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Weyl points in multiterminal hybrid superconductor-semiconductor nanowire devices

E. V. Repin and Y. V. Nazarov
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The technology of superconductor-semiconductor nanowire devices has matured in recent years. This makes
it feasible to make more complex and sophisticated devices. We investigate multiterminal superconductor-
semiconductor wires to access the feasibility of another topological phenomenon: Weyl singularities in their
spectrum. We have found an abundance of Weyl singularities for devices with an intermediate size of the
electrodes. We describe their properties and the ways the singularities emerge and disappear upon variation
of the setup parameters.
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The topological properties of solids have been a subject of
intense research for many years [1,2]. Prominent examples of
topological materials include topological superconductors [3]
that may host Majorana modes [4] and Weyl semimetals [5]
with Weyl points [6] in the electron spectrum. Despite big in-
terest, the fabrication, purification, and experimental analysis
of topological materials are difficult and challenging [7]. This
has motivated a large effort to realize topologically nontrivial
quantum states with topologically trivial materials [4,7].

The most well known and successful effort of this kind
is the realization of zero-energy Majorana states, which can
be useful in topological quantum computing [8] and in semi-
conductor nanowires covered by superconducting electrodes,
so-called hybrid superconductor-semiconductor nanowire de-
vices. The first experimental observation [9] came only
two years after the first theoretical proposal [10], yet con-
siderable enhancement of the technology was needed for
further progress. With the achievement of ballistic supercon-
ductivity [11] and experimental verification of topological
signatures in the Josephson effect [12], the very active subfield
and technologies in use are mature enough for the next level
of experimental sophistication [13,14]. One of the interesting
directions is the fabrication of multiterminal nanowire-based
devices [13]. Recently proposed Andreev molecules [15]
that exhibit nontrivial features in the spectrum of Andreev
states [16,17] require three superconducting terminals, and
fabrication efforts are underway. In the same manner, one can
realize devices with more terminals.

It has been suggested that topologically protected spectral
singularities—Weyl points—may be realized in multitermi-
nal superconducting nanostructures [18], potentially in any
nanostructure. The tuning of three parameters is required to
achieve the singularity, so the minimum number of terminals
is four, corresponding to three independent superconducting
phases. The singularity is pinned to zero energy (counted
from the Fermi level) in the absence of spin-orbit interaction
and is at the finite-energy distance if spin-orbit interaction
is significant [19]. The topological charge is manifested by
transconductance quantization [18,20] and can be detected by

a spectroscopic measurement [21], with some complications
brought by the continuous spectrum above the supercon-
ducting gap [22]. Four-terminal devices have been fabricated
in graphene [23] and two-dimensional (2D) semiconducting
structures [24]. However, the experimental confirmation of
Weyl points is not yet available. The presence or absence of
Weyl points in any concrete nanostructure depends on details
of scattering that may be difficult to identify and control, and
only 6% of random scattering matrices provide those. To facil-
itate the experimental observation and possible applications, it
would be good to propose a system where the Weyl points are
relatively abundant.

In this Letter, we investigate the presence of Weyl points
in the spectrum of a single-nanowire four-terminal hybrid
semiconducting device with a straightforward design and, in-
deed, find many of those. Our setup is distinct from a widely
investigated one where several nanowires with zero-energy
Majorana modes at their ends are brought close to each other
to provide the tunneling between the ends [25–30]. In fact, we
look for Weyl points at finite energy, where they are present
irrespective of the Majorana modes, and find them in both
topologically trivial and nontrivial wires [31].

A typical spectrum with a Weyl point is presented in Fig. 1.
We set φ1,2 in such a way that the line passes the Weyl
point. The other feature of the spectrum is the zero-energy
crossing (ZEC) [19,32] that occurs at a 2D surface in the
three-dimensional (3D) space of phases. If the wire is in the
nontopological regime, there is an even number of ZECs sepa-
rating the regions with different parities of the ground state. If,
as in Fig. 1, the wire is in the topological regime, the number
of crossings may be odd [10], manifesting so-called 4π peri-
odicity. The parity determination requires consideration of the
zero-energy state at the far ends of the wire [33].

We concentrate on a family of setups where a (formally
infinite) semiconducting nanowire is covered by four separate
superconducting films (see Fig. 1). The films are the super-
conducting leads kept at the corresponding superconducting
phases φ0 = 0, φ1,2,3. The widths of two intermediate leads
s1,2 and the gaps between the leads g1,2,3 sum up to L. A setup

2469-9950/2022/105(4)/L041405(4) L041405-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.L041405&domain=pdf&date_stamp=2022-01-12
https://doi.org/10.1103/PhysRevB.105.L041405


E. V. REPIN AND Y. V. NAZAROV PHYSICAL REVIEW B 105, L041405 (2022)

FIG. 1. Top: The family of hybrid superconductor-
semiconductor setups under consideration. A long semiconducting
nanowire is covered by four superconducting leads kept at three
independent superconducting phases φ1,2,3. A setup is characterized
by overall length L and the lengths of electrodes and gaps, s1,2 and
g1,2,3. Bottom: A typical spectrum of Andreev bound states along
the line passing a Weyl point where the bands cross. Other features
worth attention are the zero-energy crossing that occurs at a 2D
surface in the 3D space of the phases and merging of the second
energy band with the gap edge (top edge of the plot).

of the family is thus characterized by L and five numbers, �s ≡
[g1/L, s1/L, g2/L, s2/L, g3/L], summing to 1. We investigate
the possibility to realize Weyl points in the three-dimensional
phase space of three superconducting phases with varying L.

The wave function of an Andreev bound state is localized
at a typical scale ξ that will be precisely defined below. At
L � ξ we expect no Weyl points since in this case the local-
ized state hardly feels the middle leads and its energy depends
on only a single parameter, E (φ3). Neither do we expect the
Weyl points in the opposite limit L � ξ : in this case, the
states are localized in the corresponding gaps gi with the
energies depending on the local phase differences φi − φi−1,
again depending on a single parameter each. Therefore, we
expect Weyl points to appear for each setup at L ∼ ξ . Indeed,
for most choices of �s we find one or more intervals of L
where the Weyl points are present in both the topological and
nontopological regimes.

We employ the Lutchin-Sau-Das-Sarma Hamiltonian [10]:

H =
(

p2

2
− pσz − μ

)
τz + Re�(x)τx + Im�(x)τy + Bσx,

(1)
which we made dimensionless by measuring lengths and en-
ergies in units of spin-orbit length and spin-orbit energy, with
τi and σi being Pauli matrices in Nambu and spin space, re-
spectively. Here, �(x) is the superconducting order parameter
induced in the wire. We assume a piecewise-constant spa-
tial dependence where �(x) = |�|eiφi under the leads, with
φi being the phase of the corresponding lead and �(x) = 0
within the gaps (see Fig. 1). The wire is in the topological
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FIG. 2. Number and energy dependence of Weyl points for
several setups. Nontopological regime: (a) μ, B, |�| = (1, 1, 2),
ξ ≈ 1.07, �s = (0, 0.7, 0, 0.3, 0.0) and (b) μ, B, |�| = (1, 1, 0.9),
ξ ≈ 2.30, �s = (0.04, 0.61, 0.09, 0.26, 0). Topological regime:
(c) μ, B, |�| = (0.464, 1.144, 0.693), ξ ≈ 3.26. For (b) and (c), the
gap edge is at the top edge of the plot. For (a), the gap edge is at
1.24.

regime [10] provided that |B| >
√

|�|2 + μ2; otherwise, it is
in the nontopological one.

We stress that this is a minimal model. More extensive
modeling would bring the regular variation of μ to account
for the doping by electrodes and irregular variation of μ to
account for disorder and possibly would incorporate more
one-dimensional modes. All this may modify the extent and
details of localized wave functions but not our main qualita-
tive conclusion: Weyl points appear when the extent of the
wave functions ξ is of the order of L.

The Hamiltonian (1) possesses the usual Bogoliubov–
de Gennes symmetry H∗ = −σyτyHτyσy that guarantees the
symmetry of the spectrum and Weyl points with respect to
E → −E . We concentrate on positive energies. Although the
Hamiltonian (1) is not invariant with respect to time reversal,
there is a look-alike extra symmetry,

H∗( �φ) = σxH (− �φ)σx, (2)

relating the Hamiltonians at opposite points �φ and − �φ in
phase space. Therefore, the Weyl points come in pairs of
the same charge at opposite points, like for a time-reversible
scattering matrix [18]. It was suggested in [18] that Weyl
points always emerge in groups of four to conform to the
conservation of topological charge. Here, we find notable
exceptions from this rule: Weyl points emerging from the
continuous spectrum at the gap edge.

The relevant examples of our numerical results are pre-
sented in Figs. 2–4. In Fig. 2 we plot the number and energies
of the Weyl points versus the overall setup length L. For
each parameter set μ, |�|, and B we compute the localization
length ξ defined as the slowest decaying exponent under the
outer leads at zero energy. So-defined ξ is hard to express
analytically, although it is the best estimation of the wave
function extent. We measure L in units of ξ . For all parameters
and setups investigated, we find Weyl points in one or several
intervals around L 
 ξ . We observe strong dependence of the
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FIG. 3. Merging of a Weyl point with the gap edge. The choice
of the parameters and setup is the same as in Fig. 2(c). We plot the
spectrum versus φ3 at a line hitting the Weyl point for three values
of L. Left: L/ξ = 0.781, φ1 = 2.639, φ2 = 2.629, the Weyl point
is E = 0.256, and φ3 = 0.002. Middle: L/ξ = 0.824, φ1 = 2.260,
φ2 = 2.256, and the Weyl point is precisely at the gap edge Eg =
0.31. Right: L/ξ = 0.829; there is no Weyl point, and no bound state
is found in an interval of φ3.

number and energy dependences on the setup details. This is
explained by the fact that the Weyl points emerge from com-
plex interference in the setup, with the interference pattern
being affected by all details.

In the nontopological regime [Figs. 2(a) and 2(c)] the
points come in groups of four. Their energy dependence is
seen to be a closed curve, a trajectory in L-E space, that
does not touch the gap edge. The curves may intersect or
self-intersect, with the intersection corresponding to points at
the same energy but separated in phase space. The number of
Weyl points at a given L is 2 times the number of intersections
of the line L = const with all the curves, as we see in the plots.
Let us discuss the emergence of Weyl points upon changing
L, taking Fig. 2(a) as an example. There are no points at
L < 0.71. At L = 0.71, a pair of close points of opposite
topological charges emerges at some phase settings �φ, with

0 1 2 3

L

FIG. 4. The densities
∑

i |ψ (x)|2i of two degenerate wave func-
tions (solid and dashed curves) at a Weyl point. The wave functions
in the degenerate subspace are chosen to be eigenvectors of the
coordinate operator x. The calculations are made for a finite wire
of total length l = 30, the overlaps with leads 0–3 are shown below
the plot. The parameters are B, μ, |�| = (1, 1, 0.9), corresponding
to ξ = 4.0, �s = (1/9, 1/3, 1/9, 1/3, 1/9). For L = 4.5, the point is
found at φ1, φ2, φ3 = (3.059,−0.448, 1.631).

close energies. At the same L, another pair emerges near − �φ,
so four points appear in total. Upon changing L up to 0.9, the
points get separated in phase settings and energy. As explained
in [18,19], any 2D plane that separates the points in the phase
space acquires a nontrivial Chern number that is manifested as
a quantized transconductance at even parity of the setup. Upon
a further change in L, the points with opposite charges get
close together and eventually annihilate at L = 1.04. All this
is seen as a closed trajectory in L-E space. A more complex
picture involving multiple trajectories of the same kind (let us
call those type A trajectories) is seen in Fig. 2(b).

In the topological regime, zero-energy states are formed at
the far ends of the wire (this is not detected in our approach,
which concentrates on the states localized at all electrodes).
An example is provided in Fig. 2(b). There are no points
for L < 0.745. At L = 0.745, a Weyl point emerges from the
continuous spectrum at some phase setting φ. The symmetry
implies that another point of the same topological charge
emerges at −φ, so two points appear in total. Upon changing L
the point changes its phase coordinate. It gets lower in energy
first but eventually returns back to the gap edge and disappears
at L = 0.781. Such trajectories begin and end at the gap edge:
let us call those type B trajectories.

We stress that such merging is not compatible with the
presence of a continuous band of localized states throughout
the Brillouin zone. This is seen from the following topological
argument. Let us consider a 2D plane far from the point where
the merging occurs. If there is a continuous band throughout
the plane, the Chern number is well defined. However, it must
change upon merging. Since the plane is far from the merging
point, this is impossible and proves the absence of such a
band, which also implies the absence of quantized transcon-
ductance. Indeed, a detailed view of the spectrum near where
the Weyl point merges (Fig. 3) shows that the localized states
merge with a continuous spectrum, and there are regions in
the Brillouin zone where no localized state is present.

In total, we have investigated 12 setups, an equal number in
the topological and nontopological regimes. Ten of them have
Weyl points in the interval of L 
 ξ . In several cases, we were
not able to trace the whole curve and identify its type. Our
observation is that we have seen the type B trajectory in only
the topological regime. However, no fundamental topological
restriction can forbid type B trajectories in the nontopological
regime or type A trajectories in the topological regime. One
can see that if one considers a long but finite wire where
the overall spectrum is discrete. Such regularization affects
only the states at very small energies. For discrete spectrum,
all trajectories are of type A. Presently, we assume that the
observation is valid for the specific family of setups under
consideration and is explained by the fact that the boundary
conditions near the gap edge in the topological regime are
more favorable for merging the localized states with the con-
tinuum. More detailed research is underway.

We illustrate the wave functions of the localized states at
a Weyl point in Fig. 4. The specifics of the situation are that
there are two degenerate wave functions at the point, so even-
tually we could plot any linear combination of the two. The
choice made is as follows: we consider matrix elements of the
coordinate operator x in two-dimensional degenerate subspace
and determine and plot the corresponding eigenfunctions.
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The resulting eigenfunctions are therefore maximally sep-
arated in coordinate. We observe the localization of the
wave functions at several ξ at the setup and a complex
multiple-peak structure that witnesses complex wave interfer-
ence required for Weyl points. The setup chosen has mirror
symmetry that is, however, violated by nonsymmetric phase
settings. Still, the wave functions look approximately mirror
symmetric.

To conclude, we have investigated the occurrence of Weyl
points in the spectrum of Andreev bound states in a family
of realistic device setups where a semiconducting nanowire
is covered by four superconducting electrodes. It is feasible
to realize such setups experimentally and observe the corre-
sponding topological singularities. For most setups, we find
Weyl points for L 
 ξ , that is for a setup length of the order
of the localization length of the bound states. In experiments,

in situ control of the device length is not feasible. However, it
is custom for such devices to utilize a set of gate electrodes to
control μ(x). We believe that this permits tuning the device to
the region where Weyl points are present.

We observed two types of Weyl point trajectories. The type
A trajectories do not touch the gap edge, and the Weyl points
appear in groups of four. For type B trajectories, the Weyl
points emerge from the gap edge in pairs. We found the type
B trajectory in only the topological regime; this should be
specific for the family of setups under consideration.

We acknowledge useful discussions with M. Houzet and
J. Meyer. This research was supported by the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (Grant Agreement No.
694272).
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