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A B S T R A C T

Person re-identification is a key challenge for surveillance across multiple sensors. Prompted by the advent
of powerful deep learning models for visual recognition, and inexpensive RGB-D cameras and sensor-rich
mobile robotic platforms, e.g. self-driving vehicles, we investigate the relatively unexplored problem of cross-
modal re-identification of persons between RGB (color) and depth images. The considerable divergence in
data distributions across different sensor modalities introduces additional challenges to the typical difficulties
like distinct viewpoints, occlusions, and pose and illumination variation. While some work has investigated
re-identification across RGB and infrared, we take inspiration from successes in transfer learning from RGB
to depth in object detection tasks. Our main contribution is a novel method for cross-modal distillation for
robust person re-identification, which learns a shared feature representation space of person’s appearance in
both RGB and depth images. In addition, we propose a cross-modal attention mechanism where the gating
signal from one modality can dynamically activate the most discriminant CNN filters of the other modality.
The proposed distillation method is compared to conventional and deep learning approaches proposed for other
cross-domain re-identification tasks. Results obtained on the public BIWI and RobotPKU datasets indicate that
the proposed method can significantly outperform the state-of-the-art approaches by up to 16.1% in mean
Average Precision (mAP), demonstrating the benefit of the distillation paradigm. The experimental results also
indicate that using cross-modal attention allows to improve recognition accuracy considerably with respect to
the proposed distillation method and relevant state-of-the-art approaches.1
. Introduction

Person re-identification is an important function in many monitor-
ng and surveillance applications, such as multi-camera target tracking,
edestrian tracking in autonomous driving, access control in biomet-
ics, search and retrieval in video surveillance, and forensics (Gong
t al., 2014; Zheng et al., 2016), and, as such, has gained much
ttention in recent years. Given the query image of an individual cap-
ured using a network of distributed cameras, person re-identification
eeks to recognize that same individual over time within a gallery of
reviously-captured images (Shoubiao et al., 2018).

Re-identification remains a challenging problem in real world ap-
lications due to low resolution images, occlusions, miss-alignments,
ackground clutter, motion blur, and variations in pose, scale and
llumination. This paper focuses on the cross-modal variant of this task,
hich requires matching a person’s appearance across RGB and depth
odalities. Fig. 1 visualizes the difference between the conventional

ingle modality re-identification task (Fig. 1(a)) and the cross-modal
e-identification task (Fig. 1(b)) addressed in this work.

∗ Corresponding author.
E-mail address: frank.m.hafner@gmail.com (F.M. Hafner).

1 Code: https://github.com/frhf/cross-modal-distillation-reidentification.

Although several methods have been proposed for cross-modal re-
identification between RGB and infrared images (Wu et al., 2017b; Ye
et al., 2018a,b; Dai et al., 2018; Wang et al., 2020a), almost no research
addressing RGB and depth images exists and ahead of our work no
deep learning based methods have been applied to the task (Zhuo
et al., 2017; Hafner et al., 2019). However, sensing across RGB and
depth modalities is important in many real-world scenarios, such as
video surveillance systems that must recognize individuals in poorly
illuminated environments (Sudhakar et al., 2017).

Other use cases include robotics and autonomous vehicles, which
require tracking pedestrians around their vicinity, where some regions
are covered by lidar sensors, and others by RGB cameras (Dimitrievski
et al., 2019; Navarro et al., 2017; Caesar et al., 2020). Besides these
practical applications, research in cross-modal re-identification can also
help legal interpretation of depth-based images concerning privacy data
protection (e.g. within GDPR) (George et al., 2018). While it is clear
that person data from a RGB camera is highly sensible concerning
https://doi.org/10.1016/j.cviu.2021.103352
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Fig. 1. (a) Single-modal re-identification embeds input (from the same modality) to
a common latent feature space via an embedding function 𝐹 (𝑥), such that different
images from the same individual are close together in the mapping. 𝑥 corresponds to
the query image, which needs to be matched with gallery images 𝑥1 and 𝑥2, where
ne is from the same class as 𝑥. �̂� is associated to the embedding closest in the latent

space to 𝑥. (b) Cross-modal re-identification creates a shared embedding for multiple
modalities, each with their own mapping function. Here, the embedding functions are
defined as 𝐹 (𝑥) for RGB and 𝐺(𝑥) for depth, respectively.

data privacy, it is still unclear how much private information can be
extracted from depth images.

In this paper, a new cross-modal distillation training procedure
is proposed for robust person re-identification across RGB and depth
sensors. The task is addressed by creating a common embedding of
images from both the depth and RGB modalities, as visualized in
Fig. 1(b). The proposed method exploits a two-step optimization pro-
cess. In the first step a network is optimized based on data from the
first modality, and in the second step the embeddings and weights
of this first neural network provide guidance to optimize a second
network. The optimization is based on the final embedding layer of the
networks to guarantee an embedding in a common feature space for
both modalities. The idea behind this approach is to enable a transfer
of learned structural representations from the depth modality to the
RGB modality, and, therefore, enforce similar feature embeddings for
both modalities.

To increase the feature granularity, there is a common trend to use
the attention mechanism to address the issue of misalignment in re-
identifications. Inspired by the recent success of the gated attention
mechanism (Kiran et al., 2021; Bhuiyan et al., 2020; Subramaniam
et al., 2019), we propose to additionally integrate a cross-modal gated
attention mechanism to mitigate the misalignment issue by dynamically
selecting the CNN filters. Most of these state-of-the-art approaches use
different contextual information to gate the backbone architecture. For
instance, Kiran et al. (2021) uses optical flow, Subramaniam et al.
(2019) uses co-segmentation and Bhuiyan et al. (2020) uses pose
guided contextual information. Unlike (Kiran et al., 2021; Bhuiyan
et al., 2020) and Subramaniam et al. (2019), we introduce the use
2

of cross-modal contextual information, i.e the contextual information
from one modality is processed to gate the backbone architecture of
another modality. Following the common trend in Kiran et al. (2021),
Bhuiyan et al. (2020) and Subramaniam et al. (2019), we rely on
a simple gated attention mechanism which allows for multiplicative
interaction between the input features from one modality and the at-
tention map from another modality. This attention is applied into mid-
level layer of the respective CNN stream that provide back-propagated
gradients corresponding to the amplified local similarities.

The contributions of our work are as follows:
(i) A cross-modal distillation training procedure is adopted to trans-

fer an embedding representation from one modality to the other by
exploiting the intrinsic relation between depth and RGB. (ii) We quan-
titatively and qualitatively show that an ideal deep feature distillation
for the task needs to take place from depth to RGB. Hence, the experi-
ments give an understanding of the relationship of the RGB and depth
modality. (iii) We propose to integrate a cross-modal gated attention
mechanism into the proposed distillation technique for fine-grained
recognition in the embedded space. (iv) An extensive experimental
validation is conducted to compare the performance to state-of-the-
art methods for cross-modal person re-identification between RGB and
depth. On this basis the advantages of the proposed method are shown
on multiple RGB-D based benchmark re-identification datasets.

This paper contains a complete discussion of the cross-modal dis-
tillation idea for person re-identification between RGB and depth and
extends our work in Hafner et al. (2019) by comparing to another set
of state-of-the-art methods (Wu et al., 2017b), conducting an ablation
study and a hyperparameter optimization in search of the ideal embed-
ding size. The code to reproduce the results of this paper is published
on github.2

2. Related work

The area of person re-identification has received much attention in
recent years (Zheng et al., 2016). This section provides a summary
of the state-of-the-art conventional, deep learning and cross-modal
techniques as they relate to our research.

Conventional Methods. Conventional approaches for person re-
dentification from a single modality can be categorized into two main
roups — direct methods with hand-crafted descriptors or learned
eatures and metric learning based approaches. Direct methods for re-
dentification are mainly devoted to the search of the most discriminant
eatures to design a powerful descriptor (or signature) for each indi-
idual regardless of the scene (Bhuiyan et al., 2014; Liao et al., 2015;
anda et al., 2017). In contrast, in metric learning methods, a dataset
f different labeled individuals is used to jointly learn the features
nd the metric space to compare them, in order to guarantee a high
e-identification rate (Liao et al., 2015).
Deep Learning Methods. The idea of using a deep learning archi-

ecture for person re-identification stems from Siamese CNN with either
wo or three branches for pairwise verification loss (Xiao et al., 2016)
r triplet loss (Hermans et al., 2017; Ristani and Carlo, 2018), respec-
ively. Some of those approaches use their own network architectures,
y proposing new layers (Ahmed et al., 2015) or by fusing features
rom different body parts with a multi-scale CNN structure (Cheng
t al., 2016; Li et al., 2017). Another stream of works addresses the
roblem with transfer learning (Geng et al., 2016; Xiao et al., 2016; Li

et al., 2018). Here, the distribution of the training data from the source
domain is different from that of the target domain. The most common
deep transfer learning strategy for re-identification (Geng et al., 2016)
is to pre-train a base network on a large scale or combination of
different datasets as source dataset, and transfer learned representation
to the target dataset. A variant of other transfer learning approaches
for re-identification (Xiao et al., 2016; Li et al., 2018) leverages the

2 Code will be published upon paper acceptance.
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idea of joint or multi-task learning considering combination of dif-
ferent re-identification datasets, or auxiliary datasets to minimize the
cross-domain discrepancy. However, these transfer learning methods
depend on the assumption that the tasks are the same and in a single
modality and, hence unsuitable when the source and target domains
are heterogeneous.

Cross-Modal Methods. While the progress in re-identifying persons
in single modalities was significant, lately the task of cross-modal re-
identification receives more attention. Several works (Wu et al., 2017b;
Ye et al., 2018a,b; Dai et al., 2018; Wu et al., 2017a; Zhuo et al.,
2017; Wang et al., 2020a) investigated the task of cross-modal person
re-identification. Recently, several approaches have been proposed for
cross-modal person re-identification between RGB and infrared im-
ages (Wu et al., 2017b; Ye et al., 2018a,b; Dai et al., 2018; Wang et al.,
2020a; Fan et al., 2020; Wang et al., 2020b; Lu et al., 2020). To embed
the RGB and IR modalities in a common feature space, the authors
in Wu et al. (2017b) and Ye et al. (2018a,b) analyze several neural
networks architectures: zero padding and one-stream networks (Wu
et al., 2017b), and two streams network (Wu et al., 2017b) and Ye
et al. (2018a,b) with different losses. Additionally, the problem has
been addressed in adversarial way in Dai et al. (2018) and Wang et al.
(2020a). Interestingly, (Wang et al., 2020a; Lu et al., 2020) identified
paired images for training is crucial for the re-identification problem
within RGB-infrared and construct those via a GAN. Recently, the
problem has been addressed by exploring the potential of both the
modality-shared information and the modality-specific characteristics.
Another group of cross-modal re-identification approach (Yan et al.,
2018; Zheng et al., 2020; Farooq et al., 2020) considers a natural
language description of an individual with his/her visual cues. Most
of these approaches (Zheng et al., 2020; Farooq et al., 2020) jointly
optimize the two modalities by adapting different matching strategies.
There are a few works in the literature that consider a multi-modal
person re-identification scenario (Enzweiler and Gavrila, 2011; Wu
et al., 2017a) by fusing the RGB and the depth information in order
to extract robust discriminative features. In Wu et al. (2017a), a depth-
shape descriptor called eigen-depth is proposed to extract describing
features from the depth domain. Zhuo et al. (2017) used the same
features to perform cross-modal re-identification between depth and
RGB. Uddin et al. (2019) combined a body partitioning method and a
HOG based feature extraction with a metric learning approach to enable
cross-modal person re-identification.

In contrast to the approaches described above for cross-modal re-
identification, we propose to employ the cross-modal distillation idea
by means of a deep transfer learning technique. The idea of the method
is inspired by the work on supervision transfer of Gupta et al. (Gupta
et al., 2016). However, supervision transfer (Gupta et al., 2016) and our
approach aim at different problems with different focuses of method
design: supervision transfer solves the problem of limited data avail-
ability for object detection problems with a transfer scheme from RGB
to depth. Our method is using the distillation paradigm to transfer
knowledge from one modality to a second modality to solve the re-
identification task across the two modalities. Therefore, contrary to
Gupta et al. Gupta et al. (2016), the task has to be solved across
modalities in the same feature space and is not considered a pre-
training procedure as in Gupta et al. (2016). Additionally, in Gupta
et al. the direction of transfer is defined as from RGB to depth. In
contrast, in this work the ideal direction of transfer is investigated in
detail and a transfer from depth to RGB is shown to be superior for the
application.

3. Cross-modal distillation for re-identification

In this section the cross-modal distillation approach is presented.
The approach is used for training of neural networks for cross-modal
person re-identification between RGB and depth and is trained with
labeled image data from both modalities. During inference, the trained
 𝑋

3

networks then allow to recognize the same person captured using either
the RGB or depth sensor. This work extends our previous work (Hafner
et al., 2019) as the first work to apply deep neural networks architec-
tures to solve cross-modal person re-identification between RGB and
depth.

3.1. Task description

Consider a query image �̂�, and a set of gallery images 𝑥1,… , 𝑥𝑀
ith associated labels 𝑦1,… , 𝑦𝑀 , such that 𝑦𝑖 indicates the individual
resent in image 𝑥𝑖. Each image contains a single individual cropped
rom a larger input image. In single-modal re-identification, both query
̂ ∈ 𝜒 and gallery images 𝑥𝑖 ∈ 𝜒 are from the same input space 𝜒 . The
general approach to person re-identification is to apply a mapping from
the input images to an embedded space, where input samples of the
same individual are mapped close together, and of different individuals
are further apart. Fig. 1(a) shows how this embedding is used during
test time for the standard single-modal case with RGB color images.
The query image �̂� is mapped to the embedded space 𝐹 (�̂�), where
the distances to the gallery images 𝐹 (𝑥𝑖) are compared. The identified
person �̂� for query �̂� is then the individual corresponding to the closest
embedded gallery image 𝑖, i.e.

�̂� = 𝑦𝑖 where 𝑖 = argmin
𝑖

𝑑(𝐹 (�̂�), 𝐹 (𝑥𝑖)). (1)

where 𝑑 is the distance metric for the embedding, typically the Eu-
clidean distance 𝑑(𝑎, 𝑏) = ‖𝑎−𝑏‖. During training, the learning objective
s therefore to estimate a suitable mapping 𝐹 (𝑥) from available training
ata.

For cross-modal re-identification an additional challenge is added,
amely query �̂� ∈ 𝜒𝑚1 and gallery images 𝑥𝑖 ∈ 𝜒𝑚2 are from separate
nput spaces 𝜒𝑚1 and 𝜒𝑚2, e.g. 𝜒𝑚1 is the RGB modality and 𝜒𝑚2 the
epth modality. Fig. 1(b) shows an example with a depth image as
uery, using RGB gallery images. Since both input spaces have to
e mapped to the same latent space, training involves the additional
hallenge of learning a mapping 𝐺(𝑥) for depth images to the feature
pace shared with RGB mapping 𝐹 (𝑥). Therefore, Eq. (1) with RGB
uery and depth gallery images changes to

�̂� = 𝑦𝑖 where 𝑖 = argmin
𝑖

𝑑(𝐹 (�̂�), 𝐺(𝑥𝑖)). (2)

.2. Training and inference

The problem of cross-modal person re-identification is addressed
y our novel cross-modal training and inference. The training of the
etworks is divided into two steps to exploit the relationship between
epth and RGB and visualized in Fig. 2. The steps are generic, hence
e can either treat RGB as the source and depth as the target domain,
r vice versa. To allow for transfer between three-channel RGB and
ingle-channel depth, the inputs are homogenized by duplicating the
epth channel into three identical ones.

In step I of a training with cross-modal distillation, a neural network
is trained for sensing in a first modality. Afterwards, the network

s frozen as 𝐹𝑓𝑟, with corresponding weights 𝑊𝐹 ,𝑓𝑟.. In step II, a new
etwork 𝐺 for the second modality is created that maps to the same
mbedded space as 𝐹 . We create the new network 𝐺 using the same
rchitecture as the trained network 𝐹 from step I. Similarly to Gupta
t al. (2016), the weights of the converged model from step I, 𝑊𝐹 ,𝑓𝑟.,
re copied to 𝐺 to serve as initialization. Additionally, the weights of
he mid-level convolutional layer up to the final feature embedding in

are frozen, As a result, network 𝐺 can relearn low-level features
n the second modality, but retains the high-level embedded space
f the first network. With this approach, we restrict the learning in
he second modality and, hence, force the network to learn to extract
imilar features in the second modality as in the first modality.

For the actual transfer of knowledge we make use of paired images

𝑚1 from modality 1 and 𝑋𝑚2 from modality 2. The aim is to optimize 𝐺
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Fig. 3. Illustration of the proposed gated attention network.

in such a way that the embeddings of images from the second modality
𝑋𝑚2 with label 𝑦 are close to the embeddings of images from the first

odality 𝑋𝑚1 with the same label 𝑦. This is realized by exploiting image
airs 𝑥𝑚1,𝑖 and 𝑥𝑚2,𝑖 from the two modalities, which are considered

coupled as they are taken at the exactly same time step. Hence, the
embedding of 𝑥𝑚1,𝑖 is obtained with a forward propagation through the
frozen network 𝐹𝑓𝑟. and is taken as the groundtruth for the embedding
of 𝑥𝑚2,𝑖 with the, at this stage, partly optimizable weights of network 𝐺.
Since during inference mode the embeddings will be compared based
on Euclidean distance, we aim to minimize this metric between the two
embeddings. Hence, we make use of the mean squared error (MSE) loss
between the embeddings of paired images 𝐹𝑓𝑟.(𝑥𝑚1,𝑖) and 𝐺(𝑥𝑚2,𝑖):

𝐿𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
‖𝐹𝑓𝑟.(𝑥𝑚1,𝑖) − 𝐺(𝑥𝑚2,𝑖)‖2 (3)

where 𝑁 is the batch size for training.
During inference, the two resulting networks, 𝐹𝑓𝑟. and 𝐺𝑓𝑟., are eval-

uated in the corresponding modalities to provide feature embeddings
for input images. Similarity between these representations is measured
using Euclidean distance as introduced in Eq. (2). No coupled images
are needed for inference.

3.3. Gated attention network

A gated attention network typically receives a gating signal from an-
other module that provides contextual information (Kiran et al., 2021;
Bhuiyan et al., 2020; Subramaniam et al., 2019). We here propose
to use a gating signal from one modality to act on the backbone of
4

the other modality during training and thereby especially reinforce the
features needed for cross-modal matching. At test time, the input will
only contain a single modality, and thus then the attention is computed
on that input modality instead, i.e. at test time the network performs
self-attention.

In particular, we use depth to gate the backbone of the RGB back-
bone during training. The task of the gated fusion network is to enable
the backbone network to learn informative feature by fusing RGB and
depth features within local receptive fields at a fused layer. The gated
attention network, illustrated in Fig. 3, takes two inputs: RGB-based
appearance features, 𝐅𝑙 of dimension 𝑏 × 𝑐𝑙 × ℎ′ × 𝑤′ from 𝑙th layer of
backbone architecture and the depth features, 𝐆𝑙 of dimension 𝑏 × 𝑐𝑙 ×
ℎ′ × 𝑤′ from the depth-stream. To get the gated signal, the extracted
features from the 𝑙th layer of the depth stream are pooled in the channel
dimension to produce features for attention in the spatial dimension.
The features are then activated by a function to produce a spatial
soft attention map: 𝐚𝑙 = 𝛹 (𝐆𝑙); where 𝛹 is the Sigmoid activation
function, and 𝐚𝑙 is the gated output of the activation function of size
𝑏× 1 × ℎ′ ×𝑤′. We use a simple and effective scheme to align the RGB-
based appearance feature using that gated signal. First, we compute
𝐅𝑙
𝑎, the Hadamard product (element-wise multiplication) between RGB-

based appearance feature 𝐅𝑙 and gated attention 𝐚𝑙. 𝐅𝑙
𝑎 is then added

to the original 𝐅𝑙 to obtain the final aligned attention map 𝐅𝑙
𝑔 for the

remaining layers in the backbone network of the RGB-stream:

𝐅𝑙
𝑎 = 𝐅𝑙

⨂

𝐚𝑙 𝐅𝑙
𝑔 = 𝐅𝑙

𝑎 + 𝐅𝑙 (4)

here ⨂ denotes element-wise Hadamard product.
At test time the attention is instead computed on the feature map of

he now uni-modal input, 𝐚𝑙 = 𝛹 (𝐅𝑙), since the training procedure has
nsured that the feature map of the input modality closely matches the
ap that the other modality would have provided.

. Experimental methodology

We here present the implementation of the cross-modal distilla-
ion approach, the two RGB-D person re-identification datasets, and
he evaluation protocol and metrics that we will use to validate our
roposed approach. While these are public datasets, they were not
riginally designed for cross-modal person re-identification, hence we
irst present their relevant properties in this context.

.1. Implementation

For this work a selection of successful feature extraction networks
nd loss functions will be deployed. For the validation of the concepts
n this work residual neural networks with 50 layers (ResNet50) (He
t al., 2016) which are pre-trained on ImageNet was chosen as a good
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compromise between depth and accuracy. The ResNet architecture
was shown to be effective for several person re-identification appli-
cations (Ristani and Carlo, 2018; Zheng et al., 2017). Furthermore,
we consider two possible loss functions, triplet loss and softmax loss,
which both have been successfully applied in single-modal person re-
identification (Zheng et al., 2016; Hermans et al., 2017). We will now
shortly discuss both losses in more detail.

Using the triplet loss results in a metric learning approach which
directly optimizes an embedding layer in Euclidean space. During train-
ing, this loss compares the relative distances of three training samples,
namely an anchor image 𝑥𝑎, a positive image sample 𝑥𝑝 from the same
ndividual as 𝑥𝑎, and a negative sample 𝑥𝑛 from a different individual.
iven an anchor image 𝑥𝑎, this loss assures that the embedding of an

mage taken from the same class 𝑥𝑝 is closer to the anchor’s embedding
han that of a negative image belonging to another class 𝑦𝑛 by at least

margin 𝑚 in distance metric 𝑑. In the following, 𝐹 (𝑥) denotes the
apping to the embedded space, which is in our case a deep neural
etwork. The triplet loss is therefore defined as:

𝑡𝑟𝑖 =
𝑇
∑

𝑖=1

[

𝑑(𝐹 (𝑥𝑎(𝑖)), 𝐹 (𝑥𝑝(𝑖))) − 𝑑(𝐹 (𝑥𝑎(𝑖)), 𝐹 (𝑥𝑛(𝑖))) + 𝑚
]

. (5)

where indices 𝑎(𝑖), 𝑝(𝑖) and 𝑛(𝑖) stand for anchor, positive and negative,
f the 𝑖th triplet, and 𝑇 for the number of triplets used per batch.

For the softmax loss, the embedding is learned indirectly by first
reating re-identification on the training set as a classification problem,
here all individuals in the training set are considered a different class.
fterwards, the layer of the neural network prior to the softmax loss is
sed as the embedding. This enables that the network can be applied on
est data, which can contain new individuals not present in the training
ata. Therefore, the softmax loss to optimize the embedding can be
xpressed as:

𝑠𝑜𝑓𝑡 = − 1
𝑁

𝑁
∑

𝑖=1
log

(

𝑒𝑊(𝑦𝑖 )𝐹 (𝑥𝑖)+𝑏

∑𝐶
𝑗=1 𝑒

𝑊(𝑗)𝐹 (𝑥𝑖)+𝑏

)

, (6)

where 𝑁 is the batch size, 𝑊(𝑗) are the weights leading to the 𝑗th
node of the ultimate softmax layer of the network, 𝑏 is a bias and
the number of classes is defined as 𝐶. For triplet loss an embedding
size of 128 and a training batch of 64 with 16 instances á 4 images
was used for the experiments in this work and batch hard mining was
chosen for triplet choice. These parameters were proposed by Hermans
et al. (2017). To enable a fair comparison also for softmax loss an
embedding size of 128 was chosen. The neural networks trained with
softmax were optimized with stochastic gradient descent with Nesterov
momentum. Those trained with triplet loss were optimized with the
ADAM optimizer. The margin for triplet loss (see Eq. (5)) was set to
0.5. The networks which trained in a single-modality are optimized
using an early-stopping criterium based on the mean Average Precision
(mAP) on the validation set. For step II of the cross-modal distillation
approach as explained in chapter 3 the early-stopping criteria for
network training is the loss in validation data.

4.2. Datasets

The considered datasets are BIWI RGBD-ID (Munaro et al., 2014)
and RobotPKU (Liu et al., 2017). These datasets were selected because
they provide high-resolution depth and RGB images, a decent number
of person instances and a large amount of images per person instance
in different poses. Both datasets were recorded with a Microsoft Kinect
camera. The TVPR datasets (Paolanti et al., 2020; Liciotti et al., 2016)
which contain an increased number of person instances were neglected
as we argue that bird’s eye view data does not contain enough shape
information for cross-modal person re-identification.

The BIWI RGBD-ID dataset targets long-term people re-identification
from RGB-D cameras (Munaro et al., 2014). As in Zhuo et al. (2017)
same person with different clothing is considered as a separate instance.
Overall, it is comprised of 78 instances with 22,038 images in depth and
5

RGB. Exemplary images from BIWI are shown in Fig. 6 RGB and depth
images are provided coupled with no visible difference in capturing
time.

The RobotPKU dataset consists of 90 persons with 16,512 images in
total (Liu et al., 2017). The images are provided in a coupled manner.
Nevertheless, through visual inspection it is apparent that there is a
slight time difference in the order of a fraction of a second between the
images captured in depth and RGB. For training and inference, images
of both datasets in both modalities are resized to 256 × 128. Compared
to the BIWI dataset, the depth images in the RobotPKU dataset are
more noisy and often body parts, like heads and arms, are lost in the
images. Also the movements of the probands are more dynamic and
heterogeneous.

4.3. Evaluation protocol

For the performance evaluation with the BIWI dataset, the subset
partitions for training, validation and testing were adopted from (Zhuo
et al., 2017), which means 32 individuals were used for training, 8 in-
stances for validation and 38 individuals for testing. For the RobotPKU
dataset, the division will be videos from 40 individuals for training, 10
for validation, and 40 for testing. This follows the division of Liu et al.
(2017). The exact split (label of individuals used to form subsets) is
provided in appendix A. For quantitative evaluation, the average rank
1, 5 and 10 accuracy performance measure is reported along with the
mean average precision (mAP). To report the rank accuracy, a single-
gallery shot setting is used, where a random selection of the gallery (G)
images is repeated 10 times. Hereby, the exactly same corresponding
image or paired image in the parallel modality is excluded for the
random sampling. For calculating the mAP a maximum of 20 images
per person in the scenario are randomly selected.

To obtain statistically reliable results we introduce a 3-fold cross-
validation process, where a different validation subset is randomly
extracted from within the training subset.

5. Results and discussion

An extensive series of experiments has been considered to vali-
date the proposed networks trained with cross-modal distillation. In
this section, the results for optimization with the single modalities
(i.e., step I. in Fig. 2) are first shown to establish a baseline for the
individual modalities (Section 5.1). Hence, we first investigate how
different choices for losses affect the performance on single-modal re-
identification, and compare the relative difficulty of the modalities and
dataset. Then, the distillation step (step II.) of the proposed method
is performed and evaluated (Section 5.2). Here, the ideal direction of
transfer is investigated. In Section 5.3 an analysis of the ideal size of
the embedding layer will be performed. Finally, the state-of-the-art of
the cross-modal person re-identification task between RGB and depth is
defined (Section 5.4) and a qualitative explanation for the superiority
of the method will be provided (Section 5.7).

5.1. Single-modal re-identification performance

For performance evaluation with individual modalities (RGB and
depth separately), the single-modal case, results have been obtained
on BIWI and RobotPKU datasets. The representative feature extractor
Resnet50 has been optimized with triplet loss, Eq. (5), and softmax loss,
Eq. (6).

Table 1 shows the average accuracy of the networks for single-
modal re-identification for single (RGB and depth) modalities on BIWI
data and Table 2 the same results for RobotPKU data. Results show
that the networks optimized using RGB modality alone can reach a
high level of accuracy (95.7% for BIWI with softmax loss and 90.6%
for RobotPKU with triplet loss). As expected, the overall accuracy for
the networks optimized using depth modality alone is much lower
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Table 1
Average test set accuracy of the baseline single-modal re-identification (Step I) for
different modalities on BIWI dataset.

Modality Loss rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

RGB Triplet 92.1 ± 1.9 99.7 ± 0.2 99.9 ± 0.1 93.4 ± 1.5
Softmax 94.8 ± 0.7 99.8 ± 0.2 99.9 ± 0.0 95.7 ± 0.6

Depth Triplet 54.2 ± 1.8 91.5 ± 0.6 99.2 ± 0.2 55.3 ± 1.7
Softmax 59.8 ± 0.7 90.5 ± 0.8 97.8 ± 0.2 61.4 ± 0.5

Table 2
Average test set accuracy of the baseline single-modal re-identification (Step I) for
different modalities on RobotPKU dataset.

Modality Loss rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

RGB Triplet 89.0 ± 3.9 99.2 ± 0.3 99.5 ± 0.1 90.6 ± 3.4
Softmax 84.5 ± 0.2 97.9 ± 0.4 99.1 ± 0.2 87.1 ± 0.2

Depth Triplet n/a n/a n/a n/a
Softmax 44.5 ± 1.0 75.8 ± 1.3 87.6 ± 0.9 44.5 ± 1.0

Fig. 4. Average mAP accuracy of various networks trained with cross-modal distillation
on the BIWI dataset. For all combinations we report varying query (Q) and gallery (G)
modalities. The first column indicates the direction of the transfer for the cross-modal
distillation. The different colors indicate results with triplet (blue) and softmax (green)
loss functions. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

compared to the accuracy achieved for the same task with RGB (mAP
of 61.4% for BIWI with triplet loss and 44.5% for RobotPKU with
softmax loss). Note that on RobotPKU, training with triplet loss did not
converge to produce meaningful embedding layers, which we believe
is due to the higher level of noise and diversity in that dataset. Overall,
RGB has the stronger visual cues for re-identification as expected, but
descriptive features can also be extracted from depth. Even though
the performance is comparably lower for sensing in pure depth, the
achieved performance serves as a baseline with which practical use
cases can be approached.

5.2. Performance for cross-modal distillation

In this section the experiments with the cross-modal distillation
method as presented in Section 3 will be introduced. As baseline or
step I of the method the results from Section 5.1 will be considered. In
this section experiments are presented to gain insight on step II (distil-
lation), and, in particular, on the advantages of transferring knowledge
based on the depth or RGB modality.

Figs. 4 and 5 present the average mAP accuracy of the networks
trained with cross-modal distillation in the cross-modal tasks with vary-
ing population of query and gallery between RGB and depth trained
on the BIWI dataset and RobotPKU dataset, respectively. The top two
networks in the Figures train the baseline network in depth (step I.),
and then transfer to RGB (step II.). The bottom networks train the
baseline network in RGB (step I.), and then transfer to depth (step II.).
6

Fig. 5. Average mAP accuracy of various cross-modal distillation networks on the
RobotPKU dataset. For all combinations we report varying query (Q) and gallery (G)
modalities. The first column indicates the direction of the transfer for the cross-modal
distillation. As no baseline for depth with triplet was successfully trained (see Table 2),
no results reported.

Fig. 6. Exemplary qualitative results for the proposed architecture on BIWI dataset.
The green box denotes the correct match. Gallery (G) and Query (Q) varied for the
modalities. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Results indicate that the accuracy obtained when transferring from
RGB to depth are significantly lower than from depth to RGB. For the
BIWI dataset using depth images to populate a reference gallery, and
RGB images as query achieves a mAP accuracy of about 31% using
networks optimized with softmax loss. The best mAP accuracy for the
same task and transferring from RGB to depth is about 13%. Also for
the RobotPKU dataset the transfer from depth to RGB significantly
outperforms the transfer from RGB to depth. The difference of the
best networks in mAP is 11%/7.5% for varying query and gallery
population. An explanation for this behavior is that the general shape
information of a person that is captured in depth data can, to a certain
degree, be recovered in the RGB images. In contrast, the additional de-
scriptive information which is inherent in RGB, like color information
cannot be found in depth images. This behavior will be further analyzed
in Section 5.7.

The performance obtained for models trained with the two losses
is only slightly differing (see Table 1). The overall best performance is
obtained with a baseline in networks trained with softmax loss with
an average mAP of 30.1% with RGB as gallery (G) and depth (D)
as query and 27.1% for depth as gallery and RGB as query. Fig. 6
shows an example of results for a network trained with cross-modal
distillation on BIWI dataset, where the query image is RGB and the
gallery image is depth. This Figure highlights the complexity of the
task, as the differences between the gallery images are subtle.

In summary, to obtain the better results with cross-modal distil-
lation, the transfer of knowledge should occur from depth to RGB.
As shown in Section 5.1 (Tables 1 and 2) in the single-modal task a
much higher performance was obtained in the RGB modality. Hence,
the performance in the single-modal task of the baseline network is
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Fig. 7. Results for the optimization of the embedding size.
Table 3
Average accuracy of state-of-the-art and proposed networks for different scenarios on the BIWI dataset. Methods marked with (*) did not report all necessary details on their
evaluation procedure, therefore their performance numbers are in brackets. Zhuo et al. (2017) did not provide any details on their evaluation procedure. Uddin et al. (2019) used
different splits without a validation step (using 40 instead of 32 training instances as we do), thus their reported numbers might be too optimistic.

Approach Query-RGB, Gallery-Depth Query-Depth, Gallery-RGB

rank-1 (%) rank-5 (%) rank-10 (%) mAP (%) rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

WHOS, Euclidean (Lisanti et al., 2015) 3.2 16.6 31.5 3.7 5.1 18.7 32.6 5.6

WHOS, XQDA (Lisanti et al., 2015) 8.4 31.7 50.2 7.9 11.6 34.1 51.4 12.1

LOMO, Euclidean (Liao et al., 2015) 2.8 16.4 32.5 4.8 3.3 15.6 29.8 5.6

LOMO, XQDA (Liao et al., 2015) 13.7 43.2 61.7 12.9 16.3 44.8 62.8 15.9

Eigen-depth HOG/SLTP, CCA (Zhuo et al., 2017)* (8.4) (26.3) (41.6) – (6.6) (27.6) (45.0) –

Eigen-depth HOG/SLTP, LSSCDL (Zhuo et al.,
2017)*

(9.5) (27.1) (46.1) – (7.4) (29.5) (50.3) –

Eigen-depth HOG/SLTP, Corr. Dict. (Zhuo et al.,
2017)*

(12.1) (28.4) (44.5) – (11.3) (30.3) (48.2) –

Zero-padding network (Wu et al., 2017b) 5.9 ± 2.2 25.9 ± 6.4 47.1 ± 8.1 7.3 ± 4.0 10.3 ± 2.7 38.9 ± 6.5 62.8 ± 11.5 9.8 ± 3.8

Two-stream network (Wu et al., 2017b) 9.0 ± 0.6 32.6 ± 1.1 55.3 ± 2.8 10.8 ± 0.8 7.9 ± 1.8 32.1 ± 2.4 54.1 ± 2.3 12.3 ± 1.6

One-stream network (Wu et al., 2017b) 15.7 ± 0.8 50.3 ± 1.2 75.7 ± 0.5 16.9 ± 0.9 19.8 ± 0.3 55.7 ± 0.8 78.9 ± 1.1 23.8 ± 0.3

Local Shape (Uddin et al., 2019)* (36.5) (79.7) (92.4) – (41.4) (82.5) (94.4) –

Cross-modal distillation network,
Embedding size 128D, (ours)

26.9 ± 1.8 65.9 ± 2.3 84.1 ± 3.1 27.3 ± 1.7 29.2 ± 2.3 70.5 ± 2.3 88.1 ± 0.9 30.6 ± 2.0

Cross-modal distillation network,
Embedding size 512D, (ours)

32.6 ± 1.6 70.9 ± 0.2 88.8 ± 0.8 33.0 ± 1.8 36.6 ± 0.7 76.7 ± 1.1 92.3 ± 1.9 38.4 ± 1.7

Cross-modal distillation network + Attention,
Embedding size 512D, (ours)

40.4 ± 2.1 77.1 ± 1.7 91.0 ± 1.0 41.3 ± 1.8 42.8 ± 3.9 80.3 ± 1.6 93.5 ± 1.0 43.9 ± 3.9
not critical for the performance of cross-modal distillation. Our results
suggest that the success of the distillation step is more dependent on
the features learned from the modalities. Hence, the features learned
in the depth modality were transferable to the RGB modality, while
features learned in the RGB modality where not transferable to the
depth modality. This gives an indication on the relation between the
depth and RGB modality where the appearance information in depth
is, to a certain degree, a subset of that found in RGB. Despite the
indirect and direct nature of the loss functions, the results indicate that
networks with a baseline trained with softmax loss and networks with a
baseline network in triplet loss obtain similar results, which highlights
the robustness of the method itself.

5.3. Embedding size optimization

An important hyperparameter for the optimization of a re-
identification system based on deep neural networks is the embedding
size. In the preceding chapters an optimization with softmax loss from
depth to RGB was shown to be most effective for both datasets. Hence,
the ideal embedding size for this optimization is investigated. In Fig. 7
the results of this analysis are shown. For networks trained with deep
distillation on the BIWI dataset the ideal embedding size is 512 which
leads to a mAP of 33.04%/38.44%. For the RobotPKU dataset an ideal
embedding size of 256 was found. Here, the best result in mAP is
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18.13%/20.52%. The analysis underlines the relevant impact of the
embedding size on the performance of the deep distillation method. The
optimization of the embedding size explains the better performance of
the distillation approach in comparison to Hafner et al. (2019).

5.4. Comparison with state-of-the-art methods

In this section the results from Section 5.2 including the opti-
mization in 5.3 are taken into a broader scope and are compared
to existing methods for cross-modal person re-identification. As deep
learning based methods, one-stream network and zero-padding network
as of Wu et al. (2017b) are analyzed. Additionally, a two-stream
network similar to (Ye et al., 2018a,b) is evaluated. All deep neural
network based methods are based on a Resnet50 architecture with an
embedding size of 128 to fair comparison. The results of our proposed
approach with embedding size 128 is reported in our previous work.
Now, through the ablation study, the optimal embedding size for both
datasets is obtained and reported in Tables 3 and 4, respectively, with
and without cross-modal attention. As conventional approaches the
WHOS feature extractor (Lisanti et al., 2015) and the LOMO feature
extractor (Liao et al., 2015) will be investigated. The same features
will be extracted for both modalities and are compared on the basis of
Euclidean distance and the additional metric learning step Cross-view
Quadratic Discriminant Analysis (XQDA). Additionally, the matching of
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Table 4
Average accuracy of state-of-the-art and proposed architecture for different scenarios on the RobotPKU dataset.

Approach Query-RGB, Gallery-Depth Query-Depth, Gallery-RGB

rank-1 (%) rank-5 (%) rank-10 (%) mAP (%) rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

WHOS, Euclidean (Lisanti et al., 2015) 3.8 16.3 29.5 3.9 3.5 16.1 31.2 5.4

WHOS, XQDA (Lisanti et al., 2015) 10.0 31.8 49.8 8.2 9.8 31.0 48.0 9.8

LOMO, Euclidean (Liao et al., 2015) 3.6 15.0 28.0 3.9 3.7 15.3 28.7 4.9

LOMO, XQDA (Liao et al., 2015) 12.9 36.4 56.1 10.1 12.3 37.4 56.1 12.3

Zero-padding network (Wu et al., 2017b) 7.8 ± 0.9 29.0 ± 2.6 47.8 ± 3.3 7.7 ± 0.6 6.6 ± 0.6 26.8 ± 2.1 45.6 ± 2.8 8.3 ± 0.6

Two-stream network (Wu et al., 2017b) 7.5 ± 1.2 29.1 ± 2.9 46.6 ± 2.7 7.7 ± 1.3 6.0 ± 2.0 24.6 ± 4.6 43.2 ± 5.1 8.7 ± 1.8

One-stream network (Wu et al., 2017b) 11.9 ± 0.6 38.1 ± 1.0 57.3 ± 2.1 11.4 ± 0.5 12.5 ± 1.0 38.5 ± 1.5 56.7 ± 0.9 14.2 ± 1.4

Cross-modal distillation network,
Embedding size 128D, (ours)

17.5 ± 2.2 51.9 ± 3.6 72.7 ± 3.2 17.1 ± 1.9 19.5 ± 2.0 54.3 ± 3.1 74.4 ± 2.3 19.8 ± 2.1

Cross-modal distillation network,
Embedding size 256D, (ours)

19.5 ± 1.0 50.1 ± 0.5 67.9 ± 0.7 18.1 ± 1.2 21.5 ± 1.1 54.9 ± 1.4 72.6 ± 1.0 20.5 ± 1.0

Cross-modal distillation network + Attention,
Embedding size 256D, (ours)

25.3 ± 2.0 58.1 ± 2.5 74.7 ± 1.7 23.5 ± 2.0 22.9 ± 1.8 56.0 ± 2.0 72.8 ± 1.8 22.4 ± 1.9
Eigen-depth and HOG/SLTP features as reported by Zhuo et al. (2017)
and the local shape method (Uddin et al., 2019) is included in Table 3
for the BIWI dataset.

Table 3 presents the metrics of state-of-the-art and proposed net-
works for different scenarios on the BIWI dataset and in Table 4 the
results for the RobotPKU dataset are shown. First, it is apparent that
the hand-crafted feature extractors lead to very low accuracy when
matched in the Euclidean space. This is expected, as the modalities
depth and RGB are heterogeneous and, hence, no direct comparison
of hand-crafted features is possible. When applying the Cross-view
Quadratic Discriminant Analysis (XQDA) the performance of the mod-
els based on hand-crafted features are significantly enhanced, while the
LOMO features leads to the best results. For the BIWI dataset, these
results also outperform the results from (Zhuo et al., 2017) for the
Eigen-depth features combined with HOG/SILTP and also the results
of deep learning based methods zero-padding network and two-stream
network. The deep learning based one-stream architecture is outper-
forming all methods based on hand-crafted features by at least 4%/7%
for varying query and gallery in mAP accuracy for the BIWI dataset.
Similarly, for RobotPKU it is superior by 1.3%/1.9%. Training with
the cross-modal distillation idea enables an additional improvement
compared to the one-stream network by 16.1%/14.7% for the BIWI
dataset and 6.7%/6.3% for RobotPKU.

Overall results show that the network trained with the cross-modal
distillation approach can significantly improve accuracy compared to
state-of-the art methods for both BIWI and RobotPKU datasets.

5.5. Experimental analysis with cross-modal attention

For this experimental analysis, we rely on the experimental findings
of the previous section, namely that knowledge can transfer better
from depth to RGB rather than from RGB to depth. Therefore, we use
the RGB-stream as the backbone architecture, and the depth-stream to
provide contextual information in the gating signal on the backbone
architecture. We run only the distillation step (step II.) for evaluating
cross-modal attention.

Tables 3 and 4 report the experimental evaluation of cross-modal
attention on the BIWI and RobotPKU datasets, respectively. Reported
results clearly indicate the advantage of using cross-modal attention
along with the distillation technique. For both datasets, integrating
cross-modal attention improves the recognition accuracy by a sig-
nificant margin in all measures. Including cross-modal attention we
outperform the reported accuracy of the local shape method (Uddin
et al., 2019) in rank-1 accuracy. Since Uddin et al. Uddin et al. (2019)
do not report the used instance split and do not perform a validation

(i.e., they use 40 instead of 32 training instances as we do), the
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improved rank-1 performance of our method indicates the superiority
of our approach.

5.6. Ablation study

The cross-modal distillation method is highly dependent on a suc-
cessful knowledge transfer from depth to RGB. To get more insights
into this transfer we evaluated the influence on network accuracy in
the cross-modal tasks with varying components for knowledge transfer.
Table 5 shows the impact of copying of weights, and freezing of mid
to high-level layers on the accuracy. The ablation studies are done
without cross-modal attention. Results are shown for the BIWI dataset
with cross-modal distillation. If the freezing of mid- to high-level layers
in the copied network is omitted, performance decreases by 10.7%/2%
in mAP. Another reduction can be seen when the second network is
not initialized with the weights of the first network. In this case the
cross-modal performance in average mAP decreases by 18.0%/9.7% in
comparison to the full transfer. These results underline the importance
of each component for the training of a network with cross-modal
distillation in performing knowledge transfer across the modalities.

5.7. Qualitative analysis of neural network activations

In this section an explanation for the superior performance of the
network trained with distillation will be given, by analyzing deconvolu-
tion images of relevant deep learning methods, which are single-modal
optimization as well as the two best-performing deep learning methods.

Fig. 8 shows deconvolution images for different networks on two
images from RGB (a. and c.) and depth (b. and d.) from the BIWI
RGBD-ID dataset. The guided backpropagation algorithm was used for
visualization of the activations for the networks (Springenberg et al.,
2015). The shown architectures are trained separately for depth and
RGB, the one-stream network, as the second in the state-of-the-art
Table (Wu et al., 2017b), and our cross-modal distillation method.

The images show that the activations for the different networks
are varying considerably. When optimized for the single modalities,
the networks in the RGB modality are activated by features inside
the torso region of a person, like the color of the same. The network
sensing in the depth modality is activated by the outer structure of the
torso. For the one-stream network in the RGB modality the network is
mostly activated by colors of torso and upper legs, while in the depth
modality a cluttered outer structure of the torso is captured. For the
RGB modality in the network trained with cross-modal distillation a
very different activation map can be observed (images (a) and (c)).
Instead of being activated by color features, we see that the network is

mostly activated the structure of the torso for those images. Therefore,
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Table 5
Ablation study of influence of various training scenarios for knowledge transfer. Results are average accuracy of the BIWI dataset for a network
trained with cross-modal distillation and embedding size of 128.
Scenario rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

No copying of weights,
No freezing of layers

Q: RGB, G: D 8.8 37.5 58.1 9.3
Q: D, G: RGB 16.1 52.3 80.1 20.7

Copying of weights,
No freezing of layers

Q:RGB, G: D 16.7 49.8 69.6 16.6
Q: D, G: RGB 25.9 68.7 89.4 28.5

Copying of weights,
Freezing of layers

Q:RGB, G: D 26.9 65.9 84.1 27.3
Q: D, G: RGB 29.2 70.5 88.1 30.5
Fig. 8. Comparison of deconvolution images for different networks on BIWI data.
Visualization is performed with guided backpropagation (Springenberg et al., 2015).
Activation maps of cross-modal distillation in RGB highly differing to the other
techniques.

the knowledge from depth, which is a description of the problem with
structural details, was transferred to the RGB modality. This finding
shows that a transfer of knowledge between the modalities can benefit
neural network training. As the describing features for the images
are similar, the task of embedding to a common feature space is
facilitated. This explains the better performance in cross-modal person
re-identification as found in Section 5.3.

6. Conclusions

In this paper, a new deep neural training scheme is proposed for
cross-modal person re-identification that allow sensing between RGB
and depth modalities. Its two-step approach enables the networks to
exploit the relation between these two relevant modalities, and thereby
provides a high level of performance. To further improve robustness
of the feature representation, we propose to incorporate a cross-modal
attention mechanism within the proposed distillation technique to
dynamically select the more relevant convolutional filters based on
the privileged information from another modality, for robust feature
representation and inference.

Experimental results on two public datasets indicate that our pro-
posed network can outperform related state-of-the-art methods for
cross-modal re-identification by up to 16.1% in mAP. Results also show
that features which are descriptive in the depth modality can success-
fully be extracted in the RGB modality for person re-identification. This
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implies that information captured in depth is to some extent retrievable
in the RGB modality. Experimental analysis of the combination of the
distillation technique and cross-modal gated attention shows significant
performance improvement of 7.8% rank-01 and 12.2% mAP consider-
ing query- RGB and gallery-depth setting over the proposed distillation
as well as all the state-of-the-art.

The analysis in this paper also showed that cross-modal person re-
identification is a complex task, and the results in absolute numbers
suggest that there is still room for improvement. In fact, the accuracies
obtained in cross-modal re-identification (Tables 3 and 4) are still
lower than the accuracies for single-modal re-identification in the more
difficult modality (Tables 1 and 2).

As one of the first works concerning RGB-depth re-identification,
we have provided several initial insights into this problem, but still
several open questions and challenges remain. It remains necessary to
investigate the performance on data captured in real-world scenarios
as opposed to controlled lab conditions as was done in this study.
Additionally, the absolute performance of any re-identification method
is expected to decrease with an increasing number of instances in test
sets and, hence, more possibilities for errors. For future work, it will
therefore be necessary to obtain bigger and more diverse datasets for
the RGB-depth use-case to facilitate data-hungry methods for robust
feature extraction, and to develop new architectures that improve the
embeddings for person matching across the different modalities (Sun
et al., 2017). The publication of the SYSU-IR dataset in 2017 (Wu et al.,
2017b) pushed the interest in cross-modal person re-identification in
RGB and infrared (Ye et al., 2018a,b; Dai et al., 2018), and a similar ef-
fect could be expected for cross-modal person re-identification between
RGB and depth.
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Appendix. Split of evaluation datasets

This appendix provides the label of individuals used to form the
design (training set plus validation) and test subsets.

A.1. BIWI RGBD-ID dataset

Design set (Train + Validation set):
0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 25, 26, 34, 35,

38, 39, 40, 43, 50, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 73, 74,
76, 77.

Test set:
2, 3, 8, 10, 14, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 36, 37,

41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 60, 63, 64, 68, 71,
72, 75.
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A.2. RobotPKU dataset

Design set (Train + Validation set):
0, 2, 3, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 41, 43, 44, 45, 46, 47, 52, 54, 55, 58, 59, 60, 63,
66, 67, 68, 72, 73, 74, 77, 78, 80, 82, 83, 84, 87, 88.

Test set:
1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 24, 26, 38, 39, 40, 42, 48,

49, 50, 51, 53, 56, 57, 61, 62, 64, 65, 69, 70, 71, 75, 76, 79, 81, 85,
86, 89.

References

Ahmed, E., Jones, M., Marks, T.K., 2015. An improved deep learning architecture for
person re-identification. In: CVPR 2015.

Bhuiyan, A., Liu, Y., Siva, P., Javan, M., Ayed, I.B., Granger, E., 2020. Pose guided
gated fusion for person re-identification. In: WACV 2020.

Bhuiyan, A., Perina, A., Murino, V., 2014. Person re-identification by discriminatively
selecting parts and features. In: ECCV 2014.

Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Venice, E.Liong., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O., 2020. nuscenes: A multimodal dataset for
autonomous driving. In: CVPR 2020.

Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N., 2016. Person re-identification by
multi-channel parts-based CNN with improved triplet loss function. In: CVPR 2016.

Dai, P., Ji, R., Wang, H., Wu, Q., Huang, Y., 2018. Cross-modality person
re-identification with generative adversarial training. In: IJCAI 2018.

Dimitrievski, M., Veelaert, P., Philips, W., 2019. Behavioral pedestrian tracking using
a camera and lidar sensors on a moving vehicle. Sensors 19 (2).

Enzweiler, M., Gavrila, D.M., 2011. A multi-level mixture-of-experts framework for
pedestrian classification. IEEE Trans. Image Process..

Fan, X., Luo, H., Zhang, C., Jiang, W., 2020. Cross-spectrum dual-subspace pairing for
RGB-infrared cross-modality person re-identification. CoRR abs/2003.00213.

Farooq, A., Awais, M., Kittler, J., Akbari, A., Khalid, S.S., 2020. Cross modal person
re-identification with visual-textual queries. In: IJCB, 2020.

Geng, M., Wang, Y., Xiang, T., Tian, Y., 2016. Deep transfer learning for person
re-identification. CoRR abs/1611.05244.

George, D., Reutimann, K., Tamò-Larrieux, A., 2018. GDPR bypass by design? Transient
processing of data under the GDPR. Transient Processing of Data Under the GDPR.

Gong, S., Cristani, M., Yan, S., Loy, C.C., 2014. Person Re-Identification. Springer
Science & Business Media.

Gupta, S., Judy, H., Malik, J., 2016. Cross modal distillation for supervision transfer.
In: CVPR 2016.

Hafner, F.M., Bhuiyan, A., Kooij, J.F.P., Granger, E., 2019. RGB-depth cross-modal
person re-identification. In: 2019 16th IEEE International Conference on Advanced
Video and Signal Based Surveillance. AVSS, IEEE.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.
In: CVPR 2016.

Hermans, A., Lucas, B., Bastian, L., 2017. In defense of the triplet loss for person
re-identification. CoRR abs/1703.07737.

Kiran, M., Bhuiyan, A., Blais-Morin, L.A., Ayed, I.B., Granger, E., 2021. Flow guided
mutual attention for person re-identification. Image Vis. Comput..

Li, D., Chen, X., Zhang, Z., Huang, K., Learning deep context-aware features over body
and latent parts for person re-identification. In: CVPR 2017.

Li, Y.J., Yang, F.E., Liu, Y.C., Yeh, Y.Y., Du, X., Wang, Y.C.F., 2018. Adaptation and re-
identification network: An unsupervised deep transfer learning approach to person
re-identification. CoRR abs/1804.09347.

Liao, S., Hu, Y., Zhu, X., Li, S.Z., 2015. Person re-identification by local maximal
occurrence representation and metric learning. In: CVPR 2015.
10
Liciotti, D., Paolanti, M., Frontoni, E., Mancini, A., Zingaretti, P., 2016. Person re-
identification dataset with rgb-d camera in a top-view configuration. In: Video
Analytics. Face and Facial Expression Recognition and Audience Measurement.
Springer, Cham, pp. 1–11.

Lisanti, G., Masi, I., Bagdanov, A.D., Bimbo, A.Del., 2015. Person re-identification by
iterative re-weighted sparse ranking. IEEE Trans. Pattern Anal. Mach. Intell..

Liu, H., Liang, H., M., Liqian, 2017. Online RGB-d person re-identification based on
metric model update. CAAI Trans. Intell. Technol. 2 (1), 48–55.

Lu, Y., Wu, Y., Liu, B., Zhang, T., Li, B., Chu, Q., Yu, N., 2020. Cross-modality person
re-identification with shared-specific feature transfer. In: CVPR, 2020.

Munaro, M., Fossati, A., Basso, A., Menegatti, E., Van Gool, L, 2014. One-shot
person re-identification with a consumer depth camera. In: Person Re-Identification.
Springer.

Navarro, P.J., Fernandez, C., Borraz, R., Alonso, D., 2017. A machine learning approach
to pedestrian detection for autonomous vehicles using high-definition 3D range
data. Sensors 17 (1), 18.

Panda, R., Murino, V.Bhuiyan.A., Roy-Chowdhury, A.K., 2017. Unsupervised adaptive
re-identification in open world dynamic camera networks. CVPR 2017.

Paolanti, M., Pietrini, R., Mancini, A., Frontoni, E., Zingaretti, P., 2020. Deep un-
derstanding of shopper behaviours and interactions using RGB-D vision. Machine
Vision Appl. 31 (7), 1–21.

Ristani, E., Carlo, T., 2018. Features for multi-target multi-camera tracking and
re-identification. CoRR abs/1803.10859.

Shoubiao, T., Feng, Z., Li, L., Jungong, H., Ling, S., 2018. Dense invariant feature-based
support vector ranking for cross-camera person reidentification. TCSVT.

Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2015. Striving for
simplicity: The all convolutional net. In: ICLR 2015.

Subramaniam, A., Nambiar, A., Mittal, A., 2019. Co-segmentation inspired attention
networks for video-based person re-identification. In: ICCV 2019 pp. 562–572.

Sudhakar, P., Sheela, K.Anitha., Satyanarayana, M., 2017. Imaging Lidar system for
night vision and surveillance applications. ICACCS, 2017.

Sun, C., Shrivastava, A., Singh, S., Gupta, A., 2017. Revisiting unreasonable
effectiveness of data in deep learning era. In: CVPR, 2017..

Uddin, M.K., Lam, A., Fukuda, H., Kobayashi, Y., 2019. Exploiting Local Shape
Information for Cross-Modal Person Re-identification. In: ICLC, 2019.

Wang, G.A., Yang, T.Z., Cheng, J., Chang, J., Liang, X., Hou, Z., 2020a. Cross-Modality
Paired-Images Generation for RGB-Infrared Person Re-Identification. In: AAAI 2020.

Wang, G.A., Zhang, T., Yang, Y., Cheng, J., Chang, J., Liang, X., Hou, Z.G., 2020b.
Cross-modality paired-images generation for RGB-infrared person re-identification.
In: AAAI, 2020..

Wu, A., Wei-Shi, Z., Jian-Huang, L., 2017a. Robust depth-based person re-identification.
IEEE Trans. Image Process..

Wu, A., Zheng, W.S., Yu, H.X., Gong, S., Lai, J., 2017b. RGB-infrared cross-modality
person re-identification. In: ICCV 2017.

Xiao, T., Li, H., Ouyang, W., Wang, X., 2016. Learning deep feature representations
with domain guided dropout for person re-identification. In: CVPR 2016.

Yan, F., Kittler, J., Mikolajczyk, K., 2018. Person Re-Identification with Vision and
Language. In: ICPR, 2018.

Ye, M., Lan, X., Li, J., Yuen, P.C., 2018. Hierarchical Discriminative Learning for Visible
Thermal Person Re-Identification. In: AAAI 2018.

Ye, M., Wang, Z., Lan, X., Yuen, P.C., 2018. Visible thermal person re-identification
via dual-constrained top-ranking. In: IJCAI 2018.

Zheng, K., Liu, W., Liu, J., Zha, Z.J., Mei, T., 2020. Hierarchical gumbel attention
network for text-based person search. In: International Conference on Multimedia,
2020.

Zheng, L., Yi, Y., Alexander, G.H., 2016. Person re-identification: Past, present and
future. arXiv:1610.02984.

Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q., 2017. Person
Re-identification in the Wild. In: CVPR 2017.

Zhuo, J., Zhu, J., Lai, J., Xie, X., 2017. Person Re-identification on Heterogeneous
Camera Network. In: CCF CCCV, 2017.

http://refhub.elsevier.com/S1077-3142(21)00180-6/sb7
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb7
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb7
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb8
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb8
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb8
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb9
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb9
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb9
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb11
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb11
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb11
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb12
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb12
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb12
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb13
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb13
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb13
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb15
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb15
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb15
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb15
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb15
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb17
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb17
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb17
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb18
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb18
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb18
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb20
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb20
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb20
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb20
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb20
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb22
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb22
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb22
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb22
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb22
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb22
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb22
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb23
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb23
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb23
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb24
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb24
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb24
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb26
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb26
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb26
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb26
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb26
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb27
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb27
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb27
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb27
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb27
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb29
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb29
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb29
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb29
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb29
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb30
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb30
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb30
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb31
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb31
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb31
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb39
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb39
http://refhub.elsevier.com/S1077-3142(21)00180-6/sb39
http://arxiv.org/abs/1610.02984

	Cross-modal distillation for RGB-depth person re-identification
	Introduction
	Related work
	Cross-modal distillation for re-identification
	Task description
	Training and inference
	Gated attention network

	Experimental methodology
	Implementation
	Datasets
	Evaluation protocol

	Results and discussion
	Single-modal re-identification performance
	Performance for cross-modal distillation
	Embedding size optimization
	Comparison with state-of-the-art methods
	Experimental analysis with cross-modal attention
	Ablation study
	Qualitative analysis of neural network activations

	Conclusions
	Declaration of competing interest
	Appendix. Split of Evaluation Datasets
	BIWI RGBD-ID dataset
	RobotPKU dataset

	References


