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Two-photon sideband interaction in a driven quantum Rabi model: Quantitative discussions
with derived longitudinal drives and beyond the rotating wave approximation

Byoung-moo Ann ,* Wouter Kessels, and Gary A. Steele
Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands

(Received 31 July 2021; accepted 16 November 2021; published 3 January 2022)

In this paper, we analytically and numerically study the sideband interaction dynamics of the driven quantum
Rabi model (QRM). We focus in particular on the conditions when the external transverse drive fields induce
first-order sideband interactions. Inducing sideband interactions between two different systems is an essential
technique for various physical models, including the QRM. However, despite its importance, a precise analytical
study has not been reported yet that successfully explains the sideband interaction rates in a driven QRM appli-
cable for all system parameter configurations. In our paper, we analytically derive the sideband interaction rates
based on second-order perturbation theory, not relying on the rotating wave approximation (RWA). Our formula
are valid for all ranges of drive frequencies and system’s parameters. Our analytical derived formula agrees well
with the numerical results in a regime of moderate drive amplitudes. Interestingly, we have found a nontrivial
longitudinal drive effect derived from the transverse drive Hamiltonian. This accounts for significant corrections
to the sideband interaction rates that are expected without considering the derived longitudinal effect. Using
this approach, one can precisely estimate the sideband interaction rates in the QRM not confining themselves
within specific parameter regimes for moderate drive amplitudes. This provides important contributions for
quantitatively understanding experiments described by the driven QRM.

DOI: 10.1103/PhysRevResearch.4.013005

I. INTRODUCTION

The quantum Rabi model (QRM) [1] constitutes the
essence of the light-matter interactions at the quantum level.
It specifically describes the interaction between a two-level
system (qubit) and a single cavity mode. The QRM has been
extensively studied both for fundamental interest and for ap-
plications in quantum information processing. In addition, the
QRM can describe many systems. It was originally formulated
to mathematically describe cavity quantum electrodynamics
(QED), and study the interaction between a trapped atom and
cavity mode. Beyond atomic physics, it can also be extended
to any other systems that have an analogy with the cavity-
QED, such as quantum-dots in microcavities and various
types of qubits that are transversely coupled to superconduct-
ing cavities. Moreover, the extended versions of the QRM
have been widely investigated [2–4].

The question of how to implement in situ tuneable state
transfer between the qubit and cavity mode (sideband in-
teractions) is an important aspect of studying the QRM. In
particular, it is crucial for quantum gate operation using qubits
and can be employed for quantum state engineering of the
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cavity. There are several ways to achieve this. One approach is
to suddenly switch the transition frequency of the qubit (ωq).
If the qubit is initially far-off resonant from the cavity tran-
sition frequency (|ωq − ωc| � 1), then we consider the qubit
to be isolated and they are effectively uncoupled. However, if
the qubit’s transition frequency jumps from ωq to ωc, then the
qubit and cavity become resonant and coherent state transfer
begins. Consequently, by shifting the ωq, we can turn the inter-
action between the qubit and the cavity on and off. The other
approach is to parametrically modulate the qubit’s transition
frequency. The first-order sideband interactions between the
qubit and cavity occur when the modulation frequency ωm sat-
isfies the matching conditions (ωm = |ωq ± kωc|, k is integer).

These approaches require that the frequency of the qubit
should be tunable over short time scales. This is technically
feasible if one employs superconducting qubits with SQUID
loops and on-chip magnetic flux lines. The sudden frequency
switch was realized in [5], where the authors create Fock
states in a superconducting cavity. Inducing the first-order
sideband interactions by flux modulation was proposed in [6]
and was experimentally implemented in [7]. In all cases, the
systems can be modeled by the QRM. Although these cases
successfully demonstrate the state transfer from the qubit to
the cavity, introducing tuneability into the qubit’s transition
frequency leads to another side-effect: Pure dephasing in-
duced by external noise. For example, when the tuneability
relies on the magnetic flux through the squid loops, then the
magnetic field noise into the loops accounts for the qubit’s
pure dephasing.

One can also induce the sideband interactions without any
frequency tuneability of the qubit and cavity by applying
the external transverse drive at the proper frequencies. This
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scheme is implementable with a fixed frequency qubit. There-
fore, the system is insensitive to the external noise and the
qubit’s dephasing rate is only limited by the qubit’s decay
rate [8]. For the first-order sideband interaction in the QRM,
which is typically the most attractive type, the transition is
unfortunately dipole forbidden and therefore only a two (or
any higher even number) photon drive can induce the transi-
tion. The description of the selection rule of the QRM is well
explained in the Appendix E of Ref. [9]. This complicates the
analytical solution for the interaction rates because we can-
not capture the transitions simply by first-order perturbation
theory.

In this paper, we perform a quantitative study of the first-
order sideband interaction in the QRM induced by two-photon
transverse drive fields. We analytically derive the interaction
rates based on perturbative calculation up to second-order
without relying on the rotating wave approximations [10] in
the Hamiltonian. We specifically investigate the parameter
regimes that are familiar in circuit quantum electrodynamics
(QED) experiments. In circuit QED, the frequency match-
ing condition for sideband interactions often requires drive
parameters that are beyond the rotating wave approximation
(RWA) [11], and therefore one should not rely on the RWA in
the analytical derivation of the interaction rates. Moreover, un-
der the transverse drive field, the qubit’s frequency should be
modulating at the laboratory frame, which effectively amounts
to the longitudinal drive. This effect was typically neglected
although it also can induce the sideband interactions.

Whereas a number of studies have examined how the exter-
nal transverse drive fields affect the qubits or similar systems
beyond the RWA [12–16], and there are a few studies quanti-
tatively discussing the sideband interaction rates between the
qubits and cavities [9,11,17–20], a satisfactory quantitative
study of the driven QRM beyond the RWA regime and con-
sidering the derived longitudinal drive effect has not yet been
reported. Although the quantitative work on drive-induced
sideband interaction rates beyond the RWA is presented in
several papers including our previous paper [11,20], these
are relevant with transmon [21] coupled to a resonator, not
described by the QRM due to their weakly nonlinear nature.
Considering recently rising interests in strongly anharmonic
systems such as Fluxonium qubits [22], and spin qubits [23]
whose interface to a cavity can be modeled by the QRM,
extending the discussion beyond transmons systems should
deserve large attention.

To our best knowledge, the initial attempt to analytically
derive the two-photon sideband interaction rates in the QRM
was given in [9]. In that paper, a charge qubit device dis-
persively coupled to the cavity was modeled by the QRM.
However, the analytically derived interaction rates are sig-
nificantly smaller than the simulation results. In our work,
we found that the RWA significantly distorts the calculated
sideband interaction rates for some system parameters. We
also investigate if the transverse drive field accounts for a
derived longitudinal drive effect, which also significantly con-
tributes to the total sideband interaction rates. Our analytical
predictions of the frequency matching conditions and side-
band interaction rates are well consistent with the numerical
results when we have moderate drive amplitudes. Although
our analytical model fails to explain the sideband interaction

FIG. 1. Descriptions of the first-order red and blue sideband
interactions in quantum Rabi model (QRM). The arrows indicate
the external drives that satisfy the matching conditions for red and
blue sideband interactions (red and blue arrow, respectively). A two-
photon drive is required because the first-order sideband interactions
in QRM are dipole forbidden. (a) Single-frequency (monochromatic)
drive. (b) Two-frequency (bichromatic) drive. |gn〉 and |en〉 (corre-
sponding to dashed lines) represent the dressed states of the system.
The black arrows indicate the frequency shifts induced by the exter-
nal drive fields and the qubit-cavity bare coupling g. The bare states
are depicted by solid lines.

rates as the drive strength becomes comparable to the detuning
between the qubit and drive, it nonetheless yields more precise
predictions in general than the previous analytical model. It
is crucial to remark that we find quantitative and qualitative
differences between the QRM and transmon model cases both
in the qubit frequency shifts and sideband interaction rates,
which will be also discussed in the main part of this paper.

This paper is organized as follows. In Sec. II, we analyti-
cally derive the expected matching frequencies and sideband
interaction rates based on the perturbation theory up to second
order. A description of the numerical simulation performed in
this study is given in Sec. III B. We compare the analytical and
numerical calculation results in Sec. III with extensive param-
eter scanning. We also discuss the validity and limitation of
our theory in this section. Finally, we conclude our paper in
Sec. IV.

II. THEORETICAL DESCRIPTION

In this section, we derive an analytical formula to pre-
dict the matching frequencies and sideband interaction rates.
We investigate two possible schemes for the first-order two-
photon sideband interactions in the QRM, as shown in Fig. 1.
The possible scheme for the first-order sideband interactions
is described in Fig. 1(a), where the drive field has only a
single frequency component ωd (monochromatic drive). The
downside of this approach is that there is no flexibility in
choosing the drive frequency for the given qubit and resonator
frequencies. When using two different drive frequencies (i.e.,
a bichromatic drive), we can have more flexibility in choosing
the drive frequencies. Figure 1(b) describes the bichromatic
drive case. One drive frequency is close to the resonator (ωdc,
which is called a resonator friendly drive in this paper), and
the other is close to the qubit (ωdq, qubit friendly). The solid
line and dashed lines refer to the bare and dressed energy
states of the QRM, respectively.

013005-2



TWO-PHOTON SIDEBAND INTERACTION IN A DRIVEN … PHYSICAL REVIEW RESEARCH 4, 013005 (2022)

A. Schrieffer-Wolff transformation

The transversely driven QRM Hamiltonian reads

Ĥ = ωq

2
σ̂z + ωcâ†â + g(â† + â)σ̂x︸ ︷︷ ︸

ĤQRM

+
∑

i

�
(i)
d σ̂x cos (ω(i)

d t )

︸ ︷︷ ︸
Ĥdrive

. (1)

Here, σ̂z,x is the z and x components of the Pauli oper-
ators, and â is the cavity field operator. ωq,c are angular
frequencies of the qubit and cavity, respectively. �

(i)
d and

ω
(i)
d refer to ith component of the drive amplitude and fre-

quency. It is also useful to define ε
(i)
d = �

(i)
d /2 the drive

strength for use later in this paper. We are interested in
the dispersive coupling regime where |ωq − ωc| � g. We are
also interested in those drive frequencies ω

(i)
d that are far off

resonant to ωq,c, and those drive amplitudes �
(i)
d that are

smaller than |ωq,c − ωd |. With these parameter conditions,
Ĥd can be considered as a perturbation to ĤQRM. We can

then perturbatively diagonalize the Ĥ = ĤQRM + Ĥdrive using
Schriffer-Wollf transformation [25]. The transform operator
Û takes a form of Û = exp(β∗σ̂+ − βσ̂−). We define X̂ =
βσ̂− − β∗σ̂+ in the following. The transformed Hamiltonian
Ĥ ′ is given by

Ĥ ′ = Û ĤÛ † + i(∂tÛ )Û †. (2)

The first term in Eq. (2) can be calculated using the Hausdorff
expansion [26],

eλX̂ Ĥe−λX̂ = Ĥ − λ[Ĥ , X̂ ] + λ2

2
[[Ĥ, X̂ ], X̂ ] + · · · (3)

When β � 1, we can truncate the expansion to the low order
of λ. To capture the two-photon transitions, we should include
at least to the second order of λ. Meanwhile, the second term
in Eq. (2) can be approximated by [9],

(i∂tÛ )Û † ≈ i

2
(β∗β̇ − ββ̇∗)σ̂z + i(β̇σ̂− − β̇∗σ̂+). (4)

Ĥ ′ is then expressed by

Ĥ ′ ≈ ωq

2
σ̂z + ωcâ†â + g(â + â†)σ̂x︸ ︷︷ ︸

ĤQRM

+
∑

i

�
(i)
d σ̂x cos

(
ω

(i)
d t

)
︸ ︷︷ ︸

Ĥdrive

−ωq(β∗σ̂+ + βσ̂−) − i(β̇σ̂− − β̇∗σ̂+)︸ ︷︷ ︸
Ĥ1

+
∑

i

�
(i)
d cos

(
ω

(i)
d t

)
(β∗ + β )σ̂z − ωq|β|2σ̂z − i

1

2
(β∗β̇ − ββ̇∗)σ̂z︸ ︷︷ ︸

Ĥz

− g(|β|2 + β∗)â†σ̂+ − g(|β|2 + β )âσ̂− − g(|β|2 + β∗)âσ̂+ − g(|β|2 + β )â†σ̂−︸ ︷︷ ︸
Ĥsb

+ g(β∗ + β )(â + â†)σ̂z︸ ︷︷ ︸
Ĥ2

−
∑

i

�
(i)
d cos

(
ω

(i)
d t

)
β∗(β∗ + β )σ̂+ −

∑
i

�
(i)
d cos (ω(i)

d t )β(β∗ + β )σ̂−︸ ︷︷ ︸
Ĥ3

. (5)

The main purpose of the transformation Û is to eliminate
the Ĥdrive, the time-dependent off-diagonal element in Ĥ . For
this, we need to chose proper β such that Ĥdrive + Ĥ1 = 0
satisfies. Even doing so, the Hamiltonian is not fully diago-
nalized. However, the magnitude of the residual off-diagonal
components is smaller than Ĥdrive by a factor of β2 or smaller.
If β � 1 and ωd satisfies the matching conditions for the
first-order sideband interactions, then the effects from the
residual off-diagonal terms other than Ĥsb become negligible.
Ĥz accounts for the qubit’s frequency shifts and modulations.
Ĥsb is related with the sideband interactions. Ĥ2 is derived lon-
gitudinal coupling between the qubit and cavity. Ĥ3 is derived
transverse drive. Both Ĥ2 and Ĥ3 are irrelevant to the sideband
interaction rates. We neglect the third and higher-order terms
of β in the derivation. We also do not take the dissipative
process into consideration in the derivation.

For time-periodical transverse drive, β typically takes a
form of 	iξieiω(i)

d t + 	iζie−iω(i)
d t , and here ξi and ζi are time-

independent values that we need to find to perturbatively
diagonalize the Hamiltonian. Consequently, we can always
find the terms corresponding to the qubit’s frequency mod-
ulation in Ĥz. It is intriguing to point out that we obtain
the longitudinal drive effect although we start with only the
transverse drive fields. We call this derived longitudinal drive
in this paper. The effect of these derived frequency modulation
in sideband interaction rates was neglected in many previous
papers [9,11,17–20]. In this paper, however, we will prove that
these effects significantly contribute to the sideband interac-
tion rates.

B. Monochromatic drive

In this case, we have a drive Hamiltonian Ĥdrive =
2εd cos(ωdt )σ̂x. For this, the proper β is given by

β = εd

�
eiωd t + εd

	
e−iωd t . (6)
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Here, � and 	 are ωq − ωd and ωq + ωd respectively. With
this β, Ĥdrive + Ĥ1 = 0 satisfies. For Ĥz, we obtain

Ĥz = σ̂z ×
[(

ε2
d

�
+ ε2

d

	

)
(1 + 2 cos 2ωdt ) − 2ωqε

2
d

�	
cos 2ωdt

]
,

(7)

which explains the qubit frequency shifts δωq and modulation
with an amplitude �m = 2εm, as given below:

δωq ≈ 2
ε2

d

�
+ 2

ε2
d

	
,

εm ≈ 2
ε2

d

�
+ 2

ε2
d

	
− 2ωqε

2
d

�	
. (8)

The matching frequency can be found by considering δωq and
the dispersive shift ±χ in the qubit and cavity induced by the
bare coupling g. We can approximate χ by g2/�qc + g2/	qc,
where �qc = ωq − ωc and 	qc = ωq + ωc. Then, the match-
ing conditions for blue and red sideband interactions are
given by

2ωd = ωq + δωq + ωc + 2χ (blue sideband),

2ωd = |ωq + δωq − ωc + 2χ | (red sideband).
(9)

Equation (9) is close-form expression of ωd because it exists
in both the left-hand and right-hand sides.

When ωd satisfies each blue and red sideband condi-
tion, then the Ĥsb at the qubit and cavity rotating frame is
reduced to

Ĥsb=
︷ ︸︸ ︷
−g

(
ε2

d

�2
+ 2ε2

d

�	

)
â†σ̂+ + H.c. (blue sideband).

− g

(
ε2

d

�2
+ 2ε2

d

�	

)
â†σ̂−+H.c. (red sideband, ωq>ωc).

−g

(
ε2

d

	2
+ 2ε2

d

�	

)
︸ ︷︷ ︸

�
(0)
sb /2

â†σ̂−+H.c. (red sideband, ωq<ωc).

(10)

We define �
(0)
sb by the interaction rates corresponding to the

coefficients in front of the operators in Eq. (10). In addition
to �

(0)
sb , there is additional contribution to the sideband inter-

action rates resulting from the qubit’s frequency modulation
at 2ωd in Eq. (9). If ωd satisfies the two-photon sideband
interactions, then 2ωd also automatically satisfies the con-
dition for the first-order sideband interactions for both blue
and red sideband interactions. This phenomena is analogous
to inducing the first-order sideband interaction by modulat-
ing the flux through the squid loop of the frequency tunable
qubits, which was first demonstrated in [7]. We define the
interaction rates from this contribution as �

(1)
sb , which amounts

to −2gJ1(2εm/�qc) for the red sideband interactions, and
−2gJ1(2εm/	qc) for the blue sideband interactions. Here,
Jn(x) is the first kind of Bessel function of order n. The detail
derivation is given in [6,7,24]. We summarize the derivation
in Sec. II D. Finally, we can define �sb = |�(0)

sb + �
(1)
sb | as the

analytically predicted sideband interaction rates.

C. Bi chromatic drive

Now, we consider the drive Hamiltonian given by Ĥdrive =
2εdq cos(ωdqt )σ̂x + 2εdc cos(ωdct )σ̂x. The subscription dq
and dc refer to qubit friendly and cavity friendly drives, as
depicted in Fig. 1. In this case, we chose β, as below:

β = εdq

�1
eiωdqt + εdq

	1
e−iωdqt + εdc

�2
e−iωdct + εdc

	2
eiωdct . (11)

Here, �1,�2 = ωq − ωdq,dc and 	1, 	2 = ωq + ωdq,dc, re-
spectively. Ĥz in this case is given by

Ĥz = σ̂z ×
[
ε2

dq

�1
+ ε2

dq

	1
+ ε2

dc

�2
+ ε2

dc

	2

+
(

2ε2
dq

�1
+ 2ε2

dq

	1
− 2ωdqε

2
dq

�1	1

)
cos 2ωdqt

+
(

2ε2
dc

�2
+ 2ε2

dc

	2
− 2ωdcε

2
dc

�2	2

)
cos 2ωdct

+ εdqεdc

(
1

�1
+ 1

�2
+ 1

	1
+ 1

	2

)
cos (ωdq − ωdc)t

+ εdqεdc

(
1

�1
+ 1

�2
+ 1

	1
+ 1

	2

)
cos (ωdq + ωdc)t

]
.

(12)

The drive induces the frequency shifts δωq, as given in
Eq. (13). It also modulates the qubit frequency with angular
speeds of ωdq − ωdc and ωdq + ωdc, which are the same with
the sideband matching frequencies for the bichromatic drive
case. The amplitude of the modulations at these frequencies is
also given in Eq. (13) as 2εm.

δωq ≈ 2
ε2

dq

�1
+ 2

ε2
dq

	1
+ 2

ε2
dc

�2
+ 2

ε2
dc

	2
,

εm ≈ εdqεdc

[
1

�1
+ 1

�2
+ 1

	1
+ 1

	2

]
. (13)

Then, the matching conditions are given by

ωdq + ωdc = ωq + δωq + ωc + 2χ (blue sideband),

|ωdq − ωdc| = |ωq + δωq − ωc + 2χ | (red sideband).
(14)

Equation (14) is also close-form expression of ωdq and ωdc.
As in Sec. II B, we reduce Ĥsb as below when the above

frequency matching condition satisfies:

Ĥsb =
︷ ︸︸ ︷
−g

(
2εdqεdc

�1�2
+ εdqεdc

�1	2
+ εdqεdc

�2	1

)
â†σ̂+ + H.c.

(blue sideband).

− g

(
εdqεdc

�1�2
+ εdqεdc

�2	1
+ εdqεdc

	1	2

)
â†σ̂− + H.c.

(red sideband, ωq > ωc).

−g

(
εdqεdc

�1�2
+ εdqεdc

�1	2
+ εdqεdc

	1	2

)
︸ ︷︷ ︸

�
(0)
sb /2

â†σ̂− + H.c.

(red sideband, ωq < ωc).
(15)
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From the above Eq. (15), we can obtain �
(0)
sb . We should also

consider the effect from εm as in Sec. II B. �
(1)
sb in this case

takes the same expression as in the monochromatic drive case,
�

(1)
sb = −2gJ1(2εm/�qc) or −2gJ1(2εm/	qc) for the red and

blue sideband interactions, respectively. The analytically pre-
dicted sideband interaction rate is then given by |�(0)

sb + �
(1)
sb |.

D. First-order sideband interaction induced
by longitudinal drives

The goal in this section is to derive the first-order side-
band interaction rates induced by derived longitudinal drives.
The approach we use here is almost identical with that used
in Ref. [6,7,24]. In Eq. (16), we present a Hamiltonian Ĥm

reduced from Eq. (5). We only capture the terms directly
relevant to the �

(1)
sb . The qubit is longitudinally driven by a

frequency and amplitude ωm and 2εm respectively.

Ĥm = ωq

2
σ̂z + εm cos(ωmt )σ̂z + ωcâ†â + g(â† + â)σ̂x. (16)

Applying an unitary transformation Ûm =
exp[i εm

ωm
sin(ωmt )σ̂z] to the above Hamiltonian eliminates the

longitudinal drive term (εm cos(ωmt )σ̂z), while transforming
σ̂x operator in the transverse coupling term like below:

Ûmσ̂±Û †
m = σ̂± exp

[
±2i

εm

ωm
sin(ωmt )

]
. (17)

We can expand the exponential term using Jacobi-Anger ex-
pansion [Eq. (18)],

exp

[
i
2εm

ωm
sin(ωmt )

]
=

n=∞∑
n=−∞

Jn

(
2εm

ωm

)
exp(inωmt ). (18)

Here, Jn(x) refers to a nth order of the first kind Bessel func-
tion. At the qubit and cavity rotating frame, the Hamiltonian
Ĥm can be eventually reduced to

Ĥm → g(α(t )âσ+ + β(t )âσ−) + H.c, (19)

where α(t ) and β(t ) are given by

α(t ) =
n=∞∑

n=−∞
Jn

(
2εm

ωm

)
e−i(ωc−ωq−nωm ),

β(t ) =
n=∞∑

n=−∞
Jn

(
2εm

ωm

)
e−i(ωc+ωq+nωm ).

(20)

For εm � ωm, we can neglect higher-order components (|n| >

1) in Eq. (20). When ωc, ωq, ωm, and n satisfy specific condi-
tions, we can eliminate the time dependence in the exponents
in Eq. (20). Then, the coefficients in front of operators in
Eq. (19) can be considered a half of sideband interaction
rates �

(1)
sb /2 by longitudinal drives. For example, when ωq −

ωc = ωm and n = −1 holds, then the longitudinal drive yields
the first-order red sideband interaction with a magnitude of
�

(1)
sb = 2gJ−1( 2εm

ωm
). Using the fact Jn(x) = −J−n(x), this result

is identical to that given in the main text. If ωq < ωc, then we
obtain the red sideband interaction when n = 1, then the �

(1)
sb

is given by −2gJ1( 2εm
ωm

). For blue, the sideband interactions,

we need ωq + ωc = ωm with n = −1. �
(1)
sb for this case is

also given by −2gJ1( 2εm
ωm

). One must be careful on the sign

of �
(1)
sb with respect to �

(0)
sb given in the main text. Otherwise,

it results in significant errors in the analytical predictions of
�sb.

E. Rotating wave approximation

Under the rotating wave approximation (RWA), Ĥdrive is
approximated to

Ĥ (RWA)
drive ≈

∑
i

�
(i)
d

2
(σ̂+e−iω(i)

d t + σ̂−eiω(i)
d t ). (21)

This amounts to taking 	i −→ ∞. The RWA model converges
to the full model when we have 	i � �i. Here we define,
�i = ωq − ω

(i)
d and 	i = ωq + ω

(i)
d . However, this condition

often breakdowns with circuit QED device parameters [11].
When the RWA breakdowns, there are significant contribu-
tions from the counter-rotating components of Ĥdrive to δωq,
εm, and �sb. In Sec. III, we compare the analytical calculations
based on both full and RWA drive models. We confirm that the
calculations based on the full-drive model show substantially
better agreements to the numerical simulation. More detailed
discussions will be provided there.

When taking the RWA in this paper, we apply the approx-
imation only to the drive Hamiltonian Ĥd . Dropping energy
nonconservative terms in the interaction part of the QRM is
also considered as the RWA. In this case, the QRM is reduced
to a Jynes-Cummings (JC) Hamiltonian. However, this yields
to a too loose approximation. For example, we cannot capture
blue sideband interaction rate when using JC Hamiltonian.
Therefore, we always keep the energy nonconservative inter-
action terms of the QRM in this paper.

F. Comparison to transmon-cavity system

Although the QRM deals with two-level systems coupled
to a linear cavity, many qubit systems realized experimentally
are not exactly two-level systems. One famous example is
transmon qubits widely used nowadays, which can be consid-
ered weakly anharmonic Duffing oscillators. From Ref. [11],
the system and monochromatic drive Hamiltonian of a dis-
persively coupled transmon and cavity system in their normal
mode basis can be expressed by

Ĥtransmon ≈ (ωt + χt )â
†â + ωcb̂†b̂

− 1

12

[
χ

1/4
t (â + â†) + χ1/4

c (b̂ + b̂†)
]4

.

Ĥdrive = �d (â† + â) cos(�dt ). (22)

Here, â and b̂ are transmon and cavity mode destruction
operators respectively. χt,c and ωt,c refer to the Duffing non-
linearity and resonant frequencies of the transmon and cavity
modes respectively. χtc ≈ √

χtχc ∼ g2 is defined as a cross
Duffing nonlinearity. In this case, the Schriffer-Wollf transfor-
mation Û (t ) = eξ (t )â†−ξ (t )∗â acting on the Hamiltonian simply
displaces â to â − ξ while eliminating the drive term. ξ (t )
is given by �d

2�
e−iωd t + �d

2	
eiωd t . Then, the total Hamiltonian
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Ĥtransmon + Ĥdrive is transformed to Ĥ ′.

Ĥ ′ ≈(ωt + χt )â
†â + ωcb̂†b̂

− 1

12

[
χ

1/4
t (â + â† − ξ (t ) − ξ ∗(t )) + χ1/4

c (b̂ + b̂†)
]4

.

(23)

The weakly anharmonic nature of the transmon dramatically
simplifies the analytical derivation. The qubit’s frequency
shifts, modulation, and the sideband interaction rates are cap-
tured in the fourth power term in Eq. (23) like below:

δωt = −1

2
�2

dχt ×
(

1

�2
+ 2

�	
+ 1

	2

)
,

εm = −1

2
�2

dχt ×
(

1

�2
+ 2

�	
+ 1

	2

)
, (24)

�sb = −1

2
�2

dχ
1/2
t χ

1/2
tc ×

(
1

�2
+ 2

�	
+ 1

	2

)
,

which differ from those in the case of the QRM. δωt is pro-
portional to �2

d/�
2 in the RWA regime, showing a different

form compared with Eq. (9). Furthermore, we can confirm the
collusion effect between the corotating and counterrotating
terms in δωt in Eq. (24) that does not appear in δωq in Eq. (9).
Qualitative different feature can be also found in �sb. In the
transmon case, although we can also have derived longitudinal
drives with a frequency of 2ωt , it does not contribute to the
sideband interaction rates unlike the driven QRM case.

III. BENCHMARKING WITH NUMERICAL SIMULATIONS

A. Overview

To verify the validity of the derived formula, we perform
the numerical simulation with several system parameter sets.
We define the drive and transition frequencies of the qubit
and cavity as fd = ωd/2π , fq = ωq/2π , and fc = ωc/2π ,
respectively. In the bichromatic drive case, we define the
qubit and resonator drive frequencies as fdq = ωdq/2π and
fdc = ωdc/2π , respectively. For the QRM parameters, we
investigate two cases here: fq,c = 6.5, 4.0 GHz and fq,c =
4.0, 6.5 GHz.

In the numerical simulation, we solve the time-dependent
master equation of the driven QRM, and we get the time
evolution of the qubit and cavity. For monochromatic drive
cases, we sweep the fd until the resonant sideband interaction
takes place to find the matching frequencies. The procedure
is somewhat complicated for bichromatic drive cases. First,
we fix fdc by fc − 500 MHz. We parametrize the εdq/2π

and εdc/2π with a real positive parameter η. Both are given
by εdq/2π = η · 25 MHz and εdc/2π = η · 317 MHz, respec-
tively. With these conditions, we sweep the fdq until the
resonant sideband interaction takes place. More detail of the
procedure for the numerical simulation is given in Sec. III B.

In Fig. 2, we present the simulated time domain dynam-
ics when the two-photon sideband interactions take place.
g/2π in both cases is fixed by 200 MHz. Figure 2(a)
shows the results under a monochromatic drive with εd/2π =
300 MHz. Figure 2(b) shows the results under a bichromatic
drive when εdq/2π = 25 MHz and εdc/2π = 317 MHz, re-
spectively (η = 1). The definitions of εd , εdq, and εdc are the

FIG. 2. Time-domain numerical simulation results of the first-
order two-photon sideband interactions in the QRM with various
system configurations. Eight different cases are present. The red and
blue lines indicate the red and blue sideband interactions, respec-
tively. (a) The sideband interactions by the monochromatic drive
fields. (b) The sideband interactions by bichromatic drive fields.
Please see the text and legend for further detail of the conditions in
the numerical simulation.

same as in the previous section. We can also confirm that
whether the qubit is red or blue detuned to the cavity results in
different sideband interaction rates. This is already predictable
from the analytical formula derived in Sec. II. We do not
introduce any dissipative process in the numerical simulation.
Unless the dissipation rates become comparable to the side-
band interaction rates, there is no noticeable change in the
sideband oscillation frequency of the time-domain numerical
simulations.

In this section, we plot the numerical simulation results
with analytical predictions with four different models. The
models with a full-drive Hamiltonian are labeled by ‘Full’
in the legend, whereas models with the RWA in the drive
Hamiltonian are labeled by “RWA”. We also separately plot
the results with and without considering the effect of the de-
rived longitudinal drives (labeled by |�(0)

sb + �
(1)
sb | and |�(0)

sb |
respectively). The model used in Ref. [9] corresponds to the
results labeled by “RWA, |�(0)

sb |” in this paper.

B. Method for numerical simulation

The dynamics of the system can be described by the equa-
tion,

d ρ̂sys/dt = −i[ĤQRM + Ĥdrive, ρ̂sys]. (25)

Here, ρ̂sys is a density matrix of the qubit and cavity. We do not
take the dissipation into consideration. In the numerical study
in this paper, we rigorously benchmark the real experiments.
We set the rising and falling in the sideband drive strength
as in the real experiments. Specifically, εd (t ) is defined as a
pulse with 10-ns of Gaussian rising and falling time. We can
then scan the pulse length and plot the quantum states of the
system at the end of each pulses. We do not include the rising
and falling times in the definition of the pulse length.
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FIG. 3. Time-domain numerical simulation. (a) A direct solution
of the master equation when the drive field satisfies the blue sideband
interaction. Please see the text for a description of the conditions in
the simulation. We consider 10 ns Gaussian rising and falling time
in the drive amplitude. (b) Zoom in on the black rectangular box
in (a). We identify that the fast micro-oscillation and the frequency
of this oscillation is the same as the drive frequency. (c) We plot
the P(e1) − P(g0) at the end of the pulse with respect to the pulse
length without rising and falling times. A clear sinusoidal oscillation
is obtained.

Figure 3 provides a step-by-step description of
our numerical simulation method. The simulation
parameters used in Fig. 3 are ωq, ωc, ωd , εd , g =
2π × (6.5, 4.0, 0.1, 0.2, 5.278) GHz. The monochromatic
drive frequency ωd satisfies the matching condition for the
blue sideband interaction. Figure 3(a) shows the dynamics
of the system under the sideband drive pulse with a length
of 480 ns. Figure 3(b) magnifies the area enclosed by the
square in Fig. 3(a). One can identify the fast but small
oscillation in the quantum state of the system. This oscillation
originates from the Hamiltonian’s time dependence. We
can remove the time dependence by moving to the rotating

FIG. 4. Finding a matching frequency. This plot shows the
dynamics of the two-state system (qubit) when we sweep the
monochromatic drive frequency around the matching frequency that
satisfies the resonant blue sideband interaction. Please see the text
for a description of the conditions that we used in the simulation.

FIG. 5. Red and blue sideband interaction rates (�sb) induced
by monochromatic drive fields. The lines indicate the analytically
calculated sideband interaction rates. See the legend for the detail
information. The cross marks indicate the numerically simulated
results based on the Ĥ + Ĥdrive. [(a), (b)] fq = 6.5 GHz and fc =
4.0 GHz. [(c), (d)] fq = 4.0 GHz and fc = 6.5 GHz. In the case of
(c), the fine dashed line (RWA, �

(0)
sb in the legend) lies on x-axis, and

thus hardly visible in the figure.

frame at ωd , and removing all the fast rotating components.
This is what amounts to the rotating wave approximation
(RWA). However, the RWA is only available when the εd and
|ωq − ωd | are small enough. These conditions are clearly not
satisfied for the two-photon sideband interaction with circuit
QED parameters. We repeat the simulations by varying
the pulse lengths, and we plot the states at the end of the
pulses (when the pulse falling finishes). The result is given in
Fig. 3(c). We obtain a clear sinusoidal curve without the fast
oscillation.

The procedure described above is analogous with the real
experiment. This explains why one still can see clear sinu-
soidal dynamics in the experiment, even with a very strong
drive strength. We calculate P(e1) − P(g0) for the blue side-
band interactions, and P(e0) − P(g1) for the red sideband
interactions in this paper. Here, P refers to the probability to
find the system in the states enclosed in the brackets. Once we
obtain a sinusoidal oscillation from the simulation, we then
determine the sideband interaction rate �sb from the period of
the oscillation. Figure 4 describes how we found the matching
frequencies for sideband interactions. All of the simulation pa-
rameters are the same in Fig. 3 except that εd/2π is 500 MHz.
We sweep ωd around the predicted matching frequency for
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FIG. 6. Red and blue sideband interaction rates �sb induced by bichromatic drive fields. The lines indicate the analytically calculated
sideband interaction rates. The cross marks indicate the numerically simulated results based on the Ĥ + Ĥdrive. See the legend in Fig. 5 for
more detailed information. ωdc is fixed by fc − 500 MHz. εdq and εdc are parameterized as described in Sec. III B. [(a), (b)] fq = 6.5 GHz,
fc = 4.0 GHz. [(c), (d)] fq = 4.0 GHz, fc = 6.5 GHz.

blue sideband interaction. In this case, the matching frequency
is found at ωd/2π = 5.474 GHz. The asymmetric shape is
attributed to the fact that the frequency shift of qubit changes
while sweeping the drive frequency.

C. Monochromatic drives

In this subsection, we deal with only the monochromatic
drive cases. The parameters that we use for the simulations
are fq,c = 6.5, 4.0 GHz in Figs. 5(a) and 5(b) and fq,c =
4.0, 6.5 GHz in Figs. 5(c) and 5(d). g/2π in both cases is fixed
by 200 MHz. The lines in Fig. 5 show the the analytically
calculated sideband interaction rates. We first obtained the
matching frequencies based on Eq. (9), and we use these
values when calculating the sideband interaction rates. When
analytically calculating �sb here and in the following of this
paper, we replace ωq in the formula with ωq + δωq for higher
accuracy.

In Fig. 5, the sideband interaction rates calculated by the
full-drive model with the derived longitudinal drive (solid
lines) excellently agree with all the numerical simulation re-
sults, whereas the other model fails to explain all parameter
cases. Noticeably, the derived longitudinal drive (�(1)

sb ) signif-
icantly accounts for the total sideband interaction rates. All

these trends can be also found in the bichromatic drive cases
in Sec. III D.

As εd becomes larger, the accuracy of the analytical model
decreases. This happens because the basic assumption for
perturbative approach (εd/|ωq − ωc| � 1) in derivation of the
analytical model becomes weakened. We can understand the
large discrepancy in blue sideband cases in the same manner.
The blue sideband interaction requires the matching frequency
fd much closer to the fq than the red sideband interaction
does. In Fig. 5(d), the numerical results with large drive
strengths are more consistent with another analytical model
(double-dashed line) rather than full model (solid line). This
is an interesting coincidence to point out. The sideband inter-
actions contributed by derived longitudinal drive is significant
in the red sideband cases but not in the blue sideband cases.

D. Bichromatic drives

We investigate the bichromatic drive cases in this subsec-
tion. fq,c and g used in the simulations are the same as in
Sec. III C. We analytically find the proper fdq based on the
Eq. (13), fixing the fdc to fc − 500 MHz. εdq and εdc are
parameterized as described in Sec. III B. We also analytically
calculate the sideband interactions based on the results in
Sec III A. Figure 6 compares the sideband interaction rates

013005-8



TWO-PHOTON SIDEBAND INTERACTION IN A DRIVEN … PHYSICAL REVIEW RESEARCH 4, 013005 (2022)

FIG. 7. Red and blue sideband interaction rates �sb with dif-
ferent qubit-cavity coupling strength g. We fix fq = 4.0 GHz and
fc = 6.5 GHz in the calculation. The lines indicate the analytically
calculated sideband interaction rates. The cross marks indicate the
numerically simulated results based on the Ĥ + Ĥdrive. See the leg-
end in Fig. 5 for the detail information. [(a), (b)] Monochromatic
drive cases. Drive strength is fixed by εd/2π = 100 MHz. [(c), (d)]
Monochromatic drive cases. Drive strength is fixed by fdc is fixed by
fc − 500 MHz. In all cases, we set εdq/2π = 25 MHz and εdc/2π =
317 MHz. In the case of (a), the fine dashed line (RWA, �

(0)
sb in the

legend) lies on x axis, and thus hardly visible in the figure.

calculated by the numerical simulation (cross) and analytical
calculation (line). by the full-drive model with the derived
longitudinal drive (solid lines) explains the simulation results
better than other models, except for the one case in Fig. 6(b).
In the red sideband cases, we can clearly see the significant
effect of the derived longitudinal drive in the sideband inter-
action rates (�(1)

sb ). This also results in approximately 15%
correction to the total sideband interaction rates in the blue
sideband cases. The effect of the RWA is very conspicuous in
Fig. 6(c) but not in other cases. In particular, we can hardly
identify the effect of the RWA in Fig. 6(a).

E. From strong to ultrastrong coupling regime

In the previous subsections, we have fixed g/2π by
200 MHz. In this subsection, we perform the simulation with
different g while fixing the drive strengths and the other sys-
tem parameters. We use fq = 4.0 GHz and fc = 6.5 GHz in
the simulation. We scan g from 100 MHz (strong coupling
regime) to 500 MHz (ultrastrong coupling regime).

In Fig. 7, we plot the red and blue sideband interaction rates
with different qubit-cavity coupling strength g. Figures 7(a)
and 7(b) describe monochromatic drive cases and Figs. 7(c)
and 7(d) describe bichromatic drive cases. Drive strengths εd

are fixed by 100 MHz (red) and 300 (blue) MHz, respectively.
Similar to the previous results in Figs. 5 and 6, the full-drive
model with the derived longitudinal drive (solid lines) ex-
plains the numerical simulation results better than the other
model does when the drive strengths are small enough. As g

FIG. 8. Matching drive frequencies (ωd ) for two-photon red and
blue sideband interactions induced by monochromatic drive fields.
The single and double dashed lines indicate the analytically calcu-
lated matching frequencies the red and blue sideband interactions
respectively. These are based on the full (single-dashed) and RWA
model (double-dashed). The cross marks indicate the numerically
simulated results based on the full model. [(a), (b)] fq = 6.5 GHz
and fc = 4.0 GHz. [(c), (d)] fq = 4.0 GHz and fc = 6.5 GHz.

FIG. 9. Matching drive frequencies (ωdq) for two-photon red and
blue sideband interaction induced by bichromatic drive fields when
fdc is fixed by fc − 500 MHz. εdq and εdc are parameterized as
described in Sec. III B. The single and double dashed lines indi-
cate the analytically calculated matching frequencies of the red and
blue sideband interactions, respectively. These are based on the full
(single-dashed) and RWA model (double-dashed). The cross marks
indicate the numerically simulated results based on the full model.
[(a), (b)] fq = 6.5 GHz and fc = 4.0 GHz. [(c), (d)] fq = 4.0 GHz
and fc = 6.5 GHz.
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FIG. 10. The matching drive frequencies with different qubit
and cavity bare coupling g. fq = 4.0 GHz and fc = 6.5 GHz in the
calculation. [(a), (b)] Monochromatic drive cases. Drive strength is
fixed by εd/2π = 100 MHz. [(c), (d)] Bichromatic drive cases. fdc is
fixed by fc − 500 MHz. In all cases, we set εdq/2π = 25 MHz and
εdc/2π = 317 MHz.

becomes larger, the discrepancy between the numerical and
analytical values also becomes larger. Eventually, the numer-
ical results fall into the other analytical models in (b) and (d).
We can also confirm that a significant portion of the �sb is
attributed to �

(1)
sb .

IV. CONCLUSION

In this paper, we have analytically and numerically studied
the first-order sideband interactions that are induced by two-
photon drives in a quantum Rabi Hamiltonian. We confirm
that the sideband interaction rates can be accurately predicted
based on the analytical formula when the parameters are in
the perturbative regime (εd/|ωq − ωd |). We also confirm that
the RWA significantly misleads the prediction of the sideband

interaction rates for some system parameters. We also find that
the transverse drive field can induce the derived longitudinal
drive Hamiltonian. In addition, we can confirm its significant
contributions to total sideband interaction rates. As the drive
parameters deviate from the perturbative regime, we observe
disagreement between numerical and analytical calculation,
and consequently the other models coincidentally provide
more accurate predictions. Our study significantly improves
the accuracy of the analytical formula from the previous paper.

The data that support the findings of this study are available
in [27].
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APPENDIX: EXTENDED DATA: ESTIMATION OF THE
MATCHING FREQUENCIES

In this section, we present the analytically calculated
matching frequencies compared to the numerical simulation
results. All of the simulation conditions and parameters are the
same in Figs. 5, 6, and 7. The lines in Figs. 8, 9, and 10 show
the analytically calculated matching frequencies based on the
formula that we obtained in Sec. II B. The matching frequen-
cies obtained from the numerical simulation are denoted by
cross marks. In general, the calculated matching frequencies
based on the full-drive Hamiltonian are in better agreement
with the numerical results. The only the exception is Fig. 5(b).
In this case, the numerical data deviates from the full analyti-
cal model due to the breakdown of the perturbative approach,
and eventually gets closer to the RWA model coincidentally.
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