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ABSTRACT
Experiments are conducted in a Ø600 mm tank to analyse the 3D motion of buoyant particles in the free-surface vortex flow. The experiments
revealed two stages in the particle motion: stage 1 is the helical motion along the vortex air core and stage 2 is the axial motion inside the vortex core.
The stage 1 motion is sensitive to the particle’s initial conditions by showing a chaotic behaviour and quantified by determining the largest Lyapunov
exponent. Consequently, the predictability (forecast horizon) of the particle’s motion is limited. A motion parameter is proposed that indicates if a
continuous downward motion along the air core occurs. The dynamics in the stage 2 motion is determined by the imbalance between the particle’s
buoyancy force and fluid drag force. The drag appears to be determined by the Taylor column drag force as present in rotating fluids. Based on this
force, a motion condition is proposed that indicates if axial motion inside the vortex core occurs.

Keywords: 3D-PTV; free-surface vortex; particle dynamics; chaotic behaviour; stable limit cycle; vortex core; axial particle motion;
Taylor column drag coefficient

1 Introduction

The work described in this article is a part of a research project
on the application of a free-surface vortex for the downward
transport of floating particles; see the previous published arti-
cle in this journal (Duinmeijer, Oldenziel, et al., 2019). To study
the vortex’s transport potential, an experimental set-up was built
to generate vortices and to study the vortex driven motion of
buoyant particles. The characteristic dimension L of the parti-
cles is 0.02–0.04 m and the Reynolds particle number is ∼ 102

< Rp < ∼ 104 with Rp defined as (|V − U|) L/ν where V and
U are the flow and particle velocities respectively and ν the
fluid’s kinematic viscosity. The experimental results revealed
two stages in the motion of the particles (Fig. 1). Stage 1 is
characterized by the particle following a helical motion along
the vortex air core until the particle reaches the air core bot-
tom where the particle centralizes in the vortex core. During the
downward motion the particle may be ejected out of the air core
or reach a more or less stable orbit around the vortex air core at

a specific height. Stage 2 motion is the axial motion inside the
vortex core where the particle is centralized in the core.

1.1 Problem definition

The vortex driven motion of buoyant particles is determined
by the interaction between the particle dynamics and the flow
characteristics.

The stage 1 motion (helical motion along the air core) is
determined by the inertial and lift forces (FL) acting on the par-
ticle. Over the last decades many studies have been reported
on the motion of bodies in shear and rotating flows in which
the generation of FL is involved. Saffman (1965, 1968) and
Mei (1992) studied the FL on a sphere in a shear flow for 1
� Rp ≤ 102. Auton (1987) studied the FL on a fixed sphere
in an inviscid weak shear flow. Auton et al. (1988) studied
the forces on a moving sphere in an inviscid rotational flow.
For 10 < Rp < 102, Bagchi and Balachandar (2002) studied
the lift coefficient CL of a sphere in a linear shear and a vor-
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Figure 1 (a) Definition of the observed stages in the vortex driven motion of buoyant particles. The stage 1 motion is the helical motion along the
air core. The stage 2 motion is the axial motion inside the vortex core. (b) Stage 1 motion of a Ø38 mm sphere. (c) Stage 2 motion of a Ø38 mm
sphere

tex flow. Van Nierop et al. (2007) studied the FL on a Ø1 mm
air bubble in a solid-body rotating flow for 0.01 < Rp < 500.
Bluemink et al. (2009) examined the CL for a freely rotating
Ø8 mm sphere in a solid-body rotating flow for 2 ≤ Rp ≤ 1060.
Fukada et al. (2014) studied the forces acting on a sphere that
generate the sphere’s rotation in both irrotational and solid-body
rotating flow for 5 < Rp < 102. Voßwinkel (2017) studied the
vortex transportability for Ø3 to Ø40 mm spheres. Based on
experimental data, Voßwinkel determined correlations between
downward motion, the hydraulic conditions and particle char-
acteristics. However, the characteristics of the vortex flow field
are not considered and so the outcome of the research is limited
to one intake geometry only.

The stage 2 motion (axial motion inside the vortex core) is
determined by the fluid axial drag force FD,z and the buoyancy
force. The motion parallel to the axis of a solid-body rotating
fluid induces a complex phenomenon described by Proudman
(1916) and Taylor (1917). They found that a moving sphere was
accompanied by a fluid column that circumscribed the sphere
and determined the drag on the sphere. For inviscid flow, Stew-
artson (1952) presented a study on the drag force of the Taylor
column and proposed an expression for this force. For a low
viscous fluid, Moore and Saffman (1968) studied the FD,z on
a rising body with a Taylor column circumscribing the body.
Maxworthy (1970) reported an experimental study on FD,z for
Ø12.7 and Ø19 mm rising spheres along the centre axis of a
Ø305 mm rotating tank for ∼ 5 < Rp,z < ∼ 103, with Rp,z the
particle axial Reynolds number |Vz − Uz| L/ν with Vz and Uz

the axial fluid and particle velocity respectively. Tanzosh and
Stone (1994) studied the particle motion parallel to the axis of
rotating fluid for Rp,z � 1. Bush et al. (1994) performed a sur-
vey of particle motion in solid-body rotating fluids for motions
parallel and perpendicular to the axis of rotation. Bush et al.
(1995) presented an experimental and theoretical study on the
axial motion of a bubble in a solid-body rotating fluid.

The stage 1 motion in this study mostly occurs in the irro-
tational part of the vortex flow, while the literature mentioned

mainly focuses on the motion in rotational flows, e.g. solid-body
rotating flow. Hence, there is a lack of data on particle motion in
irrotational flows. For the stage 2 motion, the axial motion is not
driven by a buoyancy force but instead by a non-uniform axial
flow. Furthermore, the flow field is not fully in solid-body rotat-
ing but limited to a distance of ∼ rc from the vortex centre axis
with rc the vortex core radius. Consequently, the results from
the literature are not directly applicable to studying the vortex
driven motion of buoyant particles in both stages.

1.2 Goal and outline of this paper

To obtain experimental data on the vortex driven motion of
buoyant particles, an extensive experimental and theoretical
study is conducted for both stage 1 and stage 2 particle motion.
In this article the results of this study are presented. The outline
is as follows. Section 2 addresses the experimental set-up and
programme. Section 3 describes the results of the study on the
stage 1 motion and Section 4 presents the results on the stage 2
motion. The conclusions and recommendations of this study are
formulated in Section 5.

2 Experimental set-up and programme

2.1 Experimental set-up

The experimental setup consists of an acrylic tank with an inside
diameter of 0.610 m and a height of 1 m. The experimental
particles are released on the water surface at variable or fixed
position. The 3D motion is determined by a 3D particle tracking
velocimetry (PTV) set-up. For a more detailed description of the
set-up, the reader is referred to Duinmeijer, Moreno-Rodenas,
et al. (2019). In several experiments, the particle only showed a
2D motion at the free-surface. For these combinations of char-
acteristics, additional 2D-PTV experiments were done. The 2D-
PTV set-up consists of an IO Industries Flare 2M280CCX high
speed camera placed above the water surface. The experimental
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Table 1 Experimental particle characteristics

Particle no. Shape and characteristic dimension L Dimension Density

71 Sphere Ø20 mm 692 ± 1 kg m−3

83 Ø38 mm 630 ± 1 kg m−3

84 616 kg m−3

86 709 ± 2 kg m−3

88 665 ± 2 kg m−3

91 Ø19 mm 675 kg m−3

92 600 kg m−3

101 Ø25 mm 771 ± 5 kg m−3

102 730 ± 5 kg m−3

103 860 ± 3 kg m−3

111 Ovoid 76 × 38 × 19 mm 787 ± 1 kg m−3

113 L = 38 mm 666 ± 1 kg m−3

114 859 ± 2 kg m−3

123 38 × 19 × 9.5 mm 875 ± 2 kg m−3

124 L = 19 mm 973 ± 4 kg m−3

141 Cube 30.6 × 30.6 × 30.6 mm 746 ± 2 kg m−3

143 914 ± 1 kg m−3

144 859 ± 1 kg m−3

153 20.2 × 20.2 × 20.2 mm 923 ± 2 kg m−3

154 869 ± 4 kg m−3

156 895 ± 3 kg m−3

Table 2 Experimental series of vortex characteristics

Series Q (m3 h−1) Γ ∞ (m2 s−1) rc (mm) HD (m) Series Q (m3 h−1) Γ ∞ (m2 s−1) rc (mm) HD (m)

1 0.69 0.07 8.6 0.09 5 1.50 0.16 16.2 0.17
2 0.69 0.08 9.7 0.10 6 1.50 0.23 17.9 0.26
3 1.16 0.12 8.2 0.24 7 2.50 0.31 15.3 0.54
4 1.16 0.17 9.8 0.35 8 2.50 0.44 17.3 0.85

particles are produced using 3D-printing technology and come
in three shapes: sphere, ovoid and cube (Table 1). The particles
were designed with different density ρp to quantify the effect of
this parameter on the particle’s dynamics. The uncertainty in ρp

is determined to be in a range of 1–5 kg m−3.

2.2 Experimental programme and procedure

The 3D-PTV experimental programme comprises eight series of
vortex characteristics and 15 particles. The 2D-PTV programme
consists of six series of vortex characteristics (series 1 and 3–7)
and five spheres. The vortex characteristics are the bulk circula-
tion Γ ∞, the core radius rc and the air core depth HD (Table 2).
The vortex characteristics and the 3D-flow field are deter-
mined by stereo particle image velocimetry (SPIV) (Duinmeijer,
Oldenziel, et al., 2019). The 3D-PTV and 2D-PTV experiments
were repeated five times and two times respectively to check the

reproducibility of the experiment. The particles were released
on the surface with a remote-controlled device for the 3D-PTV
experiments and by hand for the 2D-PTV experiments. For
the stage 1 motion and when the particles showed a repetitive
motion, the sequence was recorded more than once to check
the consistency of this behaviour. For the stage 2 motion, the
experiment was finished when either one of the following condi-
tions was applied: (1) the particle disappeared through the outlet
within ta < ∼ T and (2) the particle was still in the control vol-
ume at ta > ∼ T. Experiments meeting condition 1 are labelled
as “Motion” and experiments meeting condition 2 are labelled
as “No motion”. ta is the measured time needed for a particle
to travel the distance from the air core bottom to the outlet:
H − HD. T is a characteristic time parameter and determined
by the hydraulic conditions: T = (H − HD)/Uz,min with Uz,min

a defined minimum required particle velocity. By definition,
Uz,min is set to 0.01 m s−1 and thus T = 100(H − HD).



950 A. Duinmeijer and F. Clemens Journal of Hydraulic Research Vol. 59, No. 6 (2021)

Figure 2 (a) Illustration of particle motion through two types of flow. (b) Motion in the horizontal plane. The left side shows a schematic profile of
Vθ (r). (c) Motion in the vertical plane along the air core

3 Study on the stage 1 motion: the helical motion along
the vortex air core

It was found that most experiments are not repeatable which is
an indication of a chaotic behaviour in the particle’s dynam-
ics. To study and quantify this behaviour, Section 3.1 addresses
the development of a simplified model to describe the parti-
cle’s motion in the horizontal plane. In Sections 3.2 and 3.3 the
chaotic dynamics of both experimental and model results are
presented. In Section 3.4 a motion parameter Φ is proposed for
a downward motion along the air core and Section 3.5 finally
discusses the results.

3.1 Model for the particle’s dynamics

Defined in a right handed Cartesian coordinate system (Fig. 2),
and based on the Lagrangian approach, a set of nonlinear par-
ticle motion equations describing the particle’s dynamics are
numerically solved using a trust-region-dogleg algorithm (e.g.
Powell, 1970). The validity of the applied equations for a viscid
rotating flow is discussed in Section 3.5. For an internal frame
of reference, the generalized equation of motion for a body with
volume χ at moderate to large Reynolds numbers moving in a
non-uniform flow is (e.g. Bluemink et al., 2009; Tio et al., 1993;
Van Nierop et al., 2007):

(ρp + CAρf )χ
dU
dt

= Fi,A + FD + FL + Fg (1)

The history, or Basset, force is considered to be insignificant for
Rp > 5 (Van Nierop et al., 2007) and is therefore neglected as
in this study 102 < Rp < 104. Fi,A is the inertial/added mass
force and due to the acceleration of the unperturbed fluid at the
sphere’s centre:

Fi,A = ρf (1 + CA)χ
DV
Dt

= ρf (1 + CA)χ
∂V
∂t

+ V · ∇V (2)

with DV/Dt = ∂V/∂t + V·∇V the material derivative. The
added mass coefficient CA accounts for the fluid’s inertia close
to the sphere with CA = 0.5 for a submerged sphere in a fluid of
infinite extent. For a floating sphere the effect of the free-surface
is to decrease the CA. For example, Berklite (1972) found for a
sphere that CA ≈ 0.4 for h/a = 1 and CA ≈ 0.19 for h/a = 0.5
(applied here) with h the distance between the surface and the
sphere’s centre. FD is the drag force on a body moving through
a fluid. For Rp � 1, this force is expressed by:

FD = 0.5ρf CDAN (V − U)(|V − U|) (3)

The drag coefficient CD is quantified by the expression sug-
gested by Holzer and Sommerfeld (2008) and verified for
Rp ≤ ∼ 105, covering the experimental range of this study:

CD = 24
Rp

+ 3√
Rp

+ 0.42 (4)

The hydrodynamic lift force FL consists of two components:
a force FL,ω induced by the flow vorticity ω and a force FL,Ω

due to the particle’s rotation Ωp (the ‘Magnus’ lift force). For
Rp � 1, the vorticity lift force FL,ω is (e.g. Auton et al., 1988
and Van Nierop et al., 2007):

FL,ω = ρf χCL(V − U) × ω (5)

with ω calculated by taking the curl of the velocity:

ω = ∇ × V (6)

When considering only the z-component of ω, the horizontal lift
force FL,ωis:

FL,ω = ρf χCL(V − U)ωz (7)

A number of experimental and numerical studies determining
the lift coefficient CL depending on flow type are found in lit-
erature: Van Nierop et al. (2007) stated that the influence of
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the sphere’s rotation on CL is significant and not addressed
for Rp � 1. Bluemink et al. (2009) examined the effect of the
sphere’s rotation on CL for Rp ≤ 200 and proposed a linear
decoupling of CL in a flow vorticity contribution (CL,ω) and
Magnus lift contribution (CL,Ω ). Based on the latter study and
valid for Rp � 200, CL,ω is determined by:

CL,ω = 0.5110 log(Rp) − 0.22 (8)

The vorticity ωz depends on the radius due to the viscous diffu-
sion and is defined by Burgers’ expression of ωz(r) (Duinmeijer,
Oldenziel, et al., 2019) and thus FL,ω is:

FL,ω = ρf χCL,ω(V − U)Γ∞
πr2

c
exp

[
−
(

r
rc

)2
]

(9)

Equation (7) is valid for a rotational flow with uniform ωz. ωz(r)
is simplified and assumed to have a constant value which is the
average ω̄z over at the sphere’s diameter:

ω̄z = 1
L

r+0.5L∫
r−0.5L

ω(r)dr (10)

The Magnus lift force FL,Ω is generated by the particle’s rotation
Ωp . For a sphere in an irrotational flow which rotates around
its z-axis, the horizontal lift force FL,Ω is determined with the
potential flow theory and known as the Kutta–Joukowski lift
theorem:

FL,Ω = 2ρf χ(V − U)Ωp (11)

with (V − U) taken at the centre of the body. The particle’s rota-
tion is generated by a torque Tp due to an asymmetric stress

distribution along the particle surface. The equation of particle
rotation motion is:

dΩp

dt
= a

Ip

∫
As

τa,θdAs = Tp

Ip
(12)

For a sphere in both a rotational and irrotational vortex flow,
Fukada et al. (2014) proposed an expression for Tp as function
of the streamline curvature κ:

Tp = ρf

2

(
L
2

)5

CT(Ωp ,st − Ωp)(|Ωp ,st − Ωp |) (13)

with Ωp ,st being the steady angular velocity:

Ωp ,st = 0.0554κ(V − U)Rp
0.635 (14)

The torque coefficient CT is:

CT = 239
(

L2(|Ωp ,st − Ωp |)
ν

)−0.956

(15)

Equations (14) and (15) are fitting equations for Rp < 102. The
last forces are the body forces and limited to the gravity force
Fg :

Fg = χ(ρf − ρp)g (16)

The model is validated by comparing the experimental particle
motion with the model results. The initial particle conditions
Xp ,0 (position xp ,0, velocity Vp ,0 and particle rotation Ωp ,0)
are based on measurements and serve as model-input data.
Figure 3a–d shows a comparison between model and exper-
imental results for experiments with a Ø38 mm sphere. The

Figure 3 (a, b) Experimental and model particle trajectory and radial position of sphere 86 at series 6. (c, d) Results of sphere 86 at series 3. (e–h)
Model trajectories as function of Ωp ,0
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Figure 4 (a) Experimental trajectories and radial position of sphere 86 at series 6 with x0, y0 = [0, − 0.17] and x0, y0 = [0.17, 0]. (b) trajectories
and radial position of sphere 102 at series 6 with x0, y0 = [0, − 0.18] and x0, y0 = [0.18, 0]

model shows a similarity with the experiments in the sense
that both the experiments and the model show that the particle
ends up in either a stable limit cycle at a more or less con-
stant radial distance r or the particle ends up in the vortex core.
However, in detail and for small time scales, the model dif-
fers significantly with the experimental results as discussed in
Section 3.5. Although the proposed model is a simplification in
many aspects, it shows that the observed non-repeatability of the
experiments may find its explanation the in nonlinear dynamic
(chaotic) nature of the studied system. This is illustrated in
Fig. 3e–h which shows major changes in model trajectories due
to minor changes in initial conditions.

3.2 Experimental results: limitations on the predictability of
the particle motion

Analysis of the experimental horizontal particle trajectories con-
ducted at controlled hydraulic conditions but with different
initial particle positions xp ,0 in the flow field showed major
differences between the trajectories. Consequently, there is a
certain non-repeatable behaviour of the experiments. As an
example, Fig. 4a shows the measured trajectories of a Ø38 mm
sphere. In the first experiment, the sphere is released at [x0,
y0] = [0 m, − 0.17 m] and in the second experiment, the sphere
is released at [0.17 m, 0 m]. In the first experiment, the sphere
reaches the air core bottom after ∼ 5 s and subsequently the
sphere is ejected. In the second experiment, the sphere ends in
a stable limit cycle at r ≈ 0.05 m. Another obvious example
of the non-repeatable behaviour is shown in Fig. 4b. In the first
experiment, a Ø25 mm sphere is released at [0 m, − 0.18 m] and
in the second experiment at [0.18 m, 0 m]. Both experiments

show a stable limit cycle at r ≈ 0.05 m but in the first exper-
iment, this cycle is reached at t ∼ 8 s where in the second
experiment the cycle is reached at t ∼ 22 s. This chaotic
behaviour is not uncommon in nonlinear dynamical systems like
the studied system. Chaotic behaviour is an important character-
istic in relation to the predictability of the vortex driven particle
motion. In the next section, the predictability of this system is
analysed in detail.

3.3 Phase portrait, largest Lyapunov exponent and
limitations to the predictability/forecast horizon

A phase portrait depicts the trajectories of a dynamical sys-
tem. Each set of initial conditions is represented by a vector
presenting the direction and magnitude of the systems change.
Consequently, the portrait shows for a large ensemble of initial
conditions the dynamic behaviour of the system. As portraits
based on experiments are very time consuming and difficult
to establish numerous combinations of initial conditions with
slightly different values, the portraits presented here are con-
structed with the numerical model. The applied ensemble of
initial conditions consists of the radial position r0 from 0.02 to
0.30 m (step size 0.005 m), the radial velocity Ur,0 from − 1.0
to 1.0 m s−1 (step size 0.1 m s−1) and two rotations: Ωp ,0 = 0
and Ωp ,0 = 1.5 rad s−1. So, the portrait is made by an ensem-
ble of 1056 different initial conditions. Figure 5a, b shows the
phase portrait for sphere 86 (Ø38 mm) and 5c, d for sphere
101 (Ø38 mm). All figures includes several “trajectories” with
the initial conditions illustrated by a blue dot. The portraits
obviously show that, depending on the initial conditions, both
spheres can move to a stable limit cycle. In the experiments, this
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Figure 5 (a, b) Model phase-portraits for sphere 86 at series 6. (a)
Results for Ωp ,0 = 0 rad s−1. (b) results for Ωp ,0 = 1.5 rad s−1. (c,
d) Model phase-portraits for sphere 101 at series 6. (c) Results for
Ωp ,0 = 0 rad s−1. (d) results for Ωp ,0 = 1.5 rad s−1

cycle is the stable orbit around the air core at an approximately
constant height (e.g. Fig. 4b). This cycle attracts neighbouring
trajectories and is defined as an attractor. On the other hand,
the sphere can move in an unstable limit cycle with increasing
radius and thus move outward of the centre. This cycle repels
trajectories and is thus a repellor. In conclusion: the behaviour
of the system is strongly influenced by the particle initial con-
ditions and, indeed, the system shows chaotic behaviour that
implies a limit to the system’s forecast horizon. However, not
all features seen in the experiments are reproduced by the model,
which was to be expected given the simplifications made in the
model.

The largest Lyapunov exponent: a quantification for the limited
predictability/forecast horizon

For dynamical nonlinear systems that are sensitive to initial con-
ditions as shown in the former sections, the predictability of a
system is quantified by the largest Lyapunov exponent l (LLE)
that characterizes the separation rate of infinitesimally close

Figure 6 (a–d) LLEs of the experimental and model datasets of
spheres 86, 88, 101 and 102 respectively. The filled and open circles
represent the experimental and model data respectively. Differences
between the results are due to the simplifications made in the model

trajectories starting with a small difference in initial condition
δXp ,0:

|δX p (t)| ≈ elt|δX p ,0| (17)

If l < 0, the difference converges in time to zero which implies
a stable system. If l > 0, the difference increases in time which
implies a “chaotic” and consequently a non-predictable system.
The algorithm proposed by Rosenstein et al. (1993) is applied
for the quantification of LLE and calculated for both the experi-
mental and model results by applying an embedding dimension
of m = 3. The model must use the experimental initial condi-
tions Xp ,0 but these are not known in detail. The model LLEs
are therefore calculated for four combinations of Xp ,0 that are
assumed as realistic: r0 = 0.15 m, Ωp ,0 = 0 and 0.2 rad s−1 and
Uθ ,0 = 0.5Vθ and 0.99Vθ . Figure 6 shows the calculated LLEs.
The experimental and model LLEs show the same trend and
are in general > 0. The differences between experiment and
model LLEs are due to the simplifications made in the model.
The inverse of the LLE (the Lyapunov time, 1/l) is a charac-
teristic timescale indicating the forecast horizon of the particle
motion. For the studied system, this range is ∼ 0.8 to ∼ 10 s and
when compared to the timescale of 2 s for hydrodynamic chaotic
oscillations (Gaspard, 2005), the system of particle motion
in the free-surface vortex flow can be quantified as limited
predictable.

3.4 Stage 1 motion parameter for downward motion along
the air core

To ensure transport, a stage 1 motion parameter Φ is developed
that indicates if downward motion along the air core occurs. The
validity of Φ is discussed in Section 3.5. Φ is the ratio between
the inertial/added mass force and the lift force: Φ = |Fi,A| /
(FL,ω + FL,Ω ). For a downward motion, the condition Φ > 1
has to be met. This implies that the particle remains “pushed”
against the air core until the bottom of the air core is reached.
By application of Eqs (7), (9) and (11), while neglecting the
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Figure 7 (a) Motion parameter Φ for Ø25 mm sphere and series 3 to 7. A downward motion (Φ > 1) is provided at approximately γ > 0.8. (b)
Relative velocity parameter γ exp during the sphere’s downward motion and determined from two sets of 2D-PTV measurements

radial fluid velocity, Φ is:

Φ = |ρf (1 + CA)χ(V · ∇V)| · er

ρf χ(V − U)[2Ωp + CLωz] · er
(18)

For a circular motion expressed in Cartesian coordinates
with the sphere’s centre positioned at [x, 0], Vx = 0 and Vy

∂Vx/∂y = Vy
2/x. Furthermore, the particle velocity Uy in the

relative velocity term (Vy − Uy ) is dynamic and has a lim-
ited predictability and thus is a priori unknown. Therefore Uy

is expressed as γ Vx with γ the relative velocity parameter:
(Vy − Uy ) = Vy (1 − γ ). Equation (18) is then expressed as:

Φ = (1 + CA)Vx
2

xVx(1 − γ )(2Ωp + 1.8ωz)
(19)

The ωz is a known function of x where Ωp varies with time. Ωp

is therefore replaced by Ωp ,st which is the maximum value at
position x and thus a conservative approach. For a cylindrical

coordinate system and applying Burgers’ (1948) model of Vθ ,
the motion parameter Φ is:

Φ =
0.76L−2(1 − γ )−1

{
1 − exp

[
−
(

r
rc

)2
]}

(
0.0054(Γ∞L)0.64

(1−γ )1.64r2.64ν0.64

{
1 − exp

[
−
(

r
rc

)2
]}1.64

+ 0.57
rc

2 exp
[
−
(

r
rc

)2
])

(20)

Given the vortex and particle characteristics, Φ gives an indica-
tion of the minimum required value of γ (r) for a continuous
downward motion. An example is provided for sphere 103
(Ø25 mm) at series 3 to 7. Figure 7a shows Φ for γ = 0.5,
0.8, 0.85 and 0.9. The results show that continuous downward
motion occurs for γ > ∼ 0.8. The validity of Φ is evaluated
by analysing the experimental results and γ exp where γ exp

(r) = Vθ (r)/Uθ (r) with Uθ the measured value from the experi-
ments. Figure 7b shows the results of γ exp . The value of γ exp is
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shown during the sphere’s downward motion. Indeed for series
3 to 6, the experiments show that downward motion is termi-
nated at approximately γ exp < ∼ 0.8. At this position Φ ≈ 1
where the sphere detaches the air core. For series 7 downward
motion is terminated at γ exp < 0.5. This occurs mainly at unsta-
ble situations where the sphere “touches” the air core bottom
(r = 0 m) but ends in a stable limit cycle with γ exp ≈ 0.8. To
conclude, Φ provides an indication of downward motion along
the air core occurs. However, the applicability depends on the
correct quantification of γ , which is subject to further study.

3.5 Discussion

Given the simplifications and assumptions applied in formulat-
ing the model, the validity of this model and hence that of Φ

derived from it has to be discussed.
A main model simplification is the absence of the air

core. This “solid” boundary deaccelerates the horizontal motion
towards the vortex centre, giving the lift force FL more time to
grow in magnitude. This can be observed in the model trajecto-
ries of Fig. 3a and c, showing a faster motion of the particle
towards the centre. Another model characteristic is that the
free-surface vortex is a 2D line vortex that contains an irro-
tational and a by approximation solid-body rotating flow field
with the transition at r ∼ 2rc. So, the particle is subject to two
types of flow (Fig. 2a) and even both types simultaneously at
r < ∼ (rc + 0.5L) with the particle’s centre at r. The model
is therefore limited to particle dimensions with L ≤ ∼ 2rc. A
third subject is the particle’s influence on the surrounding flow
field which is hard to quantify with experiments because of the
particle dynamics. In the far field, say r > 3rc, the (horizontal)
flow has no restrictions to pass the sphere and mutual influence
is assumed to be not significant and confined to a limited area
directly around the sphere. In the region r < 2rc, the approxi-
mately vertical air–water interface represents a restriction to the
flow to pass and the mutual influence will be more significant.
Consequently, the model results in the region r < 2rc must be
interpreted with care.

The drag force FD (Eq. 4) is based on an uniform flow.
Bluemink et al. (2009) showed that Eq. (4) is also valid for
a rotating flow with Rp < ∼ 103, ∼ 1/1.5L > κ > ∼ 1/18L
and vorticity parameter Ω L/V ≤ 0.1 with Ω the fluid’s angu-
lar velocity. In this study vorticity (ωz) is zero for r > ∼ 2rc.
So, Eq. (4) is assumed as applicable for the sphere’s position
r > ∼ (rc + 0.5L). The Magnus lift force FL,Ω (Eq. 11) uses
potential flow theory which is also applicable to the curved
streamlines in the irrotational part of the vortex flow How-
ever, the fluid in the presented study is not ideal and the
boundary layer gives flow separation where the asymmetric
downstream wake affects FL,Ω . Nevertheless, the potential flow
approach gives a proper prediction of FL,Ω and is applicable to
this study for r > ∼ (rc + 0.5L). The applied torque equation
(Eq. 13) is determined for 5 ≤ Rp ≤ 102 and for streamline
curvatures κ < 1/30L where this study uses 102 ≤ Rp ≤ 104

and ∼ 1/L ≤ κ ≤ ∼ 1/12L. However, the study of Fukada et al.
(2014) indicates that their findings are valid for a much higher
range of Rp and thus applicable to this study. The applicability
of Eq. (14) for κ > 1/30L is according to the knowledge of the
authors unknown and a subject to further study. On the other
hand and for κ � 1/30L, various experiments showed ejection
of the sphere out of the air core due to unbalance between the
inertial and lift forces. This was not predicted by the model
which indicates that κ � 1/30L does not result in unrealis-
tic high values of FL,Ωp . Consequently, the applied expressions
of FD and FL,Ωp are applicable for every sphere’s position
r > ∼ (rc + 0.5L). As the motion parameter Φ is derived from
the model, Φ is also applicable for r > ∼ (rc + 0.5L). How-
ever, Φ uses the equation of steady Ωp ,st (Eq. 14) that gives the
maximum lift forces for r < ∼ (rc + 0.5L). This can be inter-
preted as a conservative approach which makes Φ applicable for
all r.

Furthermore, it has to be noted that an exact replication of
the experimental results by the model is not sought after in this
study. The model is merely meant to support the hypothesis
that a relatively simple feed-back mechanism (flow induced
lift forces) may cause inherent unpredictable dynamics in the
presented system.

4 Study on stage 2 motion: the axial motion inside the
vortex core

This chapter addresses the study and quantification of the axial
particle motion inside the vortex core. A stage 2 motion con-
dition is developed to predict the axial motion. As the con-
dition uses the axial velocity in the vortex core, Section 4.1
first addresses the characteristics of this velocity. Section 4.2.
addresses the development of the motion condition. Section 4.3
discusses the results and applicability of the condition.

4.1 Axial velocity profile

The axial flow in the vortex core is found to be concentrated
in a domain bounded by a radius in the order of r ≈ 2 to 3
rc as shown by the stereo PIV measurements of e.g. Duinmei-
jer, Oldenziel, et al. (2019). The velocity profile is Gaussian
shaped with a maximum close to r = rc. Figure 8 shows the
SPIV measured axial velocities for series 1 to 7. The veloci-
ties are measured at three heights in the vortex tank (29, 49 and
62 cm above tank bottom). As the motion condition uses a uni-
form velocity, the first step is to approximate the measured Vz(r)
with a Gaussian function using the measured values of Vz ,max,av

and rmax:

Vz(r) = Vz,max,avexp

[
−
(

r − rmax

αrmax

)2
]

(21)

Vz ,max,av is the averaged value of the measured Vz ,max at each
height in the vortex, rmax the radial position of the maximum
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Figure 8 (a–g) Measured and approximated axial velocity profiles (thick line) for series 1 to 7 with α = 0.5, 0.4, 0.4, 0.32, 0.3, 0.32 and 0.3

Vz and α the width factor of the profile for the best fit with the
measured profiles (Fig. 8. The approximated Vz(r) is assumed as
uniform by using the average velocity Vz over a radial domain
equal to half the length of the particle that is centralized in de
vortex core: r = 0.5L:

Vz = 1
A

∫∫
A

Vz(r)dAN = 8
L2

∫ 0.5L

0
Vz(r)rdr (22)

By applying Eq. (21), the plane averaged uniform velocity Vz is
then approximated by:

Vz = 8Vz,max,av

L2

∫ 0.5L

0
exp

[
−
(

r − rmax

αrmax

)2
]

rdr (23)

Consequently, the boundary conditions for Vz are L, Vz ,max,av,
rmax and α. The values of Vz applied in this study are approx-
imated inclusive the 95% confidence interval ( ± 2σ ) with
σ = 0.002Vθ ,max (Westerweel & Scarano, 2005).

4.2 Stage 2 motion condition

This section addresses the development of the stage 2 motion
condition. The first part addresses the results of a study apply-
ing the independent experimental parameters to predict axial
motion. The second part addresses the development of the
motion condition by applying the axial Navier–Stokes equation
and the presence of a Taylor column.

Motion condition based on the independent experimental
parameters

The independent experimental parameters in the experiments
are H, Q, D, L, CD, ρp and ρ f . These parameters can be rep-
resented by two dimensionless parameters NB and ND. The first
is the relative density and represents the effect of buoyancy on
the axial particle motion:

NB = ρf − ρp

ρf
(24)

ND can be read as the axial drag force acting on the particle and
generated by the axial flow velocity Vz:

ND = Q2CD

D2HL2g
(25)

The term Q2/(D2H ) shows similarity to an axial velocity gra-
dient dV̄z,i/dz using the average axial outlet velocity V̄z,i. The
CD represents the effects of viscosity and particle shape. For
the sphere, CD is calculated with Eq. (4). For the cubes and
ovoids, CD is calculated with the correlation formula for non-
spherical particles proposed by Holzer and Sommerfeld (2008)
and verified for Rp ≤ ∼ 105:

CD = 8
Rp

1√
Ψ⊥

+ 16
Rp

1√
Ψ

+ 3√
Rp

1
Ψ 3/4

+ 0.42 · 100.4(− log Ψ )2 1
Ψ⊥

(26)
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Figure 9 (a) Stationary orientation of an “angled” cube in the vortex core. (b–d) Dynamic orientation of ovoid in the vortex core

Ψ is the ratio between AS of the volume-equivalent sphere and
the non-spherical particle. Ψ ⊥ is the ratio between the sphere’s
AN and the non-spherical particle. As both the cubes and ovoids
are not point symmetric, the CD depends on the particle’s ori-
entation at the start of the axial motion along the vortex core
with respect to the flow direction. This orientation is dynamic
as shown in Fig. 9. The cubes show an angled stationary ori-
entation with AN a hexahedron with a rib length of 1

2

√
2L and

so AN = 1.3L2. The initial orientation of the ovoids is taken as
the averaged value of three orientations (calculations not given
here). As a result, the CD is:

Angled cube : CD = 26.09
Rp

+ 3.52√
Rp

+ 0.80

Ovoid : CD = 26.32
Rp

+ 3.58√
Rp

+ 0.88 (27)

As first assumption, CD is taken as an approximated average
over the experimental range of Rp,z. For the spheres, cubes and
ovoids CD = 0.7, 1.1 and 1.2, respectively. Figure 10 shows

Figure 10 Experimental results of the measured motion of the parti-
cles as function of NB and ND. (a) Results for the spheres and cubes.
(b) Results for the ovoid

the results of the 3D-PTV measured motion as function of NB

and ND. The results are presented by the labels “Motion” and
“No motion” as defined in Section 2.2. The results show no
distinct relation between particle motion and the particle and
vortex characteristics. Indeed, various experiments show the
same values of NB and ND but with opposite results. There were
no logical explanations found for the obtained results. Conse-
quently, it seems not possible to describe the motion condition
as a function of the experimental parameters H, Q, D, L, CD,
ρp and ρ f .

Motion condition based on Taylor-column drag force

The axial motion is characterized by the following condi-
tions: (1) the particle is centralized in the vortex core without
radial motion (Ur = 0); (2) the axial flow is axi-symmetric
(∂/∂θ = 0), stationary (∂/∂t = 0) and defined as radial uniform
(∂/∂r = 0); and (3) there is only vorticity in the z-direction.
Using Eqs (1–3) and (16), the equation of axial particle motion
is then:

(ρp + CAρf )χ

(
∂Uz

∂t
+ Uz

∂Uz

∂z

)
= ρf (1 + CA)χ

(
Vz

∂Vz

∂z

)

+ 0.5ρf CDAN (Vz − Uz)(|Vz − Uz|) + χ(ρf − ρp)g (28)

The derivation of the motion condition focuses on the onset of
particle motion and not on the particle motion itself. Therefore,
the left term in Eq. (28) must be > 0. Furthermore, at the onset
of motion the term (1 + Ca) Vz∂Vz/∂z is assumed to be much
smaller than the buoyance and drag force term and therefore
neglected. The equation of motion then reduces to:

− 0.5ρf CDAN (Vz − Uz)(|Vz − Uz|) = χ(ρf − ρp)g (29)

which is the expected balance between the axial drag force
and buoyancy force. The uniform velocity in the drag force
expression is approximated by applying the radial uniform axial
velocity Vz as addressed in Section 4.1. In order to initiate a
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motion along the vortex core, the following condition must be
met:

0.5CDAN (Vz − Uz)
2

χg
= ρf − ρp

ρf
(30)

As mentioned in the introduction, a particle moving along the
axis of a solid-body rotating fluid can be accompanied by a
Taylor column circumscribing the particle. This column has a
significant effect on the drag force. The criterion for Taylor col-
umn formation is expressed by the Rossby number Ro = Vz/(Ω
0.5L) < ∼ 0.3 with Ω the fluid angular velocity and 0.5L the
radius of the sphere (Bush et al., 1994). In the present study,
Ro < ∼ 0.03 and the Taylor column is most likely to be present.
Maxworthy (1970) experimentally studied the drag force on a
rising sphere in a rotating flow. For large values of the Taylor
number (Ta > ∼ 102) representing the relative magnitude of the
Coriolis force to viscous force:

Ta = Ω(0.5L)2

ν
(31)

and for N > 200 that represents the relative magnitude of
Coriolis force to inertia force:

N = 2Ω(0.5L)2

Uz
(32)

Maxworthy found that the CD for a sphere is independent of Rz

and depends on N only. In this study, the expression (0.5L) is
used to indicate the use of the sphere radius. Based on experi-
ments at Ta > ∼ 200, that can be assumed as a geostrophic bal-
anced fluid, Maxworthy (1970) found the following expression
for the sphere’s drag coefficient:

CD,Taylor = (2.60 ± 0.05)

(
2Ω(0.5L)

Uz

)1.00±0.01

(33)

The results of Maxworthy (1970) are in line with the theoretical
results for inviscid conditions as presented by Stewartson (1952)
and Moore and Saffman (1969), which were CD,Taylor = 1.51N.
As the maximal tangential velocity Vθ occurs near the vor-
tex core radius rc, the (maximum) angular velocity Ω is by
approximation:

Ω(rc) ≈ Vθ (rc)

rc
(34)

By using the validated Burger’s vortex model for Vθ (i.e.
Duinmeijer, Oldenziel, et al., 2019), Ω is approximated by:

Ω(rc) ≈ Γ∞
2πrc

2

{
1 − exp

[
−
(

rc

rc

)2
]}

≈ 0.32Γ∞
πrc

2 (35)

The parameter N and thus CD ,Taylor is than a function of the
vortex characteristics Γ ∞, rc and L:

CD,Taylor ≈ 2.60N � 1.66Γ∞(0.5L)

πrc
2(Vz − Uz)

(36)

By substituting CD,Taylor in Eq. (30), the following condition is
obtained that indicates axial motion along the vortex core:

0.84ΦTΓ∞Vz

πrc
2g

�= ρf − ρp

ρf
(37)

In fact, Eq. (37) expresses the condition for stage 2 motion along
the vortex core as function of the vortex and particle characteris-
tics. The left term presents the dimensionless Taylor drag force
term ND,Taylor:

ND,Taylor = 0.84ΦTΓ∞Vz

πrc
2g

(38)

ΦT is the Taylor drag shape factor: ΦT = k(AN /χ )(0.5L). This
factor is introduced because Eq. (33) is valid for spheres where
this study also uses cubes and ovoids. k is a shape correction
factor for the cubes and ovoids and defined as the ratio between
the CD of Eq. (27) and the sphere (Eq. 4). The cubes have a hex-
ahedron shaped AN , so, the integration domain to calculate Vz is
approximated with the average radius of the inner and outer cir-
cle circumscribing the hexahedron: [0, 0.66L]. The calculation
of AN for the ovoid is not given here. Figure 11 shows a nice
example of the influence of dimension L on the downward par-
ticle motion. Compared to the Ø25 mm sphere (Fig. 11a, b), the
Ø38 mm sphere (Fig. 11c, d) has a four times higher upward
buoyance force but does show a downward motion. This is
due to the significant higher Vz over the spheres cross-sectional
area AN .

The ND,Taylor is validated with the experimental results.
These results are presented by the labels “Motion” and “No
motion” but supplemented with a label “Indecisive motion”.
This label represents experiments that show a downward
motion but with ta > T and therefore not labelled as “Motion”
(Section 2.2). The experimental uncertainty is 12% and defined
as the percentage experiments labelled “Indecisive motion”.
Figure 12a, b shows the experimental and theoretical results for
66 spheres and cubes. The line NB = ND represents the condi-
tion for “Motion” or “No motion”. The calculations of ND,Taylor

generally match with the experimental results but also reveal a
few mismatches. Figure 12c, d shows the results for 31 ovoids.
The results show an overprediction of ND,Taylor. This is prob-
ably due to the disputable assumption that every orientation is
subjected to an equal time distribution. In reality, the behaviour
of the ovoid shows some similarity with the chaotic motion of
an elliptical body due to body–vortex interactions as reported
by Roenby and Aref (2010). Hence, it is difficult to provide a
representative time distribution of each orientation.

4.3 Discussion

The predicted ND,Taylor generally matches with the experimen-
tal results but also reveals some mismatches. The mismatches
are mostly found in experiments in which axial motion was
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Figure 11 Recordings of axial motion along the vortex core. (a, b) Ø25 mm sphere labelled as “No motion” with ND,Taylor ≈ NB (termination
condition no. 2). (c, d) Ø38 mm sphere labelled as “Indecisive motion” with ND,Taylor > NB but ta > T

Figure 12 (a) Experimental and theoretical results for axial motion of cubes and spheres. Left: ND,Taylor versus NB with ND,Taylor based on CD,Taylor.
Right: ND ,sdc versus NB with ND ,sdc based on the standard CD. (b) Results for axial motion of ovoids. Left: ND,Taylor versus NB. Right: ND ,sdc versus
NB

observed and labelled as “Indecisive motion”. The physical pro-
cess explaining this dynamics is the recovery of the axial flow
field after the field is disturbed when placing particles at the
air core’s tip. This initiates an instantaneous increase in the
axial velocity field in the vortex core which brings the particle
in motion. Explanations on why ND,Taylor differs from observa-
tions may be found in the assumptions made: (1) Eq. (33) is
valid for spheres. To apply Eq. (33) for non-spherical objects,
Eq. (33) is proportionally adapted with the shape correction fac-
tor k. A study of Tanzosh and Stone (1994) however, showed

that for Taylor numbers Ta > ∼ 103, the drag is determined
by the cross-sectional area of the particle where the shape is
less important and thus k = 1 for non-spherical objects. In the
present study Ta is in the range between ∼ 3·103 and ∼ 7·104;
therefore, the influence of shape is expected to be negligible.
On the other hand, the results of Tanzosh and Stone (1994)
are valid for Stokes flow, where in this study ∼ 102 < Rp,z

< ∼ 6·103 implying the Stokes condition is not met. Conse-
quently, the effect of non-spherical shapes on the Taylor drag
is not clear at this stage. (2) Equation (33) is determined for a
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full solid-body rotating fluid, while in this study the vortex core
is assumed to be a solid-body rotation to a large extent (due to
the presence of radial diffusion of vorticity, this assumption is
known not to be 100% valid). Furthermore, the solid-body field
is limited to a radial range of r ∼ rc. Thus and with L > 2rc, a
part of the particle is located outside the solid-body region. The
influence on the validity of Eq. (33) is then unclear. (3) The Tay-
lor drag on a body is affected by the bounded geometry of any
experimental set-up. When the set-up is axially bounded instead
of a free-surface, the fluid in the Taylor column is pushed into
an Ekman layer presented on this boundary and increases the
drag by ∼ 50% (Moore & Saffman, 1968). In this study, the
outlet at the bottom is assumed to act as an unbounded con-
dition, so bounding effects are neglected. To conclude and for
L ≤ ∼ 2rc, the stage 2 motion condition indicates if downward
motion occurs.

5 Conclusions

Extensive experiments are conducted in a Ø600 mm vortex tank
to study the free-surface vortex flow driven motion of buoyant
particles. The experimental particles are spherical, cubical and
ellipsoid shaped with a characteristic dimension L of 0.02 to
0.04 m and the Reynolds particle number is ∼ 102 < Rp <

∼ 104. The experiments revealed that the particle’s motion has
a very sensitive dependence on the particle’s initial conditions
by showing chaotic behaviour. This behaviour is shown to be
replicated in a simplified model of the particle’s motion. By
quantification of the LLE, the similarity in dynamics between
model and experiments was shown. The vortex driven particle
motion has a limited forecast horizon (typically ∼ 10 s). In spite
of the comprehensive set of data gathered for this study, it was
not possible to formulate a criterion based on the characteristics
of a vortex and a particle to predict chaotic/non-chaotic dynam-
ics. A more extensive experimental programme would need to
be in place to achieve this.

For the axial motion inside the vortex core, the results
showed that this motion is determined by (un)balance between
the buoyancy force and the drag force. The application of the
uniform drag force with standard drag coefficients CD is insuf-
ficient to model the axial drag force in the vortex core as the
results do not match with experimental results. The CD in this
vortex core seems to be determined by the presence of a Tay-
lor column under the particle. The CD,Taylor is then a function
of the vortex core angular speed Ω which is a function of the
vortex characteristics Γ ∞, rc, Vz and L. For L ≤ ∼ 2rc and ver-
ified with experimental data, a motion condition is proposed that
indicates if downward motion inside the vortex core occurs.

To improve the reliability of the model and motion parameter
Φ, the validity of the hydrodynamic forces and torque gen-
eration acting on a sphere in both irrotational and rotational
rotating flows with Rp > ∼ 103 and κ > 1/12L are a sub-
ject to further study. However, there are several other processes

influencing the particle motion, e.g. the particle’s influence on
the surrounding flow field, the curved water–air interface, sur-
face tension, temperature, etc. which are also subject to further
study. Furthermore and to improve the accuracy of the stage 2
motion condition, the validity of Maxworthy’s expression of CD

(Eq. 33) for non-spherical bodies and for bodies with L > ∼ 2rc

is a subject to further study.
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Notation

a = particle radius (m)
AN = cross-sectional area normal to flow (m2)
AS = particle surface area (m2)
CA = added mass coefficient (–)
CD = drag coefficient (–)
CL = lift coefficient (–)
CT = torque coefficient (–)
g = gravitational constant (m s−2)
H = undisturbed water depth above outlet (m)
HD = total surface depression or air core depth (m)
Ip = particle moment of inertia (kg m2)
L = characteristic particle dimension (m)
Q = flow rate (m3 s−1)
r = radial coordinate (m)
rc = vortex core radius (m)
Ro = Rossby number ( − )
Rp = particle Reynolds number (–)
t = time (s)
Tp = torque on particle (N m)
U = particle velocity field
Ur = particle radial velocity (m s−1)
Uz = particle axial velocity (m s−1)
Uθ = particle tangential velocity (m s−1)
V = flow velocity field
Vr = radial velocity (m s−1)
Vz = axial velocity (m s−1)
Vθ = tangential velocity (m s−1)
x = x coordinate (m)
y = y coordinate (m)
Xp ,0 = particle initial conditions field
z = axial coordinate (m)
γ = relative velocity parameter (–)
θ = azimuthal coordinate (rad)
l = Lyapunov exponent (s−1)
ν = kinematic viscosity (m2 s−1)
ρ f = fluid density (kg m−3)
ρp = particle density (kg m−3)
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τ = viscous stress (N m−2)
ω = vorticity (s−1)
Γ = circulation (m2 s−1)
Φ = stage 1 motion parameter (–)
χ = particle volume (m3)
Ω = angular velocity (rad s−1)
Ωp = particle angular velocity (rad s−1)
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