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Surrogate‐Based Joint Estimation of Subsurface Geological
and Relative Permeability Parameters for
High‐Dimensional Inverse Problem
by Use of Smooth Local Parameterization
Cong Xiao1 and Leng Tian2

1Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg, Netherlands, 2College of Petroleum
Engineering, China University of Petroleum, Beijing, China

Abstract This paper introduces an efficient surrogate model with the aim of accelerating joint estimation
of subsurface geological properties and relative permeability parameters for high‐dimensional inversion
problems. We fully replace the high‐fidelity model with a set of subdomain linear models through
integrating model linearization with smooth local parameterization where the Gaussian geological
parameters and non‐Gaussian facies indicators are locally parameterized. These subdomain linear models
with smooth local parameterization, referred to as SLM‐SLP, are constructed in each subdomain
individually using only a few high‐fidelity model simulations. An adaptive scheme, that is, weighting
smooth local parameterization (WSLP), is introduced as well to mitigate the negative effects of inappropriate
domain decomposition schemes by adaptively optimizing the domain decomposition strategy. The
computational advantages of the proposed algorithm are demonstrated on a synthetic non‐Gaussian facies
model and a real‐world high‐dimensional Gaussian model. The amount of computational cost has been
drastically reduced while reasonable accuracy remains. Specifically, SLM‐SLP only needs 220 fidelity
simulations to optimize 302 parameters. Compared to ensemble smoother with multiple data assimilation
(ES‐MDA), SLM‐SLP effectively and efficiently mitigates the ensemble collapse problem in the course of
uncertain quantification.

1. Introduction

Typically considered for subsurface model calibration during inversion problems has been geological
hydraulic conductivity (Li et al., 2012). The interest has subsequently shifted toward other parameters, with
the relative permeability curves being a popular choice (Chen & Oliver, 2010; Li et al., 2012; Seiler et al.,
2009). It has been universally acknowledged that computational burden has become one of the most severe
challenges in inverse modeling. Replacing the high‐fidelity model (HFM) with a cheap‐to‐evaluate surrogate
model is a popular approach to reduce the computational cost. Surrogate modeling aims to provide a simpler
and hence faster model, which simplifies the relationship between inputs and outputs. Many efforts have
been taken to make the constructions of surrogate models efficiently feasible. To our currently best knowl-
edge, the existing surrogate modeling approaches can be roughly categorized into two categories:
projection‐based reduced order models (ROMs) and data driven. Reviews of surrogate modeling in water
resources have been given by Asher et al. (2015) and Razavi et al. (2012).

In projection‐based ROMs, a set of reduced basis is extracted from the simulation snapshots using an unsu-
pervised learning technique, for example, proper orthogonal decomposition (POD) (Altaf et al., 2009;
Vermeulen & Heemink, 2006) and the full‐order model operator is projected onto the subspace spanned
by the reduced basis, which can significantly reduce the degrees of freedom of the system (Kaleta et al.,
2011; Xiao et al., 2018). In order to overcome the computational burden associated with the application of
Monte Carlo methods to the groundwater flow equation with random hydraulic conductivity, Pasetto et al.
(2013) present a model‐order reduction technique that the high‐dimensional model equations are projected
onto subspace based on the Galerkin projection. Zha et al. (2018) presented a reduced‐order successive linear
estimator (ROSLE) for analyzing hydraulic tomography data. This new linear estimator approximated the
covariance of the unknowns using Karhunen‐Loeve expansion (KLE) truncated to finite order, and it calcu-
lated the directional sensitivities to form the covariance and cross‐covariance used in the course of
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parameter estimation. The numerical experiments have shown the computational advantage of this new
algorithm. Although previous results demonstrate some promises, the projection‐based ROMmethods have
restricted their applications on complex dynamic problems mainly due to the inherent stability and robust-
ness problems (Baur et al., 2014). Besides, projection‐based ROMs are highly code intrusive, and their
speedup potential is restricted by the strong nonlinearity (Amsallem & Farhat, 2008).

Data driven is an another way to enable rapid simulations, where an emulator of the system is con-
structed upon the HFM solutions of selected collocation points in parameter space without the need to
modify the codes. Specifically, some regression techniques, for example, radial basis functions (Piret et al.,
2019), Gaussian process regression (GPR) (Yang et al., 2018), and stochastic polynomial chaos expansion
(PCE) (Hu et al., 2019), are employed to learn a deterministic or probabilistic input‐output mapping.
Because of the nonintrusive feature and ease of implementation, many different data‐driven surrogates
have been developed for inversion problems of the hydrological system (Dai et al., 2016; Li & Zhang,
2007; Saad & Ghanem, 2009; Zeng & Zhang, 2010). For example, Zeng et al. (2012) constructed surrogates
using generalized PCE to speedup posterior exploration of groundwater models. Chang et al. (2017)
implemented a surrogate‐based iterative ensemble smoother through developing both the PCE and
the interpolation‐based surrogate models in subsurface flow data assimilation problems. GPR has been
increasing popularity as well in terms of predicting the tracer transport in groundwater models
(Asher et al., 2015; Hombal & Mahadevan, 2011; Lu et al., 2018; Roy et al., 2018).

To further mitigate the computational burden and approximate errors, in the recent years many strategies
have been introduced to enable efficient data‐driven model reconstruction, for example, compressed sen-
sing, adaptive and/or multilevel, and multifidelity strategies (Gong et al., 2016; Ju et al., 2018; Laloy et al.,
2013; Mo et al., 2017; Zhang et al., 2017, 2018, 2020; Zhou et al., 2018). For example, Adam et al. (2020) incor-
porate a TSVD (truncated singular value decomposition)‐based dimensionality reduction method to reduce
the number of variables and thereby decrease the HFM runs needed in GPR surrogate. In order to maintain
accuracy of the surrogate model, a novel adaptive resampling through particle swarm optimization is
designed throughout the optimization process. Ju et al. (2018) established an adaptive GPR‐based iterative
ensemble smoother. The GPR surrogate adaptively adds a few additional sample points chosen from the pre-
viously updated parameter realizations at each iteration step. The cross covariance between uncertain para-
meters and measurements could be easily computed by use of the refined GPR surrogate with a negligible
computational cost. Gong et al. (2016) proposed a multiobjective adaptive surrogate modeling‐based
optimization (MO‐ASMO) algorithm that aims to reduce computational cost while maintaining optimiza-
tion effectiveness. Laloy et al. (2013) designed a two‐level MCMC strategy where the surrogate model was
used to sufficiently explored the parameter space at Level 1, and then a limited number of HFMs are evalu-
ated for correction at level two. Rather than multilevel strategy, Zhang et al. (2018) propose an adaptive
multifidelity MCMC algorithm for efficient inverse modeling of hydrologic systems. In this method, the
HFMs are evaluated mainly in the posterior region through iteratively running MCMC based on a
Gaussian process system that is adaptively constructed with multifidelity simulation. Subsequently, Zhang
et al. (2020) design two strategies to quantify the surrogate error and then integrate them with a
surrogate‐based Bayesian inversion framework that explicitly quantifies and gradually reduces the approx-
imation error of the surrogate.

Although the commonly used surrogate models, for example, PCE, GPR, and their improved variants with
adaptive or multifidelity strategies, have been successfully applied to inverse modeling of subsurface hydro-
logical system, the required number of training models will be exponentially increased, a phenomenon often
referred to as “curse of dimensionality” (Feeley, 2008). In contrast, linear surrogate model is easily con-
structed particularly for the real‐world applications. In addition, dimensionality reduction has been proved
to be an effective supplementary to surrogate model with the aim of further decreasing the computational
cost. Several parameterization methods have been applied to subsurface flow inversion problems, including
principle component analysis (PCA) (Chen et al., 2014), discrete cosine transformation (DCT) (Jafarpour &
McLaughlin, 2008), and discrete wavelet transformation (DWT) (Chen & Oliver, 2012). From a computa-
tional point of view, a local parameterization where the parameters are separately defined in each subdo-
main is very attractive (Baiges et al., 2013). Since in this case, we can mainly focus on each subdomain
individually with only a few HFM simulations (Ding, 2011; Ding & Mckee, 2013). This paper introduced a
smooth local parameterization (SLP) by combining PCA and domain decomposition (DD) to separately
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represent the spatial parameter field for each subdomain. In addition, an extension of this SLP to
non‐Gaussian models is explored as well.

To best our knowledge, the combination of SLP and linear surrogate model and resulting advantages have
not been systematically investigated. This paper introduces one such surrogate with the aim of accelerating
parameter estimation for subsurface flow data assimilation problem. Instead of constructing a surrogate
model globally, a novel integration of model linearization with our recently proposed SLP enables us to form
a set of efficient subdomain linear models for a full replacement of the original HFM. To simplify the nota-
tion, subdomain linear model with SLP is denoted as SLM‐SLP. These subdomain linear models are easily
incorporated into a gradient‐based inversion procedure. The performance of this new approach has been
assessed through a synthetic non‐Gaussian binary facies model and a high‐dimensional Gaussian model
with 302 uncertain parameters, including geological hydraulic conductivity and relative permeability para-
meters in this study. Comparisons between this newly proposed SLM‐SLP, finite‐difference (FD) method,
and one variant of iterative ensemble smooth, that is, ES‐MDA (Emerick & Reynolds, 2012, 2013), have been
carried out as well to evaluate this surrogate‐based parameter estimation algorithm.

The remainder of this paper is arranged as follows: Gradient‐based variation data assimilation and
ensemble‐based data assimilation are presented in section 2. A SLP for Gaussian and non‐Gaussian models
is given in section 3. The setup of adaptive subdomain linear models and their application to the parameter
estimation are described in section 4. Section 5 discusses and analyzes some experimental results of a 2‐D
synthetic non‐Gaussian binary facies model and a real‐world high‐dimensional Gaussian model. Finally,
section 6 summarizes our contributions and discusses some potential works in the future.

2. Definition of Parameter Estimation Problem

The relationship between simulated outputs and parameters can be described by a nonlinear operator. To

simplify the notation without loss of generality, one such generic operatorhn:RNobs→RNβþNα can be presented
as follows:

yn ¼ hnðβ; αÞþrn; n¼ 1; · · · ; N ; (1)

where β denotes a vector of spatial hydraulic conductivity field. Nβ is the total number of spatial grids. n is
the simulation timestep. rn is a time‐dependent vector of observation error, which is generally assumed to
satisfy Gaussian distribution G(0,Rn). Nobs denotes the number of simulated outputs at each time step. α
denotes a vector of relative permeability parameters. We employ a Corey‐type representation for relative
permeability (Li & Horne, 2006)

krwðSwÞ ¼ k0rw
Sw−Swir

1−Swir−Swor

� �nw

; kroðSwÞ ¼ k0ro
1−Sw−Sor
1−Swir−Swor

� �no

; (2)

where Sw is water phase saturation; krw and kro are the relative permeability of the water and oil

phase respectively; Swir is the irreducible water saturation; Sor is the residual oil saturation; k0rw is krw at

Sw = 1 − Swir − Sor; and k0ro is kro at Sw = Swir. nw and no are the two power coefficients.

Therefore, six parameters α = [Swir ; Sor ; k
0
rw; k

0
ro; nw; no]

T are used to represent relative permeability.

According to the Bayesian theorem (Evensen, 2009), an objective function can be defined to estimate β and α
through conditioning available measurements. For a maximum a posterior (MAP) procedure where one
posterior is generated by conditioning to dynamic measurements, an objective function JMAP (β,α) can be
generally defined as follows:

JMAPðβ; αÞ ¼ 1
2
ðβ−βbÞTCβ;b

−1ðβ − βbÞþ
1
2
ðα−αbÞTCα;b

−1ðα − αbÞ

þ1
2
∑
N

n ¼ 1
ðdn

obs−h
nðβ;αÞÞTRn

−1ðdn
obs − hnðβ; αÞÞ:

(3)

We introduce an efficient data assimilation scheme to solve the inversion problem defined as Equation 3
where a surrogate model, for example, subdomain linear model with smooth local parameterization
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(SLM‐SLP), is used to be a full replacement of the HFM. In addition, one variant of iterative ensemble
smother, that is, ES‐MDA, is implemented as a comparison to demonstrate the ability of our approach to
effectively and efficiently mitigate ensemble collapse problem (Evensen, 2009). The detailed description of
ES‐MDA has been provided in the supporting information.

3. Smooth Local Parameterization

We have recently introduced a SLP to separately represent Gaussian parameters in each subdomain through
combining PCA and DD strategy. The procedure of implementing SLP has been systematically described by
Xiao et al. (2019) and provided in the supporting information. Although our original SLP is aimed at smooth
Gaussian parameter field, it is easily extended to non‐Gaussian facies model by integrating SLP with an
optimization‐based principal component analysis (O‐PCA) proposed by Vo and Durlofsky (2014).

3.1. Representation of Spatial Gaussian Parameter

Throughout this paper, global PCA and local PCA are separately abbreviated to be GP and LP. Our proposed
SLP procedure takes advantages of GP (e.g., smooth representation) and LP (e.g., low‐order representation)
simultaneously. The global domain Ω is decomposed into Snonoverlapping subdomains Ωd, d∈{1,2,···,S}.
SLP can determine GP coefficients ξG as a function of LP coefficients ξd via an optimization procedure, which
has been given the supporting information as well.

Given LP coefficients ξL = [ξ1,···,ξd,···,ξS], d∈{1,2,···,S}, the corresponding GP coefficients ξG are obtained:

ξG ¼ TGLξL; (4)

whereTGL ∈ RNG×NL is a transformation matrix for converting LP coefficients to GP coefficients, which has
been given as Equation 10 in the provided supporting information. NG and NL separately denote the total
number of GP and LP coefficients. After obtaining the GP coefficients, the smooth global parameters can
be reproduced as follows:

β¼ βm þΦβTGLξL; (5)

where Φβ denotes a basis matrix to project global parameter space into reduced subspace.

This SLP allows us to represent GP coefficients using a relatively small number of LP coefficients in each
subdomain. To fully preserve the original GP basis vectors in SLP procedure, we should guarantee one neces-
sary condition that the transformation matrix TGL is full row rank. Xiao et al. (2019) demonstrated that NL

should be equal to or slightly larger than NG without the need of retaining redundant LP coefficients. This
necessary condition could be easily satisfied to obtain an optimal implementation of SLP procedure.

We manually generate Nr = 1,000 Gaussian models with a size 40 × 120. The global domain is decomposed
into 4 × 5 rectangle subdomains. Figure 1 shows the reconstructed parameter fields using LP and SLP sepa-
rately given the same LP coefficients generated by drawing a set of NL variables from a standard normal dis-
tribution. Figure 1 demonstrates that SLP reconstructs a smooth Gaussian parameter field in contrast to LP
procedure.

3.2. Representation of Spatially Non‐Gaussian Indicators for Binary Systems

As noted by Vo and Durlofsky (2014), PCA‐like parameterization techniques, including standard GP and our
proposed SLP procedure, are linear‐Gaussian transformations, which are not suitable for the non‐Gaussian
parameters. Fortunately, O‐PCA proposed by Vo and Durlofsky (2014) can effectively handle this problem.
We extend SLP to non‐Gaussian parameters, for example, binary facies system through merging SLP and O‐
PCA, which is referred to as O‐SLP.

We can reformulate Equation 5 as an optimization problem,

β¼ argmin
β̂

‖βm þΦβTGLξL − β̂‖22 þ κRðβ̂Þ; β̂i ∈ ½β̂l; β̂u�; (6)

where R is a regularization term and κ is the corresponding regularization weight. β̂l and β̂u separately

designate the lower and upper bounds (with β̂i denoting a component of β̂ ). The selection of the
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regularization term and the corresponding weight determine the type of non‐Gaussian parameter field.
For a binary facies system, we can specify the regularization term as follows:

R¼ β̂Tð1 − β̂Þ; β̂l ¼ 0; β̂u ¼ 1: (7)

This regularization is appropriate for binary systems since it penalizes values away from 0 or 1. Vo and
Durlofsky (2014) presented an analytical solution by noting that Equation 6 can be minimized component
by component as (where subscript i denotes ith component of a vector)

βi ¼ argminβ̂i
ð1 ;− κ; Þβ̂i

2
;− ; 2; ðβslp;i ;−

κ
2
; Þ; β̂i

n o
;

βslp;i ¼ ½βmþΦβTGLξL�i;
βi ∈ ½0; 1�; i¼ 1; 2; …; Nβ;

(8)

where βslp,i represents the reconstructed parameters using the previous SLP method defined in Equation 5.
This is a constrained minimization problem; the Lagrangian and Karush‐Kuhn‐Tucker (KKT) condition
can be used to solve it (Vo & Durlofsky, 2014). Finally, an unique analytical solution is given by

βi ¼ 0; βslp;i ⩽
κ
2
; βi ¼ 1; βslp;i⩾1 −

κ
2
; βi ¼

βslp;i −
κ
2

1 − κ
;
κ
2
⩽ βslp;i ⩽ 1 −

κ
2
:

(9)

We should note that Vo and Durlofsky (2014) posed determination of κ as a parameter optimization before
implementing this O‐SLP procedure. In addition, Vo and Durlofsky (2014) also derived an expression for the
derivative of geological parameters β with respect to GP coefficients ξG. Similarly, we can obtain the deriva-
tive of GP coefficients ξG with respect to the LP coefficients ξL as well using Equation 4. By combining these
two derivatives on the basis of a chain rule, we can analytically obtain the derivative of β with respect to LP
coefficients ξL as follows:

dβ
dξL

¼ dβ
dξG

dξG
dξL

; (10)

where we do not explicitly give the formula of this derivative term
dβ
dξG

. This derivative term demonstrates

that O‐SLP preserves the smoothness and differentiability, which is particularly useful for the
gradient‐based parameter estimation in this study.

We generate Nr = 1,000 binary facies models, and among them, three realizations are illustrated in the first
row of Figure 2. Unlike the Gaussian smooth parameter field with spatially continuous variables, for exam-
ple, log‐permeability, an indicator used to identify the facies type has specific number, for example, 0 and 1
for binary facies system. The dimensionality of this model is 40 × 40, which is decomposed into 3 × 3 rectan-
gle subdomains. The last two rows of Figure 2 separately show the reconstructed binary facies field and its
corresponding histogram using LP, SLP, and O‐SLP, which indicates that not only does O‐SLP reproduce
a smooth non‐Gaussian parameter field in contrast to LP procedure but also it preserves the

Figure 1. Illustration of Gaussian parameter reconstruction. Left: LP; Right: SLP
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non‐Gaussian properties of facies indicators effectively. The weight κ∈ (0, 1) quantifies the impact of
regularization on the realizations generated by O‐SLP. To have a near‐binary distribution that does not
exhibit too large of a jump in the derivative (meaning the model contains sufficient values between 0
and 1), a value of κ = 0.8 is used in this study. The results demonstrate that O‐SLP pushes the values to 0
and 1 as much as possible while clearly contains values between 0 and 1 as well. This renders the O‐SLP
model (piecewise) differentiable. We also show some reconstructed facies models conditioning to different
values of κ in the supporting information. As κ → 0, the realizations will be far from the target (binary)
distribution, and as κ → 1, the jump in the derivative will become too large.

4. Surrogate Model with SLP for Parameter Estimation
4.1. Formulation of Surrogate Model

In this section, we formulate a surrogate to replace the original complex system with a set of subdomain lin-
ear models. In general, the simulated outputs are strongly correlated with fewer influential or local para-
meters (Ding, 2011; Ding & Mckee, 2013). This fact motivates us to construct subdomain linear models
with smooth local parameterization (SLM‐SLP) alternatively. After decomposing the global domain Ω into
S nonoverlapping subdomains Ωd, d∈{1,2,···,S}, it is critical to relate the specific simulated outputs with
the local parameters. To speed up the model linearization, we assume that each subdomain is “large”
enough so that it can be handled individually, and we can generate subdomain linear model for each large
subdomain individually. A subdomain linear model in subdomain Ωd can be presented as follows:

Figure 2. Illustration of smooth local parameterization for binary facies model. The first row shows three realizations of the binary facies mode. The second and
third rows show the reproduced facies models and its corresponding histograms. Left: LP; middle: SLP; right: O‐SLP.
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yn;d ¼ yn;db þ ∂yn;d

∂ξdb
ðξd − ξdbÞþ

∂yn;d

∂ξ sdb
ðξ sd − ξ sdb Þþ

∂yn;d

∂αb
ðα − αbÞ; n¼ 1; · · · ; N ; (11)

where
∂yn;d

∂ξdb
and

∂yn;d

∂ξ sdb
are the derivative terms of simulated outputs with respective to the related local

parameters. A simple numerical FD method can be used to approximate these derivative terms.
Distinctive to spatial geological parameters, relative permeability parameters α are global correlation
and cannot be locally parameterized.

To generate a robust and accurate linear model (Nocedal & Wright, 1999), the FD method requires that the
number of model evaluations should be strictly larger than the number of parameters. This strict require-
ment makes high‐dimensional inversion problems almost computationally intractable. Construction of sub-
domain linear model avoids to solve one large system of equations for the global linear model and thus has
some potential advantages: (1) local parameterization will be highly representative of the local geological
properties; (2) there may be only a few patterns required in each subdomain, leading to further reduction
of the dimensions of the surrogate model that need to be constructed; and (3) a natural opportunity may
arise for parallelization.

We should note that it will be never possible for us to easily clarify this local correlations in realistic applica-
tions and the definition of “ large ” or “ small ” is very subjective. An inappropriate DD scheme, for example,
too “large” or too “small” subdomains, easily leads to spurious long‐distance correlations or cuts off inherent
correlations among neighboring subdomains and hence deteriorates the accuracy of SLM‐SLP. Fortunately,
an adaptive scheme will be introduced to mitigate this negative effect to some extent in the following part.

4.2. An Adaptive Formulation of Parameter Estimation with Surrogate Model

We introduce an adaptive scheme, that is, weighting smooth local parameterization (WSLP), to mitigate the
negative effect of inappropriate DD scheme. Themain idea ofWSLP is to redefine the original objective func-
tion as a weighting sum of sub‐objective functions corresponding to specific DD. We introduce a new vector
of weighting coefficientsω¼ ½ω1; · · · ; ωLlp �; Llp represents the total number of DD schemes. Each weight-

ing coefficient is assigned to one sub‐objective function, and then weminimize the total sum of these weight-
ing sub‐objective functions. The minimization algorithm adaptively determines the weighting coefficients
and the optimal DD correspondingly.

The lth DD scheme generates a vector of LP coefficients ξ lL = [ξd1 ; · · · ; ξdl ; · · · ; ξdSl ]. The original objec-

tive function J(ξG,α) is presented as a total sum of weighting sub‐objective function JðTl
GLξ

l
L; αÞ (l = 1,···,Llp)

corresponding to different DD scheme as follows:

JðξG; αÞ ¼ ∑
Llp

l ¼ 1
ωlJðTl

GLξ
l
L; αÞ; ∑

Llp

l ¼ 1
ωl ¼ 1; ωl > 0; (12)

whereTl
GL is a transformation matrix given in Equation 4 for converting LP coefficients to GP coefficients for

the lth DD scheme. Equation 12 is a constrained optimization problem. We introduce a new variable γ to

replace these weighting coefficients and therefore make the constrains, for example, ∑Llp
l ¼ 1ωl ¼ 1 and

ωl>0, automatically satisfied. Some available formulations of the weighting coefficients are listed in Table 1.

Table 1
Summary of the Available Formulations of the Weighting Coefficients to Relax Constrains

Llp ω¼ ½ω1; · · · ; ωLlp �
1 ω1 = 1

> = 2
Type 1: ω1 ¼ 1

∑Llp
l ¼ 1γ2ðl−1Þ

, ω2 ¼ γ2

∑Llp
l ¼ 1γ2ðl−1Þ

, ···, ωLlp ¼
γ2ðLlp−1Þ

∑Llp
l ¼ 1γ

2ðLlp−1Þ

Type 2: ω1 ¼ 1

∑Llp
l ¼ 1e

ðl−1Þγ
, ω2 ¼ eγ

∑Llp
l ¼ 1e

ðl−1Þγ
, ···, ωLlp ¼

eðLlp−1Þγ

∑Llp
l ¼ 1e

ðLlp−1Þγ
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Instead of directly minimizing this objective function with respect to LP coefficients ξ lL for each DD scheme,
we can minimize GP coefficients ξG alternatively by use of a linear relationship between ξL and ξG as defined
in Equation 4. In addition to GP coefficients ξG and relative permeability parameters α, the new variable γ
also needs to be optimized simultaneously. The gradient of this objective with respect to all variables is as
follows:

▽JðξG; α; γÞ ¼
∂JðξG;α; γÞ

∂ξG

� �T
;
∂JðξG;α; γÞ

∂α

� �T
;
∂JðξG;α; γÞ

∂γ

� �T" #T

; (13)

where

∂JðξG;α; γÞ
∂ξG

� �T
¼ ∑

Llp

l ¼ 1
ωl

∂JðTl
GLξ

l
L;αÞ

∂ξ lL

dξ lL
dξG

" #T

;

∂JðξG;α; γÞ
∂α

� �T
¼ ∑

Llp

l ¼ 1
ωl

∂JðTl
GLξ

l
L;αÞ

∂α

" #T

;
∂JðξG;α; γÞ

∂γ

� �T
¼ ∑

Llp

l ¼ 1
JðTl

GLξ
l
L; αÞ

dωl

dγ

� �T
:

(14)

To explicitly determine the gradient ▽J(ξG,α,γ), several terms required in Equation 14 have been provided

in the supporting information. Once the gradient ▽J(ξG,α,γ) at the kth iteration step is available, the next
estimation of the optimal variables that minimize the objective function is given by

ξG
α
γ

2
64

3
75
kþ1

¼
ξG
α
γ

2
64

3
75
k

− εk
▽JðξG;α; γÞk

‖▽JðξG;α; γÞk‖∞
; (15)

where εk is a step length at the kth iteration step. ∞ represents an infinite norm of a vector.

Many optimization methods can be used to minimize the objective function J(ξG,α) defined as
Equation 12. One can approximate the Hessian matrix using the first‐order gradient and then use a
Newton's like updating, for example, quasi‐Newton and Gaussian Newton (Nocedal & Wright, 1999).
The accuracy of Hessian matrix is mainly determined by the quality of the gradient computed from the
subdomain linear models; thus, the convergence of Newton's like optimization methods cannot be
ensured very well. In this work, the minimization procedure is directly performed using a steepest descent
algorithm (Nocedal & Wright, 1999).

The minimization algorithm terminates when either one of the following two stopping criteria is satisfied.
Here ηJ and ηξG;α;γ denote the predefined error constraints.

• The objective function defined as Equation 3 hardly changes, that is,

jJðξG;α; γÞkþ1Þ−JðξG;α; γÞkÞj
maxfjJðξG;α; γÞkþ1Þj; 1g

<ηJ : (16)

• The estimate of parameters almost does not change, that is,

j
ξG
α
γ

2
64

3
75
kþ1

−

ξG
α
γ

2
64

3
75
k

j

max j
ξG
α
γ

2
64

3
75
kþ1

; j; ; 1

8><
>:

9>=
>;
<ηξG ;α;γ : (17)

After obtaining the optimized parameters (ξ∗G; α
∗) by use of current subdomain linear models, the objective

function Jðξ∗G; α∗Þ is computed using the HFM to check whether an acceptable optimizer has been obtained.
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If the solution of this subdomain linear system as Equation 11 cannot be used to exactly represent the
original objective function as Equation 3, additional outer loops are required to reconstruct new

subdomain linear models around the currently updated parameters (ξ∗G; α
∗ ), and then the iterative inner

loop is performed again.

The choice of our proposed locally linear surrogates deserves to be discussed and explained here. In general,
some nonlinear surrogate models, such as PCE and GPR, which have been extensively applied to the field of
subsurface flow problem, can be used to represent the nonlinearity of the problems; unfortunately, the
required number of trainingmodels will be exponentially increased. On the contrary, the computational cost
of our proposed subdomain linear models will be linear increased as the parameter dimensions. In terms of
representing the nonlinearity, our approach construct local linear model at each out iteration and then
update the linear model for each iterations. This alternative inner‐outer loop strategy that constructs local
linear surrogates and updates them continuously could progressively capture the nonlinearity and approach
to the optimal solution (Altaf et al., 2009; Kaleta et al., 2011; Vermeulen & Heemink, 2006; Xiao et al., 2018).
In addition, in the presence of global approximations the order of the polynomial can be quite high, and
therefore, the number of coefficients and consequently numerical simulations grows exponentially, while
the local representations would only require a limited degree (this is indeed why our proposedmethodworks
by only employing a linear local reconstruction). It could expect that the reconstruction of surrogate models
could be avoid if we directly form a nonlinear model using PCE or GPR. However, the corresponding com-
putational cost will be significantly increased. It is very interesting to compare these two strategies through
assessing the accuracy and efficiency in the future.

5. Illustrative Examples

Two cases are presented in this section. The first case is mainly used to study the DD strategy on a
two‐dimensional non‐Gaussian binary facies model. The RML procedure is provided in the supporting infor-
mation. The second case is tested on a real‐world high‐dimensional model with Gaussian hydraulic conduc-
tivity parameters. This case is used to demonstrate the computational efficiency of SLM‐SLP in
high‐dimensional inverse modeling.

MRST, a free open‐source software for subsurface flow modeling and simulation (Lie et al., 2012), is used to
run HFM simulations. Settings about the model geometry, fluid properties, and well controls are shown in

Table 2
Experiment Settings Using MRST for Cases 1 and 2

Basic parameter Case 1 Case 2 Unit

Dimension 60 × 60 40 × 120 —

Grid size 40 × 40 m
Number of injectors and producers 6, 4 6, 7 ‐

Fluid density 1,014, 859 kg/m3

Fluid viscosity 0.4, 2 mP·s
Initial pressure 25 MPa
Initial saturation So = 0.80, Sw = 0.20 —

Injection rate 200 m3/d
Producer head pressure 20 MPa
Historical production time 5 10 Years
Prediction time 10 15 Years
Time step 0.1 Years
Measurement time step 0.2 Years
Relative permeability parameters Lower bound Upper bound Reference value
Irreducible water saturation, Swir 0.3 0.1 0.15
Residual oil saturation, Sor 0.3 0.1 0.15
Corey exponent for oil phase, no 4 2 3
Corey exponent for water phase, nw 4 2 3

k0ro
1.0 0.8 0.9

k0rw
1.0 0.8 0.9
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Table 2. In terms of computational effort, the runtime of a single HFM simulation for these two cases is about
4.8 and 12.5 s on a machine with i5‐4690 Intel CPUs (four cores, 3.5 GHz) and 24 GB memory using Matlab‐
R2015a. SLM‐SLP model, by contrast, needs less than 0.1 s for those two cases. The results of application of
SLM‐SLP in conjunction with an gradient‐based parameter estimation procedure are presented in the fol-
lowing parts.

We quantify the quality of SLM‐SLP by reporting the ensemble average root mean square error (RMSEmu)
and the ensemble average spread (ESPmu) for the estimated geological parameters fields β, which separately
represents the facies indicators and log‐permeability field for Cases 1 and 2 and relative permeability para-
meters α. These measures are computed as follows:

RMSEmuðβÞ(18)¼ 1
Nβ

∑
Nβ

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ne

∑
Ne

j ¼ 1
ðβi;j−βitrueÞ2

s
; ESPmuðβÞ ¼ 1

Nβ
∑
Nβ

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ne

∑
Ne

j ¼ 1
ðβi;j−βimeanÞ2

s
;

RMSEmuðαÞ ¼ 1
Nα

∑
Nα

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ne

∑
Ne

j ¼ 1
ðαi;j−αi

trueÞ2
s

; ESPmuðαÞ ¼ 1
Nα

∑
Nα

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ne

∑
Ne

j ¼ 1
ðαi;j−αi

meanÞ2
s

;

βimean ¼
1
Ne

∑
Ne

i ¼ 1
βi;j; αi

mean ¼
1
Ne

∑
Ne

i ¼ 1
αi;j;

(18)

where βi,j denotes the ith element of jth ensemble realization for parameter vector β. This notation is also
same for αi,j. βtrue and αtrue separately represent the reference values.

5.1. Case 1: Two‐Dimensional Synthetic Modeling with Non‐Gaussian Binary Facies

In this case, SLM‐SLP is used to estimate non‐Gaussian binary facies indicators. The value of
log‐permeability for these two facies has a large contrast. The permeability of shale facies and sand facies
is 50 mD (millidarcy) and 2,000 mD (millidarcy), respectively. Given the facies indicators β obtained from
our proposed O‐SLP procedure, we compute the permeability value for each grid using a linear interpolation
function (50 + 2,000 β). This model describes a water‐oil two‐phase system. There are in total six producers
and four injectors, labeled from P1 to P6 and I1 to I4, respectively, as illustrated in Figure 4.

We manually generate 1,000 non‐Gaussian binary facies models, and one of these realizations is considered
to be the truth; see Figure 4a. We divide the entire domain into 4 × 4 rectangle subdomains, which is con-
sidered to be the base case. In this numerical experiment, GP procedure preserves 72 GP coefficients, while
O‐SLP procedure uniformly preserves five LP coefficients in each subdomain. Although totally, 80 LP coeffi-
cients are used to characterize original 72 GP coefficients, five LP coefficients in each subdomain are signif-
icantly smaller than 72 GP coefficients. This advantage allows us to construct subdomain linear models
efficiently. We generate a vector of relative permeability parameter α using a function: αj = Lj+(Uj − Lj)
Rnd, where Lj and Uj are the lower and upper bounds of the jth relative permeability parameters and Rnd

is a random number between 0 and 1. The lower bounds, upper bounds, and reference values for these six
relative permeability parameters are shown in Table 2. There are in total 78 parameters needed to be esti-
mated for Case 1, including 72 GP coefficients and six relative permeability parameters.

The noisy measurements generated from the model with the true hydraulic conductivity field and relative
permeability parameters consist of head pressures in four injectors and fluid flux and water breakthrough
in six producers, which gives in total 400 measurements. Normal distributed independent measurement
noise with a standard deviation equal to 5% of the true data values is added to all measurements.
5.1.1. Study of a Base Case
The numerical FD optimization approach with global parameterization, referred to as FD‐GP, is also imple-
mented as a comparison. The stopping criteria are set to be ηJ = 10 − 4 and ηξG;α;γ ¼ 10−3. We set the initial

iteration length ε0 = 0.1; the iteration length is automatically halved as the value of the objective function
increases. Figures 3a and 3b separately show the evolution of objective function values as a function of
out‐loop iterations and required HFM simulations. Our proposed SLM‐SLP procedure requires much fewer
HFM simulations than that of FD‐GP procedure, while comparable objective function values are obtained.
Specifically, SLM‐SLP runs 120 HFM simulations; among them, five HFM are ran by perturbing LP coeffi-
cients and six HFM are ran by perturbing the relative permeability parameters at each outer‐loop
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iteration, while GP‐FD requires 2,808 HFM simulations. There is an approximate 20 times speedups
expressed in the number of HFM runs. Figure 3 also depicts that SLM‐SLP procedure obtains acceptable
results after five outer‐loop iterations, and therefore, 60 redundant HFM runs can be further avoided.

Figure 4 shows the true, initial, and updated binary facies models. An effective calibration of discrete
channelized geological features is a key metric to assess the quality of the non‐Gaussian parameter estima-
tion procedure. Three red circles are drawn to emphasize three different connectivity structures as illu-
strated in Figure 4. It is evident that SLM‐SLP successfully reproduces these three structures. The three
subfigures at the third row show the updated binary facies indicators at different outer loops. These three
structures are gradually reconstructed using our new method. We also should emphasize that the calibra-
tion of channelized geological connectivity easily makes gradient‐based optimization unstable due to its
discreteness; fortunately, the O‐SLP is a linear transformation with smoothness and differentiability and
therefore is able to effectively calibrate binary system. The subfigure at the last row illustrates the histo-
gram of facies indicators of the true model, initial model, and updated models. Although the amounts
of facies indicators 0 or 1 are not perfectly reproduced, both nonzero and non‐one indicators observed
in the initial model have been drastically decreased after conditioning to the dynamic data, indicating that
the non‐Gaussian binary facies features have been successfully preserved. The estimated relative perme-
ability parameters and their relative errors are listed in Table 3. Parts of the estimated values show a good
agreement with the reference values.
5.1.2. Study of DD Scheme
Five regular DD schemes, that is, 3 × 3, 4 × 4, 5 × 5, 2 × 8, and 8 × 2 rectangle subdomains are studied. Using
more subdomains generates fewer LP coefficients in each subdomain; as a result, fewer HFM simulations are
required to construct SLM‐SLPmodels. Among these five DD schemes, SLP enables us to retain at most eight
LP coefficients. The evolution of objective function values as a function of out‐loop iterations is shown in
Figure 3a. SLM‐SLP obtains comparable objective function values with FD‐GP method except the 5 × 5
DD. Figure 3b shows the evolution of objective function values as a function of required HFM simulations
for FD‐GP and SLM‐SLP. SLM‐SLP requires much fewer HFM simulations than FD‐GP to yield comparable
objective function values. For example, SLM‐SLP with 2 × 8 DD requires 60 HFM simulations, which indi-
cates an approximate 20 times speedups expressed in number of HFM simulations. Figure 5 shows the true,
the initial, and the updated binary facies models. The updated facies indicators and the discrete channelized
geological features differ significantly, which implies that some local minima are generated using different
DD schemes. Overall, these results indicate that it is possible to run fewer HFM simulations to find accurate
results by designing a much better DD scheme, for example, 2 × 8 in this case.

To further investigate the sensitivity of subdomains with other shapes, we decompose the global domain into
triangle‐like subdomains as illustrated in Figure 6. The 3 × 3 rectangle subdomain is denoted as rectangle
subdomain as shown in Figure 6a; other two layouts, separately denoted as triangle subdomain 1 and triangle
subdomain 2, are used to form nine triangle‐like subdomains. Figure 6d shows the evolution of objective

Figure 3. The evolution of the objective function values as a function of outer loops and number of HFM simulations using SLM‐LP and GP‐FD method for Case
1. The calculation of the objective function for outer loops uses HFM defined in Equation 3.
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function values as a function of out‐loop iterations. These three layouts yield similar objective functions
while obtain different convergence rates. Specifically, rectangle subdomain and triangle subdomain 1
approximately need 10 out‐loops, while triangle subdomain 2 requires another six outer‐loops, which
indicates that triangle subdomain 2 needs more HFM simulations. Figures 6e and 6f show the updated
binary facies models for triangle subdomain 1 and triangle subdomain 2. Overall, the main channelized
features have been successfully reconstructed. In comparison to triangle‐like subdomains, the regular
subdomains are easily formed and therefore are convenient to be applied to the real‐world inverse modeling.

Figure 4. Updated binary facies indicators using SLM‐LP and GP‐FD method for Case 1. The three subfigures at the third row show the updated binary facies
models at 1st, 5th and 10th outer‐loop iteration. The last subfigure is the histogram of facies indicators for the true model, initial model, and updated model.
The dash red line and blue line separately denote the amount of shale indicator and sand indicator for the true model.
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Through repeating the optimization process for each DD individually, we have determined that 2 × 8 is the
best one, while 5 × 5 is the worse one. However, repeating the optimization process requires intensive com-
putations in real‐world applications. To mitigate this negative effect of inappropriate DD scheme, such as
5 × 5 subdomains where the objective function is hard to be minimized, an adaptive SLP strategy, that is,
WSLP, is introduced. We design three adaptive strategies to systematically investigate the performance of
WSLP.

• Adaptive 1: 3 × 3 and 5 × 5 are simultaneously considered.
• Adaptive 2: 4 × 4 and 5 × 5 are simultaneously considered.
• Adaptive 3: 3 × 3, 4 × 4, and 5 × 5 are simultaneously considered.

Types 1 and 2 separately denote the two formulas of weighting coefficients as given in Table 1. As shown in
Figures 7a–7c, both Adaptives 1 and 3 generate comparable objective function values with the 3 × 3 DD

Figure 5. Updated binary facies models using different domain decomposition without the adaptive scheme for Case 1.

Table 3
The Estimated Relative Permeability Parameters for Case 1

Parameters
α = [Swir, Sor, k

0
rw, k

0
ro, nw, no]

T

Reference value [0.15, 0.15, 0.9, 0.9, 3, 3]

‐ Estimated Value Relative Error (%)

3 × 3 [0.162, 0.159, 0.862, 0.913, 3.12, 3.23] [8.0, 1.4]
4 × 4 [0.179, 0.175, 0.922, 0.931, 3.24, 3.29] [19, 2.4]
5 × 5 [0.189, 0.191, 0.935, 0.939, 3.25, 3.38] [27, 3.9]
2 × 8 [0.164, 0.141, 0.915, 0.872, 3.25, 3.18] [9.3, 1.7]
8 × 2 [0.141, 0.162, 0.928, 0.864, 3.18, 3.28] [8.0, 3.1]
Adaptive 1 [0.161, 0.159, 0.861, 0.914, 3.15, 3.21] [7.3, 1.6]
Adaptive 2 [0.165, 0.162, 0.871, 0.919, 3.17, 3.24] [10, 2.1]
Adaptive 3 [0.178, 0.175, 0.925, 0.933, 3.22, 3.27] [18.7, 2.8]
FD‐GP [0.166, 0.160, 0.912, 0.824, 3.18, 3.22] [10.6, 1.3]

Note. The last column shows the maximum and minimum relative errors.
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scheme, while Adaptive 2 generates comparable objective function values with the 4 × 4 DD scheme.
Figures 7d–7f represent the evolution of the weighting coefficients as a function of outer‐loop iterations.
We initialize an equal weighting for each DD scheme; this adaptive scheme can gradually identify the sub-
cost function, which is easy to be minimized and then assign a dominant weighting to it correspondingly or
vice versa. For example, both Adaptives 1 and 3 identify the subcost function for 3 × 3 DD is easily mini-
mized, while Adaptive 2 identifies the subcost function for 4 × 4 DD is easily minimized. The 5 × 5 DD is
hard to be minimized in this case. These results are perfectly consistent with the previous results.
Figures 7g–7i depict the updated binary facies models for these three adaptive strategies. Visually speaking,
both Adaptives 1 and 3 yield similar models with 3 × 3 DD scheme, while Adaptive 2 generates a similar
models with the 4 × 4 DD scheme. This adaptive strategy can help us optimize the DD scheme effectively,
particularly when a good prior knowledge of the studied domain is not available. We could consider various
DD schemes as much as possible so that we have the high possibility to get the optimal or at least
suboptimal one.

The computational cost of this adaptive strategy is approximately equivalent to the most computationally
expensive one among all considered DD schemes. For example, both Adaptives 1 and 3 need 150 HFM simu-
lations, while Adaptive 2 needs 120 HFM simulations. Figure 8 shows the results with increasing numbers of
subdomains for the first example (e.g., a convergence plot and a HFM simulation plot). We adopt the stan-
dard rectangle subdomain as shown in Figure 6a while increasing the number of subdomains. It is easily
observed that the results of the proposed adaptive strategy can approximately converge to the reference,
which indicates the accuracy and efficiency of the proposed method. The corruption of the very bad DD
indeed has been significantly decreased as suggested in Figure 7. This adaptive scheme requires us to con-
struct a large set of subdomain linear models for all considered DD schemes, which will increase the overall
computational overhead and memory requirements particularly for high‐dimensional models. Based on the
first several outer‐loop iterations, this adaptive scheme has successfully implied the optimal DD according to
the values of weighting coefficients, and then we can directly minimize the corresponding objective function
without using this adaptive scheme. The real‐world applications benefit from this finding by avoiding the
unnecessary computational overhead and memory requirements.

Figure 6. Updated binary facies models using rectangle and triangle‐like subdomains for Case 1. The first row shows the layout of rectangle and two triangle‐like
subdomains. The second row shows the evolution of objective function and updated binary facies models. The red lines are used to makea clear comparison.
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5.2. Case 2: High‐Dimensional Modeling With Gaussian Parameters

In this case, SLM‐SLP is used to estimate a large number of parameters by assimilating seismic data for a
real‐world model (Matthews et al., 2008). This model also describes a water‐oil two phase system. Six produ-
cers and seven injectors, labeled from P1 to P6 and I1 to I7, respectively, are located in this model. Other set-
tings about the model geometry, fluid properties, and well controls are shown in Table 2. We manually
generate 1,000 Gaussian‐distributed realizations of log‐permeability fields. The log‐permeability fields are
described by the following statistics:

Cβðxi1;j1; yi2;j2� ¼ σ2βe
−

jxi1−xi2 j
χx

� �2
þ jyi1−yi2 j

χy

	 
2h i
; σβ ¼ 5;

χx
Lx

¼ 0:2;
χy
Ly

¼ 0:2: (19)

Here, σβ is the standard deviation of log‐permeability β. xi1,j1 = (xi1,yj1) denotes the coordinates of a grid
block; χx (or χy) is the correlation length in vertical (or horizontal) direction. Lx (or Ly) is the domain
length in vertical (or horizontal) direction. In the global domain 296 GP coefficients are retained. The
reference values for six relative permeability parameters are shown in Table 2. There are in total 302
uncertain parameters for Case 2.

Figure 7. The evolution of objective functions and the weighting coefficients as a function of the iterations obtained with different adaptive scheme for Case 1.
From left side to the right side, these three columns separately show the results of Adaptives 1, 2, and 3.
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The Gassmann model (Gassmann, 1951) is often used to convert the reservoir properties and the simulator
primary variables (pressure and phase saturation) into seismic data, while we will directly assimilate the
grid‐based water saturation in this paper. The synthetic seismic data are generated based on the true model.
The seismic data are collected at two monitor surveys after 1,825 days (first monitor) and 3,650 days (second
monitor). Thus, there are in total 10,700 measurements. The noised measurements for the two monitors are
shown in Figure 9.
5.2.1. Study of a Base Case
Two DD schemes, that is, 4 × 5 and 5 × 6, and an adaptive scheme where 4 × 5 and 5 × 6 are simultaneously
considered, are compared. In this high‐dimensional model, 15 and 10 LP coefficients need to be uniformly
retained in each subdomain for these two DD schemes, respectively. Figure 10a shows the evolution of objec-
tive function values as a function of out‐loop iterations. The 4 × 5 DD and the adaptive scheme yield com-
parable objective function values, which are better than 5 × 6 DD. This result indicates that 4 × 5 is a
relatively better DD scheme in this case study. Both 4 × 5 DD and the adaptive scheme need 220 HFM simu-
lations, while GP‐FD requires 6,416 HFM simulations. There is an approximate 30 times speedups expressed
in number of HFM runs.

Figures 10b–10g depict that the true log‐permeability fields can be reproduced accurately when a large num-
ber of measurements is available. Increasing the number of available measurements does not perfectly
reproduce the reference values of the relative permeability parameters as shown in Table 4. One possible
explanation for this result is that the seismic data have strongly nonlinear relationship with the relative per-
meability parameters; the subdomain linear models cannot capture this nonlinearity and induce a bias esti-
mation. Alternative nonlinear surrogate models or bias correction procedure deserve to be further

Figure 8. The final objective function values and number of HFM simulations as a function of number of subdomains using SLM‐LP for Case 1.

Figure 9. Noise distribution of water saturation for Case 2. Normal distributed independent measurement noise with a standard deviation equal to 5% of the
“true” data value was added to all observations.
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investigated for an unbiased estimation of the relative permeability parameters. Figure 11 illustrates the
cross‐plots between observed and predicted water saturation at these two monitoring surveys. The correla-
tion coefficients R2 have been increased from initial 60% to updated 94%, which quantify the improvements
of model prediction.
5.2.2. Comparison of SLM‐SLP and ES‐MDA for Uncertainty Quantification
Assimilating a large amount of measurements, for example, totally 10,700 seismic data in this case, is a chal-
lenging task for the ensemble‐based data assimilation algorithms. Due to the limited computational

Figure 10. The first subfigure shows the evolution of objective function values as a function of outer‐loops for Case 2. The computation of the objective function
uses HFM simulations as Equation 3. The remaining subfigures show the updated log‐permeability using SLM‐SLP and FD‐GP.

Table 4
The Estimated Relative Permeability Parameters for Case 2

Parameters
α = [Swir, Sor, k

0
rw, k

0
ro, nw, no]

T

Reference value [0.15, 0.15, 0.9, 0.9, 3, 3]

‐ Estimated value Relative error (%)

With adaptive [0.182, 0.201, 0.865, 0.858, 3.62, 3.84] [34, 3.9]
4 × 5 [0.183, 0.199, 0.861, 0.860, 3.59, 3.88] [32.7, 4.0]
5 × 6 [0.191, 0.218, 0.842, 0.867, 3.71, 3.64] [45.3, 3.7]
FD‐GP [0.189, 0.191, 0.855, 0.864, 3.44, 3.80] [27.3, 4.0]

Note. The last column shows the maximum and minimum relative errors.
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resource, only a small ensemble size is computationally affordable in the real‐world applications.
Unfortunately, the small ensemble size easily yields an ensemble collapse problem. Numerical experiments
have demonstrated that the SLM‐SLP outperforms one variant of iterative ensemble smoother, for example,
ES‐MDA.

ES‐MDA repeatedly assimilates the seismic dataNa = 10 times. Two different ensemble size, that is,Ne =
100, 500, are used in ES‐MDA. SLM‐SLP is implemented with an adaptive scheme by simultaneously con-
sidering 4 × 5 and 5 × 6 DD schemes. We repeatedly implement SLM‐SLP to generate 100 posterior realiza-
tions. To simplify the notations, ES‐MDA and SLM‐SLP with 100 and 500 ensemble sizes are separately
referred to as ES‐MDA(100), ES‐MDA(500), and SLM‐SLP(100).

Figure 12 shows a set of boxplots for the optimized objective function values, RMSEmu of log‐permeability,
and the updated relative permeability parameters using ES‐MDA(100), ES‐MDA(500), and SLM‐SLP(100).

Figure 11. The cross‐plots between observed and predicted water saturation for Case 2. The dashed lines correspond to ±2 standard deviations of the
measurement errors.

Figure 12. Boxplots of data mismatch and RMSE of the updated log‐permeability for Case 2. The dash pink lines denote the reference value of relative
permeability parameters. Here the uppercase “K” represents the log‐permeability.
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As illustrated in Figures 12a and 12b, the optimized objective function values and RMSEmu of
log‐permeability have been drastically decreased. The SLM‐SLP(100) outperforms ES‐MDA(100) in terms
of generating smaller objective function values and RMSEmu of log‐permeability. To obtain 100 posterior
solutions, SLM‐SLP(100) totally requires 320 = 100+10 × (15 + 6 + 1) HFM simulations, while
ES‐MDA(100) needs 1,000 = 10 × 100 HFM evaluations. The SLM‐SLP(100) achieves about three times
speedups expressed in number of HFM runs while increasing the estimation accuracy. The red dash lines
represent the reference values of the relative permeability parameters in Figures 12c–12h. The uncertainty
of these six relative permeability parameters has been significantly decreased as well.

We can primarily observe that an ensemble collapse has occurred in ES‐MDA(100). The ensemble average
spread (ESPmu) is almost vanished after assimilating the seismic data as illustrated in Figure 13i, indicating
an ensemble collapse. The final ESP is only 1.2% of its initial value, showing 98.2% reduction in ESP after ten
data assimilation steps. The final variance map in Figure 13f confirms this observation. To further guarantee
whether the underestimated ESP in ES‐MDA(100) is caused by a small ensemble size, for example, 100,
Figure 13g shows the same results as in Figure 13f, but using ensemble size 500 (instead of 100). The perfor-
mance of ES‐MDA has been improved as the ensemble size increases. As seen in Figure 13g, ESPmu has been
significantly improved to 13.4% as the ensemble size increases. By contrast, the SLM‐SLP(100) generates a
comparable ESP, for example, 14.2%, with ES‐MDA(500) procedure. However, the total computational

Figure 13. Updated log‐permeability for ES‐MDA(100), ES‐MDA(500), and SLM‐SLP(100). (a) The prior ensemble mean, (b) the prior standard deviation, (c–e)
the posterior mean maps, (f–h) the posterior standard deviation maps, and (i) the ensemble spread (ESP).
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cost of SLM‐SLP(100) is much smaller than ES‐MDA(500) where 5,000 = 10 × 500 HFM evaluations are
run. These results further demonstrate that the SLM‐SLP has a promising advantage to effectively and effi-
ciently mitigate this ensemble collapse problem.

In comparison to the first case, the number of GP coefficients has increased from 72 to 296; however, the
required number of HFM simulations has only increased from 150 to 220. The degree of freedom for the
inversion problems depends on the number of GP coefficients, while the required HFM simulations are
determined by the number of LP coefficients in individual subdomains. It is quite efficient to increase the
degree of freedom by adding LP coefficients in all subdomains simultaneously. Taking 5 × 6 DD as an exam-
ple, SLP enables us to retain another 30 GP coefficients by adding one LP coefficient in each subdomain, and
only 20 additional HFM simulations are added to the entire parameter estimation procedure. Specifically,
only two HFM simulations are added to construct subdomain linear models for each outer‐loop iteration.
The underestimation of ESPmumay be partially alleviated by increasing the ensemble size in ES‐MDA; how-
ever, the computational cost will be drastically increased as well. These numerical results further demon-
strate that introducing SLP makes subdomain linear model highly scalable and the required HFM
simulations do not grow rapidly with the increasing of the number of parameters. This advantage is particu-
larly useful to assimilate a large amount of measurements where we should pose a large degree of freedom
for avoiding a lowly effective usage of the informative measurements.

6. Conclusions

An efficient subdomain model linarization with a SLP where the global Gaussian and non‐Gaussian para-
meters are projected onto low‐order subspaces in each subdomain individually is presented to accelerate
the high‐dimensional inverse problem. This SLP enables us to construct subdomain linear models for each
subdomain using a small number of HFMs. The use of SLP drastically reduces the computational cost in the
high‐dimensional inverse problems since the number of HFM simulations depends primarily on the number
of the local parameters and not on the dimension of the underlying global parameters.

This new approach has been tested on a synthetic two‐dimensional non‐Gaussian binary facies model and a
real‐world high‐dimensional Gaussian model. The first case demonstrates the ability to reconstruct the bin-
ary features of the “true” facies models and generate comparable results to a FD‐based parameter estimation
procedure. The second case shows that also for a complex inversion problem where spatially dense seismic
data are used to estimate 302 parameters, very promising results have been obtained. Using more subdo-
mains results in fewer local parameter patterns and hence enables us to run fewer HFM simulations. The
number of HFM simulations required is roughly the multiplication of iteration steps and the maximum
number of local parameter patterns among all subdomains. In comparison to one variant of iterative ensem-
ble smoother, for example, ES‐MDA, increasing one ensemble member only adds at most one degree of free-
dom for ES‐MDA, while this SLP is quite efficiency to increase the degree of the freedom by adding local
PCA patterns among all subdomains simultaneously. This outstanding advantage makes our proposed
method easily mitigate an ensemble collapse problem.

There are a number of aspects of the proposed methodology that could possibly be improved. An obvious
shortage of the proposed adaptive scheme is that the optimal one is limited to our predefined dictionary
of DD schemes and therefore the performance of this new approach strongly depends on the design of this
dictionary. In addition, a surrogate model inevitably introduces approximation errors, and if these errors are
not modeled during the parameter inference step, the posterior distributions of the model parameters are
likely to be biased. Incorporation of approximation error in the process of parameter inference also deserves
to be explored in the future.

Data Availability Statement

TheMatlab codes and data used will be made available soon upon publication of this manuscript. Code used
to generate the figures in this paper is available online (at https://github.com/xclmj/SLM-SLP).
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