1.21 0.44 1.35 1.43 1.43 0.00 0.08 0.03 

rou20 1.35 0.20 1.08 0.20 1.51 1.26 1.24 0.00 0.00 0.00 

scr15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

scr20 0.03 0.00 0.03 0.00 1.96 0.96 0.05 0.00 0.00 0.00 

sko64 1.07 1.00 2.95 1.64 3.98 3.58 3.19 0.79 0.93 0.73 

ste36c 1.25 0.00 5.95 0.43 3.85 2.50 1.52 0.16 0.28 0.25 

tai100b 3.24 0.81 5.98 1.51 8.30 7.37 5.01 0.94 1.50 0.90 

tai256c 1.01 2.69 1.74 1.56 0.63 0.45 0.67 0.56 0.52 0.51 

tai35a 9.94 3.39 5.55 3.44 5.40 4.76 4.57 1.88 2.18 1.63 

tho150 4.23 4.30 7.06 4.24 6.90 6.06 4.73 1.82 2.18 1.58 

tho40 1.45 0.32 3.54 1.45 3.92 2.86 3.31 0.46 0.93 0.58 

wil50 0.43 0.07 2.01 0.52 1.58 1.15 1.08 0.26 0.26 0.20 

(1) RKSGA (2) IPSGA - CX (3) IPSGA - OX (4) IPSGA - PMX (5) Permutation GOMEA - LT (6) Per- 

mutation GOMEA - RT (7)/(8) qGOMEA - LT - OX/PMX (9)/(10) qGOMEA - RT - OX/PMX 
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q  
acts performance here: after crossover the position is often off by one.

 random key encodes a position dependent on the other keys. This

ields behavior similar to the OX-crossover, which has similarly bad

erformance on this problem. 

Furthermore, the current application of linkage learning is ineffec-

ive for this problem, with the RT notably outperforming the LT variants

f both Permutation GOMEA and qGOMEA. 

The cause of these two issues is likely the same. The QAP is not a

roblem in which the order of positions is necessarily meaningful: the

rder of the positions in an instance can be changed by permuting the

istance matrix, and can therefore be completely arbitrary. Using dis-
10 
ance as a dependency metric can therefore yield a completely arbitrary

OS, which stays relatively fixed. 

Conversely, qGOMEA performs remarkably well when using a ran-

om tree model, being the top performer in most of the instances. Un-

ike the previously discussed linkage tree, the resulting FOS changes

onstantly. As the QAP assigns values to all pairs, randomly considering

airs to be correlated may be a good fit. It gives equal attention to all

airs, resulting in more variation. 

Due to the good performance of the IPSGA using the PMX crossover,

e additionally report the results of using a similar style of repair for

GOMEA. In this case the crossover with the virtual donor is performed
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Table 5 

Results for OAS, as gap in percentage deviation, where 𝑛 = 100 , index = 1 . 

t R (1) (2) (3) (4) (5) (6) (7) (8) 

1 1 1.11 2.41 1.30 1.67 0.97 1.02 0.46 0.74 

1 3 1.22 2.03 1.22 1.62 1.22 1.32 0.71 0.96 

1 5 0.17 0.68 0.26 0.43 0.43 0.56 0.17 0.43 

1 7 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

1 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 1 1.03 1.96 1.18 1.57 1.08 1.27 0.49 1.03 

3 3 1.18 2.51 1.27 2.03 1.13 1.27 0.61 0.80 

3 5 1.09 1.96 1.38 1.62 1.18 1.38 0.80 1.38 

3 7 0.17 0.76 0.17 0.68 0.17 0.51 0.17 0.17 

3 9 0.11 0.64 0.18 0.64 0.18 0.37 0.00 0.23 

5 1 1.76 3.15 1.76 3.03 1.48 1.76 0.78 1.03 

5 3 1.47 2.98 1.47 3.33 1.37 1.57 0.77 0.77 

5 5 1.24 3.48 0.96 2.91 0.86 1.05 0.38 0.67 

5 7 0.68 1.84 0.73 2.08 0.48 0.73 0.19 0.77 

5 9 1.81 4.97 1.81 4.69 1.40 1.72 0.90 1.22 

7 1 1.99 5.10 1.37 6.58 1.37 1.80 0.80 1.28 

7 3 1.61 6.60 1.26 5.14 1.35 1.26 0.55 1.08 

7 5 1.99 14.48 1.69 10.59 1.74 1.39 0.78 0.78 

7 7 3.65 16.96 3.77 13.42 3.11 2.50 1.58 1.92 

7 9 2.68 11.95 3.41 8.68 3.07 2.53 1.61 1.80 

9 1 2.24 41.78 1.27 29.05 1.52 1.42 0.98 1.08 

9 3 3.59 38.14 1.48 27.45 2.15 1.69 0.86 0.97 

9 5 3.68 32.76 2.84 22.46 2.19 1.40 0.69 0.52 

9 7 1.92 33.61 1.43 23.27 1.63 1.10 0.58 0.57 

9 9 3.00 38.69 2.91 28.25 2.51 1.00 0.24 0.24 

(1) RKSGA (2) IPSGA - CX (3) IPSGA - OX (4) IPSGA - PMX (5) Per- 

mutation GOMEA - LT (6) Permutation GOMEA - RT (7) qGOMEA - LT 

(8) qGOMEA - RT. 
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ike in PMX, as opposed to OX. The performance of this configuration

hows the best performance across all evaluated approaches. Most no-

ably, the gap between random tree and linkage tree shrinks consider-

bly, in many cases making any difference statistically insignificant. 

.4. Order Acceptance and Scheduling 

The results for the Order Acceptance and Scheduling benchmark are

isted in Table 5 . 

For Order Acceptance and Scheduling it is known that instances with

igher 𝜏 and lower 𝑅 are more difficult to optimize [12] . A similar trait

an be found here. For example the instance with 𝜏 = 1 and 𝑅 = 9 is
olved to optimality with all approaches, whereas a large difference in

erformance can be seen for 𝜏 = 9 and 𝑅 = 1 . 
Having the right dependency metric, crossover and encoding is im-

ortant to gain an increase in performance when using a Linkage Tree.

ermutation GOMEA does not benefit from the usage of the Linkage

ree, with the Random Tree showing equivalent results. This is not the

ase for qGOMEA, where utilizing linkage provides better results for

 large portion of the instances. qGOMEA outperforms on this class of

roblem structure where relative offsets of elements in close proximity

re important. 

. Discussion 

In this section we discuss and reflect on the choices made and the

imitations of this work. In particular, computational resources are lim-

ted. This has led to some experiments being limited in number of time

nd repetitions, as well as limitations in the configurations evaluated.

urthermore, there are many potential points of improvement that were

eft uninvestigated, which we highlight as future work. 

Among the configurations evaluated for the SimpleGAs, the EA uti-

izing the ER crossover was dropped from the result tables due to bad

esults. This is likely caused by the ER crossover’s assumptions: being

eighbors is important, but not the order itself. It is commonly applied

o symmetric TSP, yet none of the evaluated problems in this work are
11 
ymmetric. A comparison with a symmetric TSP problem would likely

e a better comparison for this operator. 

One example of limitations regarding the number of configurations is

hat we only covered a configuration of qGOMEA using PMX-style repair

nce. We note that such modifications to qGOMEA can improve perfor-

ance on various problems, and much like traditional crossover, pro-

ide significant performance benefits when the chosen repair matches

he problem at hand. In this case PMX with SimpleGAs performed better

n the QAP, leading to the potential of the repair performing better as

ell. We did not evaluate the performance of the aforementioned modi-

cation on other problems, and as such we cannot confirm whether this

attern holds in general, even though we expect it to. 

Tangentially related is the fact that the introduction of this choice

eads to qGOMEA having a parameter which is dependent on the prob-

em at hand. This is a step backwards from the usual automatic usability

hat GOMEA provides for binary problems. We did not investigate au-

omating the choice of repair operator. 

As qGOMEA is a departure from Permutation GOMEA in various

ays, it is useful to determine the effectiveness of its components, be-

ond just linkage learning as we have done in this work. For example,

hich operators are key to solving particular problems and instances?

uch insight would be useful to obtain future improvements. 

Using distance as linkage metric is not universally applicable to per-

utation problems. It assumes that values assigned to nearby positions

re related, i.e. positions can be assumed to be ordinal and provided

n order. This is not true in general, as is illustrated by the Quadratic

ssignment Problem and the corresponding results. It is possible to use

n alternative metric, such as Mutual Information as used in [5] . Uti-

izing Mutual Information in permutation space directly comes with the

rade-off. This metric may require a significantly larger population to

btain sufficient information to build a good model. Of special note

s that it infers linkage due to the uniqueness constraint, which most

ermutation-based operators already account for. 

If a particular kind of disruption is avoided entirely by the recom-

ination operator already accounting for it, Linkage Learning no longer

eeds to account for it either. As such linkage should be adapted to the

pecific kind of structure an operator is recombining to reach the highest

fficiency possible. 

Additionally, using a Family of Subsets to model linkage and de-

endencies may be difficult in a general setting. An example of this is

he strong linkage introduced by the uniqueness constraint, which en-

ompasses all variables. Yet many problems contain sparsity utilizable

y considering subsets of variables. Consider an instance of Traveling

alesperson with cities, each having places to visit. An efficient route

ill group places within these cities together, which can be represented

y a subset in the Family of Subsets. Combined with the right operators,

uch as the ones in qGOMEA, this should provide the ability to both opti-

ize intercity tours and inner-city tours. As another example, a schedul-

ng problem such as Order Acceptance and Scheduling has release times

nd deadlines. Such a problem naturally has particular objects (i.e. or-

ers) only appear in particular positions. Reducing the impact of the

niqueness constraint and again giving rise to certain more closely re-

ated subsets. 

In many practical problems there is a notion of such structure. If

he Linkage Learning can recognize this structure and has the right op-

rators in place to preserve such structure under recombination, then

he GOMEA family approaches is expected to do well. If there is a mis-

lignment i.e. a problem has no such structure that can be recognized,

erformance is expected to be worse, and other approaches will likely

o better. 

As qGOMEA’s operators utilize the sequence-like property that many

ermutation problems have, the applicability of qGOMEA on a wider

ange of permutation problems is limited. An alternative would be to

ork with a more general method of recombination, such as the alge-

raic operations and lattice based operations described in [30,31] . For

uch operators linkage between variables could, for example, be utilized
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y learning a pruned generating set and lattice from the population, or

ven learn linkage between algebraic operations. 

A closely related topic is the encoding used to represent a solution.

n this article we have considered both the use of random keys and the

traightforward encoding using integers. In both cases one can also op-

imize over the inverse permutation instead. Depending on the problem

nd approach used, doing so may align better with the problem’s struc-

ure and increase performance. While we have ensured usage of the best

erforming representation for all approaches and problems in general,

s swapping the matrices in a QAP instance inverts the representation

sed implicitly, no such representation exists for the Quadratic Assign-

ent Problem. As QAP was included in order to assess performance in a

etting where assumptions are potentially violated, rather than solving

he instances themselves, we did not extensively investigate per-instance

epresentations. However, in various, though limited, additional runs

hat we performed on both Order Acceptance and Scheduling and Per-

utation Flowshop, we did observe that using the inverse permutation

ncoding substantially reduced performance. Still, it may be of interest

o investigate the use of both representations simultaneously in a future

ork. For example by determining linkage through the combination of

oth representations, or by using a recombination operator on the alter-

ative representation. 

In this work we have been restricted in a black-box setting with full

valuations for all approaches. As random keys are not used in qGOMEA,

he decoding step is not required; allowing for re-evaluation in a fash-

on similar to discrete Cartesian problems. The GOMEA family is most

ommonly evaluated in a grey-box setting where partial re-evaluations

re performed, with a corresponding gain in scalability and performance

ith respect to time [32] . Yet this change makes it hard to compare ap-

roaches such as the SimpleGAs, and requires significant changes in or-

er to facilitate caching for certain problems. We therefore recommend

 grey-box approach for future work which aims to provide significant

mprovements for a specific problem. 

Similarly, we have not cached any evaluations (i.e. Long Term Mem-

ry Assistance). During convergence, it is likely that the same solution

s evaluated more than once. Caching the result of an evaluation could

ave time regarding evaluating these solutions. Furthermore, if only

aving time this way is not enough, employing a surrogate model as

n [33] could provide a solution. 

The computational resources required in the case of Permutation

lowshop are especially notable, with evaluation budgets larger than

00,000,000 leading to each run taking hours. It is of interest to note

hat Taillard benchmark problems are known to have little structure.

t may be of interest to run experiments on Permutation Flowshop in-

tances which have more structure to exploit such as in [10] . Such in-

tances may be more representative of real-world situations. Moreover,

y utilizing this structure, such instances can likely be solved more ef-

ciently, with a lower budget of evaluations. 

Finally, given the conditional nature of permutations and the over-

apping nature of the constraints and most problem formulations; an-

ther promising approach is the use of the recently introduced Condi-

ional Linkage Models [34] . It is possible that similar scalability benefits

re obtained for permutation problems as well. 

. Conclusion 

In this work we revisited the design of a GOMEA for permutation

paces. We found that solving permutation problems using GOMEA,

pecialized operators can be significantly more effective than using

tandard operators and a random-key encoding. This is caused by the

ismatch between the kinds of structure that random keys preserve –

amely relative ordering – and the structure of many other permutation

roblems in practice – being sequential and absolute position. 

We note the most significant improvements on the QAP problem, in

hich even the SimpleGAs that we considered were capable of provid-

ng better quality solutions. Yet, this improvement does not come at a
12 
ost of performance for the other problems that we considered, show-

ng equal or improved performance. Furthermore, qGOMEA’s operators

ave shown to be capable of exploiting structure in various real-world

roblems as well as benchmark problems, contrary to the other evalu-

ted approaches. 

As is mostly known, but clearly found here, good performance of an

pproach on a benchmark function does not necessarily transfer to a

eal-world problem. More positively, qGOMEA’s mixing operators seem

o generalize well to a large suite of permutation problems, even without

he assistance of linkage learning. 

The theory behind linkage learning states that the number of dis-

uptions of important building blocks need to be minimized. Much like

ne would expect on basis of this theory, we find that not every oper-

tor is a good fit for every problem. While OX and random keys show

ood performance on PFS and OAS, QAP is notably different, with PMX

nd CX outperforming OX and random keys. Ideally linkage learning in

OMEA can generalize this choice of operator. Yet; we find that the cur-

ent form of Linkage Learning does not provide the expected increase in

erformance in general, with only showing a large improvement in the

equential Pairs variant of the Inversion benchmark, as well as a smaller

mprovement for the OAS problem. 

Furthermore, the currently used sources for linkage information are

ot necessarily good descriptors of linkage for a general permutation

roblem. It is clear that they make too many assumptions: having two

ositions being next to one another has little meaning in the context of

he Quadratic Assignment Problem. Defining such a universal descriptor

s still an open question. Answering this question may be hindered by a

otential lack of information in a black-box context. Nonetheless, when

 good descriptor is present, improved performance is observed. 

We conclude that compared to common crossover operators on ran-

om keys in pGOMEA, the introduction of the specialized operators in

GOMEA are beneficial on many problems. This is most notable with

espect to QAP instances, where the original permutation GOMEA was

mong the worst contenders. As such we believe that qGOMEA is a use-

ul addition to the GOMEA family. 
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