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Abstract Integer ambiguity resolution (IAR) is the key to
fast andpreciseGNSSpositioning andnavigation.Next to the
positioningparameters, however, there are several other types
of GNSS parameters that are of importance for a range of
different applications like atmospheric sounding, instrumen-
tal calibrations or time transfer. As some of these parameters
may still require pseudo-range data for their estimation, their
response to IAR may differ significantly. To infer the impact
of ambiguity resolution on the parameters, we show how
the ambiguity-resolved double-differenced phase data prop-
agate into the GNSS parameter solutions. For that purpose,
we introduce a canonical decomposition of the GNSS net-
work model that, through its decoupled and decorrelated
nature, provides direct insight intowhichparameters, or func-
tions thereof, gain from IAR and which do not. Next to
this qualitative analysis, we present for the GNSS estimable
parameters of geometry, ionosphere, timing and instrumental
biases closed-form expressions of their IAR precision gains
together with supporting numerical examples.
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1 Introduction

Integer ambiguity resolution (IAR) is the process of resolv-
ing the ambiguous cycles of the carrier-phase measurements
as integers. It has found a widespread usage in various global
navigation satellite system (GNSS) applications and is con-
sidered to be the key to fast and precise GNSS parameter
estimation (Teunissen 1995; Tiberius and de Jonge 1995;
Teunissen et al. 1997; Han 1997; Hassibi and Boyd 1998; Xu
et al. 2012). The goal of IAR is to fully exploit the high preci-
sion of the carrier-phase data. Once the unknown ambiguities
are resolved, the carrier-phase data will act as very precise
pseudo-range data, thus making fast and precise position-
ing, navigation and attitude determination possible, see, e.g.,
Jonkman et al. (2000), Hauschild et al. (2008), Giorgi et al.
(2012), Gunther and Henkel (2012), Nadarajah et al. (2013),
Li et al. (2014), Banville (2016), Odolinski and Teunissen
(2017).

Next to the positioning parameters, however, there exist
several other types of GNSS parameters that are of great
importance for a range of different applications like atmo-
spheric sounding (Coster et al. 1992; Schaer et al. 1995; Liao
and Gao 2001), instrumental calibration (Petit et al. 2000;
Zhang et al. 2017) or time transfer (Fliegel et al. 1990; Plumb
et al. 2005; Delporte et al. 2007). The estimable parameters
such as satellite clocks, satellite phase biases and ionospheric
delays serve as essential corrections in the IAR-enabled
precise point positioning (PPP-RTK) methods (Ge et al.
2008; Laurichesse et al. 2009; Teunissen et al. 2010; Collins
et al. 2010; Geng et al. 2012; Odijk et al. 2015). Estima-
tion of the stated parameters often demands an undifferenced
(UD) formulation. The UD formulation has the advan-
tage over its single-differenced (SD) and double-differenced
(DD) counterparts, as it still contains all estimable GNSS
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parameters (Teunissen 1995), i.e., none are a priori elimi-
nated.

In our earlier study (Teunissen and Khodabandeh 2014),
we showed that there exist estimable parameters, other-
than-DD functions, which cannot be determined solely from
ambiguity-resolved DD phase data. Thus, even after IAR,
such parameters do still require pseudo-range (code) data
for their estimation. Such parameters will therefore have
an IAR response that may differ significantly from the IAR
benefit that positioning and zenith tropospheric delay (ZTD)
parameters enjoy. It is therefore the goal of the present con-
tribution to show how the ambiguity-resolved DD phase data
propagate into the solutions of such GNSS parameters, thus
allowing one to infer the impact of ambiguity fixing on the
precision of these parameters.

We base our analysis on the UD carrier-phase and code
observation equations of a network of n GNSS receivers
trackingm satellites on f frequencies. We develop a canoni-
cal decomposition of the multivariate GNSS network model
consisting of 4 blocks of decoupled and uncorrelated obser-
vation equations. They are formed from (1) satellite- and
receiver-averaged components, (2) satellite-averaged SD
components, (3) receiver-averaged SD components, and (4)
DDcomponents.With the aid of these four blocks,we present
closed-form expressions of the precision gain numbers for
the estimable parameters, thereby quantifying the parameter
precision improvement due to IAR.

This contribution is organized as follows. In Sect. 2,
we briefly review and highlight the underlying differences
between the UD and DD formulations. Here, we initiate the
idea of decomposing the estimable parameters into their DD
and other-than-DD components. In Sect. 3 we develop our
canonical decomposition of the multivariate GNSS network
model. By applying a specific one-to-one transformation to
the observations and parameters, we obtain 4 sets of decou-
pled and uncorrelated observation equations, one of which is
the set of DD observation equations that drives integer ambi-
guity resolution. Due to its structure, one can directly infer
which parameters benefit from IAR and which do not. Fol-
lowing this approach, we first conduct a qualitative analysis
of the IAR impact in Sect. 4. In Sect. 5 we then quantify the
precision gain of the parameters using the concept of gain
numbers (Teunissen 1997) for which a geometric approach is
employed to provide further insights into the links between
the linear combinations of UD, SD and DD types. It is geo-
metrically demonstrated how the precision gain of a float
solution is reduced when it deviates from the subspace of
the DD functions. A summary with concluding remarks is
provided in Sect. 6.

2 Undifferenced (UD) versus double-differenced
(DD)

2.1 Network observation equations

We base our analysis on a network of GNSS receivers r (r =
1, . . . , n), tracking satellites s (s = 1, . . . ,m) on frequencies
j ( j = 1, . . . , f ). The corresponding observation equations
read (Teunissen and Kleusberg 1998)

Δφs
r, j = ρs

r − μ j ι
s
r + λ j asr, j

Δpsr, j = ρs
r + μ j ι

s
r + dsr, j

(1)

where Δφs
r, j and Δpsr, j denote the ‘observed minus com-

puted’ phase and code observations, respectively. The precise
orbital corrections are assumed included in the observed
minus computed observations. The non-dispersive param-
eter ρs

r = gsTr Δxr + dtr − dts contains the position/ZTD
increments Δxr , the receiver clock parameter dtr and the
satellite clock parameter dts , with gsr containing the receiver-
satellite direction vector and/or the tropospheric mapping
function. Ambiguities asr, j = zsr, j + δr, j − δs, j , in units
of cycles, are composed of the integer part zsr, j and the
receiver/satellite non-integer parts δr, j and δs, j , respectively.
They manifest themselves through their wavelength λ j . The
(first-order) slant ionospheric delay, as experienced on the
first frequency, is denoted by ιsr . Thus, we have the scalars
μ j = (λ2j/λ

2
1) linking the ionospheric delays to the obser-

vations. The lumped term dsr, j = dr, j − ds, j contains the
frequency-dependent code receiver and satellite biases dr, j
and ds, j , respectively. Apart from asr, j , the rest of the quanti-
ties are all expressed in units of range.

In the following, we use the term ‘float’ for the solutions
before IAR and indicate them by the .̂-symbol. The term
‘fixed’ is used for the solutions after IAR and indicated by
the .̌-symbol.

2.2 The DD model and its IAR phase data

To understand the role played by IAR in improving the pre-
cision of the GNSS parameters, we first briefly review the
impact of having resolved ambiguities in the DD model.
Let the between-receiver and between-satellite differences
be symbolized by (.)1r = (.)r − (.)1 and (.)1s = (.)s − (.)1,
respectively. The DD version of (1) is then given as

Δφ1s
1r, j = ρ1s

1r − μ j ι
1s
1r + λ j a1s1r, j

Δp1s1r, j = ρ1s
1r + μ j ι

1s
1r

(2)
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Table 1 Estimable GNSS
network-derived parameters
formed by a commonly used
S-basis (Odijk et al. 2015)

Positions/ZTDs Δx̃r = Δxr − {Δx1}; r = {1}, 2, . . . , n
Ionospheric delays ι̃sr = ιsr + dr,GF − ds,GF

Satellite clocks dt̃s = (dts + ds,I F ) − (dt1 + d1,I F ) − {gsT1 Δx1}
Receiver clocks dt̃r = dt1r + d1r,I F ; r �= 1

Sat. phase biases δ̃s, j = δs, j + 1
λ j

(μ j [ds,GF − d1,GF ] − [ds,I F − d1,I F ]) − δ1, j − zs1, j

Rec. phase biases δ̃r, j = δ1r, j + 1
λ j

(μ j d1r,GF − d1r,I F) + z11r, j ; r �= 1

Sat. code biases d̃s, j = (ds, j − [ds,I F + μ j ds,GF ]) − (d1, j − [d1,I F + μ j d1,GF ]); j > 2

Rec. code biases d̃r, j = d1r, j − (d1r,I F + μ j d1r,GF ); r �= 1, j > 2

Ambiguities z̃sr, j = zs1r, j − z11r, j ; r �= 1, s �= 1,

S-basis parameters {Δx1}, dt1, d1, j , δ1, j , zs1, j , z1r, j , dr �=1, j=1,2, ds, j=1,2

The additional parameter Δx1 (within {.}) is taken as S-basis for the small-to-regional scale networks, i.e.,
when gsr ≈ gs1(r = 2, . . . , n)
(.),I F = 1

μ2−μ1
[μ2(.),1 − μ1(.),2]; (.),GF = 1

μ2−μ1
[(.),2 − (.),1]

with (.)1s1r = (.)s1r − (.)11r being the DD symbol. Compare
(2) with its UD counterpart (1). The clock terms dtr/dts

as well as the biases dr, j/ds, j and δr, j/δ
s
, j are eliminated.

The non-dispersive parameter ρs
r is reduced to the DD-range

parameter ρ1s
1r as

ρ1s
1r = g1sTr Δx1r + g1sT1r Δx1, (3)

while the ambiguities asr, j , in their DD form, become integer-

valued, i.e., a1s1r, j = z1s1r, j ∈ Z. The number of DD phase data

Δφ1s
1r, j in the single-epoch model (2) is the same as the num-

ber of DD ambiguities a1s1r, j . Thus, the very precise phase

data Δφ1s
1r, j have to be fully reserved for determining a1s1r, j ,

leaving the less precise DD code data Δp1s1r, j to drive the

precision of the float solutions ρ̂1s
1r and ι̂1s1r (Teunissen 1997).

This situation becomes quite different though, once the float
ambiguities â1s1r, j are successfully mapped to their integers

ǎ1s1r, j . In that case one may treat the integer estimated ambi-

guities ǎ1s1r, j as known and deterministic, and move them to
the left-hand side of (2) thusmaking the ‘ambiguity-resolved’
DD phase data (Δφ1s

1r, j −λ j ǎ1s1r, j ) act as if they are very pre-

cise code data. The precision of the fixed solutions ρ̌1s
1r and ι̌1s1r

would then be dominated by that of the ‘ambiguity-resolved’
phase data. In other words, the unknown parameters ρ1s

1r and
ι1s1r can then be determined fully by means of the ‘ambiguity-
resolved’ phase-only model

(
Δφ1s

1r, j − λ j ǎ
1s
1r, j

)
= ρ1s

1r − μ j ι
1s
1r , j = 1, . . . , f (4)

Thus, in the single-epoch case, the precision of the solu-
tions ι̌1s1r and ρ̌1s

1r (and therefore Δx̌r ) experiences two orders
of magnitude improvement, as the standard-deviation of the
phase data is almost 100 times smaller than its code counter-
part.

2.3 The UD model and its estimable parameters

We now turn our attention to the UD formulation of (1). In
this case, there exist components other than the DD param-
eters ρ1s

1r and ι1s1r which cannot be fully determined by the
ambiguity-resolved DD phase data. Even after IAR, such
components still require code data for their estimation. The
question is now whether such components can still benefit
from IAR and if so, to what extent.

If we want to work with the UD formulation (1), we
first need to eliminate its rank-deficiencies. Due to its rank-
deficiency, not all of its parameters are estimable, only
combinations of them. A number of parameters, equal to the
rank-deficiency, must therefore be chosen as the system’s S-
basis so as to form a set of minimum constraints that helps
recover the system of equations to one of full rank (Baarda
1973; Teunissen 1985). For a commonly used S-basis, a
full-rank version of the single-epoch UD model (1) is given
as (Odijk et al. 2015)

Δφs
r, j = ρ̃s

r − μ j ι̃
s
r + λ j ãsr, j

Δpsr, j = ρ̃s
r + μ j ι̃

s
r + d̃sr, j

(5)

with ρ̃s
r = gsTr Δx̃r + dt̃r − dt̃s , d̃sr, j = d̃r, j − d̃s, j , and

ãsr, j = z̃sr, j + δ̃r, j − δ̃s, j . The estimable parameters are indi-
cated with the .̃-symbol. Their interpretations, together with
the choice of S-basis, are given in Table 1. The table shows
how each estimable parameter is formed as a certain lin-
ear combination of the original parameters. For instance, the
estimable receiver clocks dt̃r represent the between-receiver
SD clocks dt1r that are biased by the ‘ionosphere-free’ (IF)
combination of the receiver code biases, i.e., d1r,I F . On the
other hand, the estimable slant ionospheric delays ι̃sr are
the true slant ionospheric delays ιsr that are biased by the

123



640 A. Khodabandeh, P. J. G. Teunissen

Fig. 1 Visualization of the transformation (6) to receiver pair r = 1, 2
tracking satellite pair s = 1, 2. After the transformation, the roles of
the reference receiver r = 1 and satellite s = 1 are replaced by those
of the ‘receiver-average’ r̄ and the ‘satellite-average’ s̄, respectively

‘geometry-free’ (GF) combination of the receiver/satellite
biases, i.e., dr,GF/ds,GF (see the table for their definition).

2.4 A UD-SD-DD decomposition

From the DD model (2) we learned that ambiguity-resolved
DD phase data are sufficient to estimate the model’s DD
parameters. As the ambiguity-resolved estimation of these
parameters does not need any code data, they can be deter-
minedwith very high precision. To see how this works out for
the estimable parameters of the UD model (5), we introduce
a decomposition of the UD model that allows us to bring it
into a useful canonical form. This form is created such that
it contains the DD formulation (2). As DD components are
of a ‘differenced’ nature, the idea of the decomposition is
based on the following two simple facts. Firstly, that any two
random variables can be uniquely expressed in terms of their
average and their difference. Secondly, that if the two vari-
ables are of equal precision and uncorrelated, then also their
‘average’ and ‘difference’ are uncorrelated.

Consider a receiver pair r = 1, 2 tracking the satellite pair
s = 1, 2. By ‘averaging’ and ‘differencing’ both at receiver
level and satellite level, the corresponding four-phase obser-
vations Δφs

r, j (r = 1, 2, s = 1, 2), on frequency j , undergo
the following one-to-one transformation

[
Δφ s̄

r̄ , j , Δφ s̄
12, j

Δφ12
r̄ , j , Δφ12

12, j

]

=
[ 1

2 , 1
2

−1 , 1

][
Δφ1

1, j , Δφ1
2, j

Δφ2
1, j , Δφ2

2, j

][ 1
2 , −1

1
2 , 1

]
(6)

Accordingly, the role of the reference receiver r = 1 is
replaced by that of the ‘receiver-average’ r̄ . Likewise, the
‘satellite-average’ s̄ replaces the reference satellite s = 1 (see
Fig. 1). The transformed observations are the satellite- and
receiver-averaged component Δφ s̄

r̄ , j , the satellite-averaged

SD component the Δφ s̄
12, j , the receiver-averaged SD com-

ponent Δφ12
r̄ , j , and the DD component Δφ12

12, j . These trans-
formed observations are mutually uncorrelated if the four

original undifferenced phase observations Δφs
r, j are uncor-

related and equally precise. To see this, let us present the
transformation (6) in its vectorial form as

⎡
⎢⎢⎢⎢⎢⎢⎣

Δφ s̄
r̄ , j

Δφ12
r̄ , j

Δφ s̄
12, j

Δφ12
12, j

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
4 ,

1
4 ,

1
4 ,

1
4

− 1
2 ,

1
2 , − 1

2 ,
1
2

− 1
2 , − 1

2 ,
1
2 ,

1
2

1, −1, −1, 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Δφ1
1, j

Δφ2
1, j

Δφ1
2, j

Δφ2
2, j

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

The zero-correlation property of the transformed observa-
tions follows then from the mutually orthogonal rows of the
above transformation matrix.

By applying the same transformation (6) to the estimable
parameters ρ̃s

r , ι̃
s
r and z̃

s
r (r = 1, 2, s = 1, 2) of theUDmodel

(5), we obtain the following four decoupled and uncorrelated
observation equations

Δφ s̄
r̄ , j = ρ̃ s̄

r̄ − μ j ι̃
s̄
r̄ + λ j ãs̄r̄ , j

Δφ12
r̄ , j = ρ̃12

r̄ − μ j ι̃
12
r̄ + λ j ã12r̄ , j

Δφ s̄
12, j = ρ̃ s̄

12 − μ j ι̃
s̄
12 + λ j ãs̄12, j

Δφ12
12, j = ρ̃12

12 − μ j ι̃
12
12 + λ j ã1212, j

(8)

A similar set of equations can be obtained for the code data.
This set will have the same structure as that of (8), but with
the ambiguities absent.

We now show how the decoupled and uncorrelated prop-
erty of (8) helps us in understanding how GNSS parameters
are impacted by integer ambiguity resolution (IAR). First
note, since every phase observation equation has its own
unknown ambiguity, that in the single-epoch case, the deter-
mination of any of the ρ- and ι-parameters relies solely on
the code data. That is, the phase data will not contribute
to their determination in case the ambiguities are unknown.
Now consider the case of successful IAR. After successful
IAR, the DD ambiguity ã1212, j ∈ Z may be assumed known,
which can then bemoved to the left-hand side of the last equa-
tion of (8), thus allowing for a significant improvement in the
precision of the float solutions of the DD parameters ρ̃12

12 and
ι̃1212, just as it happened in the DD model (4). The remaining
parameters of (8), however, do not benefit from IAR. They
do not benefit, since they themselves are decoupled from the
DD equation, while at the same time their equations phase
and code data are uncorrelated with the DD data used for
IAR. Thus, none of the ρ-, ι- and a-parameters of the first
three equations of (8) benefit from IAR.

Since the parameters of (8) can also be used to reconstruct
their original undifferenced versions (e.g., ρ̃1

1 = ρ̃ s̄
r̄ − 1

2 ρ̃
12
r̄ −

1
2 ρ̃

s̄
12 + 1

4 ρ̃
12
12 ), one can infer how the precision improvement

due to IAR propagates. Consider, for instance, the between-
satellite SD ionospheric parameter ι̃121 . Its float and fixed
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solutions can be expressed in terms of those of the compo-
nents ι̃12r̄ and ι̃1212. They, respectively, read

float : ˆ̃ι121 = − 1
2

ˆ̃ι1212 + ˆ̃ι12r̄
fixed : ˇ̃ι121 = − 1

2
ˇ̃ι1212 + ˆ̃ι12r̄

(9)

While the DD float solution ˆ̃ι1212 changes to its fixed ver-

sion ˇ̃ι1212 after ambiguity fixing, the float solution ˆ̃ι12r̄ remains
unchanged as it belongs to the second equation of (8), being
uncorrelated with the float ambiguities ˆ̃a1212, j . In the next sec-
tion, we generalize the above ideas to the multivariate GNSS
network case.

3 Canonical decomposition of the GNSS model

3.1 A multivariate representation

The transformations (6) and (7) are limited in the sense that
they apply to equally precise phase data of only a single
receiver pair tracking a single satellite pair. To generalize the
transformation, we first formulate the GNSS model in multi-
variate form. We therefore define the phase observation vec-
tor of receiver r as φS

r = [φST
r,1 , . . . , φST

r, f ]T ∈ R
f m , φS

r, j =
[Δφ1

r, j , . . . , Δφm
r, j ]T , j = 1, . . . , f , with a likewise defini-

tion for the code observation vector pSr . For the n receivers,
the network observation matrices are defined as φS

R =
[φS

1 , . . . , φS
n ] and pSR = [pS1 , . . . , pSn ]. The multivariate for-

mulation of the full-rank observation Eq. (5) becomes then

φS
R = (e f ⊗ Im) ρ̃S

R − (μ ⊗ Im) ι̃SR + (Λ ⊗ Im) ãSR

pSR = (e f ⊗ Im) ρ̃S
R + (μ ⊗ Im) ι̃SR + (E ⊗ Im) d̃ S

R

(10)

The m × n matrices ρ̃S
R and ι̃SR contain the estimable param-

eters ρ̃s
r and ι̃sr , respectively. The f -vectors e f and μ,

respectively, contain ‘ones’ and ‘μ j ’ ( j = 1, . . . , f ). The
f × f diagonal matrix Λ contains the wavelengths λ j ,
through which the f m × n ambiguity matrix ãSR is linked to
the phase data φS

R . According to Table 1, the estimable code
biases d̃sr, j = d̃r, j−d̃s, j are only present in the third frequency
and beyond (i.e., j > 2). In contrast to the ambiguity matrix
ãSR , the dimension of the code-biasmatrix d̃ S

R is ( f −2)m×n.
Therefore, the first two columns of the identity matrix I f are
eliminated to form the f × ( f − 2) matrix E . The symbol
⊗ is the Kronecker matrix product (Henderson et al. 1983).

The stochastic model of the observables is assumed given
as

D

[
φS
r

pSr

]
= c2r

[
Cφ 0

0 Cp

]
⊗ CS, r = 1, . . . , n (11)

with D(.) being the dispersion operator. The m ×m cofactor
matrix CS captures the satellite elevation dependency. The
scalars c2r (r = 1, . . . , n) are receiver-dependent cofactors,
structuring the n×n diagonal matrixCR . The f × f positive-
definite matrices Cφ and Cp are the cofactor matrices of the
phase and code observable types, respectively.

3.2 The canonical differencing (CD) transformation

We now generalize the transformations (6) and (7) to the
multivariate case. The idea is again to decompose the phase
and code data φS

R and pSR into four uncorrelated blocks. The
n f m × n f m multivariate generalization of (7) is given as

TCD =
[
e+
n

DT
n

]
⊗
[

I f ⊗ e+
m

I f ⊗ DT
m

]
(12)

inwhich thematrices Dm and Dn take care of the differencing
and the vectors e+

m and e+
n of the averaging. The m × (m −

1) matrix Dm forms between-satellite differences, while the
n × (n − 1) matrix Dn forms between-receiver differences.
Their columns are, respectively, orthogonal to the vectors
of ones em and en , i.e., DT

mem = 0 and DT
n en = 0. The

averaging operators, e+
m and e+

n , are given as the weighted
pseudo-inverses,

Satellite-averaging : e+
m = 1

eTmC
−1
S em

eTmC
−1
S

Receiver-averaging : e+
n = 1

eTn C
−1
R en

eTn C
−1
R

(13)

The multivariate transformation (12) will be referred to as
the canonical differencing (CD) transformation (Fig. 2). It is
not difficult to verify that the transformation is one-to-one.
The CD-transformation will now allow us to transform the
multivariate GNSS model (10) into an easy-to-use canonical
form.

Fig. 2 The CD-transformation: interpretation and functionality of its
components
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3.3 CD-transformed observations and parameters

Wefirst apply the transformation to the phase and code obser-
vations, thus giving TCDvec(φS

R) and TCDvec(pSR). With (12)
and an application of the triple-matrix-product vec-property
vec(ABC) = (CT ⊗ A)vec(B), we obtain for the trans-
formed phase data TCDvec(φS

R) in matrix form,

[
I f ⊗ e+

m

I f ⊗ DT
m

]
φS
R

[
e+T
n , Dn

] =
[

φ s̄
r̄ , φ s̄

1R

φ1S
r̄ , φ1S

1R

]
⇐⇒

φS
R =[I f ⊗ em, I f ⊗ D+T

m

] [ φ s̄
r̄ , φ s̄

1R

φ1S
r̄ , φ1S

1R

][
eTn
D+
n

]

(14)

in which we used the notation (.)1S = DT
m(.)S and

(.)1R = (.)RDn . The superscript s̄ and subscript r̄ refer to
the ‘satellite-’ and ‘receiver-averaged’ components, respec-
tively. Thus, (.)s̄ = e+

m (.)S and (.)r̄ = (.)R e+T
n . The

pseudo-inverses of Dm and Dn are defined as D+
m =

(DT
mCSDm)−1DT

mCS and D+
n = (DT

n CRDn)
−1DT

n CR ,
respectively.A similar decomposition as (14) can be obtained
for the code data pSR .

The decomposition (14) achieves that the undifferenced
raw GNSS data φS

R /p
S
R is decomposed into the following

four uncorrelated blocks of data (Fig. 3):

1. Satellite- and receiver-averaged components φ s̄
r̄ /p

s̄
r̄ ,

2. Satellite-averaged SD components φ s̄
1R /p

s̄
1R ,

3. Receiver-averaged SD components φ1S
r̄ /p1Sr̄ ,

4. DD components φ1S
1R /p

1S
1R .

Since the averaging operators e+
m and e+

n are, respectively,
orthogonal to the differencing operators Dm and Dn (i.e.,
e+
mCSDm = 0 and e+

n CRDn = 0), these four blocks of data
are mutually uncorrelated.

Just aswith the phase and code observations,we also apply
the CD-transformation to the estimable parameters of the
multivariate GNSS model (10). This will then transform ρ̃S

R ,
ι̃SR , ã

S
R , and d̃ S

R accordingly. In case of the estimable code
biases d̃ S

R , the identity matrix I f , in (14), must be replaced
by its lower-dimension version I f −2 and in case of ρ̃S

R and
ι̃SR , the identity matrix I f is replaced by ‘1’. Thus, if we apply
the CD-transformation to the non-dispersive matrix ρ̃S

R , we
obtain similar to (14) the decomposition,

[
e+
m

DT
m

]
ρ̃S
R

[
e+T
n , Dn

] =
[

ρ̃ s̄
r̄ , ρ̃ s̄

1R

ρ̃1S
r̄ , ρ̃1S

1R

]
⇐⇒

ρ̃S
R = [em, D+T

m

]
[

ρ̃ s̄
r̄ , ρ̃ s̄

1R

ρ̃1S
r̄ , ρ̃1S

1R

][
eTn
D+
n

] (15)

A similar decomposition is achieved for the other parameters
ι̃SR , ã

S
R , and d̃ S

R as well.

3.4 The canonical GNSS model

We are now in a position to formulate how the multivariate
GNSS model looks like after we have applied the one-to-one
CD-transformations to both observations and parameters. It
follows that the resulting set of observation equations can
then be divided into four uncorrelated and decoupled blocks
(Fig. 3):

The satellite- and receiver-averaged block:

(.)s̄r̄

{
φ s̄
r̄ = e f ρ̃ s̄

r̄ − μ ι̃s̄r̄ + Λ ãs̄r̄

ps̄r̄ = e f ρ̃ s̄
r̄ + μ ι̃s̄r̄ + E d̃s̄r̄

(16)

The satellite-averaged SD block:

(.)s̄1R

{
φ s̄
1R = e f ρ̃ s̄

1R − μ ι̃s̄1R + Λ ãs̄1R

ps̄1R = e f ρ̃ s̄
1R + μ ι̃s̄1R + E d̃s̄1R

(17)

The receiver-averaged SD block:

(.)1Sr̄

{
φ1S
r̄ = (e f ⊗ Im−1) ρ̃1S

r̄ − (μ ⊗ Im−1) ι̃1Sr̄ + (Λ ⊗ Im−1) ã1Sr̄

p1Sr̄ = (e f ⊗ Im−1) ρ̃1S
r̄ + (μ ⊗ Im−1) ι̃1Sr̄ + (E ⊗ Im−1) d̃1Sr̄

(18)

The double-differenced (DD) block:

(.)1S1R

{
φ1S
1R = (e f ⊗ Im−1) ρ̃1S

1R − (μ ⊗ Im−1) ι̃1S1R + (Λ ⊗ Im−1) ã1S1R

p1S1R = (e f ⊗ Im−1) ρ̃1S
1R + (μ ⊗ Im−1) ι̃1S1R

(19)

The four blocks (16–19) represent four sets of decoupled
and uncorrelated observation equations. That is, the four
blocks of data are not mutually correlated and each block
of observation equations has its own set of parameters, i.e.,
the four blocks have no parameters in common. Because of
these two properties, we can now already get a quick first
insight into the impact of IAR. As the DD float ambiguity
solution ˆ̃a1S1R , being a function of only the double-differenced
data, is not correlated with the data of the other three blocks,
noneof the parameters of these three sets of observation equa-
tions will benefit from integer ambiguity resolution. That is,
they remain unaffected by IAR. For instance, the solution
of the ionospheric component ι̃s̄1R , being a function of only
the satellite-averaged SD components φ s̄

1R/ps̄1R , will remain
unaffected by IAR (see Fig. 3).

So far we have used the parametrization ρ̃S
R , both in (15)

and in (16–19). These parameters themselves, however, have
a further one-to-one parametrization into the position/ZTD
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Fig. 3 The four-block decomposition of the GNSS data. Only the
estimable functions of the DD block (in blue) are affected by IAR.
Any estimable function of the other-than-DD blocks (in gray) remains
unaffected. Expressing the GNSS estimable parameters in terms of their
constituent components, (.)sr = F((.)s̄r̄ , (.)

1S
r̄ , (.)s̄1R, (.)1S1R), shows how

they benefit from IAR

incrementsΔx̃ R =[Δx̃1, . . . , Δx̃n] and the clock parameters
dt̃ S = [dt̃1, . . . , dt̃m]T and dt̃R = [dt̃2, . . . , dt̃n]T (cf. 5).
To show this, we make use of the multivariate version of
ρ̃s
r = gsTr Δx̃r + dt̃r − dt̃s , being

ρ̃S
R =

n∑
r=1

[
GS

r Δx̃ R uru
T
r

]
+em dt̃TR [0, In−1]−dt̃ S eTn (20)

with matrices GS
r = [g1r , . . . , gmr ]T (r = 1, . . . , n) and the

n-vectors ur having zero entries, except their r th entry equal
to 1. Substituting (20) into the first expression of (15), the
following one-to-one correspondence with the ρ-parameters
of (16–19) is obtained

ρ̃ s̄
r̄ = −dt̃ s̄ +

n∑
r=1

[
Gs̄

rΔx̃ R ur uTr e
+T
n

] + dt̃TR [0, In−1]e+T
n

ρ̃ s̄
1R = +dt̃TR +

n∑
r=1

[
Gs̄

r Δx̃ R ur uTr Dn
]

ρ̃1S
r̄ = −dt̃1S +

n∑
r=1

[
G1S

r Δx̃ R ur uTr e
+T
n

]

ρ̃1S
1R = +

n∑
r=1

[
G1S

r Δx̃ R ur uTr Dn
]

(21)

This shows, when reading (21) from last to first equation, that
the DD component ρ̃1S

1R determines geometry, i.e., the posi-
tion/ZTD increments Δx̃ R (cf. 3), that the receiver-averaged
SD components ρ̃1S

r̄ (of size m − 1) are reserved for the
SD satellite clock parameters dt̃1S (of size m − 1), while
the satellite-averaged SD components ρ̃ s̄

1R (of size n − 1)
are reserved for the receiver clock parameters dt̃R (of size
n − 1), and finally, that the satellite- and receiver-averaged
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Fig. 4 Absolute values of the cross-correlationmatrix between theDD
L1 ambiguities (columns) and the estimable ionospheric delays (rows).
Left: UD estimable ionospheric delays; right: DD estimable ionospheric
delays. The results are obtained from a network of 20 GPS (L1/L2)
stations within Australia

component ρ̃ s̄
r̄ (a scalar) is reserved for the satellite-averaged

clock parameter dt̃ s̄ .
The above parametrization (21) combined with the uncor-

related and decoupled set of observation equations (16–19)
will now be used to further analyze the parameter impact of
integer ambiguity resolution.

4 Qualitative analysis of the IAR impact

In this section, we use the canonical decomposition of the
multivariate GNSS network model to provide a qualitative
insight into the impact of integer ambiguity resolution on the
various GNSS parameters.

4.1 Ionospheric parameters ι̃sr

Given the four decoupled and uncorrelated blocks of observa-
tion equations (16–19), we are now in a position to address
how the ambiguity-resolved phase data propagate into the
fixed solutions of any GNSS estimable parameters. In an
analogous way to (9), the float and fixed ionospheric solu-
tions can be structured from their constituent components as
follows

Float : ˆ̃ιsr = ˆ̃ιs̄r̄ + ˆ̃ιs̄sr̄ + ˆ̃ιs̄r̄r + ˆ̃ιs̄sr̄r
Fixed : ˇ̃ιsr = ˆ̃ιs̄r̄ + ˆ̃ιs̄sr̄ + ˆ̃ιs̄r̄r + ˇ̃ιs̄sr̄r

(22)

The last term ˇ̃ιs̄sr̄r = [ˇ̃ι1s1r − ˇ̃ι1s1r̄ ] − [ˇ̃ι1s̄1r − ˇ̃ι1s̄1r̄ ] is a func-
tion of the DD constituent component ι̃1S1R , driven by the
ambiguity-resolved DD phase data (cf. 4), thereby experi-
encing two orders of magnitude precision improvement. The
other three terms, however, are all functions of the other-
than-DD constituent components, thus being uncorrelated
with the float DD ambiguities. These components are driven
by the code data. Therefore, they prohibit the precision gain
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Fig. 5 Diagram showing how the ambiguity-resolved DD phase data,
by fixing the DD ambiguities ã1S1R , propagate into the constituent com-
ponents and therefore into the estimable parameters (blue lines). As the

estimable code biases d̃r, j and d̃s, j do not depend on the DD constituent

components (.)1S1R , they are uncorrelated with the float ambiguities ˆ̃a1S1R ,
thereby remaining unaffected after IAR

of the fixed solution ˇ̃ιsr to reach the two orders of magni-
tude level. The presence of these components decreases the
correlation between the float solution ˆ̃ιsr and the DD float
ambiguities. Figure 4 shows absolute values of the cross-
correlationmatrix between theDDL1 ambiguities (columns)
and the estimable ionospheric delays (rows). The results are
obtained from a network of 20 GPS stations within Aus-
tralia. The larger the correlation coefficients, the darker the
elements become. In case of theDD ionospheric solutions ˆ̃ι1s1r ,
the correlation coefficients are all significant (right-panel of
the figure). This is, however, not the case with the UD iono-
spheric solutions ˆ̃ιsr (left-panel of the figure). In this case,
only the ionospheric solutions corresponding to the pivot
satellites (diagonal strips) and pivot receivers (the first rows)
are correlated with the float DD ambiguities. By ‘pivot’, we
mean those receivers and satellites which their ambiguities
are taken as reference to form the DD network ambiguities,
see, e.g., de Jonge (1998). The rest of the solutions represent
very small correlation coefficients, showing that the presence
of UD and SD ionospheric components does indeed decrease
the correlation between the float ionospheric delays and the
DD ambiguities.

Similar to expression (22), the other estimable parameters
given in Table 1 can also be expressed in terms of their con-
stituent components, i.e., the parameters of (16–19). Such
expressions are presented in Fig. 5. They are accompanied
by a diagram showing how the ambiguity-resolvedDD phase
data, through fixing the DD ambiguities ã1S1R , propagate into

the constituent components and therefore into the estimable
parameters (blue lines).

According to the diagram, the DD observation equations
deliver the float DD solutions ˆ̃ι1s1r , Δ ˆ̃xr and ˆ̃a1s1r . Once IAR
is carried out, the ambiguity-resolved DD phase data would
then propagate into ι̃sr only through the fixed DD solutions
ˇ̃ι1s1r . As a consequence, when the DD parameters ι̃1s1r are a pri-
ori known, the float solutions of ι̃sr become uncorrelatedwith
the float ambiguities and therefore no precision improvement
is obtained by IAR. Practical examples of such are the short
inter-station distance scenarios where the between-receiver
SD ionospheric delays are assumed to be absent, i.e., ιsr = ιs1
(r = 2, . . . , n). This yields ι̃sr = ιs1 +dsr,GF (cf. Table 1), thus
ι̃1s1r = 0. The (m−1)× (n−1) constraints ι̃1s1r = 0 reduce the
m × n parameters ι̃sr to m parameters ι̃s1, but then introduc-
ing (n−1) additional estimable parameters d̃r,GF = ι̃s1r (r =
2, . . . , n). These parameters are the (scaled) SD receiver ‘dif-
ferential code biases’ (DCBs), see, e.g., Schaer (1999) or
Zhang and Teunissen (2015). The corresponding decompo-
sition of ι̃s1 and d̃r,GF is then given as (compare with 22)

ι̃s1 = ι̃s̄r̄ + ι̃s̄sr̄ + ι̃s̄r̄1 + 0

d̃r,GF = 0 + 0 + ι̃s̄1r + 0 (23)

Thus, neither the ionospheric parameters ι̃s1 nor the receiver
DCBs d̃r,GF benefit from IAR, when the between-receiver
SD ionospheric delays are absent.
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4.2 Clock parameters d t̃r and d t̃ s

Let us now focus on the estimable clock parameters. Accord-
ing to Fig. 5, the ambiguity-resolved DD phase data propa-
gate into dt̃r and dt̃s only through the DD-range solutions
Δ ˇ̃ρ1s

1r and therefore, through the position/ZTD solutions

Δ ˇ̃xR . Consider the case where Δx̃ R are a priori known. This
corresponds to the ‘geometry-fixed’ scenario when the posi-
tion of the receivers is assumed to be known, while the ZTDs
are a priori corrected. Under these conditions, the DD-range
parameters Δρ̃1s

1r are absent, that is, the float solutions of the
estimable clocks dt̃r and dt̃s have no dependency on the DD
block (.)1S1R . Thus, the clock solutions dt̃r and dt̃s become
uncorrelated with the float ambiguities and do not benefit
from IAR. To what extent these parameters can gain preci-
sion improvement does then very much depend on the fixed
solution Δ ˇ̃xR and therefore on the DD-range parameter ρ̃1S

1R .
We come back to this when we quantify the clocks’ precision
gain as a function of the DD-range’s dependency in Sect. 5.

4.3 Phase biases δ̃r, j and δ̃s
, j

In case of the estimable phase biases, the ambiguity-resolved
DD phase data propagate to them directly through the DD
ambiguities ã1S1R . Their correlation with the DD ambiguities
becomes absent only when the DD ambiguities are a priori
known. As no a priori information on the DD ambiguities
are often available, these types of parameters would there-
fore be correlated with the float ambiguities ˆ̃a1S1R . Figure 6
shows scatter-plots (green dots) of the satellite phase-bias
residuals versus those of the DD ambiguities. The residuals
are obtained from the difference between the single-epoch
and the final filtered solutions. In case of the UD phase
biases (top-panel of the figure), the stated correlation is esti-
mated as 0.26. In case of the SD phase biases, however, the
correlation increases to 0.61 (bottom-panel of the figure).
The reason behind this behavior follows by expressing the
estimable phase biases in terms of their constituent compo-
nents. According to the diagram of Fig. 5, the UD and SD
satellite phase biases can be, respectively, expressed as

δ̃s, j = −ãs̄r̄ . j − ãs̄sr̄ , j + ãs̄1r̄ , j + ãs̄s1r̄ , j
δ̃1s, j = 0 − ã1sr̄ , j + 0 + ã1s1r̄ , j

(24)

The expression (24) reveals that the terms ãs̄r̄ and ãs̄1r̄ are
eliminatedby formingbetween-satellite differences.Both are
uncorrelated with the float ambiguities; thus, their absence
in the SD phase biases δ̃1s, j increases the stated correlation.
To show the dependency of the phase biases on the ambigu-
ities, we also plot the expected phase-bias values when the
corresponding L1 ambiguity is given (gray straight lines of
Fig. 6). These values show how much the fixed phase-bias
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Fig. 6 Scatter-plots (green dots) of the L1 satellite phase-bias residuals
(vertical axis) versus that of the DD L1 ambiguities (horizontal axis),
together with their 95% confidence ellipses (in black).Top: UD satel-
lite phase biases; bottom: SD satellite phase biases. The gray straight
lines represent expected phase-bias values when the corresponding L1
ambiguity is given. The results are obtained from a network of 20 GPS
(L1/L2) stations within Australia

solution deviates from its float version (the blue line arrows
on the vertical axis), when the difference between the float
and fixed ambiguities is given (the blue line arrows on the
horizontal axis). The SD phase biases are shown to deviate
much more than their UD versions for a given difference
between the float and fixed ambiguities, i.e., the SD phase
biases benefit more than their UD counterparts.
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4.4 Code biases d̃r, j and d̃ s
, j

As shown in Fig. 5, the estimable code biases d̃r, j and d̃s, j
do not depend on the DD constituent components. They
are therefore uncorrelated with the float ambiguities ˆ̃a1S1R ,
thereby remaining unaffected after IAR. Would one be inter-
ested to determine such estimable parameters, no additional
IAR step is then required.

5 Precision gain of the GNSS parameters

In the previous section, it was shown how the four-block
decomposition (14) facilitates our qualitative analysis of the
IAR impact on theGNSSparameters. The analysiswas, how-
ever, confined to a single observational epoch. We now take
this one step further and quantify the IAR impact in a multi-
epoch sense. Since the goal is to study the role played by
the integer ambiguities, we consider a multi-epoch scenario
where only the integer-valued parameters zsr, j , given in (1),
are assumed to be constant in time. For the sake of presen-
tation, from now on we assume the network to be such that
the receivers view satellite s from almost the same direction
angle, i.e., gsr = gs1 (r = 1, . . . , n). Thus, Δx̃1 = 0 (cf.
Table 1).

5.1 Gain numbers and reduction factors

We use the concept of gain numbers (Teunissen 1997) to
measure the gain in the parameters’ precision due to ambi-
guity fixing. Let the estimable parameters, in Table 1, be
symbolized by the unknown vector x . Any linear function
of x can be expressed as lT x with vector l of the same size
of x . Its float and fixed solutions, respectively, read lT x̂ and
lT x̌ . Applying the error propagation law, their variances are
given by lT Qx̂ x̂ l and lT Qx̌ x̌ l, where Qx̂x̂ and Qx̌x̌ denote
the variance matrices of the float and fixed solutions x̂ and
x̌ , respectively. The gain number of the float solution lT x̂ is
then defined as the variance ratio

γ (l) = lT Qx̂ x̂ l

lT Qx̌ x̌ l
= 1 + lT (Qx̂x̂−Qx̌x̌ )l

lT Qx̌ x̌ l
(25)

The gain number γ tells us how many times the variance
of lT x̂ gets smaller by IAR. Thus, the corresponding standard
deviation decreases by a factor of

√
γ (the ‘square-root’ gain

number) after ambiguity fixing. Note that the gain numbers
are never smaller than 1 (i.e., γ ≥ 1), as successful ambiguity
fixing does not degrade the parameters’ precision (Teunissen
1997).

Example To provide further insight into the concept of gain
number, float and fixed slant ionospheric solutions of a GPS

network have been analyzed. The goal is to empirically eval-
uate the gain number (25). To that end, 120 ionospheric
outcomes at every epoch (30 seconds) serve as samples to
compute the sample variance

lT Q(x̂−x̌)(x̂−x̌)l ≈ 1

h

h∑
i=1

[lT (x̂i − x̌i )]2, (26)

in which x̂i and x̌i , respectively, denote the float and fixed
samples, with h being the number of samples. With (25) and
(26), the empirical gain number reads

γ (l) ≈ 1 + 1

h

h∑
i=1

[lT (x̂i − x̌i )]2
lT Qx̌ x̌ l

(27)

as Q(x̂−x̌)(x̂−x̌) = Qx̂x̂−Qx̌x̌ . Time series of such empirical
gain numbers are presented in Fig. 7. As partial ambiguity
resolution, based on subset selection strategy with minimum
success rate 99.9%, is applied (Teunissen et al. 1999), a sub-
set of float ambiguities are fixed only after 10 minutes of
the network processing. As shown in the figure, empirical
gain number of the DD components (blue circles) represents
large values and increases over time, reaching its maximum
after 37 minutes. This is because of the fact that more ambi-
guities can be fixed as observations of further epochs are
collected. After 37 minutes the full set of ambiguities were
already fixed, while the float ionospheric solutions improve
in precision over time. That is why their gain numbers start
decreasing at that time. Figure 7 also shows empirical gain
numbers of the satellite averages (gray crosses). They are
close to 1, since they do not benefit from IAR by much. As
the averages are obtained by arithmetic averaging and not by
that of (13), the corresponding gain numbers are not exactly
equal to 1. 
�
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123



On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases 647

According to the decompositions (14) and (15), the function
lT x can be decomposed into two constituent components,
say, 1) xA = lTAx which benefits from IAR, and2) xB = lTA⊥x
which is unaffected by IAR. Thus,

lT x = xA + xB, or l = lA + lA⊥ (28)

As the float solutions x̂A and x̂B are uncorrelated, we have
σx̂A,x̂B = lTAQx̂x̂ lA⊥ = 0. Thus, the vectors lA and lA⊥
are orthogonal in the metric of Qx̂x̂ . This explains the
orthogonality-symbol ‘⊥’ for the subspace B = A⊥ rep-
resenting all linear functions of x that are unaffected by IAR.
The complementary subspace A would therefore represent
those linear functions of x that are affected by IAR. For
instance, in case of the ionospheric parameters (i.e., x → ι̃sr ),
A represents all the DD functions of ι̃sr . In case of the satellite
clocks (i.e., x → dt̃s), however, the role ofA is taken by the
between-satellite SD functions of dt̃s (cf. Fig. 5).

As x̂B remains unchanged after IAR, i.e., x̌B = x̂B, we
haveσx̌A,x̌B = σx̌A,x̂B . But thefixed solution x̌A is a function
of x̂A and the DD float ambiguities, both being uncorrelated
with x̌B = x̂B. This means σx̌A,x̌B = 0 or lTAQx̌x̌ lA⊥ =
lTAQx̂x̂ lA⊥ = 0. Applying the error propagation law to the
solutions of (28), the gain number (25) would then take the
following form

γ (l) = lTAQx̂x̂ lA + lTA⊥Qx̂x̂ lA⊥

lTAQx̌x̌ lA + lTA⊥Qx̂x̂ lA⊥
(29)

The variance lTA⊥Qx̌x̌ lA⊥ is replaced by its float version

lTA⊥Qx̂x̂ lA⊥ in the denominator of (29), because of the iden-

tity lTA⊥ x̌ = lTA⊥ x̂ .

According to (29), by choosing the linear function lT x such
that lA = 0 (i.e., l = lA⊥ ), the gain number γ becomes

γ (lA⊥) = 1 (30)

This is what one would expect since the float solution
lTA⊥ x̂ does not benefit from IAR, thus having its variance
unchanged. On the other hand, choosing the linear function
lTA x̂ reduces (29) to

γ (lA) = lTAQx̂x̂ lA
lTAQx̌x̌ lA

(31)

We now show that the gain number of any linear function of
x is bounded by (30) and (31), that is

1 = γ (lA⊥) ≤ γ (l) ≤ γ (lA) (32)

To see this, we express the gain number (29) in terms of
γ (lA). This yields

γ (l) = γ (lA) × 1

rx
(33)

in which the reduction factor rx is given by

rx = 1 + ν2

1 + ν2

γ (lA)

; with ν2 = lTA⊥Qx̌x̌ lA⊥

lTAQx̌x̌ lA
(34)

As anygain number is never smaller thanone, i.e.,γ (lA) ≥ 1,
we have

1 + ν2 ≥ 1 + ν2

γ (lA)
, or rx ≥ 1 (35)

The reduction factor rx is therefore never smaller than one.
This, in combined with (33), proves the inequality γ ≤
γ (lA).

The reduction factor rx tells us how many times the gain
number γ is smaller than its maximum value γ (lA). The gain
number of γ reaches its maximum γ (lA)when l = lA. In this
case, the reduction factor becomes rx = 1. When l = lA⊥ ,
the gain number of γ reaches its minimum 1. In this case, we
have lA → 0 (or ν2 → ∞), having the maximum reduction
factor rx → γ (lA).

5.2 Geometrical interpretation

The second expression of (28), together with lTAQx̂x̂ lA⊥ = 0,
implies that

[(
lTAQx̂x̂ lA

)−1
lTAQx̂x̂

]
l = 1

[(
lTA⊥Qx̂x̂ lA⊥

)−1
lTA⊥Qx̂x̂

]
l = 1

(36)

From a geometrical point of view, the vectors lA and lA⊥
are thus the orthogonal projections of l. The magnitude of
the gain number γ is driven by the ‘direction’ of the vector l
(and not its length) with respect to the orthogonal projections
lA and lA⊥ . The gain number γ gets closer to its maximum
γ (lA), the smaller the angle between l and lA. When l is
orthogonal to the subspaceA (i.e., l = lA⊥ ), the gain number
γ reaches its minimum γ (lA⊥) = 1.

In the following, we present the gain numbers of the
GNSS parameters in Table 1, using the representation (33).
To get a better understanding of their variations, a ‘geomet-
ric’ approach is taken, for which the following geometrical
concepts are used. We use the orthogonal projectors (cf. 14)

Between-satellite SD projection : PDm = DmD+
m

Between-receiver SD projection : PDn = DnD+
n

(37)
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Table 2 The (co)variance-type scalars used in the expressions of the gain numbers

Analytical expressions GPS (L1/L2) example

Float: Q[ρ̂,ι̂] =
[
c2
ρ̂

, cρ̂ι̂

cρ̂ι̂ , c2
ι̂

]
=
(
[e, μ]T C−1

p [e, μ]
)−1

[
59.62, −50.32

−50.32, 43.72

]
(cm2)

Fixed: Q[ρ̌,ι̌] =
[
c2
ρ̌

, cρ̌ι̌

cρ̌ι̌ , c2
ι̌

]
=
⎛
⎝
[
e , −μ

e , +μ

]T[
C−1

φ , 0

0 , C−1
p

][
e , −μ

e , +μ

]⎞
⎠

−1 [
5.92, 5.02

5.02, 4.42

]
[mm2]

Their dual-frequency versions, i.e., Q[ρ̂2,ι̂2], that are indicated in text by (.)2, are computed based on the first two frequencies j = 1, 2. The GPS
(L1/L2) example follows by setting Cφ = σ 2

φ I2 , Cp = σ 2
p I2, with μ1 = 1 and μ2 ≈ 1.6469 (σφ = 0.002 [m], σp = 0.2 [m])

c2
ι̂|ρ = c2

ι̂
− (cρ̂ι̂/cρ̂ )2; c2

ι̌|ρ = c2
ι̌

− (cρ̌ι̌/cρ̌ )2; Q = Λ−1
(
Cφ + [e,−μ]Q[ρ̂,ι̂][e,−μ]T )Λ−1, Q|ρ = Λ−1

(
Cφ + c2

ι̂|ρμμT
)

Λ−1

Q2 = Λ−1
(
Cφ + [e,−μ]Q[ρ̂2,ι̂2][e,−μ]T )Λ−1

The projector PDm projects any vector in R
m onto the sub-

space containing between-satellite SD functions. In case of
PDm , the orthogonality is defined by the metric CS ∈ R

m×m ,
while the orthogonality of PDn is defined by the metric
CR ∈ R

n×n (cf. 11). These two projectors structure the
higher-dimension DD projector

DD projection : PDD = PDn ⊗PDm (38)

with the metric CR ⊗ CS ∈ R
mn×mn . The projector PDD

orthogonally projects vector l ∈ R
mn onto the subspace con-

taining the DD functions. The angle between vector l and
its orthogonal projection lDD = PDD l is denoted by ‘�l

lDD
’.

The (co)variance-type scalars, given in Table 2, frequently
appear in our gain-number expressions.

5.3 Ionospheric parameters ι̃sr

As shown in Fig. 5, the ionospheric parameters ι̃SR benefit
from IAR through their DDcomponents ι̃1S1R . Thus, the role of
subspaceA, in (33), is taken by the DD functions (i.e.,A →
DD).We first present the maximum gain number γ (lDD) and
then evaluate its reduction factor rx . The m × n matrix ι̃SR is
expressed in its vector form as vec(ι̃SR) ∈ R

mn .

Lemma 1 (Maximum gain number of ι̃SR) Given the obser-

vation Eq. (10), let ˆ̃ιSR be the float solutions of the ionospheric
parameters at epoch k that are obtained by the data of k
epochs (i = 1, . . . , k). Among the solutions lT vec(ˆ̃ιSR), the
DD functions

lTDD vec
(ˆ̃ιSR
)

, with lDD = PDD l, (39)

achieve the maximum gain number

γ (lDD) = αι γ
GF + (1 − αι)γ

GFi (40)

The geometry-free (GF) and geometry-fixed (GFi) gain num-
bers are, respectively, given as

γ GF = k−1
k + 1

k

(
c2
ι̂

c2
ι̌

)

γ GFi = k−1
k + 1

k

(
c2
ι̂|ρ
c2
ι̌|ρ

) (41)

The scalar αι = [1 + (c2
ι̌|ρ/c2

ι̌
) tan2(ψι)]−1 is specified by

the deviation angle ψι as follows

ψι = �lDD
lDρ

, lDρ = PDρ lDD (42)

The orthogonal projector PDρ projects onto the range-space
of the design matrix of ρ̃1S

1R (see (82) in Appendix for its
expression).

Proof See “Appendix”. 
�
The above lemma shows, among the functions of the iono-
spheric parameters, that the DD functions of ˆ̃ιSR achieve the
largest gain number due to ambiguity fixing. The value is a
convex combination of γ GF and γ GFi . When k = 1 (i.e.,
single-epoch), both of these gain numbers represent large
values (see Table 2)

γ GF k=1= c2
ι̂

c2
ι̌

≈ 99.32

γ GFi k=1= c2
ι̂|ρ
c2
ι̌|ρ

≈ 103.92
(43)

affirming the two orders of magnitude improvement by
IAR. They decrease as the number of epochs k increases,
tending to ‘1’ when k → ∞. The ‘geometry-free’ gain num-
ber γ GF corresponds to the case where the non-dispersive
parameter ρS

R is not parametrized into the position/ZTD
increments ΔxR . Thus, no information about the relative
receiver-satellite geometry is present in the model’s design
matrix. On the other hand, the ‘geometry-fixed’ gain num-
ber γ GFi corresponds to the case where the position/ZTD
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Rmn

Fig. 8 Geometrical illustration showing the relation between vector
l ∈ R

m×n (black) and its orthogonal projections lDD (blue) and lDρ (red).
The gray plain represents the subspace containing all DD ionospheric
functions. The axis orthogonal to lDρ shows the subspace containing

the DD ionospheric functions that are uncorrelated with ˆ̃ρ1S
1R , having no

dependency on the DD-range solutions. The ‘direct sum’ between two
subspaces is denoted by ⊕
parameters are completely known, i.e., Δx̃R = 0. Thus, the
full information on the receiver-satellite geometry is given.

The maximum gain number γ (lDD) ranges between γ GF

and γ GFi through the scalar 0 ≤ αι ≤ 1. The scalar αι itself
is driven by the deviation angle ψι. This angle measures the
dependency of solution lTDD vec(ˆ̃ιSR) on the DD-range solu-

tion ˆ̃ρ1S
1R . When ψι = 90◦, the vector lDD is orthogonal

to the design matrix of the DD-range solution, thus hav-

ing lTDD vec(ˆ̃ιSR) uncorrelated with ˆ̃ρ1S
1R , and αι = 0. In this

case, the solution lTDD vec(ˆ̃ιSR) has no dependency on the DD-
range solution, thereby having the gain number equal to the
geometry-fixed one, i.e., γ (lDD) = γ GFi . When ψι = 0,
the vector lDD lies in the range-space of the design matrix of
the DD-range solution, having lTDD vec(ˆ̃ιSR) with maximum

dependency on ˆ̃ρ1S
1R , and αι = 1. In this case, the solu-

tion lTDD vec(ˆ̃ιSR) therefore has the gain number equal to the
geometry-free one, i.e., γ (lDD) = γ GF .

The corresponding geometrical illustration is presented in
Fig. 8. The gray plain represents the subspace containing all
DD ionospheric functions. When vector lDD coincides with
its projection lDρ , the deviation angle becomes ψι = 0. The

float solution lTDD vec(ˆ̃ιSR) would then experience strongest
dependency on the DD-range solution. The axis orthogonal
to lDρ shows the subspace containing the DD ionospheric
functions that are uncorrelated with the DD-range solution,

thereby having no dependency on ˆ̃ρ1S
1R .

Note that the solutions lT vec(ˆ̃ιSR) do not only represent
the DD components. That is why the vector l does not lie in
the DD space (see Fig. 8). The deviation angle θι governs the
reduction in the maximum gain number γ (lDD). Below, the
corresponding reduction factor is presented.

Lemma 2 (Gain number of ι̃SR) Given the observation Eq.

(10), let ˆ̃ιSR be the float solutions of the ionospheric param-
eters at epoch k that are obtained by the data of k epochs
(i = 1, . . . , k). The gain number of the float solution
lT vec(ˆ̃ιSR) is linked to its maximum γ

ι̃SR
(lDD) through

γ (l) = γ (lDD) × 1

rx
(44)

in which the reduction factor rx is given by

rx = 1 + ν2ι tan
2(θι)

1 + [ν2ι /γ (lDD)
]
tan2(θι)

(45)

with the scalar ν2ι = [(c2
ι̌
/c2

ι̂2
) + (c2

ι̌|ρ/c2
ι̂2
) tan2(ψι)]−1 and

the deviation angle θι = �l
lDD

.

Proof See “Appendix”. 
�
When θι = 0, the solution lT vec(ˆ̃ιSR) belongs to the class of
DD functions. In that the case, there is no reduction in the
maximum gain number γ (lDD), i.e., rx = 1. When vector l
is orthogonal to the DD space (i.e., θι = 90◦), the solution
lT vec(ˆ̃ιSR) represents the satellite- or receiver-averaged func-

tions (Fig. 8). In this case, the solution lT vec(ˆ̃ιSR) becomes
uncorrelatedwithDDfloat ambiguities, having themaximum
reduction factor rx = γ (lDD). Thus, γ = 1.

Figure 9 shows square-root gain numbers of the iono-
spheric solutions lT vec(ˆ̃ιSR) as a function of the deviation
angle θι. As shown, the gain number significantly decreases
as θι gets closer to 90◦. The deviation angles corresponding
to the UD component ι̃sr , between-receiver (BR) SD compo-
nent ι̃s1r and between-satellite (BS) SD component ι̃1sr can
be evaluated as functions of the numbers of satellites and
receivers m and n as follows (see “Appendix”)

cos2(θι) =

⎧⎪⎨
⎪⎩

(
1 − 1

n

) (
1 − 1

m

)
, UD(

1 − 1
m

)
, BR-SD(

1 − 1
n

)
, BS-SD

(46)

The larger the numbers m and n, the smaller the deviation
angle θι becomes. For the numbers of receivers 2 ≤ n ≤
300, and numbers of satellites 5 ≤ m ≤ 60, the ranges of
θι have been highlighted in Fig. 9. As shown, the standard
deviation of the float solution ˆ̃ιsr decreases by factors of 1 to
7. Depending on the numbers of receivers and satellites, the
standard deviation of ˆ̃ιs1r and ˆ̃ι1sr can, respectively, become up
to 8 and 19 times smaller after IAR. These standard deviation
ratios get smaller, the larger the number of epochs k. This
shows that the float solutions of the ionospheric components
can have very distinct responses to IAR.

To conclude this subsection, it is important to remark that
theDD functions ι̃1S1R refer to those functions at one individual
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Fig. 9 Square-root gain numbers of the ionospheric solutions
lT vec(ˆ̃ιSR) as a function of the deviation angle θι. Left: the geometry-free
scenario (ψι = 0), right: the geometry-fixed scenario (ψι = 90◦). The
ranges of the deviation angles corresponding to the UD component ι̃sr

(bounded by the blue lines), between-receiver (BR) SD component ι̃s1r
(dark gray area) and between-satellite (BS) SD component ι̃1sr (light
gray area) are highlighted

epoch k (cf. Lemma 1). These functions should therefore not
to be confusedwith their between-epoch differenced counter-
parts.As shown, for instance in (Khodabandeh andTeunissen
2016), any sole function of the ‘between-epoch’ differenced
components are uncorrelated with the DD float ambiguities
and therefore does not benefit from IAR. The same conclu-
sion holds for the other DD functions.

5.4 Clock parameters d t̃r and d t̃ s

According to Fig. 5, the satellite clock parameters dt̃ S benefit
from IAR through their SD components dt̃1S . Thus, the role
of subspaceA, in (33), is now taken by the between-satellite
SD functions. Similar to the ionospheric parameters, we first
present the maximum gain number γ (lDm ).

Lemma 3 (Maximum gain number of dt̃ S)Given the obser-

vation Eq. (10), let d ˆ̃t S be the float solutions of the satellite
clock parameters at epoch k that are obtained by the data of

k epochs (i = 1, . . . , k). Among the solutions lT d ˆ̃t S, the SD
functions

lTDm
d ˆ̃t SR, with lDm = PDml, (47)

achieve the maximum gain number

γ (lDm ) = αdt γ
GF + (1 − αdt )γ

GFi (48)

The geometry-free (GF) and geometry-fixed (GFi) gain num-
bers are, respectively, introduced as

γ GF = 1 + n−1
k

[ (
c2
ρ̂
/c2

ρ̌

)
−1

n+
(
c2
ρ̂2

/c2
ρ̌

)
−1

]

γ GFi = 1

(49)

The scalarαdt = [1+(
c2
ρ̂2

c2
ρ̂2

+(n−1)c2
ρ̌

) tan2(ψdt )]−1 is specified

by the deviation angle ψdt as follows

ψdt = �lDm
lDmρ

, lDmρ = PDmρ lDm (50)

Theorthogonal projectorPDmρ projects onto the range-space
of the design matrix of ρ̃1S

1r̄ (see (77) in “Appendix” for its
expression).

Proof See “Appendix”. 
�

Note the resemblance between (48) and its ionospheric coun-
terpart (40). The maximum gain number γ (lDm ) is also a
convex combination of γ GF and γ GFi . In contrast to the
ionospheric gain numbers (43) where both represent very
large values (i.e., around 1002), the values of the GF and GFi
gain numbers of the satellite clock parameters can be quite
different. For the geometry-fixed case, we have γ GFi = 1

as the dependency of the clock solutions lT d ˆ̃t S on the posi-
tion/ZTD components Δx̃ R is absent (cf. Fig. 5). For the
geometry-free case, however, we have
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γ GF ≤ 1 + n − 1

k
k=1= n (51)

The above upper-bound is sharp when the number of
receivers n is not too large. The larger the number of net-
work receivers, the larger the precision gain the satellite clock
solutions achieve after IAR. In the single-epoch case, the GF
gain number roughly becomes n. This can bewell understood
from the satellite clocks’ constituent components as follows
(Fig. 5 with Δx̃1 = 0)

Float : d ˆ̃t1s = − ˆ̃ρ1s
r̄ + ρ̂1s

1r̄ = − ˆ̃ρ1s
1

Fixed : d ˇ̃t1s = − ˆ̃ρ1s
r̄ + ρ̌1s

1r̄

(52)

As the variance of the fixed solution ρ̌1s
1r̄ is negligible com-

pared to that of ˆ̃ρ1s
r̄ (for not too largen), one can then conclude

that

D(d ˇ̃t1s) ≈ D
(
− ˆ̃ρ1s

r̄

)
= 1

nD
(
− ˆ̃ρ1s

1

)
= 1

nD
(
d ˆ̃t1s

)
(53)

The maximum gain number γ (lDm ) ranges between γ GFi

and γ GF through the scalar 0 ≤ αdt ≤ 1 which itself
is driven by the deviation angle ψdt . This angle measures

the dependency of solution lT d ˆ̃t S on the DD-range solution
ˆ̃ρ1S
1r̄ , thereby its dependency on the strength of the model’s

geometry. Figure 10 shows square root of the maximum
gain numbers of the satellite clock solutions, i.e., γ (lDm ),
as a function of the deviation angle ψdt . When ψdt = 0

(geometry-free case), the model’s geometry is weakest, hav-

ing the solutions lT d ˆ̃t S with largest precision gains due to
ambiguity fixing. The precision gains decrease as the devia-
tion angle ψdt gets closer to 90◦ (i.e., the model’s geometry
gets stronger). In the extreme case ψdt = 90◦ (geometry-
fixed case), the model’s geometry becomes strongest. In this
case, no precision improvement is gained after IAR, as the

clock solutions lT d ˆ̃t S would then be uncorrelated with the
DD float ambiguities.

Since the solutions lT d ˆ̃t S do not only represent the SD
components, a nonzero deviation angle, say θdt , from the SD-
space can further reduce the maximum gain number γ (lDm ).

Lemma 4 (Gain number of dt̃ S) Given the observation Eq.

(10), let d ˆ̃t S be the float solutions of the satellite clock param-
eters at epoch k that are obtained by the data of k epochs

(i = 1, . . . , k). The gain number of the float solution lT d ˆ̃t S
is linked to its maximum γ (lDm ) through

γ (l) = γ (lDm ) × 1

rx
(54)

in which the reduction factor rx is given by

rx = 1 + ν2dt tan
2(θdt )

1 + [ν2dt/γ (lDm )] tan2(θdt )
(55)

with the scalar ν2dt = n[1 + (n − 1)(c2
ρ̌
/c2

ρ̂2
) cos2(ψdt )]−1

and the deviation angle θdt = �l
lDm

.
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Fig. 10 Square root of the maximum gain numbers of the satellite

clock solutions lT (d ˆ̃t S) as a function of the deviation angle ψdt . This

angle measures the dependency of solution lT d ˆ̃t S on the strength of

the model’s geometry. Left: A network of n = 30 receivers, right: a
network of n = 100 receivers. The precision gains decrease as the
deviation angle ψdt gets closer to 900 (i.e., the model’s geometry gets
stronger)

123



652 A. Khodabandeh, P. J. G. Teunissen

Proof See “Appendix”. 
�

The reduction factor rx , in (55), shows how the maximum
gain number (54) reduces when the float solution lT d ˆ̃t S devi-
ates from the class of between-satellite SD functions. For the
geometry-free case, square-root gain numbers of the satellite

clock solutions lT d ˆ̃t S as a function of the deviation angle
θdt is shown (Fig. 11). The values decrease as the deviation
angle θdt increases. Similar to (46), the deviation angles cor-
responding to the UD component dt̃s can be evaluated (see
“Appendix”)

cos2(θdt ) = 1 − 1

m
(56)

Thus, when the number of satellites gets larger, the devia-
tion angle θdt gets closer to zero. In this case, the UD clock

solution d ˆ̃t s can significantly benefit from IAR. For the num-
bers of satellites 5 ≤ m ≤ 60, the ranges of θdt are depicted
in Fig. 11. Accordingly, the standard deviation of the float

solution d ˆ̃t s decreases by factors of 2 to 6 when the model’s
geometry is weakest (i.e., the geometry-free case).

Let us now consider the receiver clock solutions d ˆ̃tR .

Lemma 5 (Gain number of dt̃R) Given the observation Eq.

(10), let d ˆ̃tR be the float solutions of the receiver clock param-
eters at epoch k that are obtained by the data of k epochs

(i = 1, . . . , k). The gain number of the float solution lT d ˆ̃tR
is given by
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Fig. 11 Square-root gain numbers of the satellite clock solutions lT d ˆ̃t S
as a function of the deviation angle θdt , for the geometry-free scenario
(ψι = 0) and a network of n = 100 receivers. The ranges of the
deviation angles corresponding to the UD component dt̃s (gray area)
are also given

γ (l) = 1 + 1

k

[
c2
ρ̂

− c2
ρ̌

c2
ρ̂2
tan2(ψg) + c2

ρ̌

]
(57)

with the deviation angle

ψg = �e+T
m
g , g = PG e+T

m (58)

The orthogonal projector PG projects onto the range-space
of C−1

S GS
1 (see “Appendix” for its expression).

Proof See “Appendix”. 
�
The above lemma shows that the receiver clock gain number
γ does not depend on vector l and therefore on the choice
of function lT dt̃R . This is due to the fact that the estimable
receiver clocks dt̃r are of a between-receiver SD nature (cf.
Table 1). Similar to the satellite clocks, their maximum gain
number is experienced for the SD functions and thus not
dependent on the choice of l. That is why no reduction factor

is devised for the solutions lT d ˆ̃tR .
Next to the number of epochs k, the gain number (57) is

driven by the deviation angleψg . The angleψg measures the
dependency of the vector em on the matrix of receiver-satell-
ite direction vectors G1 = [g11, . . . , gm1 ]T . We now consider
two extreme cases. First consider the case where ψg = 0,
i.e., tan(ψg) = 0. The gain number (57) is reduced to (see
Table 2)

γ (l) = 1 + 1

k

[
c2
ρ̂

c2
ρ̌

− 1

]
k=1=

c2
ρ̂

c2
ρ̌

≈ 1012 (59)

The extreme case ψg = 0 occurs when em is completely
dependent on G1. In this case, the design matrix [em,G1]
is singular. Thus, when the receiver clocks dt̃R are poorly
estimable, they significantly benefit from IAR. Now consider
the second extreme casewhenψg = 90◦, i.e., tan(ψg) → ∞.
The gain number (57) is reduced to γ → 1. The condition
ψg = 90◦ occurs when the vector em is orthogonal to the
receiver-satellite direction matrix G1 (with metricC−1

S ), i.e.,

when the float solutions d ˆ̃tR are uncorrelated with the float
baseline/ZTD solutions Δx̃ R . This is in agreement with the
qualitative analysis done in Sect. 4 (cf. Fig. 5). Similar to
the satellite clocks, the receiver clocks’ precision gain due to
ambiguity fixing is therefore large when the model’s geom-
etry is weak.

5.5 Phase biases δ̃r, j and δ̃s
, j

For each receiver and satellite, we have f number of phase
biases δ̃r, j and δ̃s, j ( j = 1, . . . , f ), respectively. Their multi-

variate forms, respectively, read δ̃R ∈ R
f ×n and δ̃S ∈ R

f m .
We consider the gain number of their ‘between-frequency’
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combinations characterized by the f -vector q. If there is no
reason for confusion,we therefore refer to the following func-
tions

Satellite phase biases : (qT ⊗ lT )
ˆ̃
δS, l ∈ R

m

Receiver phase biases : qT ˆ̃
δR l, l ∈ R

n
(60)

as the float solutions of the phase biases. Next to the vector
l, their gain numbers are thus also dependent on the vector
q. The corresponding gain numbers are presented below.

Lemma 6 (Gain numbers of δ̃S and δ̃R) Given the observa-
tion Eq. (10), let δ̃S be the float solutions of the satellite phase
biases at epoch k that are obtained by the data of k epochs
(i = 1, . . . , k). The gain numbers of (60) are, respectively,
given as

γ (l) = γ (lDm ) × 1

rx
, l ∈ R

m

γ (l) = γ
δ̃R

, l ∈ R
n (61)

with the reduction factor

rx = 1 + n tan2(θdt )

1 + [n/γ (lDm )] tan2(θdt ) (62)

and

γ (lDm ) = cos2(ψdt ) γ GF
δ̃S

+ sin2(ψdt )γ
GFi
δ̃S

γ
δ̃R

= cos2(ψ1) γ GF
δ̃R

+ sin2(ψ1)γ
GFi
δ̃R

(63)

The geometry-free (GF) and geometry-fixed (GFi) gain num-
bers are introduced as (see Table 2)

γ GF
δ̃S

= 1 + n−1
k

[
qT Qq
qT Q2q

]
; γ GFi

δ̃S
= 1 + n−1

k

[
qT Q|ρq
qT Q2q

]

γ GF
δ̃R

= 1 + 1
k

[
qT Qq
qT Q2q

]
; γ GFi

δ̃R
= 1 + 1

k

[
qT Q|ρq
qT Q2q

]

(64)

The deviation angle ψdt and θdt follow from (50) and (55),
respectively. The deviation angle ψ1 reads

ψ1 = �PDm v1
PDmρ v1

, v1 = [1, 0, . . . , 0]T (65)

Proof See “Appendix”. 
�
Similar to the receiver clock gain number (57), the receiver
phase-bias gain number does not depend on the vector l. This
is due to the fact that the estimable receiver biases δ̃r, j are of
a between-receiver SD nature (cf. Table 1). Thus, no reduc-

tion factor is devised for the solutions qT ˆ̃
δR l. In case of

the satellite phase-bias gain number, however, the reduction
factor (62) is formulated tomeasure the reduction in themax-
imum value γ (lDm ). The more the angle θdt deviates from
the between-satellite SD functions, the larger the reduction
factor rx , thus the smaller the gain number γ becomes.

Both of the satellite and receiver phase-bias gain num-
bers can be expressed as a convex combinations of their GF
and GFi counterparts (cf. 63). For the satellite phase biases,
the same deviation angle ψdt as that of (50) is given. This
angle measures the dependency of the phase-bias solutions

on the DD-range solution ˆ̃ρ1S
1r̄ , thereby its dependency on

the strength of the model’s geometry. For the receiver phase
biases, the deviation angle ψ1 is given (cf. 65). This angle
depends on the constant vector v1 corresponding to the refer-
ence satellite s = 1. This dependency is driven by the choice
of S-basis (see the term z11r, j in δ̃r, j of Table 1). This shows
that a change in the model’s S-basis can change the interpre-
tation of the receiver phase biases and ditto their precision
gains.
Similar to its satellite clock counterpart (51), the geometry-
free gain number γ GF

δ̃S
, in (64), is bounded from above as

γ GF
δ̃S

≤ 1 + n − 1

k
k=1= n (66)

The above upper-bound is reached for the dual-frequency
case ( f = 2) and is sharp when the number of receivers n is
not too large. In the single-epoch case, the GF gain number
becomes n. This can be understood from the satellite phase
biases’ constituent components as follows (Fig. 5)

Float : ˆ̃
δ1s, j = −ˆ̃a1sr̄ , j + ˆ̃a1s1r̄ , j = −ˆ̃a1s1, j

Fixed : ˇ̃
δ1s, j = −ˆ̃a1sr̄ , j + ǎ1s1r̄ , j

(67)

The fixed solution ρ̌1s
1r̄ has a zero variance (i.e., non-random).

We therefore have

D
( ˇ̃
δ1s, j

)
= D

(
−ˆ̃a1sr̄ , j

)
= 1

nD
(
−ˆ̃a1s1, j

)
= 1

nD
( ˆ̃
δ1s, j

)
(68)

On the other hand, for the stochastic model Cφ = σ 2
φ I f and

Cp = σ 2
p I f , the geometry-fixed gain number γ GFi

δ̃S
, in (64),

is bounded from below as follows

1 ≈ 1+ (n − 1)

k
([

c2
ρ̂2

/c2
ρ̂

]
+ ε
)ε ≤ γ GFi

δ̃S
, with ε = σ 2

φ

σ 2
p

(69)

Since the phase-to-code variance ratio ε is very small, the
above lower-bound is close to 1. The lower-bound is reached
for the ‘between-frequency’ phase-bias combinations that are
uncorrelatedwith theDDfloat ionospheric solutions ι̂1S1R , i.e.,
those characterized by the choice q = Λ(e f − [cρ̂ι̂/c

2
ρ̂
] μ)

(Table 2). The reason is as follows. For argument sake,
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Fig. 12 Square root of the maximum gain numbers of the satellite
phase biases (L1 in black, wide-lane in green) as a function of the devi-
ation angle ψdt . This angle measures the dependency of the solutions
on the strength of the model’s geometry. Left: A network of n = 30
receivers, right: a network of n = 100 receivers. In case of L1 phase

biases, the precision gains decrease as the deviation angle ψdt gets
closer to 90◦ (i.e., the model’s geometry gets stronger). In case of wide-
lane phase biases, however, the precision gains are almost insensitive
to the strength of the model’s geometry and behave rather constant for
different values of ψdt

assume that ι̂1S1R are completely known. In the geometry-

fixed case, the precision of the float ambiguities ˆ̃a1s1r̄ , j , in
(67), would then already be at the phase-level, as both ρ1s

1r
and ι1s1r are absent in the DD model (2). Switching from
ˆ̃
δ1s, j to ˇ̃

δ1s, j would therefore only eliminate the randomness

of ˆ̃a1s1r̄ , j which is very small (see 67). Now assume that the

DD ionosphere parameters ι1s1r are present. As the stated
‘between-frequency’ phase-bias combinations are uncor-
related with ι̂1S1R , the corresponding combinations of the

float ambiguities ˆ̃a1s1r̄ , j are of phase-level precision in the
geometry-fixed case. Thus, small precision gain by these
combinations is experienced after ambiguity fixing.

The bounds (66) and (69) show that the float phase bias
solutions have different precision gains ranging from 1 (the
geometry-fixed case) to the number of network receivers n
(the geometry-free case). This may suggest, similar to the
clock parameters, that the precision gain of the phase biases
do also very much depend on the strength of the model’s
geometry. In Fig. 12we plot square root of themaximumgain
numbers of the satellite phase biases (L1 in black, wide-lane
in green) as a function of the deviation angle ψdt . Compare
the results with those in Fig. 10. While the L1 phase bias
gain numbers have a similar behavior as that of the clock
gain numbers, the wide-lane phase-bias gain numbers are
almost insensitive to the strength of the model’s geometry
and behave rather constant for different values of ψdt . This
follows from the term (see Table 2)

qT Q|ρq
qT Q2q

≈
{
0.01, q = [1, 0]T (L1)

0.88, q = [1,−1]T (wide-lane)
(70)

in the GFi expression (64). It shows, in case of L1 phase
biases, that γ GFi

δ̃S
weakly depends on the number of receivers

n and epochs k, i.e., γ GFi
δ̃S

≈ 1. For the wide-lane phase

biases, however, γ GFi
δ̃S

approximates its geometry-free coun-

terpart γ GF
δ̃S

. The conclusion reads therefore that there exist
combinations of the phase biases, like the wide-lane ones,
that can benefit from IAR irrespective of themodel’s strength.

6 Summary and concluding remarks

In this contribution, we introduced a novel four-block canon-
ical decomposition of the multivariate GNSS model to
analyze the IAR impact on the parameters (Fig. 3). The
four-block decomposition allows one to address how the DD
ambiguity-resolved phase data propagate into the estimable
parameters, thereby enabling one to measure the precision
gain of the parameters due to ambiguity fixing. Apart from
the DD block, the three satellite- and/or receiver-averaged
blocks are uncorrelated with DD float ambiguities, requiring
code for their estimation even after IAR. It is the presence
of these blocks that prohibits the precision gain of the other-
than-DD functions to reach the twoorders ofmagnitude level.
Thus, any function of these three blocks remains unaffected
by IAR. We employed this strategy and conducted a qualita-
tive analysis with the following conclusions (cf. Fig. 5):
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• Estimable receiver and satellite code biases do not
depend on the DD block and therefore on the DD float
ambiguities. These parameters do not benefit from IAR.
If one is interested to determine such parameters, no extra
ambiguity-fixing step is required.

• Slant ionospheric parameters benefit from IAR only
through their DD components. For the short-baseline
scenarios where the DD ionospheric delays are a priori
known to be absent, the other components of the iono-
spheric parameters (e.g., UD and SD components) do not
improve in precision by IAR.

• Clock parameters benefit from IAR only through the
position and ZTD parameters. In case the stated param-
eters are a priori known, the clock solutions become
uncorrelated with the DD float ambiguities, thus remain-
ing unchanged after ambiguity fixing.

• Estimable receiver and satellite phase biasesbenefit from
IAR through the DD float ambiguities, thus always being
correlated with them. Due to the presence of their code-
driven satellite- and receiver-averaged components, the
UD phase biases are less correlated with the DD float
ambiguities compared to their SD counterparts.

To further quantify the precision gain of the parameters,
we used the concept of gain numbers and took a geomet-
ric approach. The corresponding results are:

• Slant ionospheric parameters:While the DD ionospheric
solutions experience two orders of magnitude precision
improvement, the other-than-DD solutions have quite
distinct responses to IAR. Depending on their deviation
angle from theDD functions, their standard deviation can
improve by factors of 1 to 7 (for the UD components) and
8 to 19 (for the SD components), cf. Fig. 9. The larger
the numbers of receivers and satellites, the smaller their
deviation angle from the DD functions becomes, thereby
more precision gains are experienced by the UD and SD
ionospheric solutions (cf. 46).

• Clock parameters: Their precision gains do very much
depend on the strength of the model’s geometry. The
weaker themodel’s geometry, themore the precision gain
is experienced by the clock solutions. When the model’s
geometry is weakest (i.e., geometry-free scenario), the
variance of the satellite clock solutions gets smaller by
a factor of n (the number of receivers). In this case, the
precision gain of the satellite clock solutions increases as
the number of network receivers increases (cf. 51).

• Phase biases: The between-frequency combined phase
biases can have different responses to IAR. For instance,
the L1 phase biases very much depend on the strength
of the model’s geometry. When the model’s geometry is
strongest (i.e., the geometry-fixed scenario), they hardly
benefit from IAR as the corresponding gain number is

close to 1. Other combinations such as wide-lane, how-
ever, can considerably benefit from IAR irrespective of
the model’s strength (cf. Fig. 12). Similar to the satel-
lite clock solutions, the precision gain of the satellite
phase-bias solutions increases as the number of network
receivers increases (cf. 66).
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Appendix

In this appendix we denote the variance matrix of a random
matrix, say X , by D(X) just for the sake of presentation. It
should be interpreted as

D(X) := D(vec(X)) (71)

Variance matrices of the DD parameters Applying the con-
ditional least-squares adjustment to the DD model (19), the
float variance matrices of the DD parameters are shown to
read (Khodabandeh and Teunissen 2015)
Float variance matrices:

D
(ˆ̃ι1S1R

)
=
(
1

k
c2
ι̂|ρ + k − 1

k
c2
ι̌|ρ
)

×
{(

DT
n CRDn

)
⊗
(
DT
mCSDm

)}

+
(
1

k

[
c2
ι̂

− c2
ι̂|ρ
]

+ k − 1

k

[
c2
ι̌

− c2
ι̌|ρ
])

×
{(

DT
n CRDn

)
⊗
(
DT
mCSPDmρ Dm

)}
(72)

D
( ˆ̃ρ1S

1R

)
=
(
1

k
c2
ρ̂

+ k − 1

k
c2
ρ̌

)

×
{(

DT
n CRDn

)
⊗
(
DT
mCSPDmρ Dm

)}
(73)

D
( ˆ̃a1S1R

)
= 1

k

(
DT
n CRDn

)
⊗
{
Q|ρ ⊗

(
DT
mCSDm

)

+(Q − Q|ρ) ⊗
(
DT
mCSPDmρ Dm

)}
(74)

Their fixed counterparts follow by setting k → ∞. This
yields
Fixed variance matrices:

D
(ˇ̃ι1S1R

)
= c2

ι̌|ρ
{(

DT
n CRDn

)
⊗
(
DT
mCSDm

)}

+
[
c2
ι̌

− c2
ι̌|ρ
] {(

DT
n CRDn

)
⊗
(
DT
mCSPDmρ Dm

)}

(75)

D
( ˇ̃ρ1S

1R

)
= c2

ρ̌

{
(DT

n CRDn) ⊗
(
DT
mCSPDmρ Dm

)}
(76)
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The cofactor matrices Q and Q|ρ are given in Table 2. The
projector PDmρ is expressed as

PDmρ = Dmρ

(
Dm

T
ρCSDmρ

)−1
Dm

T
ρCS (77)

where

Dmρ = Dm

(
DT
mCSDm

)−1
DT
mG

S
1 (78)

Proof of Lemma 1 Weuse the definition of gain number (25)
as

γ (lDD) =
lTDD D

(ˆ̃ιSR
)
lDD

lTDD D
(ˇ̃ιSR
)
lDD

=
l̄ T D

(ˆ̃ι1S1R
)
l̄

l̄ T D
(ˇ̃ι1S1R

)
l̄
, l̄ = (D+

n ⊗ D+
m

)
lDD

(79)

in which use is made of the identity (38). Substitution of (72)
and (75) into the second expression of (79) gives

γ (lDD) =
(
1
k c

2
ι̂|ρ + k−1

k c2
ι̌|ρ
)

+
(
1
k

[
c2
ι̂

− c2
ι̂|ρ
]

+ k−1
k

[
c2
ι̌

− c2
ι̌|ρ
])

cos2(ψι)

c2
ι̌|ρ +

[
c2
ι̌

− c2
ι̌|ρ
]
cos2 (ψι)

(80)

from which (40) follows. The cosine-squared term of the
deviation angle ψι = �lDD

lDρ
follows as

cos2(ψι) =
lTDρ

C lDρ

lTDD C lDD
, lDρ = PDρ lDD (81)

where C = CR ⊗ CS . The projector PDρ reads (cf. 77)

PDρ = PDn ⊗ PDmρ (82)


�
Proof of Lemma 2 Since only the integer ambiguities are
assumed to be constant and the remaining parameters are
considered unlinked in time, the other-than-DDmodels (16)–
(18) have no redundancy. Thus, the number of observations
is as many as the number of unknowns. The other-than-DD
solutions follow then by inverting the 2 f ×2 f design matrix

[
e f , −μ, Λ, 0

e f , +μ, 0, E

]
(83)

for each model. Applying the error propagation law to their
corresponding mutually uncorrelated ionospheric solutions

gives

D
(
em ˆ̃ιs̄r̄ eTn

)
+ D

(
em ˆ̃ιs̄1R D+

n

)
+ D

(
D+T
m

ˆ̃ι1Sr̄ eTn
)

= c2
ι̂2
(CR ⊗ CS)P⊥

DD (84)

where P⊥
DD = I − PDD . This, together with the canonical

decomposition

ι̃SR =
[
em, D+T

m

] [ ι̃s̄r̄ , ι̃s̄1R

ι̃1Sr̄ , ι̃1S1R

][
eTn
D+
n

]
, (85)

shows that

D
(ˇ̃ιSR
)

= c2
ι̂2
(CR ⊗ CS)P⊥

DD + D
(
D+T
m

ˇ̃ι1S1RD+
n

)
(86)

With the role ofA taken by the DD subspace, substitution of
(86) into the definition of reduction factor (34) gives

rx = 1 + ν2

1 + ν2

γ (lDD)

; ν2 = c2
ι̂2

c2
ι̌|ρ +

[
c2
ι̌

− c2
ι̌|ρ
]
cos2(ψι)

tan2(θι)

(87)

which is equal to (45). The deviation angle θι = �l
lDD

follows
from the cosine-squared term

cos2(θι) = lT C PDDl

lT C l
, C = CR ⊗ CS (88)

For the special case C = Imn (i.e., when CR = In and
CS = Im), the DD projector (38) is reduced to

PDD =
[
In − 1

n
ene

T
n

]
⊗
[
Im − 1

m
eme

T
m

]
, (89)

proving the equality (46). 
�
Proof of Lemma 3 WithΔx̃1 = 0, an application of the CD-
transformation gives

−dt̃1S = ρ̃1S
r̄ + ρ̃1S

1R D+
n u1 (90)

Thus,

D(d ˆ̃t1S) = D
( ˆ̃ρ1S

r̄

)
+ D

( ˆ̃ρ1S
1R D+

n u1
)

D(d ˇ̃t1S) = D
( ˆ̃ρ1S

r̄

)
+ D

( ˇ̃ρ1S
1R D+

n u1
) (91)

Similar to (84), applying the error propagation law to the
non-dispersive solution of (18) results in

D
( ˆ̃ρ1S

r̄

)
=

c2
ρ̂2

n

(
DT
mCSDm

)
(92)
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in which the receiver-specific cofactor matrixCR is assumed
to take the special formCR = In . The float and fixed variance
matrices of the SD satellite clocks are obtained by substitut-
ing (92), (73) and (76) into (91). This yields

D(d ˆ̃t1S) = c2
ρ̂2
n

(
DT
mCSDm

)

+
[
1
k c

2
ρ̂

+ k−1
k c2

ρ̌

] [ n−1
n

] (
DT
mCSPDmρ Dm

)

D(d ˇ̃t1S) = c2
ρ̂2
n

(
DT
mCSDm

)+ c2
ρ̌

[ n−1
n

] (
DT
mCSPDmρ Dm

)

(93)

The gain number (48) follows then from

γ (lDm ) = lTDm
D(d ˆ̃t S) lDm

lTDm
D(d ˇ̃t S) lDm

= l̄ T D(d ˆ̃t1S) l̄
l̄ T D(d ˇ̃t1S) l̄

, l̄ = D+
m lDm

(94)

The cosine-squared term of ψdt = �lDm
lDmρ

is given by (cf. 77)

cos2(ψdt ) =
lTDmρ

CS lDmρ

lTDm
CS lDm

, lDmρ = PDmρ lDm (95)


�

Proof of Lemma 4 Similar to (92), applying the error propa-
gation law to the non-dispersive solutions of (16)-(17) results
in

D
(
em ρ̃ s̄

r̄

)
+ D

(
em ρ̃ s̄

1R D+
n u1

)
= c2

ρ̂2
CSP⊥

Dm
(96)

withP⊥
Dm

= I−PDm . This, togetherwith (93), gives the float
and fixed variance matrices of the satellite clocks through

D(d ˆ̃t S) = D
(
em ˆ̃ρ s̄

r̄

)
+ D

(
em ˆ̃ρ s̄

1R D+
n u1

)
+ D

(
D+T
m d ˆ̃t1S

)

D(d ˇ̃t S) = D(em ˆ̃ρ s̄
r̄ ) + D

(
em ˆ̃ρ s̄

1R D+
n u1

)
+ D

(
D+T
m d ˇ̃t1S

)

(97)

With the role ofA taken by the SD subspace Dm , substitution

of D(d ˇ̃t S) into the definition of reduction factor (34) gives

rx = 1 + ν2

1 + ν2

γ (lDm )

; ν2 =
c2
ρ̂2

1
n c

2
ρ̂2

+ [ n−1
n

]
c2
ρ̌
cos2(ψdt )

tan2(θdt )

(98)

which is equal to (55). The deviation angle θdt = �l
lDm

fol-
lows from the cosine-squared term

cos2(θdt ) = lT CS PDml

lT CS l
(99)

For the special case CS = Im , the SD projector (37) is
reduced to

PDm = Im − 1

m
eme

T
m, (100)

proving the equality (56). 
�
Proof of Lemma 5 Given the decomposition (Δx̃1 = 0)

dt̃1R = ρ̃ s̄
1R − Gs̄

1Δx̃1R, (101)

the proof goes along the same lines as that of Lemma 3. The

deviation angle ψg = �e+T
m
g follows from the cosine-squared

term

cos2(ψg) = e+
m CS PG e+T

m

e+
m CS e

+T
m

, PG = C−1
S GS

1

(
GST

1 C−1
S GS

1

)−1
GST

1

(102)


�
Proof of Lemma 6 The proof goes along the same lines as
those of Lemmas (1) –(5). 
�
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