Delft University of Technology

Rekenen aan levensduurkosten bij lage discontovoeten

van den Boomen, M.; Bakker, H.L.M.; Hertogh, M.J.C.M.; Treiture, R.

Publication date

2021
Document Version
Final published version
Published in
VIEW on VALUE

Citation (APA)

van den Boomen, M., Bakker, H. L. M., Hertogh, M. J. C. M., \& Treiture, R. (2021). Rekenen aan levensduurkosten bij lage discontovoeten. VIEW on VALUE, 5(11), 20-24.
https://onlinetouch.nl/dace/vakblad-dace-view-on-value-number-11-2021? html=true\#/20/

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository
 'You share, we take care!' - Taverne project

https://www.openaccess.nI/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

REKENEN AAN
LEVENSCYCLUSKOSTEN BIJ
LAGE DISCONTOVOETEN

Auteurs: Martine van den Boomen, Hans Bakker en Marcel Hertogh ziin allen werkzaam bii de Technische Universiteit Delft, Faculteit Civiel Techniek en Geowetenschappen, Rob Treiture werkt bii Rijkswaterstaut. Daarnaast is Martine ook werkzaam bii de Hogeschool Rotterdam, Kenniscentrum Duurzame HavenStad

In dit artikel stellen we drie rekenmethoden voor om tot een evenredige vergelijking te komen bij lage discontovoeten.

T 7 eel publieke organisaties in Nederland rekenen bii contante waardeberekeningen met een maatschappeli,ke discontovoet. Het Centraal Plan Bureau heeft in 2019 aan het kabinet gevraagd de maatschappelijke discontovoet die in 2015 voor opnieuw een Werkgroep Discontovoet ingesteld. Deze werkgroep bestaat uit vertegenwoordigers van verschil lende ministeries, namelijk Financiën, Algemene Zaken, Sociale Zaken en Werkgelegenheid, Economische Zaken, Infrastructuur en Waterstaat, Onderwiis Cultuur en Wetenschap, Buitenlandse Zaken en Volksgezondheid Welziin en Sport. Ook het CPB, De Nederlandse Bank (DNB) en Planbureau voor de Leefomgeving (PBL) nemen als betrekt de werkgroep externe expertise waar nodig of gewenst (11). De Werkgroep Discontovoet heeft in 2020 advies uitgebracht over de hooste van de discontovoeten voor maatschappeliike kostenbatenanalyses (MKBA's) [2]. Dit advies is door de minister van Financiên overgenomen [1]. Voor vaste, verzonken kosten die vaak worden toegeschreven aan fysieke infrastructuur, gelat een reete discontovoet van $1,6 \%$ (voorheen 3%. De lage discontovoet is een een lage discontovoet is dat uitgaven en ontvangsten in de verre toekomst relatief zwaar meetellen.

Door de lage discontovoet ontstaat een methodisch probleem bif contante waarde berekening over de gebruikelijke periode van 100 jaar. De huidige of contante waarde van 1 euro over 100 jaar is namelijk:
$\frac{1}{(1+1,6 \%)^{100}}=0,204$
Dit wil zeggen dat deze euro die pas over 100 jaar wordt ontvangen of uitgegeven, op dit moment nog voor 20% van ziin waarde meetelt. Dat is niet verwarlloosbaar. Het eindigen van kasstromen bii een tiddshorizon van 100 jar leidt ertoe dat kasstromen die optreden na die periode als verwaarloosbaar worden beschouwd,
terwiil ze dat bii lage discontovecten niet ziin. Het gevolg is dat vergeliikingen tussen varianten op basis van levensduurkosten niet meer helemaal zuiver ziin $[3,4]$.

In dit artikel stellen we drie rekenmethoden voor om tot een ever. redige vergelijking te komen bii lage discontovoeten. De kern van deze drie methoden is het oprekken van de rekenhorizon tot het infrastructuur haar functionele waarde in veel gevallen over lange tijd zal behouden. Een dijk, een brug, een sluis of een weg houden na hun technische levensduur niet op met bestaan. Ze worden meestal vervangen.

Alternatief 1:oprekken van de tijdshorizon
Het eerste a aternatief is simpelweg het oprekken van de tiidshorizon van 100 iaar naar hivoorbeeld 300 iaar. Een tiidshorizon van 300 jar heeft nog maar een afwijking van:

$\left.\frac{1}{(1+1,6 \%}\right)^{300}=0,0085$

In andere woorden, een euro die wordt ontvangen of uitgegeven over 300 jaar telt op dit moment nog maar voor $0,85 \%$ van ziin waarde mee. Dat gaat meer in de richting van verwaarloosbaar. Echter, het proiecteren van kasstromen over een periode van 300 iaar is nogal omslachtig. Er zitten een aantal vervangingen in en de
kans op het maken van fouten is groot. Mathematisch kan kans op het maken van fouten is groot. Mathematisch kan
hetzelfde antwoord worden bereikt op een handigere manier door te rekenen over een oneindige rekenhorizon. 300 jaar benadert immers een oneindige horizon. Dit laten we zien met de volgende twee alternatieven met dezelfde uitkomst maar via een andere rekenmethode.

Alternatief 2: de EAC-method

De EAC-methode neemt de levensduur N van de infrastructuur als referentieperiode. Alle kasstromen worden over de levensduur geprojecteerd en contant gemaakt. Vervolgens wordt deze contante waarde van de levensduurkosten omgerekend naar de equivalente iaarlijkse kosten (EAC) volgens formule (a)
$E A C=P \cdot\left(\frac{r(1+r)^{N}}{(1+r)^{N}-1}\right)$
warbii $\mathrm{P}=$ de contante waarde van de levensduurkosten van de infrastructuur; $; \mathrm{r}=$ de reèle discontovoet en $\mathrm{N}=$ de levensduur van de infrastructuur.
Samenvattend ziin de stappen als volg
. Troiecteer alle kasstromen over de levensduur N ;
. Bereken de contante waarde P (Engels: present value) van de
kasstromen over de levensduur; kasstromen over de levensduur
Bereken de EAC van de contant gemaakte levensduurkosten Volgens formule la
van een infrastructuur is namelijk geliik aan de EAC over ieder willekeurige herhaling van deze levenscyclus. De EAC over 1 levenscyclus is dus ook de EAC over een oneindige tiidshorizon. Om die reden kunnen varianten met verschillende levensduren op basis van EAC met elkaar worden vergeleken want ze hebben

-

Ook alternatief 3 kan varianten met verschillende levensduren
vergeliken en heeft geen moeite met lage discontovoeten. Alternatief 3 berekent de contante waarde over een oneindige tidshorizon door uit te gaan van herhalingen van levenscycli en door slim gebruik te maken van repeterende reeksen van kasstromen. Voor de P Po-methode zoeken we naar het repeterende karakter van vereenvoudigen definieren we eerst:
$K=\frac{1}{1+r} \quad$ (b)
waarbii $\mathrm{r}=$ reële discontovoet.
Bii het analyseren van levensduurkasstromen zit het repeterende karakter meestal in de
(Her)investeringen

- Groot-onderhoud

Deze worden achtereenvolgens toegelich.

Repeterende investeringen

De contante waarde van een investering (I_{0}) die nu plaatsvindt en zich bliift herhalen met intervallen gelijk aan de levensduur (\mathbb{N}) van mule (3)
$P_{[0,0]}=I_{0} \cdot\left(\frac{1}{1-K^{n}}\right) \quad$ (c)
waarbij $\mathrm{P} *=$ contante waarde van de reeks (herlinvesteringen $\left(\mathrm{L}_{0}\right)$ met interval $\mathrm{N} ; \mathrm{N}=$ levensduur van de infrastructuur.

Repeterend groot-onderhoud

Stel we hebben een levensduur van $80 \mathrm{iaar}(\mathrm{N}=80$ en iedere 20 iaar grootonderhoud ($\mathrm{n}=20$). Het repeterende groot-onderhoud (GO) vindt dan plaats in de aren $20-40-60-(-)-100-120-140-(-)-$ etc. De contante waarde van een dergelike reeks volgt uis

$$
P_{[n, 0 \mid}=G O \cdot\left[\left(\frac{1}{1-K^{n}}\right)-\left(\frac{1}{1-K^{n}}\right)\right] \quad \text { (d) }
$$

De eerste term in de rechter vierkante haken is voor de doorlopende reeks groot-onderhoud met interval n. De tweede term in de vierkante haken trekt de reeks van het grootonderhoud af dat samenvalt met de vervangingsinvesteringen.
Erziin ook situaties waarbii het groot onderhoud cyclisch niet goed past in de levensduur. Stel dat de levensduur 80 iaar is en groot-
onderhoud plaats vindt in jaar $30-50$. De reeks is dan $30-50-(-)$ $-110-130-($.$) -etc. Voor een dergelifke reeks is een omweg nodig$ warbbii eerst de contante waarde van het grootonderhoud in één ievenscyclus N wordt bepaald. Vervolgens kan deze contante waarde hetzelfde worden behandeld als de vervangingsinvesterin-
grin formule (c). gen in formule (c)
e contante warde van het grootonderhoud in een levenscyclus N volgt uit:
$P_{\left[T_{\text {sarrs }} T_{\text {enad }}\right.}=G O \cdot \frac{K^{T_{\text {start }}-K^{T}} T_{\text {etrad }}}{1-K^{n}} \quad$ (e)

In het voorbeeld is $\mathrm{T}_{\mathrm{m}}=30, \mathrm{~T}=70 \mathrm{en} \mathrm{n}=20$. Teind is de waarde waarop CO zou plaatsvinden volgens het interval, maar die niet gelijk worden behandeld als de cyclische investering in formule (c).

kepeterende jaarlijkse exploitatiebedrage

De contante warde van een oneindige reeks exploitatiekasstromen (E) die beginnen in jaar 1 en jaarlijks terugkomen kunnen worden berekend met

$P_{[1,0]]}=\frac{E}{r} \quad$ (t)

Enkele exploitatiekasstromen vallen samen met de herinvesteringen. Meestal is dit verwaarloosbaar. Als dit niet $z 0$ is, $z a l$ een reeks exploitatiekasstromen met interval N moeten worden afgetrokken zoals bii groot-onderhoud in formule (d).
Met deze set formules die de contante waarden uitrekenen van
repeterende reeksen kan snel de contante waarde van alle levens. cyclusactiviteiten worden bepaald:

1. Identificeer de reeksen van de verschillende levensduuractiviteiten;
2. Gebruik de iuiste formule om de contante waarde van een oneindige reeks te berekenen;
3. Tel de contante waarde van de verschillende levensduuractiviteiten bile lkaar op.
Op deze wiize kunnen varianten met verschillende levensduren (oneindig). Ook kan deze methode zonder moeite omgaan met lage discontovoeten.

Rekenvoorbeeld

Als illustratie voor de alternatieven beschouwen we twee bruggen met een verschillende levensduur en verschillende levensduuruit gaven waarvan de gegevens ziin opgenomen in tabel 1.
bruggen

Methoden 2 (EAC) en 3 ($\mathrm{P} \times$) ziin met de huidige aanpak vergeleken waarbij een rekenhorizon wordt beëndigd na 100 jaar.Voor brug A is in de huidige aanpak, in jaar 80 een vervangingsinvestering opgenomen, en voor brug B in iarr 100 . De resultaten van de berekeningen voor brug A en Bziin opgenomen in tabellen 2 en 3 .

De kern van de drie methoden is het oprekken van de rekenhorizon tot het moment dat deze er niet meer toe doet.

Tabel 2-Vergelijkende berekeningen voor brug A.

Buea	metree	(matemoter	matuese	nater
Ncw oreremerioce 10 jar	¢9731.202			
		c1800	${ }_{\text {c180003 }}$	
Newoereperit		${ }^{11.250189}$	¢11250.189	15x

Tabel 3 - Vergelijkende berekeningen voor brug B

De observaties zijn:
De uitkomsten van de EAC-methode en Pœ-methode ziin zoals verwacht per brug identiek.
tot 15% gemiste kasstromen en woor 100 jar leidt voor brug A voor beiden door de lage discontovoet van $1,6 \%$ en het missen van kasstromen na 100 iaar. Het opvoeren van een vervangingsinvestering aan het einde van de rekenperiode in de huidige methode om het missen van kasstromen te compenseren drukt het percentage naar beneden. Zonder deze afrekening is het
percentage gemiste kasstromen ongeveer 20%. percentage gemiste kastromen ongevecer 20\%
wist de huidige methode brug A aan terwill EAC. methode en P p methode, de voorkeur geven aan brug B. De verschillen ziin marginaal maar het missen van kasstromen kan ertoe leiden dat de voorkeursvolgorde verandert. We verwachten dat dit meestal niet aan de orde is, een harde uitspraak vraagt echter om nader onderzoek

Discussie en conclusie
Door de lage discontovoet gaat het contant maken van toekomstige kastromen langzaam. Aan het einde van een rekenhorizon van 100 jaar heeft een euro nog 20% van ziin waarde behouden bii een discontovoet van $1,6 \%$. Dit betekent dat in de huidige LCC en MKBA-methodiek, die rekenen met een horizon van 100 iaar, kasstromen worden gemist. Dit leidt ertoe dat de contante waarde
van toekomstige levensduurkosten wordt onderschaten een rekenvoorbeeld laat zien dat dit percentage kan oplopen tot 15%. Het missen van kastromen kan er ook toe leiden dat de voorkeursvolg. orde verandert.

In dit artikel dragen we drie methodische alternatieven aan om alle kasstromen die ertoe doen mee te nemen bii een lage discontovoet. Methodisch is een mooie oplossing om te werken met een oneindige rekenhorizon en aan te nemen dat de functie van infrattruc-
tuur eeuwir blift voortbestaan. Die aanname is natuurlijk niet helemaal correct want infrastructuur wordt niet tot in het oneinhelemaal correct want infrastructuur wordt niet tot in het onein-
dige vermieuwd maar het geeft een betere schatting dan aannemen dige vernieuwd maar het geeft e
dater niets meer is na 100 iaar.
Het voordeel van het uitgaan van oneindige herhaling is ook dat er geen interpretatieverschillen ontstaan over het afrekenen aan het geen interpretatieverschillen ontstaan over het afrekenen aan het
einde van de huidige rekenhorizon van 100 iaar omdat het vertrekpunt de levensduur is (die zich blijt herhalen) en niet een gekozen rekenhorizon. Er ontstaat biivoorbeeld geen discussie meer of aan het einde van een rekenhorizon nog een vervangingsinvestering als affekening moet worden opgenomen.
Praktisch gezien benadert 300 faar oneindig, maar kasstromen
uitschriiven over 300 jaar is omslachtig Wiskundig zis uitschriven over 300 laar is omslachtig. Wiskundig zin er thee
methoden die dit veel sneller kunnen uitrekenen: de EAC-methode en Po-methode. Beide methoden ziin equivalent, en rekenen met een oneindige tijdshorizon. Alleen de eerste methode drukt het resultaat uit in Equivalente laarliikse Kosten (Equivalent Annual Cost, EAC) en de tweede methode in Netto Contante Waarde (NCW) van een oneindige reeks. De gepresenteerde formules kunnen op
hun iuistheid worden gecontroleerd door alle kasstromen over hun euistheid worden gecontroleerd door alle kasstromen over
meer dan 300 iaar te proiecteren en de contante waarden hiervan te berekenen.

De toepassing van de EAC methode ofde P \times - methode lijkt een goed alternatief te bieden om de consequenties van een lage discontovoet in de huidige MKBA en LCC-berekeningen te ondervangen.

Nawoord van de redactie (reikwijdte artikel)

Nawoord van de redactie (hoogte discontovoet)

Referentities
[1] Minister van Financièn, Kabinetsreactie werkgroep Discontovoet 2020.0000206831.2020. Online toegankelijk via: https://www.rik ksoverheid.d///binaries/rik koverheid/docu-
menten/kamerstukken/2020/11/10/kabinetsreactiewerkmenten/discontovoct Kabinetsreactie+werkgroep + Discontove grocp.discontovoct/Kabinctsreactic+werkgrocp+Discontovoct.
pdf
(2) Werkgroep discontovoet 2020, Rapport Werkkroep discontovoet 2020. 2020, Ministerie van Financien. Online toegankelijk via. hittps:/ Www.rijksoverheid.nl/binaries/riiksoverheid/docu-menten/kamerstukken/2020/11/10/rapport-werkgroep. discontovoet-2020/rapport-werkgroep.discontovoet:2020.pdf (3) Treiture, R, et al, Assessing approximation errors caused by
truncation of cash flows in public infrastructure net present truncation of cash flows in public infrastructure net present
value calculations, in Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision. Proceedings of the 6th International Symposium on Life Cycle Civil Enginee ring (IALCCE 2018), 28-31 October 2018, Ghent, Belgium, R. Caspeele, L. Taerwe, and Frangopol, Editors. 2018, CRC Press.
(44 Van den Boomen, M, etal, Common Misunderstandings In Life Cycle Costing Analyses And How To Avoid Them in Proceedings of the Sth International Symposium on Life-Cycle Civi Engineering (IALCCE 2016) 16-19 October 2016 Delt, The Netherlands, J. Bakker, D.M. Frangopol, and K. van Breugel,

Cost Engincering

- Cursus Essenties van Cost Engineering (ECE) 29 en 30 juni en 6 en 7 fuli 2022

Cursus Essenties van Project Cost Control (EPCC) 8 en 9 december 2022
Value Management
Basisopleiding Value Management (6-daagse VM1) kick-of: 20 appril (ochtend), $17,18,24,25,31$ mei en 1 juni 2022

- VM2-opleding kick-of: 16 juni (ochtend), 29 juni. 5 en 6 juli 2022
- VM3 opleiding 7. 14 en 21 september 2022
eadership for Cost Engineers
- Leadership for Cost Engineers 15,16 november en 8 december 2022

ACE contactbijeenkomsten 2022
7 maart
24 september

AGENDA

Overzicht DACE trainingen 2021
Cost Engineering
Cost Engineering
Cursus Essenties van Proiect Cost Control (EPCC) 9 en 10 december 2020
Leadership for Cost Engineer
Leadership for Cost Engincers 16 en 17 november en 9 december 2021
DACE contactibieenkomsten 2021 en 2022

- 25 november 2021

