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Deep Neural Network-Based Digital Pre-Distortion
for High Baudrate Optical Coherent Transmission
Vinod Bajaj , Fred Buchali , Mathieu Chagnon , Member, IEEE, Sander Wahls , Senior Member, IEEE,

and Vahid Aref

(Top-Scored Paper)

Abstract—High-symbol-rate coherent optical transceivers suffer
more from the critical responses of transceiver components at high
frequency, especially when applying a higher order modulation
format. We recently proposed a neural network (NN)-based digital
pre-distortion (DPD) technique trained to mitigate the transceiver
response of a 128 GBaud optical coherent transmission system. In
this paper, we further detail this work and assess the NN-based DPD
by training it using either a direct learning architecture (DLA) or
an indirect learning architecture (ILA), and compare performance
against a Volterra series-based ILA DPD and a linear DPD. Fur-
thermore, we deliberately increase the transmitter nonlinearity and
compare the performance of the three DPDs schemes. The proposed
NN-based DPD trained using DLA performs the best among the
three contenders. In comparison to a linear DPD, it provides more
than 1 dB signal-to-noise ratio (SNR) gains at the output of a
conventional coherent receiver DSP for uniform 64-quadrature
amplitude modulation (QAM) and PCS-256-QAM signals. Finally,
the NN-based DPD enables achieving a record 1.61 Tb/s net rate
transmission on a single channel after 80 km of standard single
mode fiber (SSMF).

Index Terms—Artificial neural networks, digital pre-distortion,
digital signal processing, machine learning and optical fiber
communication.

I. INTRODUCTION

THE exponential increase in the internet traffic due to the
emergence of bandwidth-hungry services such as cloud-

based applications and video on demand is pushing the existing
optical transport network to its limit. To increase the aggregate
bit rate carried by a singlefiber strand, one must find ways to

Manuscript received February 26, 2021; revised July 1, 2021, August 31, 2021,
and October 9, 2021; accepted October 13, 2021. Date of publication October 26,
2021; date of current version February 1, 2022. This work was supported by the
European Union’s Horizon 2020 Research and Innovation Programme under the
Marie Skłodowska-Curie Grant 766115. (Corresponding author: Vinod Bajaj.)

Mathieu Chagnon is with Nokia Bell Labs, Stuttgart 70435, Germany (e-mail:
mathieu.chagnon@nokia-bell-labs.com).

Vinod Bajaj is with Nokia Bell Labs, 70435 Stuttgart, Germany, and also with
the Delft Center for Systems and Control, Delft University of Technology, 2628
CD Delft, The Netherlands (e-mail: v.bajaj-1@tudelft.nl).

Sander Wahls is with the Delft Center for Systems and Control,
Delft University of Technology, 2628 CD Delft, The Netherlands (e-mail:
s.wahls@tudelft.nl).

Fred Buchali and Vahid Aref are with the Nokia Solutions and Networks
GmbH und Co KG, 70435 Stuttgart, Germany (e-mail: fred.buchali@nokia.com;
vahid.aref@nokia.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JLT.2021.3122161.

Digital Object Identifier 10.1109/JLT.2021.3122161

best utilize the available optical spectrum while minimizing the
number of components required to do so. The three main avenues
to attain this objective are to increase the symbol rate and the
average number of bits conveyed per symbol on a carrier, and
decrease the spectral guard band between multiplexed carriers.
Thus, it is desirable to operate such systems at high symbol rates
on a tight spectral grid using high-order modulation formats to
maximize the information rate [1]–[4]. Therefore, the signal-
to-noise ratio (SNR) should be as high as possible, a necessary
condition for operating on a high order format.

The generation of signals with high integrity is challeng-
ing due to the impairments stemming from different sources
along the information transmission system. At the transmitter
side, these impairments include the limited bandwidth and the
nonlinear characteristics of components. A common practice to
mitigate these distortions is by digitally pre-compensating them
in the digital signal processing (DSP) stack, a technique usually
termed “digital pre-distortion” (DPD).

A linear DPD is generally employed to compensate for linear
inter-symbol interference stemming from the limited bandwidth
and/or the imperfect spectral response of the transmitter com-
ponents [5], [6]. It is a common practice to limit the amplitude
of the signals applied to transmitter components exhibiting a
nonlinear response (e.g. driver amplifier (DA), electro-optic
modulator, etc.) when using a linear DPD, which in turn limits
the SNR because of the small signal power. A larger signal
swing can improve the SNR, but may require to be accompanied
by a nonlinear DPD to pre-compensate the increased nonlinear
distortions. To increase the information rate, transmitters will
require DPDs that can compensate for both the linear and
nonlinear responses. The most common nonlinear DPDs are
based on Volterra series which have been investigated for both
radio frequency (RF) amplifiers [7]–[11] and coherent optical
transmitters [12]–[17].

Another type of DPD is based on neural networks (NNs)
whose application dates back to 1980s [18], [19]. Recently,
NN-based DPDs have received more attention [20]–[27]. A
simple feed-forward NN (FFNN) was used in [22] to mitigate
the response of RF amplifier, without considering any memory
effects. The memory effects were included in the DPDs based
on time-delay NNs (TDNNs) [20], [25], [28] and on convolu-
tional NNs (CNNs) [26]. Recently, some of the above schemes
have been compared in [21] and shown experimentally that
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Fig. 1. A schematic of the 128 GBaud experimental setup configured either in back-to-back or in an 80 km fiber transmission arrangement.

adding residual neural network (ResNet) structure improves the
nonlinearity mitigation of RF amplifiers. However, NN-based
DPDs for optical coherent transmitters are so far not well ex-
plored. Memoryless FFNNs were proposed to pre-compensate
for Mach-Zehnder modulator (MZM) responses [29] and a
simulated low-resolution digital to analog converter (DAC) re-
sponse [24]. In [27], a DPD based on recurrent NNs (RNNs)
is applied to the simulated aggregate response of a optical co-
herent transmitter. In another paper [30], a NN-based DPD was
designed by considering the collective response of a coherent
transmitter as a Wiener-Hammerstein (WH) model.

Very recently, we proposed an NN-based DPD designed using
simple FFNNs and CNNs for a high-baud rate (12 GBaud)
coherent optical transmitter [31]. In this paper, we demonstrate
that the considered NN-based DPD leads to a record 1.61Tb/s
data rate over a 80km fiber link, detail the proposed NN-based
DPD and further investigate its performance by training it using
the two well-known learning architectures, namely the indirect
learning architecture (ILA) [7], [18] and the direct learning ar-
chitecture (DLA) [8], [9]. In addition, we also consider a Volterra
series-based ILA DPD and a linear DPD in our investigation. All
considered DPDs are disjoint-IQ implemented using real values
i.e. two separate DPDs each for I and Q channel. The DPDs
are applied to two modulation formats, namely 64-quadrature
amplitude modulation (QAM) and probabilistic constellation
shaped (PCS)-256-QAM, and trained and evaluated for varying
transmitter nonlinearity. Our results show that NN-based DPD
trained using DLA performs the best among the considered can-
didates and obtains gains of 1.6 dB and 1.2 dB in received SNR
with respect to the linear DPD for uniform 64-QAM and PCS-
256-QAM, respectively. In addition, we compare the complexity
of DPDs considered in the study. We reduce the complexity of
the proposed NN-based DPD by applying a pruning method.

The outline of the paper is as follows: in Section II the exper-
imental setup is described. The DPD techniques considered in
this work and their implementation are discussed in Section III.
The proposed NN-based DPD is detailed in Section IV, and per-
formance assessments are presented in Section V. A complexity
comparison is added to Section VI. The paper is concluded in
Section VII,

II. HIGH BAUD RATE COHERENT OPTICAL TRANSMITTER

A schematic of our experimental setup is shown in Fig. 1.
The transmitter (Tx) comprises three major components: digital

to analog converters, driver amplifiers and an optical modulator
(external IQ modulator). Each of the components have linear
and nonlinear characteristics. In addition, the signal reflections
originating by the radio frequency (RF) cables/connections add
to the linear effects and further spread the impulse response.
Overall, analog signals leaving each DAC flow through a chain
of linear and nonlinear responses.

We used uniform 64-QAM and probabilistic constellation
shaped 256-QAM (PCS-256-QAM) signals. The PCS 256-
QAM format was shaped using the Maxwell-Boltzmann dis-
tribution with an entropy of 7.5 bits/symbol which was previ-
ously determined as a good choice for 19dB SNR, the SNR
limit in the setup. In the transmitter, the data consisting of a
215 symbol sequence passes through the DPD block. The pre-
distorted sequence is then loaded into the DACs after clipping
and quantization. The DACs sample the signal at 128 GSa/s
and operate at 1 sample per symbol (sps). The DACs have an
effective number of bits (ENOB) of 4 at 64 GHz and 24 GHz
3-dB bandwidth. The two DACs produce the two electrical
tributaries feeding a single-polarization optical IQ modulator.
The outputs of the DACs are first amplified using DAs with
60 GHz 3-dB bandwidth. The DAs’ outputs are then fed to
the lithium-niobate (LiNbO3) IQ modulator which has around
41 GHz 3-dB bandwidth. The optical carrier is generated by
an external cavity laser (ECL) at 193.5 THz with a line-width
of <100 kHz. The optical carrier is fed into the IQ modulator,
where it gets modulated by the signals from the DAs’ outputs. A
polarization multiplexing emulator (PME) with a decorrelation
delay of 54 ns is used to generate a polarization multiplexed
signal. The polarization multiplexed signal is amplified using
an Erbium doped fiber amplifier (EDFA). A Finisar Waveshaper
is used to compensate the low pass response of the IQ modulator
by increasingly attenuating frequencies closer to the carrier in
order to flatten the optical spectrum at its output. The Wave-
Shaper is configured once when a linear DPD was employed
at the transmitter and kept fixed. The signal is then amplified
using another EDFA and either sent directly to the coherent
receiver or transmitted through 80 km of standard single mode
fiber (SSMF) before coherent reception. The coherent receiver
is preceded by an EDFA, an optical filter of 128 GHz 3-dB
bandwidth to remove the amplified spontaneous emission noise,
and a second EDFA. The resulting optical signal beats with a
local oscillator through a dual-polarization 90◦ hybrid. Four
balanced photo-diodes (BPDs) detects the signal. A Keysight
high bandwidth real time oscilloscope (RTO) is used to sample
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and record the four detected waveform at 256 GSa/s. The RTO
has a nominal resolution of 10 bits.

An offline DSP for symbol recovery after optical coherent
detection is applied. Note that, we intend to compensate the
transmitter impairments using a DPD. While it is difficult to
isolate the transmitter and the receiver impairments in an exper-
imental setup, methods like homodyne detection to mitigate cer-
tain receiver impairments can be used. Also, some of the receiver
impairments such as low pass response of photo-detectors can
be separately determined and compensated by employing static
filters. However, such scenarios are challenging for integrated
transceivers. To train the DPD parameters in the transmitter
DSP, we chose to always apply the same DSP stages at the
receiver. Applying coherent receiver DSP allows to convert
the inherently dynamic channel response (e.g.: rotation of the
state of polarization followed by a polarization beam splitter
at the receiver, beating of the incoming optical signal with a
free running, non-phase locked laser source) into a stationary
channel response as also applied in previous DPD research
works [12]–[14].

The receiver DSP first re-samples the signal at 2 samples
per symbol. Then chromatic dispersion is removed and tim-
ing errors are corrected. The polarizations of the signal are
de-multiplexed by using a 2×2 complex-valued multiple-input
multiple-output (MIMO) equalizer updated by a multi-modulus
algorithm (MMA). Intermediate frequency offset and phase
noise are then compensated. The residual signal distortions are
compensated by another MIMO equalizer, operated as 4×4 on
real values. Note that some of the impairments that originate
at the transmitter may get corrected by this adaptive 4×4 real-
valued MIMO equalizer used in the receiver DSP. Consequently,
the transmitter may not compensate for some of the impairments
that actually occurred at the transmitter because they are always
handled by the receiver DSP. As transmitter pre-distortion is
the main focus of this work, we try to compensate most of the
impairments at the transmitter. There could be different ways
to do this, such as training the DPDs by excluding the 4×4
real-valued MIMO equalizer from the training loop [32]. In
this work, the DPDs are trained in a step by step procedure
by changing the length of the receiver 4×4 real-valued MIMO
equalizer.

The transmission quality is measured in terms of SNR, mutual
information (MI) and generalized MI (GMI). For decoding,
we used a family of 130 optimized spatially coupled LDPC
codes [1], [33] with variable overheads ranging from 3% to
100%. For each channel, the code with the smallest overhead
capable of decoding the bits error-free is chosen.

III. REVIEW OF VARIOUS DPD TECHNIQUES

In our work, we evaluated the performance of a linear DPD
as well as nonlinear DPDs based on either Volterra series or
the proposed neural network architecture. In the following, we
first describe the two general training methods well-known in
literature namely direct learning architecture (DLA) and indirect
learning architecture (ILA). Then, we briefly review the Volterra

series-based DPD. The proposed NN-based DPD is described
in the next section.

A. Direct Vs. Indirect Learning Architecture

An example schematic of the DLA is shown in Fig. 2(a). In
DLA, the “communication channel” is modelled by a differ-
entiable auxiliary channel model S with the help of which the
DPD is determined in the following two steps. In the first step,
the auxiliary channel model is trained by minimizing the objec-
tive function J1 = Σn

1
2 (e1[n])

2 = Σn
1
2 (y[n]− ye[n])

2. Here,
y[n] is the soft symbols output of the receiver DSP and ye[n]
is the output of the auxiliary channel model. Both sequences
y[n] and ye[n] are corresponding to a sequence z[n] injected
into both the communication channel and the auxiliary channel
model. In the second step, once the auxiliary channel model
S cannot further minimize the objective J1, S is fixed to its
current state and only the DPD G is updated to minimize
J2 = Σn

1
2 (e2[n])

2 = Σn
1
2 (x[n]− ye[n])

2. The gradients of the
loss function are back-propagated through S in order to train G;
the parameterized digital pre-distortion function. The input to
the DPD is x[n] which consists of ideal QAM symbols. The
DPD obtained using the second step changes the statistics of
the input signal z[n]; consequently, changing the response of
the communication channel. So, the auxiliary channel model
needs to be retrained. Thus, using the DLA architecture, the
parametrized functions S and G are iteratively trained until no
more gains are obtained.

In contrasts to DLA, the ILA architecture does not require an
auxiliary channel model, as is shown in Fig. 2(b). With ILA, the
DPD G is trained at the output of the communication channel as
a post-equalizer, while a copy of the pre-distorter G (obtained
from the previous iteration) is used at the input of the transmitter.
The new DPD G is trained by minimizing the objective function
J1[n] = (e1[n])

2 = Σn
1
2 (z[n]− ze[n])

2. The input to the DPD
(training block) is the soft symbols output of the Rx-DSP y[n].
The “communication channel” response changes with signal
statistics, hence, several iterations are needed to achieve good
convergence. As ILA does not require an auxiliary model, its
computational complexity in the training phase is almost halved
compared to DLA. However, it suffers from a bias caused by
nonlinear operations of DPD on the transmitter output which
is often noisy, as explained in [34]. Further, the nonlinear DPD
trained using ILA may not be the optimum as nonlinear blocks
may not be commutative.

B. Linear DPD

The output of a M1 memory linear DPD ze[n] for inputs y[n]
is given by

ze[n] =

M1∑
τ1=−M1

g[τ1]y[n− τ1], (1)

where g[τ1] are filter coefficients. The above relation can be
written as

�ze = Y �g, (2)
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Fig. 2. An example representation of training a DPD G using (a) direct learning architecture (DLA) and (b) indirect learning architecture (ILA). S is the auxiliary
channel model.

Fig. 3. Architecture of the proposed NN-based DPD.

where �(.) denotes vector quantities and �g is the vector of the
linear filter coefficients g[τ1]. The matrix Y is made of columns
of shifted vectors �yk = [y[k], y[k + 1], . . ., y[k + n]]T . Here,
(.)T denotes the transpose operation. The matrix Y is repre-
sented mathematically asY = [�y−M1

. . .�y+M1
]. The coefficients

vector�g can be obtained using the Moore-Penrose inverse by the
relation

�g =
(
Y HY

)−1
Y H �ze (3)

where (.)H represents complex-conjugate transpose and �ze =
[ze[0], ze[1]. . ., ze[n]]

T . Two separate disjoint linear DPD mod-
els were determined for I and Q tributaries.

C. Volterra Series-Based DPD

Volterra series are well-known to model nonlinear systems
with memory [35]. The output ze[n] of a nonlinear system up
to a nonlinearity order of three with memory can be written in
terms of its input y[n] in the form of

ze[n] = g0 +

M1∑
τ1=−M1

g1[τ1]y[n− τ1] + (4)

M2∑
τ2=−M2

D2∑
d2=0

g2[τ2, d2]y[n− τ2]y[n− τ2 − d2] + (5)

M3∑
τ3=−M3

D2∑
d2=0

d2+D3∑
d3=d2

g3[τ3, d2, d3]. (6)

y[n− τ3]y[n− τ3 − d2]y[n− τ3 − d3] (7)

where Mp is the memory length and gp are Volterra kernel
coefficients in the pth order. We considered a Volterra series-
based DPD trained using ILA. The Volterra kernel (pre-distorter)
coefficients gp that map y to ze can be represented in the

Fig. 4. A 2-bit Soft-DAC activation unit for different softening factor (s).

matrix form like (2). Here, �g is the vector of the Volterra kernel
coefficients gp and the matrix Y is made of columns of shifted
vectors �yk = [y[k], y[k + 1], . . ., y[k + n]]T and columns gen-
erated by element-wise multiplications of shifted versions of �y.
The input y[n] is normalized to have a unit variance prior to
generating the matrix Y is represented mathematically as Y =
[�y−M1

. . .�y+M1
. . .�y � �y. . .�yM2

� �yM2−D1
. . .]. In the above re-

lation, the element-wise multiplication operation is denoted by
�. The coefficients gp can be obtained by using the Moore-
Penrose inverse with relation (3). In this paper, we do not
consider IQ cross-talk compensation at the transmitter, hence,
two separate disjoint Volterra-series based DPD models were
determined each for I and Q tributaries which were implemented
using real values.

IV. NEURAL NETWORK-BASED DPD

First, we modelled the optical coherent transmitter using ex-
perimentally acquired linear responses of the DACs and the DAs
and simulated nonlinear responses of DACs, DAs and MZMs.
Then, we tested different architectures in numerical simulations.
The linear memory was accounted using convolutional neural
networks (CNNs) which are easy to interpret. A total memory
of around 400 taps was needed for the CNNs due the signal
reflections with a large time delay present in the experimental
setup. These reflections are shown in Fig. 5 and explained in
the next section.

To account for nonlinearity, we used fully connected layers
with leaky ReLU activation functions which can be evaluated
with a few simple operations. Nonlinearity mixed with memory
was introduced in the NN by adding a convolution layer before
the fully connected layers. A sufficient number of layers and
neurons were then determined over the simulation setup by
different trials and by observing the performance (in terms of
SNR) of a given architecture. It was known that DACs have
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Fig. 5. The experimentally obtained coefficients of the “I” tributary Linear
DPD filter. A filter with long memory is required to capture the reflections of
the signal delayed by ≈ 200 symbol periods.

strong low pass response (8dB attenuation at 64 GHz [2]) and a
non-negligible degradation of the signal quality at the transmitter
stems from the power amplifiers nonlinearity. Hence, we design
an NN-based DPD architecture by inspiring from the so-called
Wiener-Hammerstein (WH) structure [35] i.e. by keeping the
nonlinear fully connected FFNN layers in between the two linear
memory (CNNs). This architecture gave better performance than
others. Note that, although the structure of the proposed DPD
is similar to a WH system, it does not belong to this class. The
reason is that the nonlinear part is not static, but has memory. We
found that as the linear effects are more dominant, an additional
shortcut bypass (ResNet connection [36]) to the nonlinear FFNN
improves the performance and speeds up the training process.
Later, the number of layers and neurons was further reduced over
the experimental setup to reach a final architecture described as
follows.

The architecture of the DPD is shown in Fig. 3. The Sections
(A) and (C) are uni-dimensional (1-D) linear CNNs, which are
equivalent to finite impulse response (FIR) filters that compen-
sate the linear responses while Section (B) in the middle mainly
corrects for the nonlinear responses. In Section (B), the first
layer (in cyan color) consists of short 1-D linear convolutions
of 11 taps feeding to a layer with 21 neurons. The following
three layers are fully connected FFNN layers with leaky rectified
linear unit (Leaky ReLU) activation functions. The last layer in
the FFNN has a single linear unit. The size of each layer is
detailed in Fig. 3 and in Table I.

The NNs were implemented using real values. The complex
signal was processed separately using two disjoint NNs. We used
both DLA and ILA based training for the NN-based DPD and
refer them as “NNDLA” and “NNILA” in the rest of the paper,
respectively. For NNDLA based training, we used another NN
serving as an auxiliary channel model S. Its architecture was
designed as a mirrored version “(C)→(B)→(A)” of the DPD
architecture shown in Fig. 3.

In order to model the DAC in our NN-based DPD, an approx-
imation of the DAC was used to avoid the vanishing gradient
problem. We call this customized unit as Soft-DAC and describe
it in the following subsection.

A. Soft-DAC Activation Unit

Soft-DAC unit models the DAC with resolution of m bits and
should quantize its input uniformly to 2m discrete levels. As
activation functions in NNs should have a non-zero derivative to

TABLE I
TABLE OF NETWORK SIZE HYPERPARAMETERS OF THE NN-BASED DPD

pass gradients back, using a staircase activation function is not
possible as its derivative is zero everywhere.

The output of the Soft-DAC unit, uout, is defined by

f(uin; s) =

⎧⎪⎨
⎪⎩
�uin�+ sr r ≤ th

�uin�+ 0.5 + (r − 0.5)/s th < r < 1− th

�uin�+ 1 + s(r − 1) r ≥ 1− th,

uout = max{min{f(uin; s), 0}, 2m − 1},
where uin is the input, �.� is the floor function, r = uin − �uin�,
s is the softening factor and th = 0.5/(1 + s). The Soft-DAC
unit is implemented as a piece-wise linear function with 2m+1 +
1 linear pieces. The slope of pieces is alternatively s and 1/s. The
behavior of the Soft-DAC can be changed from clipping-only
operation to clipping and m−bits quantization operation by
varying the slope s from 1 to 0, as shown in Fig. 4. The input
to the Soft-DAC should be scaled and shifted properly such that
it fits around the range of 0 to 2m-1. A batch normalization
(BN) layer is used prior to the Soft-DAC. The scaling parameter
in the BN layer optimizes the clipping and is optimized by
manually decreasing s from 1 towards 0 during the training of
the pre-distorter. Finally, when s = 0 the outputs of Soft-DAC
are discrete levels and any preceding NN layers to the Soft-DAC
cannot be trained.

The Soft-DAC unit is one way to apply quantization in the NN
framework. There are alternative ways available in the literature
to implement quantization in the NN framework. We refer to [37]
and references there in the paper. The problem at hand is not
the quantization of the weights (NN model parameters) but the
activations. Some of the popular methods of activation quanti-
zation are by using approximation methods. In these methods,
the forward pass through NN usually has an ideal quantization
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TABLE II
TABLE OF TRAINING HYPERPARAMETERS OF THE NN-BASED DPD

and the corresponding backward pass is implemented by using
some approximated function such as a smoothened version of the
ideal quantization function or a straight through estimator. One
challenge with these approximation methods is that they have a
gradient mismatch problem as described in [38]. The soft-DAC
avoids gradient mismatch as it is a differentiable function.

B. Initialization and Training of the NN-Based DPDs

The linear CNN layers in Fig. 3 are equivalent to FIR filters.
The tap values of the CNN layer is initialized using “impulse
initialization” i.e. all weights are set to zeros except for the center
weight whose value is set to one. The weights and biases of the
remaining FFNN part were initialized using Kaiming uniform
initialization i.e. by randomly sampling a uniform distribution
U(−1, 1)

√
k, where k = 1/(number of weights or biases). The

network size hyperparameters and initialization are summarized
in Table I. It is also possible to initialize the first and the last 1-D
CNNs using the known linear DPD response. We observed that
by doing so the overall performance did not change, however,
convergence is achieved quicker.

For both NN-based DPDs i.e. NNILA and NNDLA, we used
gradient descent back-propagation with the mean square error
loss function and the Adam optimizer [39]. We used sequences
of 218 symbols to train the NNs. The batch size should be large
enough to capture the transmitter memory. We used a larger
batch size to minimize the fluctuation in the mean and the
variance of individual batches because of the BN layer operation.
The learning rates were determined by doing a grid search on a
logarithmic scale. The training hyperparameters are summarized
in Table II.

For NNILA, the training data consists of the received
signal y[n] = [Re(y[n]), Im(y[n])] and pre-distorted signal
z[n] = [Re(z[n]), Im(z[n])] as inputs and targets, respec-
tively. In the first step of NNDLA, the auxiliary chan-
nel model is trained by using pre-distorted signal z[n] =
[Re(z[n]), Im(z[n])] and the soft symbols output of the receiver
DSP y[n] = [Re(y[n]), Im(y[n])] as inputs and targets. While
in the second step, the cascaded NN i.e. pre-distorter followed
by auxiliary channel model, uses x[n] = [Re(x[n]), Im(x[n])]
as its input and target. Note that, in the second step, only the
pre-distorter part of the cascaded NN is updated and the auxiliary
channel model part is kept fixed.

V. RESULTS

In this section, we explain the procedure and the results of
our experimental study. The training of the considered DPDs
was done by using either the DLA or the ILA described in

Fig. 6. Training of different DPDs at 460 mV DACs’ voltage by increasing
the memory length of the 4×4 real-valued MIMO equalizer in the receiver DSP.

Section III. In the first iteration of the training, a predistorted
signal z obtained by a linear static pre-distortion filter was used.
This linear pre-distortion filter was already known from a char-
acterization of the DACs and the DAs in the electrical domain.
In the following subsection, we describe how we determined the
memory needed in the considered DPDs.

A. Required Filter Length

A linear DPD with very long memory was trained in order to
determine the memory required in the pre-distorter. The impulse
response of the linear DPD filter after convergence of the adap-
tive training algorithm is shown in the Fig. 5. We observe that
signal reflections are present even around 200 symbol duration
delay. These reflections were possibly generated by the RF
cables/connections. Thus, we set the length of linear DPD as well
as the first order coefficients of Volterra to 441 taps. In NN-based
DPDs (NNDLA, NNILA), memory (the sum of tap-lengths in
CNNs) was set to around 440 taps.

The required memory for the second and the third order
Volterra kernels for the DPD are determined in a similar way. The
memory order and depth for the second order terms areM2 = 10
and d2 = 4, respectively. For the third order terms, we used
M3 = 5, d2 = 2 and d3 = 3, respectively. In total, the Volterra
series-based DPD uses 105 s order and 99 third order coefficients
along with 441 linear coefficient and one bias coefficient.

B. Training Procedure

As explained previously, we use the following training pro-
cedure so that most of the transmitter impairments are compen-
sated at the transmitter side via the DPD and not by the adaptive
4×4 real-valued MIMO equalizer at the receiver DSP. We first
train the DPD when the MIMO equalizer has a memory length of
101 taps. Then, after convergence, the memory length of the 4×4
real-valued MIMO equalizer is increased, and the DPD is trained
again. More specifically, the MIMO filter lengths is increased
from 101 to 241, 361 and 521. In Fig. 6, we show the training of
the considered DPDs over the iterations for the case of uniform
64-QAM signal. We observe that all DPDs converged within 9
iterations. In these results, the DACs output voltages were set to
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Fig. 7. (a) Performance of the considered DPDs at different DACs’ voltages
with uniform 64-QAM. (b) Constellations and histograms of the soft symbol
outputs of the receiver DSP y after the convergence, for the Linear and the
NNDLA DPD.

optimum values for the corresponding DPD as described in the
following subsection.

C. DAC Voltage Variation

We vary the output voltage of the DACs to change the strength
of the transmitter nonlinearity. We re-train each of the DPDs
for every value of the DACs’ output voltage. In Fig. 7(a), the
SNR values of each DPD technique are plotted against the
variation in the DACs’ output voltage. We observe that with
a linear DPD employed at the transmitter, the SNR decreases
with increasing the DACs’ output voltage due to the increased
nonlinear distortions from the transmitter. For linear DPD, the
optimum operating point is around 300 mV.

Further, applying nonlinear DPDs at the transmitter gives
improvements in the SNR even at a lower DAC output voltage
of 300 mV. This shows the presence of significant nonlinear
distortions at the transmitter even at low voltage. Furthermore,
we see that unlike linear DPD, increasing the DACs’ output
voltage beyond 300 mV improves the SNR. The optimum DACs’
voltage for nonlinear DPDs is approximately 450 mV which
is 50% higher than that of the linear DPD. The NN-based
and the Volterra series-based DPD, both trained using the ILA
architecture, attain almost similar performance. Although the
SNR gains obtained by using the former is slightly higher.
Moreover, the NNDLA (i.e. the NN-based DPD trained using
DLA) provides the highest gain in SNR which is 1.6 dB with
respect to the linear DPD, after 9 iterations of Tx DPD training.
NNDLA DPD obtains better SNR values than NNILA mainly
because of the difference in the training architectures: DLA and
ILA. A detailed explanation of this point can be found in [40].

At this point, we show how the proposed NN-DPD is dif-
ferent from WH architecture. For this purpose, the WH-DPD
is obtained from reconfiguration of the proposed NN-DPD as
follows: The Section (A) and (C) and the short-cut connection
between them is kept as it is. While, we remove the memory
from the Section (B) as the nonlinear part of a typical WH
structure is memoryless. In detail, the Section (B) was modified
by removing the CNN layer (FFNN layer 1) i.e. the layer with
21 11-tap convolutions such that the output from the Section (A)

fans out directly to the second layer (FFNN layer 2, the layer
with 12 neurons) of the Section (B). Overall, the fully connected
FFNN part has layers with 12, 8, 8, 1 neurons with leaky ReLU
activation function. The WH-DPD was trained using DLA by
using an auxiliary channel whose architecture is identical to the
one used for NN-DLA. The SNR performance at different DAC
voltages is shown in the Fig. 7. We see that WH-DPD only adds
up to 0.2dB gain in the SNR to the linear DPD. This also shows
that the nonlinearity is mixed with memory in the system and
the proposed NN-DPD architecture captures this nonlinearity
mixed with memory.

Remark: We also tried a Volterra-based DPD trained us-
ing DLA. In order to have a fair comparison, we used the
auxiliary channel-NN of NNDLA as a surrogate for training
the Volterra-DLA-DPD. The Volterra-DLA was implemented
within the NN-framework. This has advantage as the Volterra-
DLA-DPD-NN can be trained easily by using the auxiliary
channel-NN in the same manner as done for the NN-DLA.
The Volterra-DLA-DPD NN takes all possible Volterra terms
as its input features and learns the required weights and bias in
order to produce the output. A batch normalization is applied
at the output. Surprisingly, we did not observe significant gains
with Volterra-DLA-DPD-NN. At 460 mV DACs’ voltage, the
Volterra-DLA-DPD-NN added only around 0.1dB gain in the
SNR in comparison to Volterra-ILA. The Volterra-DLA needs
more investigation.

Next, we visualize the impact of applying the NNDLA at the
transmitter by carrying out a spectral analysis and by plotting
the signal constellation after the entire Rx-DSP. In Fig. 7(b),
we plot the constellation diagram of one of the polarizations of
the experimentally obtained signals along with corresponding
histogram of one dimension. It can be clearly seen that when
only a linear DPD is applied, the received signal is contaminated
with power dependent distortions. In contrast, these distortions
are suppressed and not visible in the received signal when the
NNDLA DPD is applied at the transmitter. Fig. 8 presents a
spectral analysis of the output signal of the auxiliary NN when
there is a test signal is applied as input. The test signal is a
64 Gbaud 64-QAM signal upsampled to 2 sample per symbol
(sps) by zero-insertion and filtering using a brick-wall filter
of 64 GHz bandwidth. We see that when the test signal is
applied, without any DPD, to the trained auxiliary NN model, the
auxiliary NN output has a distorted in-band spectrum along with
out-of-band (> |32|GHz) spectral components resulted from the
nonlinearity. When the linear DPD is applied to the test signal
before feeding it into the auxiliary NN, the output signal of
the auxiliary NN has only its in-band spectrum corrected while
the out-of-band spectrum generated by nonlinearity stays as is.
On the other hand, when the test signal is passed through the
NN-DPD and then fed to the auxiliary NN, the auxiliary NN
output has a flat in-band spectrum together with a suppressed
out-of-band spectrum.

We have also trained and tested a look-up table (LUT)-based
DPD using this auxiliary NN model of the transceivers. We
consider a the LUTs of memory 3 i.e. a correction to a symbol is
based on that symbol and its adjacent symbols. The correction
coefficients of the LUTs were learned by the method given
in [41], [42] while the trained “Linear” DPD of 401 taps was
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Fig. 8. Noiseless spectral analysis of a brick-wall band-limited 64 Gbaud
64-QAM (at 2 sps) signal using experimentally trained NN models shows the
transmitter distortions and its compensation. With the band-limited 64-QAM
signal (dashed, green curve) as input, there is out-of-band noise at the output of
auxiliary NN due to the nonlinearity (solid, orange curve). With NNDLA DPD
(densely dash-dotted, blue curve) this nonlinear noise is suppressed.

Fig. 9. (a) Received signal SNR over a variation in DACs’ voltage for PCS
256 QAM. (b) A histogram of the 2-D MI values obtained by transmitting 100
statistically independent symbol sequences.

applied in order to compensate for the large channel memory.
This combined DPD is referred as “LUT-3+Linear” DPD. Two
LUTs were trained each for the in-phase and the quadrature-
phase tributary at 1 sps for a 128 Gbaud 64-QAM signal.
We compared the performance of the “LUT-3+Linear” DPD
with that of the Linear and the NNDLA DPD in terms of
the normalized mean square error (NMSE) between the trans-
mit and the auxiliary NN output symbols. We observed that
“LUT-3+Linear” gave 1.6dB smaller NMSE than the Linear
DPD. The NNDLA gave about 10dB smaller NMSE than
the “LUT-3+Linear” DPD. The NMSE difference between the
“LUT-3+Linear” and the NNDLA shows that nonlinearity is
mixed with the memory. One may expect more compensation
gains by increasing the LUT memory. However, the current LUT
has already 83 = 512 entries and its size grows exponentially
with memory if implementation is not optimized. The spectrum
of the auxiliary output signal when the test signal with “LUT-
3+Linear” DPD is fed at its input is also shown in Fig. 8.

In the next experiment, we test the DPDs using the PCS-
256-QAM format and quantify the SNR performance. Fig. 9
shows the SNR values obtained for different DAC voltages. We

Fig. 10. SNR, GMI and net information rate at different launch powers for
80 km SSMF transmission of PCS 256-QAM format signal pre-distorted using
the Linear or the NNDLA DPD.

observed a trend similar to the uniform 64-QAM format. The
SNR gain that NNDLA provides with respect to the linear DPD
is approximately 1.2 dB.

D. Verification of Pattern Independence

A common concern in the NN-based techniques is depen-
dence on patterns. We applied our proposed NNDLA predistor-
tion on 100 statistically independent symbol sequences which
were not used in the training. The corresponding 100 pre-
distorted waveform were transmitted through the experimental
setup in back-to-back configuration with 450 mV DAC voltage
and their performances were evaluated. In Fig. 9(b), a histogram
of the observed 2-D MI values is plotted. A fitted curve with
Gaussian approximation shows that the standard deviation is
very small of around 0.014 bits/symbol/polarization indicating
that the NNDLA is nearly pattern independent.

E. Evaluation in the Fiber Transmission Scenario

In further investigations, we apply our trained NNDLA and
the linear DPD at the transmitter with PCS 256-QAM and test
it over a link of 80 km SSMF. Fig. 10 shows the SNR, GMI and
net rate of the received signal over different transmit powers.
The figure indicates that the optimum launch power is around
6 dBm for both DPDs. Furthermore, applying NNDLA at the
transmitter results into a significant SNR gain in comparison to
the linear DPD. At the optimum launch power, the SNR gain is
around 1.2 dB which is the same as observed in experiments with
the back-to-back configuration for PCS 256-QAM. The NNDLA
transmission achieves GMI of 6.44 bits/symbol/polarization
in comparison to 6.1 bits/symbol/polarization obtained by ap-
plying the linear DPD. Furthermore, the net rate increases
from 5.9 bits/symbol/polarization for the linear DPD to
6.3 bits/symbol/polarization for the case of the NNDLA. More-
over, we observed that the FEC decoding loss is slightly less
when the NNDLA is applied. This is attributed to the more
Gaussian-like distribution of the soft symbols at the Rx-DSP
output (y in Fig. 7(b)) when using the NNDLA instead of the
linear DPD. The lower decoding loss is due to the assumption
of conventional FEC decoding algorithms that received symbols
follow a Gaussian likelihood. Overall, our proposed NNDLA in-
creases the net bit rate to a record 1.61 Tb/s over a single-channel
of 80 km SSMF.
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TABLE III
REAL-VALUED MULTIPLICATIONS PER CHANNEL NEEDED FOR NN-BASED

DPD

TABLE IV
REAL-VALUED MULTIPLICATIONS NEEDED PER CHANNEL FOR EACH

OF THE CONSIDERED DPDS

VI. COMPUTATIONAL COMPLEXITY AND PRUNING

In this section, we compare the compuational complexity of
each of the considered DPDs. As a figure of merit, we compute
the required number of real-valued multiplications to implement
each DPDs. The number of real-valued multiplications per stage
of the NN-based DPDs is provided in Table III. The batch
normalization layers and soft-DAC are not accounted for in the
computation as similar processing is required for the other DPDs
in order to generate integers prior to loading the DACs.

The linear DPD has 441 coefficients, thus, require 441 real-
valued multiplications for each channel (I/Q). The Volterra filter
has three kernel orders requiring 441, 105 and 99 coefficients
for the first, second and third order respectively. Additionally,
14 real-valued multiplications are needed to generate the sec-
ond and third order terms. By following [43], we consider
that already computed lower-order Volterra terms are used to
generate other possible higher-order terms so that the real-valued
multiplications for Volterra DPD are not over-counted. In total
Volterra implementation requires 659 multiplications. Table IV
summarizes the complexity. We see that our proposed NN-DPD
requires about 64% more real-valued multiplications than the
Volterra DPD.

To understand performance-complexity trade-off, we reduce
the complexity of NN-based DPD by pruning it after the
NNDLA has converged in the experiments. We prune only the
middle FFNN structure (ie. the Section (B) from Fig. 3) as
the other layers are linear and are common to other DPDs as
well. The pruning method proposed in [44] was applied on each
channel (I/Q) separately. We used L1-norm as pruning criteria
such that the smallest weights and biases in the FFNN layer are
forced to zero after pruning. A target or final pruning factor sf
is achieved in N training steps or epochs by pruning with a sc
factor every ΔN epochs. The pruning factor for a given epoch
sc is given by the following relation

sc = sf + sf

(
1− �n/ΔN�

N

)3

, (8)

We used N = 20 epochs to achieve a final pruning factor
where pruning by sc was applied every ΔN epochs. Pruning

Fig. 11. SNR of the received signal for different pruning factor sf applied
on nonlinear parts of NNDLA and Volterra w/ ILA DPDs. The number of real-
valued multiplication reduces by 651× sf + 28 and 218× sf for NNDLA
and Volterra DPD, respectively.

reduces the complexity by avoiding several multiplications. It is
even possible that all the weights feeding a neuron are zeroed
by the pruning process, thereby further reducing the complexity
as the computation of the activation of that neuron can then
also be omitted. For our case, the decrease in the complexity
due to deactivated neurons is very small, and thus, ignored.
The decrease in the number of real-valued multiplications in
the middle FFNN structure as a result of pruning is considered
as 651× sf + 28.

We also pruned the nonlinear part of the Volterra w/ ILA DPD
kernels i.e. the coefficients of the second and the third order. The
pruning was again done by forcing the smallest magnitude coef-
ficients to zero. In Fig. 11, we plot the performance of NNDLA
and Volterra DPD over the experimental setup at various pruning
factors. For Volterra DPD, a pruning up to a factor of 0.6 does not
add any penalty, instead, we observe some improvement ( 0.1dB)
in the SNR when pruning factor is around 0.3. This is attributed
to the fact that a reduced number of Volterra kernel increases the
accuracy of the least squares based Volterra DPD. At pruning
factor sf of 0.6, Volterra DPD has around 530 kernel coefficients.

For NNDLA, we see that a pruning by a factor of 0.2 can be
applied without causing performance degradation, while larger
pruning factors add penalty to the received SNR. At pruning
factor of 0.8 both DPDs have similar performance while it
requires 560 and 485 real-valued multiplications for NNDLA
and Volterra DPD, respectively. A pruning by a factor of 0.4
still gives good performance while reducing the overall per
channel complexity of the NNDLA to around 820 real-valued
multipliers.

VII. CONCLUSION

In this paper, we reported on a new record transmission
of 1.61Tb/s data rate over a single channel of 80km of stan-
dard single mode fiber that was achieved using a novel neural
network-based digital pre-distorter. The proposed DPD has been
compared with a Volterra series-based ILA-DPD and a linear
DPD. In addition, we evaluated the performance of the proposed
DPD by training it using direct learning and indirect learning
architecture. The NN-based DPD trained using DLA adds SNR
gain of around 1.6 dB and 1.2 dB with respect to a linear DPD
for uniform 64-QAM and PCS 256-QAM formats, respectively.
Further, we show that by applying pruning the computation
complexity of the proposed DPD can be reduced significantly
with no or only minor losses in the SNR.
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