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a b s t r a c t 

CALPHAD models to compute the density and viscosity of four keystone systems related to Molten Salt 

Reactor (MSR) technology have been optimized: NaCl-UCl 3 , LiF-ThF 4 , LiF-UF 4 , and LiF-ThF 4 -UF 4 . Revised 

thermodynamic assessments of all four systems, using the modified quasichemical formalism in the 

quadruplet approximation for the description of the liquid solutions, are reported. In the case of NaCl- 

UCl 3 , phase diagram and mixing enthalpy data available in the literature are taken into account. For the 

fluoride systems, recently published data on some solid phases are taken into account, while retaining 

the most recently published descriptions of the liquid solutions. The densities of the liquid solutions 

are modelled using pressure-dependent terms of the excess Gibbs energy, while the viscosities are then 

modelled using an Eyring equation. Both state functions are related to the thermodynamic assessments 

through the quadruplet distributions. 
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. Introduction 

The Molten Salt Reactor (MSR) is a class of fission reactor with 

he principal characteristic that the fuel is in the liquid state and 

lso serves as the primary coolant [1] . The use of mixtures of ura-

ium tetrafluoride and thorium tetrafluoride with alkali fluorides 

r beryllium or zirconium fluorides for the fuel system was origi- 

ally proposed by Ray Briant at the Oak Ridge National Laboratory 

ORNL) [2] . Eventually the concept was applied in the construc- 

ion of the Aircraft Reactor Experiment (ARE) [3] , designed, built, 

nd operated by ORNL in the 1950’s. Next to these developments, 

he first conceptual design of a reactor fueled with molten chlo- 

ides appears to have been made by Bulmer et al. [4] in 1956. 

round the same time, the team at ORNL also considered the use 

f chloride salts in a fast reactor, as chlorine moderates signifi- 

antly less than fluorine. However, they pointed out that the high 

n,p) cross section of 35 Cl, resulting in the formation of corrosive 

ulphur, would impose the use of 37 Cl exclusively. Such an isotope 

eparation is difficult, and so development of fast molten chloride 

eactors was thought unlikely at the time [2] . Following the ARE, 

lvin Weinberg recognized the potential of molten salt reactors as 

 civilian power source and spearheaded a research program which 
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ulminated in the fluoride-fueled, thermal spectrum Molten Salt 

eactor Experiment (MSRE), also in ORNL in the 1960’s [5] . Despite 

he great success of the experiment, it was the last prototype MSR 

o be built. Later, the Generation IV International Forum, a group 

f fourteen member countries pursuing research and development 

or the next generation of nuclear reactors, selected the MSR as 

ne of six key nuclear energy systems to replace the current fleet 

f Generation II Light Water Reactors [6] . 

Following the historical experience, modern research effort s in 

he nuclear community have been primarily focused on fluoride 

alts [7] , resulting in a larger (albeit still not fully complete) body 

f knowledge than for chlorides. Nevertheless, research activities 

round chloride fuels have increased notably in recent years [8–

0] . As pointed out by Merle [11] , the design choice depends on 

he objective. Some advantages of chlorides over fluorides the au- 

hor has identified are: 

1. Lower melting temperatures 

2. A wider range of separation processes for salt clean-up, includ- 

ing existing processes 

3. Greater actinide solubility 

4. Higher breeding ratio when coupled with a U/Pu fuel cycle 

While, vice-versa, some of the advantages of the fluorides are: 

1. Chemistry is well-characterized for nuclear applications 

2. Easier to dehydrate: reduced corrosion risk from initial impuri- 

ties 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. LiF-ThF 4 diagram as calculated in this work (red), overlaid with the opti- 

mization by Capelli et al. [30] (black), and the experimental data reported by Capelli 

et al. [18] ( �) and Thoma et al. [39] ( ). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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3. Softer spectrum: reduced radiation damage to structural mate- 

rials 

4. Higher breeding ratio when coupled with a Th/U fuel cycle (ep- 

ithermal/thermal spectrum) 

As for radioisotopes formed during operation, both salt fami- 

ies have problematic products which require careful planning. In 

 nutshell, the heuristic proposed by Merle is that if the objective 

s a thorium breeder reactor, a LiF-based salt is more convenient, 

hile for an actinide burner or breeder, NaCl is the main solvent 

f choice. 

This work thus focuses on three keystone binary systems for 

SR technology: LiF-UF 4 , LiF-ThF 4 , and NaCl-UCl 3 , as well as the 

ernary system LiF-ThF 4 -UF 4 . Two state functions, the density and 

iscosity are computed. The models are linked to each other via 

he thermodynamic assessments of the corresponding systems by 

he CALPHAD method based on the modified quasi-chemical for- 

alism in the quadruplet approximation [12] . The methodology 

f the density model as applied here was first developed by 

obelin et al. [13] on a closely related system sharing NaCl as 

n end-member, namely NaCl-KCl-MgCl 2 -CaCl 2 , and with a well- 

stablished industrial application: the reduction of Mg. The same 

ensity modelling approach model was later successfully applied 

o the NaF-AlF 3 -CaF 2 -Al 2 O 3 electrolyte [14] . In further work, Ro- 

elin and Chartrand extended the model to compute the viscos- 

ty of the same electrolyte [15] . The same methodology is applied 

erein to our systems of interest, as detailed hereafter. 

. Thermodynamic modelling 

.1. Phase diagrams 

A thermodynamic assessment consists of optimizing unknown 

arameters (e.g. enthalpy of formation, standard entropy) and ex- 

ess parameters associated with the Gibbs energy functions of all 

he phases occurring in a system, in order to reproduce known 

ata such as phase diagram equilibria, thermodynamic data, vapor 

ressure, activities. In this work, FactSage 7.2 was used to perform 

he thermodynamic assessments. 

.1.1. Pure compounds 

The Gibbs energy function of a pure compound is given by: 

 

o (T ) = � f H 

o 
m 

(298) − S o m 

(298) T + 

∫ T 

298 

C o p,m 

(T ) dT − T 

∫ T 

298 

C o p,m 

(T ) 

T 
dT 

(1) 

here � f H 

o 
m 

(298) is the standard enthalpy of formation, and 

 

o 
m 

(298) is the standard absolute entropy, both evaluated at a ref- 

rence temperature, usually taken to be 298.15 K (throughout this 

ork 298 will be understood to mean 298.15 K for simplicity). 

 p,m 

is the isobaric heat capacity expressed as a polynomial: 

 

o 
p,m 

(T ) = a + bT + cT 2 + dT −2 (2) 

In the absence of experimental data, the Neumann-Kopp rule 

16] was applied to estimate the heat capacities of stoichiometric 

ompounds. 

In this work, the thermodynamic functions of the solid phases 

re very similar to those appearing in the most recent assessments 

f the systems studied (see Section 2.1.3 below), but slightly ad- 

usted to reflect new experimental data published after the afore- 

entioned assessments. First, the isobaric heat capacities of solid 

nd liquid ThF 4 recently measured by Tosolin et al. [17] were used. 

he authors also re-calculated the enthalpy of fusion from their 

orresponding enthalpy increment measurements, and the newly 

ssessed data were selected herein: (36.4 ± 10) kJ · mol −1 , while 

he previous reference value was (41.9 ± 2) kJ · mol −1 [18] . The 
2 
hosen value affects the topology of the LiF-ThF 4 phase diagram 

see Fig. 1 ) but does not affect the quadruplet distributions which 

erve as input for the viscosity model (see Section 2.3 ). Second, 

he heat capacities of LiThF 5 (cr), LiTh 2 F 9 (cr), and LiTh 4 F 17 (cr), mea-

ured with Differential Scanning Calorimetry (DSC) by Mukherjee 

nd Dash [19] were taken into account. Third, the LiF-UF 4 sys- 

em was slightly re-optimized to reflect new insights on the phase 

quilibria reported in [20] : Li 3 UF 7 was included as a metastable 

hase, and Li 7 U 6 F 31 was replaced with LiUF 5 . These changes re- 

uired a slight re-optimization of the thermodynamic functions, 

ndicated in bold in Table 1 . 

The thermodynamic functions of NaCl(cr,l) were taken from the 

VTAN tables by Glushko et al. [21] . The heat capacity of NaCl(l) 

as recently recommended by van Oudenaren et al. [22] , who 

ritically reviewed the four studies available on the determination 

f the heat capacity of NaCl(l) [23–26] . Although Glushko et al. 

ad recommended to discard the data by Dawson et al. [26] , van 

udenaren et al. [22] found that there was no discrepancy be- 

ween their data and that reported by the other authors. Averag- 

ng over the four studies, van Oudenaren et al. recommend (68 

1) kJ ·mol −1 as the heat capacity of liquid NaCl in the 1074- 

500 K range. The heat capacity of UCl 3 (l) was also taken from 

an Oudenaren et al. [22] , who derived the value from Molecular 

ynamics (MD) simulations. The rest of the thermodynamic func- 

ions for UCl 3 (cr,l) were taken from the recent review by Capelli 

nd Konings [27] . 

.1.2. Solid solution 

The total Gibbs energy function of the two-component solid so- 

utions in this work is given by: 

 (T ) = X 1 G 

o 

m,1 

(T ) + X 2 G 

o 

m,2 

(T ) + X 1 RT lnX 1 + X 2 RT lnX 2 + G 

xs 
m 

(3) 

here X i are the molar fractions and G 

o 
m,i 

(T) are the standard mo- 

ar Gibbs energies of the pure end members. The excess Gibbs en- 

rgy parameter is described using the polynomial formalism: 

 

xs 
m 

= 

∑ 

i, j 

X 

i 
1 · X 

j 
2 

· L i, j (4) 

here L i, j is a coefficient which may depend on temperature in the 

orm of the general equation: 

 i, j = A + BT + CT lnT + DT 2 (5) 
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Table 1 

Thermodynamic data for end-members and intermediate compounds used in this work for the phase diagram assessment: � f H 

o 
m 

(298 K)/(kJ ·mol −1 ), 

S o m 

(298 K)/(J ·K −1 ·mol −1 ), and heat capacity coefficients C p,m 

(T/K)/(J ·K −1 ·mol −1 ), where C p,m 

(T/K) = a + b ·T + c ·T 2 + d ·T −2 . Optimized data are shown in 

bold . 

Compound � f H 

o 
m 

(298 K)/ S o m 

(298 K)/ C p,m 

(T/K)/(J ·K −1 ·mol −1 ) = a + b ·T + c ·T 2 + d ·T −2 Range Reference 

(kJ ·mol −1 ) (J ·K −1 ·mol −1 ) a b c d 

LiF(cr) -616.931 35.66 43.309 0.016312 5.0470 ·10 −7 -5.691 ·10 5 298-2500 [28] 

LiF(l) -598.654 42.962 64.183 298-2500 [28] 

ThF 4 (cr) -2097.900 142.05 111.46 2.6900 ·10 
−2 

-780000 298-2500 [ 29 , 17 ] 

ThF 4 (l) -2100.360 106.61 168.0 298-2500 [17,29] 

UF 4 (cr) -1914.200 151.7 114.5194 2.0555 ·10 −2 -413159 298-2500 [29] 

UF 4 (l) -1914.658 115.4 174.74 298-2500 [29] 

NaCl(cr) -411.260 72.15 47.72158 0.0057 1.21466 ·10 −5 -882.996 298-1074 [21] 

68.0 1074-2500 [22] 

NaCl(l) -383.060 98.407 47.72158 0.0057 1.21466 ·10 −5 -882.996 298-1074 [21] 

68.0 1074-2500 [22] 

UCl 3 (cr) -863.700 163.9 106.967 -0.02086 3.639 �10 -5 -129900 298-2500 [27] 

UCl 3 (l) -846.433 153.6 151.1 298-2500 [27] , [22] 

Li 3 ThF 7 (cr) -3960.000 248.9 241.387 0.075836 1.5141 ·10 −6 -2.4873 ·10 6 298-2500 This work 

LiThF 5 (cr) -2720.300 179.1 167.8 0.027 -1.513510 ·10 6 298-2500 This work, [19] 

LiTh 2 F 9 (cr) -4820.200 324.29 291.3 0.0386 -3.076934 ·10 6 298-2500 This work, [ 30 , 19 ] 

LiTh 4 F 17 (cr) -9016.100 609.0 536.2 0.0622 -5.051854 ·10 6 298-2500 This work, [ 30 , 19 ] 

Li 4 UF 8 (cr) -4347.620 357.55 287.75532 8.5804 ·10 −2 2.0188 ·10 −6 -2689653 298-2500 This work, [30] 

Li 3 UF 7 (cr) -3777.464 258.68 244.44634 6.9491 ·10 −2 1.5141 ·10 −6 -2120530 298-2500 This work 

LiUF 5 (cr) -2543.591 187.4 157.8284 3.6867 ·10 −2 5.0470 ·10 −7 -982283 298-2500 This work 

LiU 4 F 17 (cr) -8293.861 644.7 501.38658 9.8532 ·10 −2 5.0470 ·10 −7 -2221736 298-2500 This work, [30] 

Table 2 

Excess Gibbs energy of solid solutions appearing in this study. 

Solid solution �G xs 
m (J · mol −1 ) Ref. 

(Th,U)F 4 � G xs 
m = 400 ·X ThF 4 X UF 4 [32] 

Li 3 (Th,U)F 7 � G xs 
m = 5500 ·X Li 3 ThF 7 X Li 3 UF 7 this work 

Li(Th,U)F 5 � G xs 
m = -2500 ·X LiT hF 5 X LiUF 5 · this work 

Li(Th,U) 2 F 9 � G xs 
m = -38000 ·X LiT h 2 F 9 X LiU 2 F 9 this work 

Li(Th,U) 4 F 17 � G xs 
m = -80500 ·X LiT h 4 F 17 

X LiU 4 F 17 
this work 

s

t

l

2

m

p

i

t

e

n

(  

w

n

a

�

t

t

fi

χ

w

F

Table 3 

Cation-cation coordination numbers of the liquid solutions. 

Fluoride solutions [30] 

A B Z A AB/X Z B AB/X 

Li + Li + 6 6 

Th 4+ Th 4+ 6 6 

U 

4+ U 

4+ 6 6 

Li + Th 4+ 2 6 

Li + U 

4+ 2 6 

Th + U 

4+ 6 6 

Chloride solutions, this work 

Na + Na + 6 6 

U 

3+ U 

3+ 6 6 

Na + U 

3+ 3 6 

c

w

t

t

G

a

(

t

e

�

�

�

+ (−4100 + 4 · T ) χ J · mol (12) 
The values of the excess Gibbs energy parameters of the solid 

olutions in this study are summarized in Table 2 . They belong to 

he UF 4 -ThF 4 and LiF-ThF 4 -UF 4 systems. All except the (Th,U)F 4 so- 

ution [31] were optimized in this work. 

.1.3. Liquid solution 

The excess Gibbs energy terms of liquid solutions herein were 

odelled using the modified quasi-chemical model in the quadru- 

let approximation proposed by Pelton et al. [12] . In this formal- 

sm, a set of two anions and two cations makes up a quadruplet, 

aken to be the basic unit in liquid solution, and the excess param- 

ters to be optimized are those related to the following second- 

earest neighbor (SNN) exchange reaction: 

A − X − A ) + (B − X − B ) −→ 2(A − X − B ) �g AB/X (6)

here the halide anions are represented by X , and A and B de- 

ote the cations. �g AB/X denotes the Gibbs energy change associ- 

ted with the SNN exchange reaction: 

g AB/X = �g 0 

AB/X + 

∑ 

i ≥1 

g i 0 AB/X χ
i 
AB/X + 

∑ 

j≥1 

g 0 j 
AB/X 

χ j 
BA/X 

(7) 

�g 0 
AB/X 

and g 
i j 
AB/X 

are coefficients which may be taken to be 

emperature-dependent, but which are independent of composi- 

ion. The composition dependence is given by the χAB/X terms de- 

ned as: 

AB/X = 

X AA 

X AA + X AB + X BB 

(8) 

here X AA , X BB and X AB represent cation-cation pair mole fractions. 

inally, charge conservation over the quadruplet imposes the anion 
3 
oordination number: 

q A 

Z A 
AB/X 

+ 

q B 

Z B 
AB/X 

= 

2 q X 

Z X 
AB/X 

(9) 

here q i are the charges of the different ions, and Z X 
AB/X 

is 

he anion-anion coordination number. For the fluoride systems, 

he cation-cation coordination numbers, as well as the optimized 

ibbs energy terms were taken from previous assessments [ 30 , 32 ] 

nd are shown below for completeness ( Table 3 , Eqs. (10) and 

11) ). For NaCl-UCl 3 , the Gibbs energy terms were re-optimized in 

his work to take into account mixing enthalpy data by Matsuura 

t al. [33] (see Section 3.1.3 ). 

g LiTh /F = −10878 + ( −6694 + 2 . 93 · T ) χLiTh /F 

+ ( −20920 + 19 . 25 · T ) χThLi /F J · mo l −1 (10) 

g LiU /F = −16108 + ( −711 . 3 − 1 . 255 · T ) χLiU /F 

+ ( −1172 − 8 . 368 · T ) χULi /F J · mo l −1 (11) 

g NaU/Cl = −9865 + 3 . 5 · T − 1150 χNaU/Cl 

−1 

UNa/Cl 
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.1.4. Higher order systems 

The ternary diagram LiF-ThF 4 -UF 4 has been extrapolated from 

he constituting binary sub-systems using the asymmetric Kohler- 

oop formalism [34] . The salts belong to two groups of symme- 

ry based on their tendency to remain as dissociated ionic liq- 

id (LiF) or associated species (molecular, network forming) in the 

elt (ThF 4 , UF 4 ). No ternary excess parameters were used. 

.2. Density model 

The density model based on the modified quasi-chemical model 

as introduced by Robelin et al. [13] and applied to the NaCl-KCl- 

gCl 2 -CaCl 2 system, and later to the NaF-AlF 3 -CaF 2 -Al 2 O 3 elec- 

rolyte [14] . 

The volume of a solution is defined as the partial derivative of 

he Gibbs energy with respect to pressure [13] : 

 = 

(
∂G 

∂ p 

)
T,n A/X ,n B/X ,n C/X 

(13) 

In Eq. (13) the temperature and the number of moles of the 

onstituents are held constant. For a pure halide salt A/X the molar 

ibbs energy can be written as: 

 

o 
A/X (T , p) = g o A/X (T , p o ) + 

∫ p 

p o 
V A/X 

m (T ) · dp = g o A/X (T , p o ) + V A/X 
m (T ) · (p − p o ) 

(14) 

here p o is the standard pressure (1 bar) and V A/X 
m 

(T ) is the molar

olume of the pure salt A /X at temperature T . It is a function of

he volumetric thermal expansion α(T ) : 

 

A/X 
m 

(T ) = V 

A/X 
m 

(T re f ) · exp 

(∫ T 

T re f 

α(T ) · dT 

)
(15) 

here T re f is an arbitrarily chosen reference temperature and α(T ) 

s given by: 

(T ) = a + bT + cT −1 + dT −2 (16) 

The volume of the solution is then given by: 

 = 

∑ 

i 

n i/X · V 

i/X 
m 

(T ) + 

∑ 

A 

∑ 

A>B 

(n AB/X / 2) ·
(

∂�g AB/X 

∂ p 

)
T,n i/X ,n A/X ,n B/X ...

(17) 

The first term in Eq. (17) represents ideal (additive) volumetric 

ehavior, while the second corresponds to deviations from ideality. 

g AB/X can be written as a polynomial in composition parameters 

see Eq. (8) ) χAB/X and χBA/X : 

g AB/X = [�g o 
AB/X 

+ βo 
AB/X 

· (p − p o )] + 

∑ 

i ≥1 ·[ g i 0 AB/X 
+ β i 0 

AB/X 
· (p − p o )] · (χAB/X )

 

∑ 

j≥1 ·[ g 0 j AB/X 
+ β0 j 

AB/X 
· (p − p o )] · (χBA/X ) 

j 

(18) 

here p is in bar, and g o 
AB/X 

, g i 0 
AB/X 

, and g 
0 j 
AB/X 

are parameters from

he thermodynamic assessment, while βo 
AB/X 

, β i 0 
AB/X 

, and β0 j 
AB/X 

are 

he parameters (in general dependent on temperature) which be- 

ong to the density model and can be optimized to match devi- 

tions from ideality. Note that at 1 bar, the pressure-dependent 

erms in Eq. (18) cancel out, yet they can still have an effect on

he volume through the partial derivative 

(
∂�g AB/X 

∂ p 

)
T,n i/X ,n A/X ,n B/X ... 

 Eq. (17) ). 

.3. Viscosity model 

Robelin and Chartrand [15] proposed to use the following equa- 

ion derived by Eyring [35–37] to model the viscosity of molten 
4 
lectrolytes: 

= 

hN A v 

V m 

· exp 

(
G 

∗

RT 

)
(19) 

here h is Planck’s constant, N A v is Avogadro’s number, V m 

is the 

olar volume, and G 

∗ is the molar activation energy for viscous 

ow, expressed as a first order polynomial in the quadruplet mole 

ractions [15] , which in turn can be calculated from a thermody- 

amic model: 

 

∗ = 

∑ 

quad 

X quad G 

∗
quad = 

∑ 

quad 

X quad (A quad + B quad · T ) (20) 

uch that 

= 

hN A v 

V m 

· exp 

(∑ 

quad X quad (A quad + B quad · T ) 

RT 

)
(21) 

Eq. (19) can be re-written as: 

n (η · V m 

) = ln (hN A v ) + 

∑ 

quad 

X quad 

(
A quad 

RT 

)
+ 

∑ 

quad 

X quad B quad /R (22)

eaving A quad and B quad as adjustable parameters for a linear fit of 

n (η · V m 

) vs. 1 /T . In melts with a common anion, G 

∗ ( Eq. (20) )

educes to [15] : 

 

∗ = 

∑ 

i, j 

X i j G 

∗
i j = 

∑ 

i j 

X i j (A i j + B i j · T ) (23) 

here each i and j are cations and X i j is the mole fraction of 

 i − X − j] SNN pairs. However, in melts with strong short-range 

rdering (SRO), a composition dependence may be introduced for 

he parameter G 

∗
i j 

, as proposed by Mizani [38] , who modelled 

he viscosity of the NaCl-MgCl 2 melt over the entire composition 

ange: 

 

∗
i j = (G 

∗
i j ) 

00 + (G 

∗
i j ) 

10 · [ X ii / (X ii + X j j + X i j )] + (G 

∗
i j ) 

01 · [ X j j / (X ii + X j j + X i j )] 

(24) 

In Eq. (24) , each of (G 

∗
i j 
) 00 , (G 

∗
i j 
) 10 , and (G 

∗
i j 
) 01 are of the form

 i j + B i j · T . For the halide mixtures in this work, which exhibit 

trong SRO, it was necessary to use the form proposed by Mizani 

o obtain adequate fits of the experimental data. 

. Results and discussion 

.1. Thermodynamic assessments 

.1.1. LiF-ThF 4 
The optimized phase diagram as calculated with the re- 

ptimized functions for the ternary fluorides (see Section 2.1.1 ) is 

hown in Fig. 1 (red). The calculated phase diagram has a slightly 

etter agreement with the liquidus data [18,39] on the ThF 4 -rich 

ide than the previous optimization by Capelli et al. [30] from 

hich the excess Gibbs energy parameters of the liquid solution 

ere taken, while there is an overlap of both models on the LiF- 

ich portion of the phase diagram. 

.1.2. LiF-UF 4 
The newly optimized phase diagram is shown in Fig. 2 (red). 

nce again the parameters of the excess Gibbs energy were taken 

rom Capelli et al. [30] (black lines) for the liquid solution. The 

greement between both models is very good, the main difference 

eing the shift from a line compound with formula Li 7 U 6 F 31 , as

as reported by Barton et al. [40] in the first study carried out on 

his system, to the line compound LiUF 5 as shown in more recent 

tudies [20,41] . 
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Fig. 2. LiF-UF 4 diagram as calculated in this work (red), overlaid with the optimiza- 

tion by Capelli et al. [30] (black), and the experimental data reported by Ocádiz- 

Flores et al. [20] ( ) and Barton et al. [40] ( , •). (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 3. Calculated enthalpies of mixing in this study (T = 1100 K) for the NaCl-UCl 3 
system, compared with the experimental data by Matsuura et al. [33] . 
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Fig. 4. NaCl-UCl 3 phase diagram as calculated in this work, compared to experi- 
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.1.3. NaCl-UCl 3 
The choice of �g AB/X ( Eq. (7) ) which can reproduce a phase di-

gram with great accuracy, together with the Gibbs energy func- 

ions of the rest of the phases in a system, is not unique. Hence,

he mixing enthalpy is a very valuable property to assess experi- 

entally as it provides a direct insight into the enthalpic part of 

he excess Gibbs energy of the liquid solution, and can result in a 

ore physically realistic description. Hence, although a description 

f NaCl-UCl 3 using the quasi-chemical formalism already exists in 

he literature [42] , it was updated in this study to take into account

ixing enthalpy data measured by Matsuura et al. [33] ( Fig. 3 ). 

In addition to the mixing enthalpies, equilibrium data by Sooby 

t al. [43] and Kraus et al. [44] were considered during the opti- 

ization process. The calculated phase diagram is shown in Fig. 4 . 

t is a simple eutectic system, with the eutectic point at X(UCl 3 ) =
.33, T = (793 ± 5) K according to Kraus, and X(UCl 3 ) = (0.34 ±
.02), T = (796 ± 2) K according to Sooby et al. [43] . At X(UCl 3 ) =
.35, T = 796 K, the calculated eutectic point in this study closely 

atches the reported ones. 

.1.4. LiF-ThF 4 -UF 4 
The ternary LiF-ThF 4 -UF 4 phase diagram was experimentally 

xamined by Weaver et al. [45] . In their study, the authors 

ound the UF 4 -ThF 4 binary system to be characterized by a 

olid solution throughout the whole composition range, and four 
5 
olid solutions were reported in the ternary domain: Li 3 (Th,U)F 7 , 

i 7 (Th,U)F 31 , Li(Th,U) 2 F 9 , and Li(Th,U) 4 F 17 . No ternary stoichiomet- 

ic compounds were observed, and three invariant equilibria were 

eported ( Table 4 ). Based on these data, thermodynamic assess- 

ents were carried out by van der Meer et al. [46] , who used a

olynomial formalism for the solid and liquid solutions, and later 

y Beneš et al. [31] , who retained a polynomial formalism for the 

olid solutions but introduced the modified quasi-chemical formal- 

sm for the liquid solutions. 

From the LiF-ThF 4 ( Fig. 1 ) and LiF-UF 4 ( Fig. 2 ) binary descrip-

ions, the solid solution Li 7 (Th,U) 6 F 31 reported by Weaver et al. 

ust in fact correspond to Li(Th,U)F 5 . As remarked by Beneš

t al. [31] , the choice of LiThF 5 over Li 7 Th 6 F 31 does not signifi-

antly alter the liquidus line, and the same can be seen in the 

iF-UF 4 system ( Fig. 2 ). However, the appearance of solid solutions 

oes significantly alter the liquidus surface over the ternary do- 

ain [31] , such that it is worthwhile to revise the ternary descrip- 

ion with the correct solid solution. In doing so, a liquidus projec- 

ion congruent with the description by Weaver et al. [45] could be 

etained, as can be seen in Table 4 and Fig. 5 . 

.2. Density and viscosity models for the pure liquid components 

The coefficients of the volumetric thermal expansion functions 

(T ) optimized for the pure liquid salts and their reference mo- 

ar volume at 298.15 K are given in Table 5 . All were derived in

his work except those for NaCl, which were taken from Robelin 

t al. [13] . The molar activation energies for viscous flow, G 

∗, as

ptimized in this study, are listed in Table 6 . 

.2.1. Density 

The density of LiF has been measured by several authors (see 

able 7 ), who report empirical fits of their data. The fit of the ther-

al expansion coefficient was made based on the empirical equa- 

ion recommended by Janz et al. [48] in a critical literature review, 

s the equations reported by most of the other authors reviewed 

n this work cluster close to it. The calculated density is shown 

n Fig. 6 a, and compared to the empirical equations available in 

he literature, drawn over the experimentally measured tempera- 

ure ranges. Apart from the equation by Porter and Meaker [49] , 

hich seems to underestimate the density, or that of Brown and 

orter [50] , which has a markedly different slope, the empirical 

quations of most authors agree quite well with the empirical 

quation recommended by Janz et al. [48] (derived by Yaffe and 

an Artsdalen [51] ), and thus with the density calculated in this 

ork (solid line, red, Fig. 6 a). 
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Table 4 

Invariant equilibria in the LiF-ThF 4 -UF 4 system reported by Weaver et al. [45] and calculated in this study. 

X(ThF 4 ) X(LiF) X(UF 4 ) T calc / K Equilibrium Solid phases present 

This study (calc.) 

0.213 0.641 0.146 899 Peritectic Li(Th,U) 2 F 9 + Li(Th,U) 4 F 17 + Li(Th,U)F 5 
0.087 0.740 0.173 777 Quasi-peritectic Li(Th,U)F 5 + Li 3 (Th,U)F 7 + LiF 

0.019 0.738 0.243 759 Eutectic Li(Th,U)F 5 + LiF + Li 4 UF 8 
Weaver et al. [45] 

0.180 0.63 0.19 882 Peritectic Li(Th,U) 2 F 9 + Li(Th,U) 4 F 17 + Li(Th,U)F 5 
0.070 0.725 0.205 773 Peritectic Li(Th,U)F 5 + Li 3 (Th,U)F 7 + LiF 

0.015 0.72 0.265 761 Eutectic Li(Th,U)F 5 + LiF + Li 4 UF 8 

Fig. 5. (a) Calculated liquidus projection of the LiF-ThF 4 -UF 4 system. Invariant equilibria are labelled with the temperatures at which they occur. Isotherms are shown every 

25 K. Primary phase fields: (A) (Th,U)F 4 ; (B) Li(Th,U) 4 F 17 ; (C) Li(Th,U) 2 F 9 ; (D) Li(Th,U)F 5 ; (E) Li 3 (Th,U)F 7 ; (F) LiF; (G) Li 4 UF 8 . Li 0 . 775 Th 0 . 1995 U 0 . 0255 F 1 . 675 composition studied 

by Das et al. [47] and modelled in this work (see Section 3.4 ) is marked as . (b) Detail of the LiF-rich corner of the phase diagram, adapted from Weaver et al. [45] , with 

permission from Wiley and Sons. 

Table 5 

Molar Volume at 298.15 K and thermal expansion expressions of the pure molten halides. 

Liquid salt V liquid 
m (298 . 15 K ) / cm 

3 · mol 
−1 α(T ) / K −1 

LiF 12.92 5.7407 ·10 −4 -7.9134 ·10 −8 · T -2.4131 ·10 −1 · T −1 -1.0084 ·T −2 

ThF 4 44.66 9.1509 ·10 −5 + 1.9819 ·10 −8 · T + 9.5286 ·10 −1 · T −1 -0.9999 ·T −2 

UF 4 41.78 1.0155 ·10 −4 + 3.0964 ·10 −8 · T + 1.5016 ·10 −2 · T −1 -0.9997 ·T −2 

NaCl a 29.56 -0.910 ·10 −5 + 2.118 ·10 −7 · T + 17.496 ·10 −2 · T −1 -37.278 ·T −2 

UCl 3 57.41 9.8724 ·10 −5 + 1.5423 ·10 −7 · T + 6.1909 ·10 −2 · T −1 -0.9998 ·T −2 

a Taken from [13]. 

Fig. 6. Calculated densities of the end-members ((a) LiF, (b) actinide halide end-members) compared to empirical fits (lines) and experimental data (symbols) reported in 

the literature. 

6 
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Table 6 

Molar viscous activation energy for pure liquid 

salts. 

Liquid salt G ∗ = A + B · T / J · mol 
−1 

A / J · mol 
−1 

B / J · mol 
−1 

K −1 

LiF 18315.3 18.8078 

ThF 4 69033.9 12.1230 

UF 4 66145.1 6.7963 

NaCl 28296.0 14.1019 

UCl 3 21059.2 32.8274 

Table 7 

Studies of lithium fluoride density. 

Reference Method 

Yaffe and van Artsdalen [51] Archimedean, Submerged bob method 

Brown and Porter [50] Archimedean, quartz spring balance 

Porter and Meaker [49] Archimedean, quartz spring balance 

Hill et al. [52] Archimedean, Pt plummet immersion 

Taniuchi and Toshiharo [53] Archimedean, Pt plummet immersion 

Matiasovsky et al. [54] Archimedean 

Smirnov and Stepanov [55] Maximum bubble pressure, Pt capillary 

Klimenkov et al. [56] Maximum bubble pressure, Ni capillary 

Hara and Ogino [57] Archimedean, Pt plummet immersion 

Chekhovskoi [58] Archimedean, Mo plummet immersion 
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Fig. 7. Calculated viscosities of the pure liquid end-members, compared to empiri- 

cal fits (solid and dashed lines) and experimental data ( , ) reported in the liter- 

ature. 

Table 8 

Molar viscous activation energy for liquid binary mix- 

tures. 

System G 00 
i j 

G 10 
i j 

G 01 
i j 

LiF-ThF 4 A i j 29011.0 9269.1 -13275.4 

B i j 23.5862 7.5359 -10.8 

LiF-UF 4 A i j 24738.7 6254.0 -14161.7 

B i j 20.1127 5.0845 -11.5136 

NaCl-UCl 3 A i j 27157.8 -3734.7 

B i j 22.0795 -3.0363 

A i j in J · mol −1 , B i j in J · mol −1 K −1 . 
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The density of ThF 4 was first measured by Kirshenbaum and 

ahill [59] in 1961, over a rather wide temperature range ranging 

rom 1300 to ∼1650 K, using the suspender sinker method (Mo 

inkers). A few years later Cantor et al. [60] and Hill et al. [52] ,

oth using Pt plummets, made new measurements over a narrower 

emperature range, which show a density ∼2% higher than that re- 

orted earlier. Kirshenbaum and Cahill [59] also examined the den- 

ity of UF 4 over a similar temperature range as ThF 4 , and the data

ere in good agreement with the empirical equation proposed by 

limenkov et al. [56] . Based on the recommendation of van der 

eer and Konings [61] , the density data selected for these two 

alts are those by Kirshenbaum and Cahill ( Fig. 6 b). 

Desyatnik et al. (method of maximum bubble pres- 

ure) [62] and Cho et al. (pycnometric method) [63] measured the 

ensity of UCl 3 , with widely differing results ( Fig. 6 b). Molecular 

ynamics simulations [64–67] align more closely with the results 

f the former authors, so their data were taken as the basis for 

ptimization in this work. As will be seen in Section 3.3 , this 

hoice also works well when computing the molar volume of the 

aCl-UCl 3 binary system. 

.2.2. Viscosity 

Several experimentally derived fits describing the viscosity of 

iF as a function of temperature are found in the literature [68–72] ,

lthough only Ejima et al. [73] and Abe et al. [74] explicitly report 

heir experimental points. Both groups used an oscillating vessel 

iscometer, and their data are in excellent agreement with each 

ther, as is the viscosity computed with the model ( Fig. 7 ). The

greement with the empirical fit derived by Chervinskii et al. [69] , 

ho most likely 1 used the rotational oscillation of a liquid-filled 

ylindrical crucible, is also very good. 

Following the recommendation of Janz et al. [48] , the viscos- 

ty of NaCl was modelled after the empirical fit derived by Mur- 

ulescu and Zuca (oscillating sphere method) [76] based on their 

easurements. The fit derived by Desyatnik et al. (damped rota- 

ional oscillations) [62] , correlates very well with the reference val- 

es. For each of the three actinide halide end-members there is 

nly one study available. Desyatnik et al. [62] studied the viscosity 
1 Original work not available to us, but results summarized in [75] . 

t

7 
f UCl 3 in the range 1128–1278 K. Desyatnik et al. [68] measured 

he viscosity of UF 4 in the range 1324–1428 K. Both studies used 

he method of damped rotational oscillations. Finally, Chervinskii 

t al. [69] measured the viscosity of ThF 4 , probably using the same 

ethod 

2 ). The empirical fits to the data in each of the studies 

ould all be modelled successfully ( Fig. 7 ). 

.3. Density and viscosity models for the binary systems 

Pressure-dependent contributions to the excess Gibbs energy of 

ixing ( Eq. (6) ) needed to be optimized for the NaCl-UCl 3 system 

nly: 

g p 
NaU/Cl 

= (0 . 7038 − 0 . 6819 χNaU/Cl − 0 . 3511 χUNa/Cl ) · (p − p o ) J · mol 
−1

(25) 

he optimized molar activation energies for viscous flow, G 

∗
i j 

 Eq. (24) ), are listed in Table 8 . 

.3.1. Density 

The densities of LiF-ThF 4 mixtures were measured by Brown 

nd Porter [50] and Porter and Meaker [49] using a quartz spring 

alance. Hill et al. [52] also performed measurements using a sim- 

lar method, with a Pt plummet; there is a good correlation be- 

ween the datasets ( Fig. 8 a). All authors observed additivity. The 

deal behavior of the density can be seen clearly when the mo- 

ar volumes are plotted: there is a linear dependence with respect 

o the composition ( Fig. 8 b). The same holds true in LiF-UF 4 mix-

ures, which were also measured by Brown and Porter [50] , as well 
2 Original work was not available to us, but the results were summarized in [75] . 
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Fig. 8. (a) Calculated densities and (b) molar volumes of the binary mixtures compared to empirical equations and experimental data reported in the literature. LiF-UF 4 : 

Klimenkov et al. [56] �, Brown and Porter [50] , Blanke et al. [77] � ; LiF-ThF 4 : Hill et al. [52] �, Brown and Porter [50] �, Porter and Meaker [49] ; NaCl-UCl 3 : Desyatnik 

et al. [62] � , Mochinaga et al. [63] . 

Fig. 9. Excess molar volumes of the binary mixtures: LiF-UF 4 at T = 1073 K, LiF-ThF 4 
at T = 1273 K, NaCl-UCl 3 at T = 1020 K. Ideal behavior (dotted line), is calculated 

using the molar volumes of the end-members from the corresponding study, esti- 

mated from linear fits when not available. Green solid line: NaCl-UCl 3 , this work. 

LiF-UF 4 : Klimenkov et al. [56] �, Brown and Porter [50] , Blanke et al. [77] � ; 

LiF-ThF 4 : Hill et al. [52] �, Brown and Porter [50] �, Porter and Meaker [49] ; 

NaCl-UCl 3 : Desyatnik et al. [62] � , Mochinaga et al. [63] . (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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s Blanke et al (Pt plummet) [77] . Klimenkov et al. [56] , who used

he method of maximum pressure in a gas bubble, found only very 

light positive deviations from ideality in this system. Ideal behav- 

or was retained in this work. 

Fig. 9 shows the excess molar volumes, calculating the ideal 

ehavior (dotted line) from the volumes of the end-members in 

he corresponding study (estimated from linear fits when not 

vailable). The molar volume of NaCl-UCl 3 mixtures, measured by 

ochinaga et al. (pycnometric method) [78] as well as Desyatnik 

t al. (method of maximum bubble pressure) [62] , show a greater 

eviation from ideality than the tetrafluoride-based melts. This had 

o be accounted for by introducing pressure-dependent parameters 

n the excess Gibbs free energy ( Eq. (25) ). This larger deviation 

rom ideality is probably related to a partial loss of ionic charac- 

er and increased covalency in the melt [62] . In other words, the 

ormation of molecular ions probably contributes to the free vol- 

me. There is spectroscopic evidence of such oligomerisation tak- 

ng place in LiCl-UCl 3 melts [79] , and NaCl-UCl 3 behaves similarly 

ccording to MD simulations [64–67] . Incidentally, so do LiF-AnF 4 
An = Th, U) melts [ 20,75,80,81 ], yet the smaller volume of Li + ,
8 
etter suited to occupy interstitial spaces, may explain the differ- 

nce. 

.3.2. Viscosity 

Fig. 10 a shows the isothermal viscosities of the three salt fuel 

ystems at a representative temperature of 1230 K, computed with 

he model described herein and with the experimentally derived 

ts found in the literature, with quite a good agreement. All three 

elts become “polymeric” (there is network formation and short- 

ange ordering) when the actinide halide concentration is high 

nough [ 20,64–67,75,80,81 ], and the increase in viscosity with in- 

reasing actinide content is related to a greater extent of forma- 

ion of associated structures [75] . The tetrafluoride-based melts are 

ore viscous than the trichloride one, as the actinide halide end- 

embers themselves ( Fig. 7 ). This can be attributed to the greater 

onic character of the tetrafluoride melts. In molten salts, cations 

arry anions with them as they diffuse [82–84] . In the tetrafluo- 

ide melts, the average An-F distance is ∼2.32–2.34 Å for An = Th, 

nd ∼2.26–2.28 Å for An = U according to X-ray Absorption spec- 

roscopy (XAS) and MD simulations [85] . In NaCl-UCl 3 , MD sim- 

lations show and average U-Cl distance of around 2.8 Å [65] , in 

ood agreement with X-ray diffraction (XRD) measurements [64] . 

his suggests fluorides are bound more tightly than the chlorides 

round the actinide center to which they are coordinated, con- 

ributing to a greater viscosity. 

Fig. 10 a shows the isomolar viscosities as a function of temper- 

ture, at compositions close to the eutectics in the different sys- 

ems: X(ThF 4 ) = 0.30, X(UF 4 ) = 0.275, and X(UCl 3 ) = 0.30. The

greement is better at higher temperatures. NaCl-UCl 3 has the best 

greement throughout both the isomolar and isothermal sections, 

ince the viscosities of the end-members are closer to each other. 

.4. Density and viscosity models of the LiF-ThF 4 -UF 4 ternary system 

Only one composition has been studied for both den- 

ity and viscosity, corresponding to fresh MSR fuel: 

i 0 . 775 Th 0 . 1995 U 0 . 0255 F 1 . 675 , by Das et al. [47] ( Fig. 5 a, ). The

uthors studied the density over the 843–943 K temperature range 

sing the Archimedean method with a Pt sinker and wire, while 

he viscosity was studied over the range 873–931 K using the 

arallel plate method. The optimized molar activation energies for 

iscous flow, G 

∗
i j 

( Eq. 24 ), are listed in Table 9 . 

The empirical equation for the molar volume of 

i 0 . 775 Th 0 . 1995 U 0 . 0255 F 1 . 675 derived by Das et al. is plotted in Fig. 11

red dotted line). The molar volume falls between that of the 

ure end-members, although there is a large excess compared to 
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Fig. 10. (a) Isothermal (T = 1230) viscosities and (b) isomolar viscosities of the binary mixtures computed with the present thermodynamic models and with empirical fits 

reported in the literature. 

Table 9 

Molar viscous activation energy for the liquid ternary solution 

LiF-ThF 4 -UF 4 . 

System G 00 
ThU 

G 10 
ThU 

G 01 
ThU 

LiF-ThF 4 -UF 4 A ThU -11334638 15800299 

B ThU 723.267 

A in J · mol −1 , B in J · mol −1 K −1 . 

Fig. 11. Molar volume of the Li 0 . 775 Th 0 . 1995 U 0 . 0255 F 1 . 675 melt as determined exper- 

imentally [47] (red line), compared to the calculated (ideal) behavior, the end- 

members, and the ideal behavior predicted for the Li 0 . 775 An 0 . 225 F 1 . 675 (An = ThF 4 , 

UF 4 ) binary mixtures with the present thermodynamic models. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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deal behavior (light green), itself practically identical to the molar 

olume of the Li 0 . 775 Th 0 . 255 F 1 . 675 solution, and slightly higher 

han that of the Li 0 . 775 U 0 . 255 F 1 . 675 solution. Like the LiF-based 

inaries, ThF 4 -UF 4 is expected to form an ideal liquid solution 

the phase diagram can be modelled successfully by treating the 

elt as such [31] . The ternary phase diagram can also be modelled 

uccessfully without any excess ternary terms, see Section 2.1.4 , 

nd it is difficult to explain why the molar volumes of the ternary 

ixture should deviate so much, if at all, from ideality. Thus, for 

he subsequent calculation of the viscosity, an ideal molar volume 

as been retained. For the viscosity computation, only the G 

00 
T hU 

nd G 

10 
T hU 

terms, associated with the Th-U quadruplets, needed 

o be optimized, with good results ( Fig. 12 ). More compositions, 

referably richer in UF 4 , would need to be measured to evaluate 

he robustness of this model. 
9 
. Conclusions 

Building up from the descriptions of the pure end-members, the 

ensity and viscosity of three key binary systems for MSR tech- 

ology have been modelled: LiF-ThF 4 , LiF-UF 4 , and NaCl-UCl 3 . The 

ensity and viscosity of a composition belonging to the LiF-ThF 4 - 

F 4 ternary system, Li 0 . 775 Th 0 . 1995 U 0 . 0255 F 1 . 675 , have been modelled 

s well. All are linked to the corresponding thermodynamic assess- 

ents via the distribution of the quadruplet fractions, and the vis- 

osities further depend on the densities. The agreement between 

he computed values and empirical fits (based on experimental 

ata) is generally very good, although there is a clear need for 

ore data, particularly in the ternary composition space, to fur- 

her validate and re-parametrize the models as needed. The quasi- 

hemical model has become a widely used formalism in the de- 

cription of molten salts, and the number of systems assessed is 

lready substantial [86,87] . Thus, expanding databases of molten 

alt fuels beyond the thermodynamic properties, e.g. with density 

nd viscosity parameters as herein, promises to be a powerful ad- 

ition to the toolbox for MSR development. 

ata availability 

Thermodynamic database file available upon request. 
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