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ABSTRACT

Turbulence and its organization, long conceptualized in terms of “coherent structures,” has resisted clear description. A significant limitation
has been the lack of tools to identify instantaneous, spatially finite structures, while unraveling their superposition. We present a framework
of generalized correlations, which can be used to readily define a variety of correlation measures, aimed at identifying field patterns. Coupled
with Helmholtz-decomposition, this provides a paradigm to identify and disentangle structures. We demonstrate the correlations using
vortex-based canonical flows and then apply them to incompressible, homogeneous, isotropic turbulence. We find that high turbulence
kinetic energy (Ek) regions form compact velocity-jets that are spatially exclusive from high enstrophy (x2) regions that form vorticity-jets
surrounded by swirling velocity. The correlation fields reveal that the energetic structures in turbulence, being invariably jets, are distinct
from those in vortex-based canonical flows, where they can be jet-like as well as swirling. A full Biot–Savart decomposition of the velocity
field shows that the velocity-jets are neither self-induced, nor induced by the interaction of swirling, strong vorticity regions, and are almost
entirely induced, non-locally, by the permeating intermediate range (rms level) vorticity. Velocity-swirls, instead, are a superposition of self-
induced and background-induced velocity. Interestingly, it is the mild intermediate vorticity that dominantly induces the velocity-field every-
where. This suggests that turbulence organization could result from non-local and non-linear field interactions, leading to an emergent
description unlike the notion of a strict structural hierarchy. Our correlation-decomposition framework lends itself readily to the study of
generic vector and scalar fields associated with diverse phenomena.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0075914

I. INTRODUCTION

“Structure” in a field can be defined as a distribution of the prop-
erties of the field in a region, characterized by a small number of
parameters, which can be described (deterministically) in a “simple
way.” For instance, in a velocity field, swirling motion is a kind of
structure, which brings to mind examples such as a tornado, a cyclone,
or a simple bathtub vortex. The concept of structure in flow fields
immediately also invokes the notion of “coherent motion,” which we
interpret as regions of the flow that have a certain spatial pattern (as in
a swirling motion). This idea of structure can also be understood by
considering its opposite, i.e., a structure-less field, which mathemati-
cally may be defined as random. In this context, structure can also be

conceptually related to the idea of information entropy, where a highly
organized structure is easily described using a few parameters and is a
low information entropy state of the underlying field. The Laminar
flow in a pipe, for instance, is a very low (information) entropy flow
state, whereas turbulence fields are the opposite, being a complex tan-
gle of structure and randomness.

Structure in a general field, and, in particular, in a velocity field,
can be the result of (arbitrary) choices in constructing the field and of
the (intrinsic) dynamics of the field. For example, the addition of a
translation or a rotation generates a coherent motion that is not related
to the intrinsic dynamics of the velocity field. The pattern of the field
at infinity can be seen as the result of these arbitrary choices, and it
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can be “removed,” in order to obtain patterns associated with the
(intrinsic) dynamics of the field. In classical Newtonian mechanics,
this is equivalent to observing the motion with respect to the “distant
stars.” The use of correlation and Helmholtz decomposition concepts
allows the generalization of these ideas, which are essential for deci-
phering instrinsic field structures. For instance, the spatial correlation
of a field over a sphere with an infinite radius can be made zero by per-
forming an opposite transformation in the field (e.g., a translation or a
rotation). From a Helmholtz decomposition perspective, this is equiva-
lent to making a transformation in the field such that the generalized
contribution of any region of the infinity-field (far-field contribution
from “large distances”) becomes equal to zero. We apply these techni-
ques to study turbulence, to investigate both the structures that arise in
turbulent flows and the makeup of these structures from a Helmholtz
decomposition perspective.

Turbulent flows have been found to be very rich in structure
across different representational spaces, so much so that turbulence
has been held synonymous to structure.1 In describing velocity field
structures in turbulence, a key idea often used, albeit ill-defined, is that
of the “eddy,” which also refers to coherent regions of swirling motion.
The superposition of eddies (or coherent motion across all scales) has
served as the conceptual background upon which most of turbulence
theory has been built.2,3 How these coherent structures arise across all
scales, and what they look like, however, is not fully known. In this
paper, we are interested in finding out whether the finite-sized spatial
structures comprising turbulence can be identified and isolated in the
vector fields where they are believed to arise. Furthermore, we are
interested in considering instantaneous structures, which are continu-
ously produced and destroyed, and are not the result of an averaging
procedure. According to the conventional “cascade” perspective, these
structures may range from the largest scales that contain most of the
kinetic energy and “drive” the dynamics, to the small scales associated
with the dissipation of kinetic energy. In this context, it should be
noted that the smallest scales are merely a consequence of the turbu-
lence dynamics and are, hence, not dynamically significant in deter-
mining the overall flow.1

There have been various approaches aimed at identifying coher-
ent structures in different contexts that are prevalent in the turbulence
literature. Most widely used are techniques based upon the velocity
gradient tensor ðAij ¼ @ui=@xjÞ and its symmetric (Sij) and skew-
symmetric (Xij) parts. For instance, Hunt et al.

4 proposed velocity-
gradient and pressure based measures to identify streamline patterns
described as “eddies,” “streams,” and “convergence zones.” Jeong and
Hussain5 defined a criterion (called k2) based on the eigenvalues of the
local pressure Hessian, which is related to Sij and Xij. Dubief and
Delcayre6 used the second and third invariants (Q and R) of Aij, origi-
nally used to characterize the topology of point flow patterns,7 and
Haller8 used the strain acceleration tensor along fluid trajectories.
Farge and Pellegrino9 used a wavelet decomposition to identify coher-
ent and incoherent vorticity structures, Hussain10 and Sirovich11 stud-
ied statistically emerging lower dimensional attractors, while others
have extensively studied Lagrangian structures crucial for material
transport.12–14 Non-linear equilibrium solutions have also been classi-
fied as exact coherent structures.15–17 Lozano-Dur�an and Jim�enez18

studied spatio-temporally coherent vortical structures, while Siggia,19

Kerr,20 She, Jackson, and Orszag,21 and Jim�enez et al.22 investigated
the structure of strong vorticity (worms) in incompressible

homogeneous isotropic turbulence, and Moisy and Jim�enez23 quanti-
fied the large-scale spatial distribution of small, localized, intense vor-
ticity worms.

These (and many other) studies and techniques have greatly
informed our understanding of coherent structures in turbulence.
Several of these studies use a “functional decomposition” approach
(e.g., wavelet and spectral decomposition) to study the coherent struc-
tures, their relations and “hierarchy”; e.g., Argoul et al.24 and Alexakis
and Biferale25 address the cascade concept26 using wavelet and spectral
decompositions, respectively. Modal analysis27 see recent reviews,28,29

and lower-order models30 have also been widely used. Recently,
machine learning approaches are also being introduced to “learn” and
reproduce turbulence fields and patterns.31,32 However, when using a
functional decomposition approach, the turbulence fields are separated
into “classes” and this “class perspective” does not represent individual
coherent structures and their relations, occurring in the actual physical
space. Machine learning methods also serve different purposes, viz.
data assimilation, prediction, and aiding computational fluid dynamics
models, but so far they have not been applied to identifying and
extracting individual flow structures.

Many basic concepts associated with coherent structures, like the
existence of a hierarchy of coherent structures (as invoked, for
instance, in the Richardson26 cascade), or the energetic interaction of
eddies33 and eddy breakups, have remained intractable in the physical
space, where these ideas were first envisioned. Part of this disconnect
is due to the lack of tools designed to identify instantaneous spatial
structures, which may be driving these processes. The other issue is
extracting these structures from their obfuscating scale superposition
in order to study their form and dynamics.

To address these issues, we use correlation and Helmholtz-
decomposition concepts, which enable us to identify and extract indi-
vidual flow structures from turbulence fields. In this study, we deal
with incompressible, homogeneous, isotropic turbulence, with a zero
mean velocity; hence, the removal of a velocity pattern associated with
an “artificial frame of reference” is not an issue. We approach the con-
cept of coherent structures with a focus on the following key aspects:

1. Finite structure size—We consider a coherent structure to be a
finite region of spatio-temporal organization, which represents a
unit of coherent motion (e.g., an eddy is a coherent structure in
which the coherent motion is a swirling velocity field). It must,
hence, have a spatial form, that is to say, it cannot be completely
irregular. “Coherence,” in this context, becomes almost synony-
mous to “correlation,” as an ordered spatial structure must com-
prise of a neighborhood of vectors that are strongly correlated
(either positively or negatively).
Here, it becomes important to highlight the distinction from
point-criteria, which are based on the velocity gradient tensor (or
derivatives thereof, like Q, R, etc.), or Fourier/orthogonal decom-
position methods, for reducing structures. Essentially, these
techniques represent two extremes. Point-criteria describe point-
structures, reasoning from the Taylor expansion perspective of
the velocity field in the infinitesimal neighborhood of each point
in the flow field. Therefore, in general, point-criteria may not
identify finite size structures. For example, both the “Q – R”7 and
“k2”

5 criteria identify the flat plate boundary layer as a vortex,
while the k2-criterion can miss the identification of a Burgers
vortex, depending upon its parameters.34,35 Fourier or other
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functional decompositions describe the energetics of space-filling
modes, which serve as proxies for structure. However, a field
containing a single structure like an isolated Burgers vortex, per-
turbs multiple Fourier modes, and the spectra does not reveal
either the location, or the form of the structure being
represented.
Additionally structures, being finite, may not necessarily relate to
the local velocity gradients, as the velocity at a point results from
spatial integrals of the velocity derivatives. The form and location
of a finite-sized field structure, further, do not have an identifi-
able or distinct spectral footprint. Therefore, it is important to
have a framework for structure education where this “finite
aspect” is incorporated a priori, which is what we provide in this
work.

2. Instantaneity—The spatial structures described above exist
instantaneously and are not consequences of averaging proce-
dures. In fact, a structure will have an entire lifecycle, from gen-
eration until destruction (driven by the dynamics of the
Navier–Stokes equations). While ignoring the temporal evolu-
tion of the structures, in this work, we limit ourselves to identify-
ing structures in instantaneous realizations (i.e., snapshots) of
turbulence fields. Hence, we consider only the geometry of struc-
tures and not their kinematics or dynamics.

3. Disentangling structures—Part of the complexity of turbulence
fields comes from the superposition of structures, which makes it
difficult to even define, let alone extract and study, an individual
structure. The reason for this superposition of (velocity field) struc-
tures can be understood from the Biot–Savart law, which gives that
the velocity at each point in space is generated by the spatial inte-
grals of quantities associated with the gradients of the velocity. The
integrals account for both near-field and far-field contributions.
The summative nature of the Biot–Savart law, hence, provides a
paradigm for disentangling the contributions that generate any
given velocity field pattern or structure, as different contributions
may be isolated by employing suitable conditional sampling criteria
on the velocity reconstruction. We use this method to identify
regions of the velocity gradient field, which “generates”—in a
Biot–Savart sense—a particular velocity structure.

The tools developed in this study, namely, a set of generalized cor-
relation measures, along with velocity reconstruction using the
Biot–Savart law, allow us to look at turbulence fields from a different
perspective; for instance, they enable us to identify the structure of high
kinetic energy and high enstrophy regions. Reconstructing the velocity
field using the Biot–Savart law, furthermore, reveals the distribution of
the vorticity contributions in the generation of these structures, and in
the generation of the total velocity field. Note that Biot–Savart decom-
position has been previously used to define local and non-local strain36

and separate local shear-layer contributions to velocity generation.37

However, it has not been used to study field composition at the level
and context of individual coherent structures that arise in turbulence.
Our correlation measures serve an important first step in realizing that,
by aiding unambiguous identification of local coherent regions. This
allows easily separating local and non-local vorticity contributions to the
generation of velocity field structures. The combination of correlation
and decomposition, hence, is what we propose in this work.

Conceptually, this paves the way for studying turbulence as a
dynamical system of interacting structures that arise in its physical

fields, the interplay between which manifests as the dynamics. Our
results also give novel insights into the emergence of flow
organization.

The layout of this paper is as follows:

1. In Sec. II, the concept of generalized correlation is introduced.
Using this, some specific instantaneous correlation measures,
designed to identify simple vector-field structures in flows, are
proposed in Sec. III, together with correlations motivated by the
Biot–Savart law in Sec. IV.

2. In Sec. V, all correlations are tested on several vortex-based
canonical flows, where we focus on the relation between the cor-
relation field features viz-a-vis the flow fields.

3. In Sec. VI, the correlations are applied to incompressible homo-
geneous isotropic turbulence fields. Correlation fields are dis-
cussed and analyzed in the light of the canonical flows examples,
and the differences therein are highlighted, revealing certain fea-
tures of the turbulence structures.

4. In Sec. VII, we focus on individual turbulence structures. Using
the Biot–Savart law, we qualitatively show and quantify the vor-
ticity composition of these structures, and of the total velocity
field; i.e., we decompose the structures and the velocity field
according to their “generation” by different parts of the vorticity
field.

5. We conclude this study in Sec. VIII, describing the Biot–Savart
picture of the emergence of structure and coherence in turbu-
lence, resulting from the application of our tools. Avenues for
expanding this study, together with the general applicability of
our tools to diverse fields, are also discussed.

II. GENERALIZED CORRELATION

Correlation, in its most general form, can be interpreted as the
relation between one region of a phase-space (or a field) with another;
the two regions and their relation being defined based upon certain
rules, when viewed from another phase-space region (the region of
observation). This can be expressed as the relation between
R1ðS1; T 1Þ and R2ðS2; T 2Þ as viewed from R0ðS0; T 0Þ, as illus-
trated in Fig. 1. Here, S denotes a space-set (e.g., a bounded continu-
ous region or a set of points), T denotes a time-set (e.g., a continuous
time interval or a set of time instances), andR denotes a phase-space-
set defined over ðS; T Þ (which could be defined, for example, using
the velocity field or the pressure field). Based upon a set of rules given
by any function w, defined over S1;S2;So; T 1; T 2; T o, the original

FIG. 1. Correlation between phase-space regions R1 and R2, as observed from
phase-space region R0; each region is defined over a space-set S and a time-set
T . Using a function w, these regions are mapped onto a correlation space, produc-
ing a region shown here as C.
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phase-space-sets can be mapped to a correlation-set C, with appropri-
ate dimensions, based upon the definition of w.

The usual definition of the two-point correlation tensor for tur-
bulent flows can be seen as a particular case of this generalized defini-
tion, where the definition, additionally, also involves statistical
(averaging) concepts, with the phase-space-sets being composed of an
ensemble of different realizations, making it a statistical measure. We
first frame the usual definition of the two-point correlation tensor in
the context of this generalized definition. Then, via analogy, we will
define a deterministic two-point correlation, in order to characterize
the structure of individual fields. Note that since the usual definition of
the two-point correlation tensor is a statistical-concept, applied to an
ensemble of different field realizations, it is not necessarily a good rep-
resentation of the structure of each individual field. On the other
hand, the deterministic two-point correlation that we will define con-
tains a (simplified) characterization of the structure of each individual
field.

The usual two-point correlation tensor for turbulent flows is
defined as

Rijðx; r; t;DtÞ ¼ huiðx; tÞujðx þ r; t þ DtÞi; (1)

where x denotes a position, r is the separation between two positions, t
is the time, Dt is the difference between two times, u ¼ ðux; uy; uzÞ is
the velocity at a given position and time, and h�i is ensemble averaging.
In the context of the generalized correlation, this definition can be
framed as

• S1 and S2: spatial regions of interest, containing x and x þ r,
respectively,

• T 1 and T 2: time intervals of interest, containing t and t þ Dt,
respectively,

• R: phase-space-set, composed of the ensemble of velocity fields
defined over S and T . So, R1ðS1; T 1Þ ¼ [nunðS1; T 1Þ and
R2ðS2; T 2Þ ¼ [nunðS2; T 2Þ,

• S0 ¼ S1; T 0 ¼ T 1; R0 ¼ R1,
• w, a function composed of a deterministic part, defined over the
individual velocity fields of the ensemble, un ¼ ðux;n; uy;n; uz;nÞ,
and a statistical part:

– Elements of the deterministic part:

wij;nðx; r; t;DtÞ ¼ ui;nðx; tÞuj;nðx þ r; t þ DtÞ:

– Elements of the statistical part:

wijðx; r; t;DtÞ ¼ hwijðx; r; t; t þ DtÞi;

where h�i denotes ensemble averaging, which is usually a linear
operator (e.g., arithmetic averaging); however, different (non-
linear) operations could also be used, leading to definitions dif-
ferent from the usual two-point two-time correlation tensor.

Therefore, in the context of the generalized definition, it results
that the usual two-point two-time correlation can be defined as
CðR1;R2Þ, whose elements are given by the correlation tensor

Rijðx; r; t;DtÞ ¼ wijðx; r; t;DtÞ: (2)

By considering Dt ¼ 0, i.e., T 1 ¼ T 2, the two-point two-time correla-
tion tensor is reduced to the usual two-point correlation tensor,

Rijðx; r; tÞ ¼ huiðx; tÞujðx þ r; tÞi: (3)

This is a tensor with nine components, which for a generic turbu-
lent flow is a function of x, r, and t. It contains a lot of information
(from a statistical perspective); however, for some turbulent flows, the
information needed for its characterization can be significantly
reduced. In particular, for incompressible homogeneous isotropic tur-
bulence: (i) due to homogeneity, the dependence on x disappears and
(ii) due to isotropy, the dependence on r reduces to a dependence on
the radial distance r ¼ jrj alone. The velocity u can be decomposed
into components parallel (uk) and perpendicular (u?) to r, yielding
two correlation functions: (i) f(r, t) (longitudinal) associated with the
correlation of uk and (ii) g(r, t) (transverse) associated with the corre-
lation of u?. These two correlation functions completely characterize
the usual two-point correlation tensor, and if the turbulence is also sta-
tistically steady, they depend only on r. Finally, a simplified characteri-
zation of the two correlation functions can be given by integral
lengths, obtained by integrating f(r) and g(r) over r. For an incom-
pressible flow, continuity further imposes a relation between f(r) and
g(r) (e.g., see Batchelor38) and the two-point correlation tensor is
completely characterized by f(r) alone, with a single associated integral
length.

The usual two-point correlation is a statistical concept, which
mixes measures of the structure of individual fields with a measure of
the structure of their ensemble. In general, the structure of the ensem-
ble does not represent the structure of individual fields; actually, it can
be completely different. For example, homogeneous isotropic turbu-
lence refers to the ensemble; the individual fields are often far from
being homogeneous and isotropic.2 The characterization of the struc-
ture using the usual two-point correlation, even of individual field real-
izations, only holds statistically (i.e., upon suitable spatial averaging).
We propose a deterministic characterization of the individual (instan-
taneous) fields using a correlation definition similar to the one
employed for the usual two-point correlation, but considering only the
deterministic part of w. This will be supplemented by a simplified char-
acterization of the correlation, using integral measures, which, since
the individual fields are not homogeneous and isotropic, are different
and more elaborate that the usual integral measures for homogeneous
isotropic turbulence. This simplified characterization, even though
incomplete, is more manageable.

We propose CðR1;R2Þ as a definition for the correlation of indi-
vidual (instantaneous) vector fields, which, for the sake of concrete-
ness, is illustrated here for the velocity field. Here, again S1 is the
spatial region of interest containing x, S2 is the spatial region of inter-
est containing x þ r; T 1 ¼ T 2 is the time interval of interest contain-
ing t. The elements of the phase-space-sets are the velocity fields, and
the phase-space-set of observation, R0, is equivalent to R1. The ele-
ments of CðR1;R2Þ are the correlation tensor fields

Rij x; r; tð Þ ¼ wij x; r; tð Þ; (4a)

wij x; r; tð Þ ¼ ui x; tð Þuj x þ r; tð Þ: (4b)

The separation vector r can be represented by a scalar, r ¼ jrj
denoting the separation distance, and a direction. In 3D space, this
direction can be specified by two angles (and with only one angle in
2D), i.e., the azimuthal angle a and the elevation angle b. We can
define the separation vector rab as a vector of length r, which points
along the direction specified by a and b, while being placed at point x.
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Hence, the correlation tensor can be written asRðx; rab; tÞ, which is a
function of seven variables, namely, x; y; z; r; a;b; t, where x, y, and z
are the Cartesian components of x. Since in this work, we limit our-
selves to identifying structures in instantaneous field realizations, for
the remainder of this paper, we will omit the time dependence t. The
correlation tensor can then be expressed in the matrix form as

Rðx;rabÞ¼
uxðxÞuxðxþrabÞ uxðxÞuyðxþrabÞ uxðxÞuzðxþrabÞ
uyðxÞuxðxþrabÞ uyðxÞuyðxþrabÞ uyðxÞuzðxþrabÞ
uzðxÞuxðxþrabÞ uzðxÞuyðxþrabÞ uzðxÞuzðxþrabÞ

264
375:
(5)

This contains a lot of information, which needs to be reduced for
practical reasons. Thus, instead of considering the entireR matrix, we
work with one of its invariants, the trace, which is written as

Riiðx; rabÞ ¼ uiðxÞuiðx þ rabÞ: (6)

This is easier to conceptualize, as the trace is also the dot product
between the velocities at points x and x þ rab;

Riiðx; rabÞ ¼ uðxÞ � uðx þ rabÞ: (7)

A further reduction can be performed by integrating this quantity
along directions specified by rab ¼ reab (where eab is the direction
vector along a and b), to associate an integral measure Labðx;KÞ along
each direction as

Labðx;KÞ ¼
ðK

r¼0
uðxÞ � uðx þ reabÞ dr: (8)

The correlation tensor field is, hence, reduced to a 2D manifold
around each point; i.e., around each point, we have a surface, which
completely characterizes the structure of the field as a function of the ele-
vation and azimuthal angles, as illustrated in Fig. 2. For a given K, its
shape gives an integral measure of how this structure depends on the
direction. For instance, the direction of maximum Lab could be deter-
mined as a function of position; however, even though interesting in
itself, this will not be explored here. Furthermore, this manifold is invari-
ant under translation and rotation of the original coordinate axes, along
with being invariant under reflection (similarly to an axial vector). In

principle, such a manifold can be calculated for any vector field, leading,
for a given K, to a correlation surface for each point in space. Since we
shall utilize numerical datasets, the calculation of the manifold requires
binning the angles a and b into discrete increments. The resolution of
these angles will depend significantly upon the resolution of the data,
where high resolution simulations will be required to accurately describe
even a small subset of angles, along with demanding computational
requirement to calculate the correlation manifold at each point in space.

III. CORRELATION MEASURES FOR VELOCITY
AND VORTICITY FIELDS

For the present study, we perform a final simplification where,
instead of the entire manifold Labðx;KÞ, we represent it by a three-
tuple Lðx;KÞ, along three arbitrary orthogonal directions x, y, z (form-
ing an orthonormal base), which can be summarized as

Lðx;KÞ ¼
Lxðx;KÞ
Lyðx;KÞ
Lzðx;KÞ

264
375; (9)

where

Liðx;KÞ ¼
ðK

r¼�K
uðxÞ � uðx þ reiÞ dr;

where ei 2 e1; e2; e3f g represents the three spatial directions. Note
that this three-tuple, being a simplification of the manifold, is also
invariant to rotation, translation and reflection. Hence, L at each point
x depends only on the choice of the arbitrary orthogonal bases used to
“sample” the manifold.

Furthermore, L can be expected to yield large absolute values at
points x that are surrounded by large regions in which (i) the local
flow streamlines are well-aligned (such that the directions of uðxÞ and
uðx þ rÞ are similar) and (ii) the magnitude of these vectors is high. The
definition of L, therefore, provides a combined measure of the organiza-
tion and size of the identified structure and of the magnitude of the field
in that region. In the limit K! 0; jLj ! Ek, but for all K > 0, L is a
non-local measure of structure and, therefore, distinct from Ek, which is
a point-criterion. Finite K values weigh in structure size in the correla-
tion measure, and a very small field region with a high magnitude and a
high structural organization will not yield large absolute values of L. A
separate consideration of the size of the structure could be achieved by
analyzing the influence of K on L. For “large” values of K, structures of
all sizes can contribute to L, with the larger ones being associated with
larger absolute values of L; hence, the analysis of the variation of L with
K allows to separate the effect of the size from the structural organization
and field magnitude effects. Moreover, in the limit K!1, L might
also be seen as a kind of “local” integral lengthscale.

The definition of L here does not include an implicit normaliza-
tion and is sensitive to both the extent of spatial organization and the
field magnitude. A normalized (and nondimensional) L could be
achieved by dividing Liðx;KÞ by the integral of Ek along the ei direc-
tion, within the limits �K < r < K. This would allow identifying
regions with structural organization alone, while disregarding the field
magnitude. These two aspects could also be explicitly decoupled. For
instance, a measure L̂ could be constructed, which operates on the
locally normalized velocity field ûðxÞ ¼ uðxÞ=juðxÞj. Such a measure
can be used to focus purely on flow organization. These examples are

FIG. 2. A correlation surface around point x, defined by the measure Lab found by
integratingRiiðx; rabÞ up to distance K, along a direction specified by the angles a
(azimuth) and b (elevation).
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illustrative of how the correlations can be easily modified for particular
applications, although we do not explore these possibilities here.

Another important aspect is the choice of K. We demonstrate
the influence of K using canonical flows in Sec. V. Furthermore, in
Sec. VIC, we perform a limited study to show that, for homogeneous,
isotropic turbulence, the Taylor microscale is a good benchmark value
for K.

A different correlation measure Ls (for L-symmetric) is defined
using the dot product between velocity pairs equidistant from x, sym-
metrically, along a given direction, given as

Lsiðx;KÞ ¼
ðK

r¼0
uðx � reiÞ � uðx þ reiÞ dr: (10)

This measure is also expected to yield high values when the flow
streamlines are parallel (or anti-parallel) in the K-neighborhood of x,
and when the magnitude of the vectors is high. Moreover, this mea-
sure will be more sensitive to the larger symmetries and anti-
symmetries in the field. While L and Ls will in general be sensitive to
different underlying flow patterns, in special cases like well-aligned
streamlines, both correlations can be expected to yield high values.

Similarly, we define correlation measures Gðx;KÞ and Gsðx;KÞ
for the vorticity field x ¼ r� u, which by analogy are given as

Giðx;KÞ ¼
ðK

r¼�K
xðxÞ � xðx þ reiÞ dr (11)

and

Gs
iðx;KÞ ¼

ðK

r¼0
xðx � reiÞ � xðx þ reiÞ dr: (12)

The correlation measureG is expected to yield large absolute val-
ues at points x that are surrounded by large regions in which (i) the
vorticity streamlines (i.e., streamlines of the vorticity field) are well-
aligned and (ii) the magnitude of the vorticity is high. The correlation
measure Gs is the vorticity field equivalent of Ls and is expected to be
more sensitive to the symmetries and anti-symmetries in the vorticity
field, along with being sensitive to the vorticity magnitude. For sim-
plicity of language, here onward we will refer to correlation measures
as correlations.

Note that, in general, structures in the velocity and vorticity fields
can be very different, with very different sizes and magnitudes; hence,
the concept of “large regions” and “large values” is relative and needs
to be interpreted in the individual context of the different correlation
measures. In homogeneous isotropic turbulence, regions of high vor-
ticity magnitude are related to the smaller scales of turbulence; they
correspond to the long tails of the statistical distribution of the vortic-
ity (i.e., x� x0 where x0 ¼ hx2i1=2) and occur intermittently. The L
(and Ls) and G (and Gs) correlations give a separate (simplified) char-
acterization of the structure of the individual (instantaneous) velocity
and vorticity fields.

These correlations consider the velocity and vorticity fields sepa-
rately; however, other correlations can be defined, which use both
these fields, exploiting the relation between the velocity and vorticity.
Particularly, the velocity field can be reconstructed from the vorticity
field using the Biot–Savart law. This serves as an important tool to
identify, as well as disentangle, structures, and is briefly described
below.

IV. BIOT–SAVART RECONSTRUCTION
AND ASSOCIATED CORRELATIONS
A. Biot–Savart reconstruction

We start with the Helmholtz decomposition, which states that a
sufficiently smooth (twice continuously differentiable) vector field,
defined on a bounded or an unbounded domain, can be uniquely
decomposed into three components: (i) an irrotational vector field D,
(ii) a solenoidal vector field C, and (iii) a harmonic vector field B.
Applied to the velocity field u, this can be written as

u ¼ Dþ Cþ B; (13)

where

D ¼ r/; (14a)

C ¼ r� u; (14b)

B ¼ rw; (14c)

and

r2/ ¼ r � u; (15a)

r2u ¼ �r� u ¼ �x; (15b)

r2w ¼ 0: (15c)

In a bounded domain with a volume V and a bounding surface S,
the three components can be written as a generalized Biot–Savart law
(see, for instance, Wu et al.39),

D ¼ 1
4p

ð
V

r � u
jrj3

dV 0; (16)

C ¼ 1
4p

ð
V

x� r

jrj3
dV 0; (17)

B ¼ � 1
4p

ð
S

n � uð Þrþ n� uð Þ � r

jrj3
dS0

¼ � 1
4p

ð
S

n � rð Þuþ n� rð Þ � u

jrj3
dS0; (18)

where r is the position vector, from a point in the volume V (or the
surface S) to the point x where the integrals are being evaluated. The
integrals over the volume V can be considered the “near-field” contri-
bution, whereas the surface integral over the bounding surface S can
be considered the “far-field” contribution. Any region within the
domain has a bounding surface that separates it from the rest of the
domain. Therefore, the integral over this bounding surface can be
seen, representing the sum of the contributions of (i) the integral over
the volume surrounding the region and (ii) the integral over the
bounding surface of the whole domain.

In an unbounded (infinite) domain, the Helmholtz decomposi-
tion reduces to

u ¼ Dþ C; (19)

provided that B goes to zero when jrj goes to infinity. This happens if
the distance over which the velocity field is correlated along the surface
grows slower than jrj when jrj goes to infinity.

This can be illustrated by considering an integral correlation
measure La defined on the surface of a sphere, similarly to what was
done for 3D, which is given as
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La xs;Kð Þ ¼
ðK

rs¼0
uðxsÞ � uðxs þ rseaÞ drs; (20)

where xs is a point on the surface of the sphere and rs ¼ rsea denotes
the separation from xs on the surface of the sphere (ea is the direction
of the unit-vector along the angle a on the surface; rs is the distance
from xs on the surface along the angle a). Since this calculation is con-
fined to the surface, the correlation around each point x is simply a
function of an angle a and an integration length K, measured along
the direction (on the surface) specified by a. In the Helmholtz decom-
position, the contribution of the boundary to the velocity field (i.e., the
contribution of B to u) goes to zero if

lim
jrj!1

La xs;Kð Þ
jrj ¼ 0 (21)

for any x, a, and K < pjrj (see, for example, Phillips40). For an infinite
domain, the contribution of B to the velocity field could be the result
of an “organized motion over an infinite distance,” which can be seen
as the result of (arbitrary) choices in constructing the field (e.g., the
choice of a particular frame of reference). This arbitrary artificial
coherent motion, which is the “extrinsic motion” can be removed by
making a transformation in the velocity field such that the condition
given by Eq. (21) becomes true for any x, a, and K < pjrj; this condi-
tion will result in the integrals given by Eq. (18) becoming equal to
zero for any surface S in the sphere, when the radius of the sphere goes
to infinity.

When doing turbulent flow simulations with periodic boundary
conditions, any arbitrary artificial coherent motion can be removed by
not considering B, provided that the domain is large enough to take
into account any relevant “intrinsic motion”; i.e., provided that the
domain is “significantly” larger than the distance over which the veloc-
ity field is correlated; this requires that the domain needs to be signifi-
cantly larger than the integral length scale of the turbulence, which is
our case. If this happens, for jrj larger than half the domain size, the
contribution of B to the velocity approaches a constant, which can be
made zero by neglecting B (which is equivalent to “choosing the
appropriate frame of reference”). Actually, in our case, as usually true
for turbulence simulations in triperiodic domains, this constant is
already zero, since the mean velocity is equal to zero; as it will be
shown, in this case C [i.e., Eq. (17)] gives a good approximation of u
(since we deal with an incompressible flow, D ¼ 0) for jrj approach-
ing the domain size.

With these considerations, the generalized Helmholtz decompo-
sition reduces to the simplified Biot–Savart law, applicable for incom-
pressible flows over periodic (or infinite) domains, which is given as

uðxÞ ¼ 1
4p

ð
V

x� r

jrj3
dV 0: (22)

The Biot–Savart law provides a way to disentangle flow structures
by isolating the contributions from different vorticity regions to a local
velocity structure. For instance, local and non-local vorticity contribu-
tions can be separated using this paradigm, or the vorticity field can be
conditionally sampled to identify the contribution of different vorticity
levels in generating velocity field structures.

Note that, even though far-field vorticity contribution, i.e., B,
may be absent, the volumetric region can also be split into an isolated

local region (VL), surrounded by the non-local region (VNL), which
essentially behaves as a far-field for the region VL. This leads to the
consequence that, if the local region has negligible vorticity within VL,
while the non-local region VNL induces a velocity field within VL, then
this velocity field must be a potential flow. This means that the local
flow in VL can be described by the gradient of a harmonic function w,
i.e., uL ¼ rw, whiler2w ¼ 0. The non-local contributions from VNL

cannot generate vorticity within the local region VL (as illustrated in
Fig. 3). A last feature to note regarding the Biot–Savart law is the rapid
decay (of 1=r2 over a distance r) of the vorticity contribution, which
means that a small, isolated, vorticity region cannot extend its influ-
ence over a large distance beyond its immediate neighborhood.

B. Correlations related to the Biot–Savart law

Ideas associated with the Biot–Savart law can be used to define
correlation measures in order to identify, extract, and disentangle
structures associated with the relation between the velocity and vortic-
ity fields. In regions of strong vorticity associated with swirling-flow in
the orthogonal plane, the Lamb vector, i.e., x� u, yields high values.
However, this is again a local quantity. We propose a correlation,
which utilizes this idea and extends it to a non-local form, where the
vorticity at point x is correlated with the velocity at point x þ ri, lead-
ing to a three-tuple Hðx;KÞ, which, similarly to Lðx;KÞ, can be writ-
ten as follows:

Hiðx;KÞ ¼
ðK

r¼�K

xðxÞ � rei
jrj

� �
� uðx þ reiÞ dr: (23)

The above correlation has a flavor of the Biot–Savart law, and it
allows correlating the contribution of the local vorticity xðxÞ with the
global vorticity contribution to its neighboring velocity field, since
the velocity uðx þ riÞ can be seen as an integral result of the global
vorticity field. Note that, with the above definition, Hðx;KÞ will tend
to be orthogonal to xðxÞ, as Hi (i.e., H along the i�direction) will have
a high magnitude when the vorticity is large and orthogonal to the
i�direction.

The strongest flow generated by vorticity at a point, in a
Biot–Savart sense, is in the plane orthogonal to the vorticity vector;
hence, a more natural correlation is defined, which takes into account
this fact. This is done by correlating the vorticity along a particular
direction, say x, to the flow in the orthogonal plane, i.e., yz. At each

FIG. 3. Schematic of a Biot–Savart reconstruction of the velocity field in a region
VL, from three isolated non-local regions V1, V2, and V3. When the region VL has
negligible vorticity of its own, the flow generated within the region by non-local vor-
ticity contributions is a potential flow, which can be written as the gradient of a har-
monic function w.
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point, a velocity field is generated using the x-vorticity (i.e., xx) in the
orthogonal yz-plane within a circular region (along perimeters of
circles of radius 0 < ryz � K). This local velocity field is calculated
with a simplification of the Biot–Savart law, by taking the cross prod-
uct of the vorticity with unit vectors in the orthogonal plane
(ryz=jryzj), as done for the H correlation. This is illustrated in Fig. 4,
where the xx vorticity component generates the velocity field shown
in blue (solid lines), while the real velocity field generated from the
global vorticity contributions is shown in red (dashed lines). The Hp

correlation (for H�planar) is calculated as the integral of the dot
product between the vorticity-generated velocity vectors (blue) and
the real velocity (red), over rings of radius 0 < ryz < K. Since the
length of the rings increases proportionally with the radius r, the inte-
gral over each ring is further divided by r (i.e., jryzj), to give an average
correlation at a distance r, though other definitions can be used. This
correlation is given by

Hp
xðx;KÞ ¼

ðK

0

1
jryzj

þ
L
dl

xxðxÞ̂i � ryz
jryzj

 !
� uðx þ ryzÞ dryz; (24)

where î is the unit vector in the x-direction. Hp
y and Hp

z are defined in
a similar way. Evidently, this correlation is more computationally
expensive to calculate than H, as three planar regions need to be con-
sidered for each point in space. This requirement can be relaxed by
sampling the rings 0 < r � K with a chosen frequency, i.e., using
every nth ring such that r 2 n; 2n; 3n;…f g.

Hpðx;KÞ can be seen as an area-integral correlation-measure of
the planar (2D) version of C in Eq. (17) (see, e.g., Wu et al.39) with u.
In other words, it correlates the contribution of xx (the vorticity at x)
to C at x þ r with u at x þ r; i.e., it correlates the value of uðx þ rÞ
due to xxðxÞ with the actual value of uðx þ rÞ. As shown in Fig. 4(a),
when the local flow is swirling and is induced by the vorticity at its
core, a strong correlation will be found. Meanwhile, a strong vorticity
region immersed in a coherent uniform flow, Fig. 4(b) (or a disorga-
nized flow), will give a weak correlation. This is because the “total”
velocity field in the region is dominated by an “externally induced”
flow (as illustrated in Fig. 3), which does not resemble the “self-
induced” swirling motion due to the vorticity. This also highlights a
simple scenario where velocity-gradient based criteria, in general, will

be unable to identify coherent velocity patterns, while being able to
find structures in the gradient fields.

Contrary to, e.g., Labðx;KÞ, which is a line-integral correlation-
measure over a distance K, Hpðx;KÞ is an area-integral correlation-
measure over a disk of radius K. Similarly, different combinations of
the 2D and 3D versions of C, and line, area and volume integral
correlation-measures can also be constructed. This may, further, be
extended by defining correlations based upon locally defined coordi-
nate axes that may align with the vorticity or strain eigenvectors, etc.
Of course, any other vector or tensor fields of interest may also be
employed. For example, correlations involving force density fields like
the pressure-gradient and viscous stress could be of interest for study-
ing turbulence as well, but we do not explore these in this work.

V. CORRELATIONS APPLIED TO SIMPLIFIED
CANONICAL FLOWS

We begin by testing the correlations on 1D, 2D, and 3D flow
fields resulting from the interaction of canonical vortices. This serves
two purposes. First, it allows us to study features of the correlation
measures themselves on fields that are well-defined. Second, the fea-
tures found from canonical flows form the backdrop against which we
shall study the correlations applied to turbulence in Sec. VA.

It has been proposed in the literature that structures in turbu-
lence could be understood using the interaction of canonical vortices
as a basis. For example, Hunt et al.4 proposed that coherent flow pat-
terns like streams and “convergent zones” could emerge in turbulence
due to a distribution of eddies. While these structures indeed arise in
flow fields resulting from the interaction of canonical vortices, whether
turbulence gives rise to such organization remains to be seen. Our
tools provide a way to test this idea.

A. One-dimensional fields

We construct a 1D velocity field along a line, starting with Oseen
vortices, which can be defined by a tangential velocity field and a vor-
ticity field, given as

uhðrÞ ¼
C
2pr

1� exp � r2

4�t

� �� �
; (25)

xzðrÞ ¼
C

4p�t
exp � r2

4�t

� �
; (26)

where r is the radial distance from the vortex center, C is the circula-
tion, � is the fluid kinematic viscosity, and t is the time. The Oseen vor-
tex comprises a small core region in (near) solid body rotation, within
which the velocity increases radially as uh / r to its maximum value.
Beyond this, there exists a (near) potential flow region where xz � 0
and uh / 1=r. We add a noise f to the velocity field given by Eq. (25),
to generate a “structure immersed in noise.” The vortex has a certain
“reach,” which depends on the amplitude of f, and is defined as the dis-
tance beyond which f > uh. The vorticity of the Oseen vortex is calcu-
lated in Cartesian coordinates as xz ¼ r� u ¼ @uy=@x � @ux=@y,
and not using Eq. (26), due to the addition of the noise to the velocity
field.

We generate a nondimensional, periodic velocity field of length
Nx ¼ 500 by placing two counter-rotating Oseen vortices at x¼ 150
and x¼ 350 and consider the velocity along the x� axis to get the 1D
velocity field uy. The other parameters are chosen as C ¼ 10, � ¼ 2:0,

FIG. 4. Schematic of the Hp correlation, which gives (a) high values when the real
velocity (red lines) is correlated with the Biot–Savart velocity (blue lines) generated
by x within a radius K and (b) low values when these two velocity patterns are
different.
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t¼ 2.0, and f is scaled to 1% of juyjmax. Figure 5(a) shows uy, which
contains a pattern of symmetries and anti-symmetries. It consists of a
“larger structure” (approximately in the range 50 < x < 450), which
is symmetric, except for the noise, with respect to its middle
(x � 250). This structure contains the following sub-structures: (i)
two Oseen velocity patterns around the center of each vortex (within
approximately 100 < x < 200 and 300 < x < 400) and (ii) an almost
uniform velocity region (roughly 200 < x < 300) due to the interac-
tion between the two vortices, which is reminiscent of the streams pro-
posed by Hunt et al.4

Figures 5(b) and 5(c) show L and Ls, respectively (which, here,
only have a x-component, i.e., Lx and Lsx). A few features of the corre-
lation profiles point at the nature of the correlation definitions, as well
as the importance of the choice of K. For K ¼ 250, Lx is found to have
a shape similar to the function itself. This follows from Lx involving
products between (i) the value of the function at each point and (ii)
the integral of the function between �K < rx < K. Hence, if either of
the two is zero, Lx becomes zero. Lx will have significant values where
the function itself has significant values, and the structure of the func-
tion (i.e., its symmetries and/or anti-symmetries) does not make its
integral small. However, the addition of the noise term breaks these
symmetries here, such that the integral of the function becomes finite,
and Lx, hence, has the same shape as the function itself for K ¼ 250
(this is also true for Gx).

Lsx for K ¼ 250, in Fig. 5(c), has completely different features
than Lx. It has a central peak around x¼ 250, exactly between the two
counter-rotating vortices (although uy is small there), associated with
the symmetry of the larger structure since the velocity field is mirrored

across this point (except f values). At the core of the two vortices
(x¼ 150 and x¼ 350), where Lx becomes zero, Lsx shows large negative
peaks due to the anti-symmetry of the “local sub-structures,” i.e., the
Oseen vortices. Lsx in the region of approximately x< 100 and x> 400
is a repetition of the central Lsx profile (between 150 < x < 350) due
to the periodicity of uy and the value of K spanning the complete field.

For K ¼ 35 (or slightly different values), which roughly corre-
sponds to the size of the individual vortices, Lx and Lsx show some sim-
ilarities and differences. At the vortex cores, where uy � 0; Lx � 0,
while Lsx yields large negative peaks because of the anti-correlated
velocity across the core region. In the potential flow regions of the two
vortices and the uniform, streaming, flow region between the vortices,
the general shape of the two correlations is similar, with both Lx and
Lsx yielding positive correlation values. Here, we highlight a crucial
aspect that corresponding to regions of swirling flow (or eddies), the
patterns in L and Ls are distinct, while in regions of uniform flow, they
are similar. This point will be of significance in the later discussion of
turbulence fields. Furthermore, since K is relatively small in this case,
Lsx no longer identifies the larger structure, which has a lengthscale
larger than K. This shows the importance of the choice of K in identi-
fying larger or smaller symmetries and anti-symmetries of vector
fields. We shall also discuss the effect of K in the context of turbulence
in Sec. VIC.

Figure 5(d) shows Gx, i.e., the vorticity field equivalent of Lx. For
K ¼ 250, Gx has a shape similar to xz, but with a change in sign of the
peak values (since the integral of xz happens to be negative in the cur-
rent example). High values of the correlation are found corresponding
to the vortex cores, the only regions where xz is large and uniform.

FIG. 5. (a) A one-dimensional velocity field comprising a larger structure composed of two smaller sub-structures (i.e., two counter-rotating Oseen vortices, with their centers
marked with circles). Correlations calculated for this field are shown in panels (b) Lx, (c) Lsx , (d) Gx, (e) Gs

x , and (f) Hx, for integration lengths of K ¼ 250 and K ¼ 35. Each
field w is normalized by jwjmax, to make the quantities comparable.
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For K ¼ 35, Gx retains the same relative shape of the peaks at the vor-
tex cores, where the vorticity is high and symmetric, while both peaks
are now positive.

Gs
x correlation in Fig. 5(e) has a very similar behavior to Lsx . It

yields a large negative peak at the middle of the larger structure, associ-
ated with the anti-symmetry of the vorticity around this point (while
Lsx has a large positive peak, associated with the symmetry of the veloc-
ity field). It also shows smaller positive peaks at the core of the vortices
(x¼ 150 and x¼ 350), around which the vorticity is high and sym-
metric (while Lsx has a negative peak, associated the anti-symmetry of
the velocity field around the vortex cores). The Gs

x profile is also
repeated due to the periodicity of the velocity field and the large inte-
gration length, similarly to the Lsx profile in Fig. 5(c). For K ¼ 35, Gs

x
has a sharper profile at the vortex core (in comparison to Gx), since
the vorticity values around the core are perfectly symmetric (apart
from the noise values), and this symmetry decays faster with distance
from the core than the vorticity itself.

Finally, Fig. 5(f) shows Hx, whose shape is found to be almost
insensitive to the choice of K (while its magnitude increases with
higher K). This can be understood from the construction of the corre-
lation, which, in a Biot–Savart sense, is designed to identify regions
where the angular velocity aligns with the vorticity. In this example,
Hx yields large positive values in the core region of the two vortices,
since the neighboring flow is generated by the vorticity at the cores.
The independence of the choice of K is because the influence of the
local vorticity at a point x0 rapidly decays over distance such that at
larger K values, the velocity field uyðx0 6 KÞ is not influenced by
xzðx0Þ. The uniform flow between the two vortices in this example is
induced by the sum of the individual vortex contributions and is,
hence, “externally generated,” which is why Hx remains zero in the
middle of the two structures. The results, for a “linear” version of the
Hp

x correlation (instead of its planar construction), are identical and
are not additionally shown here.

Note that it is not only the length of integration K, but also the
lower and upper limits of integration which determine the symmetries
and structures being identified. For instance, Eq. (8) can be adapted to
find non-local structures around x in the range K1 < r < K2. For
example, the Ls correlation can be redefined as

Lsiðx;K1;K2Þ ¼
ðK2

r¼K1

uðx � reiÞ � uðx þ reiÞ dr: (27)

Figure 6 shows Ls withK1 ¼ 75 andK2 ¼ 125. These integration lim-
its are such that, when x0 corresponds to the middle of the larger struc-
ture in the velocity field (i.e., at x¼ 250), K1 and K2 span across most
of the vortex regions. The Lsx profile, consequently, shows a strong
peak in between the two vortices, resulting from the larger structure
comprising the two counter-rotating vortices. These particular limits
of integration do not identify any significant larger symmetries, as
observed from other x locations.

B. Two-dimensional Taylor–Green flow

We next test the correlations on a two-dimensional
Taylor–Green flow field, which comprises a set of counter-rotating
vortices. Interaction between vortex-pairs generates regions of the uni-
direction flow, separated by regions of swirling flow. A simplified

Taylor–Green flow pattern can be generated by creating a velocity field
as follows:

uxðx; yÞ ¼ sin ðxÞ cos ðyÞ; (28a)

uyðx; yÞ ¼ �cos ðxÞ sin ðyÞ: (28b)

We generate a velocity field within x; yf g 2 ½0; 2p� (arbitrary
units), adding uniform noise of amplitude 1% of jujmax (which is
scaled to unity). The vorticity field, xz, is calculated using central dif-
ferences. Figures 7(a) and 7(b) show kinetic energy (Ek) and vorticity
(xz) with the flow streamlines, respectively, showing the counter-
rotating vortices. The velocity field consists of structures which arise,
reminiscent of the manner described by Hunt et al.,4 as follows—(i)
Eddies: four large vortices with core regions of high xz and low Ek, (ii)
Streams: regions of well-aligned jet-like velocity, with high Ek and low
xz, resulting from the interaction of large vortices, and (iii) convergent
zone: a stagnation flow in the center with low Ek and low xz, also due
to the interaction between the vortices.

The correlations, calculated for K ¼ p=2, yield two-tuple fields
(i.e., values along the x and y directions), except Hp, which yields only
a single valued field. Correlation magnitudes, normalized by the maxi-
mum (i.e., jwj=jwjmax), are shown in Figs. 7(c)–7(h). Figure 7(c) shows
L, which has the highest magnitude in the streaming regions, which
have both a high Ek and a high degree of local vector alignment. At the
vortex core regions, L yields low values. It should be noted that for this
velocity pattern, the regions of highest L are separated from regions of
high vorticity.

Figure 7(d) shows Ls, which has a very different structure than L.
Regions of highest Ls are found at the vortex cores (where L is low),
around which there is anti-correlated swirling velocity. Furthermore,
high Ls is also found in the streaming regions (like high L), where the
flow has a symmetry associated with jet-like, parallel streamlines.
Regions of high Ls are separated by thin regions where Ls goes to zero,
due to the larger symmetry in the velocity field. Note that there is also
a region of high Ls coinciding with the stagnation flow region, due to
the velocity anti-symmetry across the stagnation point.

FIG. 6. (a) One-dimensional velocity profile, as shown in Fig. 5 and (b) Lsx correla-
tion integrated from K1 ¼ 75 to K2 ¼ 125 shows how non-local symmetries can
be identified by varying the limits of integration.
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Figure 7(e) shows G, which yields high values in the vortex core
regions where the vorticity is uniform and high. In the regions of jet-
like flow between vortex-pairs, G has values very close to zero, which
is due to the negligible vorticity in these regions. Figure 7(f) shows Gs,
which has a very different structure than G, since it identifies larger
symmetries and anti-symmetries in the vorticity field. First, diffused
regions of high Gs are found corresponding to the vortex cores, simi-
larly to G (but smaller in size), since the vorticity across the cores is

symmetric. In between counter-rotating vortex-pairs, there appear
slightly elongated regions of high Gs due to the anti-symmetry of the
vorticity along lines connecting the centers of counter-rotating vortex-
pairs. Note that at the center, there exists also a strong symmetry in
the vorticity field along diagonals; however, this is not reflected in Gs,
which is constructed along the x and y directions where the vorticity is
zero. This indicates that the particular alignment of the structures can
lead to different values of the correlation, depending on the directions

FIG. 7. A Taylor–Green velocity field. Panel (a) shows the kinetic energy Ek field and panel (b) the vorticity field xz, along with the flow streamlines (in black, with thickness
varying with the velocity magnitude). Normalized correlation field amplitudes (w=jwjmax), obtained upon integrating the correlations over K ¼ p=2, are shown in (c) L, (d) Ls,
(e) G, (f) Gs, (g) H, and (h) Hp.
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chosen for calculating the correlations. However, in homogeneous iso-
tropic turbulence, with an arbitrary distribution of structures, this
effect will not appear in a statistical sense.

Finally, Figs. 7(g) and 7(h) show H and Hp, respectively. Both
correlations have a pattern that closely resembles G, with large values
at the vortex core regions, since the vortices are generated by strong
vorticity values at the vortex cores. Regions of jet-like flow, which are
externally induced by the interaction between the velocity fields of
adjacent vortices, yield negligible values of jHj and jHpj.

C. Three-dimensional Burgers vortices

As a final canonical flows example, we now consider a three-
dimensional velocity field generated by superposing Burgers vortices.
Here, we mainly intend to test whether the correlations along a fixed
bases can identify arbitrary aligned structures adequately. The Burgers
vortex is an exact solution of the Navier–Stokes equation, consisting of
a radial velocity component along with a tangential velocity, and can
be constructed as

uz ¼ az; (29a)

ur ¼ �
ar
2
; (29b)

uh ¼
C
2pr

1� exp � ar2

4�

� �� �
; (29c)

where a represents the rate of strain, C is the circulation, and � is the
kinematic viscosity. Here, uz, ur, and uh give velocity components in
the axial, radial, and tangential directions, which are converted from
cylindrical to Cartesian coordinates. We limit the vortex in space to a
spherical region by multiplying the velocity field with a three-
dimensional Gaussian function G,

Gðx; y; zÞ ¼ exp � x2 þ y2 þ z2

r2

� �� �
; (30)

where x, y, and z are measured from the vortex core. This suppresses
the strain regions generated by each vortex, far away from its center,
such that the velocity field comprises primarily of two swirling
vortices. The swirling-flow of the Burgers vortex resembles the one-
dimensional Oseen vortex (as was described in Sec. VA). A low ampli-
tude uniform noise, f, is added to the final velocity field. Finally, the
vortices are also rotated at arbitrary azimuthal and elevation angles
ða; bÞ, to change the orientation of the velocity field symmetries with
respect to the orthogonal bases along which the correlations are
calculated.

We generate two vortices, on a grid of 1003, with a¼ 0.1,
� ¼ 0:025, C ¼ 15, and f ¼ 0:004 (i.e., 	1% of the maximum
velocity magnitude), all quantities being presented in arbitrary
units, since we simply intend to generate a velocity field with a
Burgers vortex structure. The resulting vortex has a core region
with solid body rotation up to five units (grid cells) from its axis,
and the velocity magnitude in the potential flow region (with swirl-
ing motion) decays to approximately 40% and 10% of the maxi-
mum velocity magnitude within 15 and 30 grid cells from the axis,
respectively. Both vortices are multiplied with the Gaussian func-
tion G, generated with r ¼ 5. The vortices are rotated at arbitrary
azimuthal and elevation angles of ð0:6; 0:25Þ and ð�0:45;�0:3Þ,
measured in radians (while results were similar for several other

random choices). These vortices are then superposed by adding
their velocity fields, with their centers placed at (40, 40, 40) and
(70, 70, 70). The resulting velocity field is shown in Fig. 8. Since
the vortices are placed close to each other, their velocity fields
begin to entangle and interact. The larger structure of the Burgers
vortex-pair, however, is distinct from the Oseen vortex-pair in Sec.
VA, and it does not have the same kind of symmetries and anti-
symmetries. Figure 9 shows the amplitude of all the correlations,
integrated over a length of K ¼ 12, which is large enough to
encompass most of the structure of each vortex (while results are
qualitatively similar for 8 < K < 16). The correlation fields have
features that are analogous to the one-dimensional correlations of
the Oseen vortex-pair (see Fig. 5). Figures 9(a) and 9(b) show that
both L and Ls identify the swirling-flow region well, yielding high
values where the streamlines are locally well-aligned and parallel.
However, at the vortex cores Ls is large due to the anti-symmetry
of the vortex, whereas L is zero due to the zero core velocity.

Panels (c) and (d) show the G and Gs correlations, both of which
yield thin, elongated correlation profiles aligned with the axes of the
vortices, while the Gs correlation is sharper. This again reflects that, at
the core of the vortices, the vorticity vectors are well-aligned. Panels
(e) and (f) showH andHp, which also yield strong correlation profiles
at the cores, aligned with the vortices. This is because the swirling
velocity field has a Biot–Savart relation with the vorticity at the vortex
core regions.

Overall, the correlations are capable of identifying vortices that
are arbitrary aligned. The exact values yielded, of course, would change
upon rotating the correlation bases, but in a qualitative sense, this
effect will not influence the results and conclusions.

D. Summary from canonical flows

The overall study using canonical vortex based flows shows that

1. Vortex core regions typically have high vorticity and low veloc-
ity. Here, Ls is high due to the velocity anti-symmetry of the
swirling flow around the core, while L remains close to zero.
These are invariably regions where Ls and L do not coincide.
Vortex cores also yield high values of G and Gs since the

FIG. 8. Two arbitrary aligned Burgers vortices are shown, with isolated swirling-flow
regions in (a) view 1 and (b) view 2 (isometric). The velocity streamlines are col-
ored according to the velocity magnitude, normalized between 0 and 1, which show
that the two vortices begin to “interact.” The edges of the cubes shown here run
from x; y; zf g 2 ½10; 90�.
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vorticity is aligned and symmetric, and high values of H and Hp,
since the swirling velocity is self-induced.

2. Vortex swirl regions, surrounding vortex cores, typically have
high velocity and low vorticity. Here, L and Ls both yield high
values, due to the aligned velocity streamlines, but do not coin-
cide. Due to the low vorticity, G, Gs, H, and Hp remain low.

3. Streaming flow regions can arise from the interaction of swirling
vortices (as described in the literature4), which can have interme-
diate to high velocity and negligible vorticity. Here, L and Ls

coincide and yield high values due to the aligned velocity field,
while G and Gs remain low. Since these regions are externally
induced, H and Hp are also low.

4. Convergent flow regions can arise from very specific vortex
arrangements and may, hence, be an unlikely feature in

turbulence fields. Here, both velocity and vorticity are close to
zero, yielding low values of L, G, H, and Hp. The larger symme-
tries around such regions, however, can give rise to high Ls and
Gs.

The coincidence and differences between the correlation fields
are key to drawing conclusions on the nature of the coherent struc-
tures. We now apply these tools to turbulence fields, additionally
bringing in a Biot–Savart based decomposition paradigm to further
unravel how structures are organized. This allows us to examine how
different turbulence fields are in comparison with purely vortex-based
flows.

VI. CORRELATIONS APPLIED TO HOMOGENEOUS
ISOTROPIC TURBULENCE

A turbulence velocity field is considered, typically, to have struc-
tures across multiple scales,2 while the vorticity field mainly comprises
structures at the smaller scales.21,22 All these fields, however, are highly
complex and irregular, while regions with a high degree of coherence
are expected to yield large correlation values.

We begin with a brief description of the simulation method
used to generate the turbulence data. Following which we describe
how the correlation fields look qualitatively in comparison with
the vector fields they are based on. We then describe the statistics
of the correlation fields, their spectral characteristics, and their
spatial organization. The Biot–Savart decomposition of structures
is presented in Sec. VI A.

A. Simulation details and dataset

For this study, we use a dataset from DNS simulations of homo-
geneous isotropic turbulence, for which the Navier–Stokes equations
with a body force F are solved numerically,

@u
@t
þ u � rð Þu ¼ �rp

q
þ �r2uþ F

q
; (31)

r � u ¼ 0: (32)

Turbulence is generated in a periodic box by means of low wavenum-
ber forcing, which is divergence-free by construction and is concen-
trated over a range of Fourier modes. It is of the form given by Biferale
et al.41 and has properties similar to that devised by Alvelius42 and
Ten Cate et al.,43 which can be written as

Fx ¼
Xkb
k¼ka

qAðkÞ sin ð2pky þ /yðkÞÞ þ sin ð2pkz þ /zðkÞÞ
� �

;

Fy ¼
Xkb
k¼ka

qAðkÞ sin ð2pkx þ /xðkÞÞ þ sin ð2pkz þ /zðkÞÞ½ �;

Fz ¼
Xkb
k¼ka

qAðkÞ sin ð2pkx þ /xðkÞÞ þ sin ð2pky þ /yðkÞÞ
� �

:

(33)

The forcing is stochastic (white noise) in time, which is achieved by
varying each /ðkÞ randomly, and the force is distributed over a small
range of wavenumbers, given by ka � k � kb (for this study we fix
ka ¼ 1; kb ¼ 8), and the amplitude A(k) of each of these wavenum-
bers is a Gaussian distribution in Fourier space, centered around a cen-
tral forcing wavenumber kf, given as

FIG. 9. Amplitude of all correlations calculated for the two Burgers vortices are shown
for view 1 in Fig. 8, which gives a simultaneous look at the axis of one vortex and the
core region of the other. All correlations are normalized as w ¼ jwj=jwjmax. The
edges of the cubes shown here run from x; y; zf g 2 ½10; 90�. The panels show (a)
L, (b) Ls, (c) G, (d) Gs, (e) H, and (f) Hp.
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AðkÞ ¼ A exp �
k� kf
� 	2

c

 !
; (34)

where c sets the width of the distribution (c¼ 1.25 here), kf¼ 2, and A
is the forcing amplitude. We solve Eqs. (31) and (32) with a standard
lattice-Boltzmann (LB) solver, incorporating the turbulence forcing as
per Eq. (33). This method has been used before for simulating homo-
geneous isotropic turbulent flows of various kinds.41,43–46

The simulation is performed in a periodic box of size ð2pÞ3
resolved over N3 grid points along each direction, all units being
dimensionless, hence, resolving a range of wavenumbers from k¼ 1
(i.e., the largest scale has a length N ½lu�) to k ¼ N=2 (i.e., the smallest
scale has a length 2 ½lu�). Since we simulate homogeneous isotropic
turbulence, by definition, all physical quantities are fluctuating and do
not have a mean value, i.e., u ¼ u0 andx ¼ x0. The Kolmogorov scale
is defined as g 	 ð�3=�Þ1=4, where � and � are the kinematic viscosity
and energy dissipation rate, respectively. We adhere to the criterion
for a DNS, as given by Moin and Mahesh,47 i.e., kmaxg > 1. The
Taylor microscale is calculated as

k ¼ 15�u02

h�i

 !1=2

; (35)

where u0 is the root mean square velocity. The average rate of energy
dissipation h�i is calculated as h�i ¼ �hx2i, where hx2i is the average
enstrophy. Note that the enstrophy x2 ¼ x � x is analogous to the tur-
bulence kinetic energy Ek ¼ u � u=2. For homogeneous isotropic turbu-
lence, since u0 ¼ v0 ¼ w0, we have Ek ¼ 3u02=2 or u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2Ek=3

p
. The

root mean square vorticity, x0, is obtained as hx � xi1=2. In general, Ek
and � (apart from �) are average measures of u0 and x0, respectively.

The large eddy turnover timescale is given as T? ¼ L=u0, where L is
the forcing lengthscale, given as L ¼ N=kf . Using k, the Taylor
Reynolds number is calculated as

Rek ¼
u0k
�
; (36)

and the Kolmogorov timescale is given as

sk ¼
�

�

� ��1=2
: (37)

The turbulence simulation (parameters given in Table I) is per-
formed for a fluid initially at rest, to which the turbulence force is
applied. After a brief transient duration, turbulence becomes well
developed and attains a statistical steady-state, i.e., with a balance of
power input and energy dissipation. The simulation is then run for
several additional large eddy timescales (	20� 30T?), during which
around 	20 field snapshots are retained for analysis, all separated by
50sk, to give converged statistical results.

Figure 10 shows the evolution of hEki and hx2i. Both quantities
attain their steady-state values within a short transient phase, 	100sk,
after which they continue to oscillate around their temporal mean val-
ues. Beyond 100sk, turbulence is well developed, with a sufficient sepa-
ration of scales. The small temporal oscillation of hEki, due to the
finite volume of the simulation, further manifests in the temporal
oscillation of hx2i, due to the turbulence dynamics.41,48

Figure 11 shows a snapshot of the turbulence kinetic energy Ek
and enstrophy x2 fields, as 3D volume renderings and planar cross
sections, at a simulation time of 500sk. Typical features of the kinetic
energy and enstrophy can be seen, where the kinetic energy is

TABLE I. Simulation details, with all quantities presented in dimensionless lattice units ½lu�, average kinetic energy hEki ¼ ð
P

k EðkÞÞ=N, and the average rate of energy dissi-
pation h�i ¼ ð

P
k 2�k

2EðkÞÞ=N.

N3 kf � u0 x0 hEki h�i k L Rek g sk

2563 2 0.004 7 0.034 0.010 3 1:8� 10�3 5:0� 10�7 13 128 95 0.67 97

FIG. 10. Time evolution of the volume averaged turbulence kinetic energy hEki and
enstrophy hx2i. Both quantities attain a steady-state value, reflecting a developed
turbulence state.

FIG. 11. Snapshots of fully developed turbulence fields (at t ¼ 500sk ), show quali-
tative features of (a) kinetic energy Ek and (b) enstrophy, x2, as 3D volume render-
ings. (Note that field values have been clipped below the mid-way mark, to show
only the high amplitude regions. Hence, regions with Ek=hEki < 3 and x=hx2i
< 5 appear white.)
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distributed over a range of length scales and forms diffused, small and
intermediate sized, irregular structures. Enstrophy (and vorticity in
general) is concentrated at the smaller scales, in spatially intermittent
tube-like structures, also called “worms.”

Figure 12 shows typical probability distributions (PDFs) of the
velocity and vorticity. The velocity components follow a Gaussian dis-
tribution (shown as the dashed line), and their fluctuations are not
extreme (here they range from�4 < ui=u0i < 4), and 65% and 97% of
the velocity has a magnitude below u0i and 2u0i, respectively. Extreme
values of the velocity, around juij > 3u0i, occupy a very small fraction
of the total volume. The vorticity components are highly non-
Gaussian and exhibit typical long-tail distributions. The extent of these
tails gives a measure of the intermittency in the vorticity field, where
increasingly extreme values can occur with a low probabilities.
Furthermore, 70% and 95% of the vorticity field have a magnitude
below x0i and 2x

0
i, respectively.

We note that the vorticity field is often classified into a few
“ranges.” For our subsequent Biot–Savart analysis in Sec. VIID, where
we disentangle the various vorticity contributions to the generation of
velocity field structures, we use a classification similar to She et al.,21,49

which is based upon the amplitude and structure of the vorticity-
streamlines. Originally, She et al.21,49 proposed

1. “High-vorticity” to represent the range x� x0, which occupies
a very small fraction of the volume, forms vorticity-streamlines
that are well-aligned, while the velocity field in the vicinity of
these structures has a spiral, swirling motion.

2. “Moderate-vorticity” to represent the range x > x0, which had a
less organized structure and was described as “sheet-like” and
“ribbon-like,” while the associated velocity streamline patterns
were not discussed.

3. “Low-vorticity” represented the level of the root-mean-square
vorticity, i.e., x 	 x0 and x < x0, which occupied most of the
volume and was found to form random vorticity streamlines
with no apparent structure.

Many studies have discussed the structure and behavior of the
high vorticity worms. However, since it is vorticity at the level of x0,
which occupies most of the volume, it is expected to have a significant
contribution to the Biot–Savart velocity reconstruction. Hence, we
term this range of vorticity, based upon its amplitude, as “weak” and
“intermediate” background vorticity, since it permeates the volume.
We use this classification only as a guideline to interpret our results.

B. Qualitative and statistical features of the correlation
fields

Correlations are calculated for the snapshot of the data presented
in Fig. 11, for an integration length of K ¼ k. Each correlation field,
say L, is normalized by its respective root mean square (rms) value, L0,
which is calculated as L0 ¼ hL � Li1=2, where h�i denotes volume aver-
aging here, enabling comparison of field values to the instantaneous
root mean square value. The amplitude of a correlation field, say jLj, is
simply referred to as L. The correlation fields are shown in Fig. 13.
Figure 14 shows the PDFs of a single component (wi) for each correla-
tion w, since, due to isotropy, the PDFs of wx;wy and wz are

FIG. 13. Correlation field snapshots at 500sk are shown as volume renderings with
(a) L, (b) Ls, (c) G, (d) Gs, (e) H, and (f) Hp. Each correlation field is normalized
with its respective root mean square value. (Field values below the mid-way mark
are again clipped and appear white.)

FIG. 12. Characteristic PDFs of the (a) velocity and (b) vorticity. The dashed lines
show a typical Gaussian distributions.
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identical.50 Table II shows the correspondence between pairs of mea-
sures, calculated as the usual correlation coefficient,

rðf ; gÞ ¼
P

i fi � �f
� 	

gi � �gð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ðfi � �f Þ2

P
i ðgi � �g Þ2

q ; (38)

where fi and gi are field magnitudes at positions i and �f and �g denote
means.

Figure 13(a) shows the L field, which exhibits features across vari-
ous lengthscales, with diffused regions of high magnitude ranging
from intermediate to small sizes. These features, furthermore, are very
similar to the features in the Ek field (as seen in Fig. 11). Note that
small, isolated, regions of the correlation field with typically a high
magnitude, which we refer to as correlation kernels, are measures of
the correlation in larger regions of the velocity and vorticity fields sur-
rounding them (since these measures are non-local). The PDF of Li in
Fig. 14(a) shows that the correlation is highly positively skewed. This
follows from the definition of L, which identifies regions of well-
aligned streamlines, i.e., the local velocity uðxÞ is expected to be
aligned with the velocity in the neighborhood �K < xi < K, and the
product of the two is positive. The strong coincidence of high L with

regions of high Ek, with r¼ 0.98 (see Table II), where L is a non-local
measure and Ek is a point quantity, reflects that high Ek regions com-
prise locally jet-like flows, with parallel streamlines exhibiting a high
degree of alignment. Furthermore, similarly to ui, the PDF of Li does
not extend over a very large range of values; however, it is strongly
non-Gaussian. Approximately 70% and 93% of Li is below L0i and 2L0i,
respectively.

Figure 13(b) shows that the Ls field bears a striking similarity to
the L field, with r¼ 0.98 (while some rare, high negative values of Ls

are also found, that may not coincide with high L). The Ls field also
has intermediate and small sized diffused regions, with a strong coinci-
dence with high Ek. While the Ls kernels are slightly smaller than the L
kernels, the strong overall correspondence between the two correlation
fields is in stark contrast to the canonical vortical flows (where L and
Ls do not coincide at vortex cores). This shows that most high values
of Ls arise due to parallel streamlines, which further corroborates that
high Ek structures from compact jet-like regions. Curiously, from a
spectral perspective, most of the energy is concentrated at the large
forcing scale, but this does not seem to have a physical-space analogue
of equally large high Ek structures. The spectral signature comes from
the distribution of these jets in the physical space. Note that Hunt,
Wray, and Moin4 also qualitatively described jet-like flow streams,
however, there are several differences—they proposed that streams
occur between interacting canonical vortices (as in the Taylor–Green
flow example, Sec. V) and have lower velocities than the eddies them-
selves. While these might arise, the jet-like flow associated with L and
Ls is distinct in that they have the highest kinetic energy, andmoreover,
as will be shown in the subsequent sections, they are generated by vor-
ticity that does not have a very distinct structure or a high amplitude.
The distribution of Lsi in Fig. 14(a) is highly positively skewed. Large
positive values of Ls reflect parallel streamlines, while high negative
values of Ls are also found (possibly associated with low Ek, high x2

swirling structures), albeit with low probabilities. Similarly to the Li
field, approximately 70% and 93% of the Lsi field are below Ls

0
i and

2Ls
0
i , respectively.
Figure 13(c) shows the G field (the x equivalent of L). The distri-

bution of G is found to closely resemble the x2 field (with r¼ 0.89),

FIG. 14. PDFs of the correlation measures (a) L and Ls, (b) G and Gs, and (c) H and Hp, shown for a single component wi, due to statistical isotropy of the fields, together
with the distributions of Ek and x2 normalized by their respective mean values.

TABLE II. Correlation r(f, g) between the pairs of fields. Strong correlations are
shown in boldface.

L Ls G Gs H Hp Ek x2

L 1 0.98 –0.001 0.032 –0.01 –0.01 0.98 0.005
Ls 1 –0.04 0.008 –0.05 –0.05 0.94 –0.03
G 1 0.85 0.93 0.94 0.02 0.92
Gs 1 0.79 0.8 0.07 0.76
H 1 0.97 0.01 0.88
Hp 1 0.01 0.87
Ek 1 0.03
x2 1
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where the G field at high magnitudes also forms worm-like structures.
High values of G indicate regions, which have both high vorticity and
a high degree of alignment of the vorticity-streamlines. These aligned
regions of high vorticity have been qualitatively described before,19–21

to also have a local jet-like structure (which have also been referred to
as vortex-tubes,49 while in general, vortex tubes can also be irregular).
The distribution ofGi in Fig. 14(b) is long-tailed and positively skewed,
further reaffirming that high x2 regions are neighborhoods of a high
degree of alignment of the vorticity-streamlines. Approximately 84%
and 94% of the Gi fields are below G0i and 2G0i, respectively, showing
that most of the vorticity field does not have a simple, well-organized
jet-like structure, which is limited only to the highG regions.

Figure 13(d) shows the Gs field (i.e., the x equivalent of Ls),
which appears “patchy” in comparison with G, and its kernels are
found to be more sparse and fragmented, since Gs is more sensitive to
changes in the symmetries of x. Visually, we find that there are no
high amplitude Gs regions that do not coincide with high amplitude G.
The distribution of Gs

i in Fig. 14(b) is also positively skewed, showing
that the only symmetry of high valued x is parallel vorticity-
streamlines. Negative values of Gs

i are slightly more prevalent than
negative values of Gi, but are limited to the low amplitudes, showing
the presence of some weak, more complex symmetries.

Figure 13(e) shows the H field, which relates the local vorticity
xðxÞ to the velocity field along directions ri. Similarly to the G and Gs

fields, the H field also closely resembles the enstrophy field in Fig. 11
(with r¼ 0.88). The distribution of Hi in Fig. 14(c) is also positively
skewed and long-tailed. Together, these results show that the velocity
field in the vicinity of strong vorticity regions has an angular velocity
closely positively aligned with the local vorticity streamlines. This is
because (i) there exists a strong spatial correspondence between the
occurrence of strong enstrophy regions and high magnitude H, and
(ii) the distributions of Hi dominantly show positive values, which
means that the local flow, in the K-neighborhood, has an angular
velocity well correlated with the vorticity. Approximately 82%, 94%,
and 99% ofHi are belowH0i ; 2H

0
i , and 3H

0
i , respectively.

Finally, Fig. 13(f) shows the Hp field, which, similarly to the G,
Gs, and H fields, also closely resembles the enstrophy field (r¼ 0.87).
Similarly to Hi, the distribution of Hp

i in Fig. 14(c) is highly positively
skewed and long-tailed, with slightly more extreme values thanHi.

Note that we verified for Gaussian random velocity fields that all
correlation PDFs are perfectly symmetric, showing that the skewness
observed here is due to the nature of the physical fields and not intro-
duced by the correlation measures. The similarity between Hp and H,
together with the other results, shows that the high x2 invariably
forms small regions of aligned vorticity surrounded by velocity-swirls
in the neighboring region. Finally, approximately 86%, 94%, and 97%
of theHp

i fields are withinHp0

i ; 2H
p0

i , and 3H
p0

i , respectively, which are
values similar to the relative levels of theHi fields.

In summary, we note that coincidence between different correla-
tion measures reflects a certain simplicity in the underlying turbulence
fields for, in principle, different measures can yield very different cor-
relation profiles. For example, G, Gs, H, and Hp need not coincide in
general, i.e., small-scale high vorticity-jets may not necessarily be sur-
rounded by velocity-swirls (for instance when the local flow has a large
externally induced component). Or, as shown in the canonical flow
examples, L and Ls coincide in regions of uniform flow, whereas at
vortex cores, Ls coincides with Hp, while L remains negligible. In

turbulence fields, hence, the overall correspondence between L with Ek
and Ls shows that high Ek regions, locally, form highly aligned jet-like
streamlines. Swirling regions of high Ek would lead to spatial differ-
ences in the distribution of L and Ls, which we do not find. Similarly,
the correspondence between G, Gs, H, and Hp show that strong vor-
ticity regions have highly aligned vorticity streamlines that are invari-
ably associated with velocity-swirls in their surrounding regions.

Finally, the coincidence between L and Ek does not imply that
one is the proxy for the other, since L is a non-local measure and Ek is
a point quantity. The similarity occurs because (i) high Ek regions are
composed of jet-like flow and (ii) the definition of L weighs in the local
velocity magnitude. For instance, we find that L̂ (or equivalently Ĝ for
vorticity), operating on the locally normalized velocity field ûðxÞ,
indeed yields very different patterns in comparison to L and Ek (or G
and x2), but a full exposition of these additional measures and their
fields is beyond the scope of this work.

We also applied these correlations to a reference dataset obtained
from the Johns Hopkins Turbulence Databases (JHTD),51,52 and the
results were found to be essentially similar to those presented here.50

C. Influence of the choice of K

Before further analysis of the correlation fields, it is important to
consider the influence of K on the results. The obvious values of K
that can be disregarded are those extremely small or large. Too small a
K is somewhat meaningless, since we intend to capture non-local
structures which have a finite physical size. On the other hand, very
large values of K (	Nx=2) will introduce periodicity effects in the cor-
relation fields, which should be avoided. However, there is a range of
values of K in 0
 K
 Nx=2, which are viable. Here, we do not
intend to study in detail the influence of K on the correlation mea-
sures; instead, we would like to choose a value of K large enough to
cover most structure sizes, while ensuring that the results do not
depend strongly on K.

The correlations G and Gs are not expected to vary significantly
for different choices of K (once K is large enough to cover the size of
these structures), since the structures in the vorticity field are small-
scaled, and more or less randomly distributed throughout the volume.
Similarly, the correlations H and Hp are expected to be even more
insensitive to the choice of K, since the Biot–Savart influence of the
vorticity decays with the square of the distance. We consider the L cor-
relation, since it identifies intermediate sized structures in the velocity
field and can potentially be influenced by the choice of K. L has the
form

Liðx;KÞ ¼
ðK

r¼�K
uðxÞ � uðx þ reiÞ dr; (39)

where uðxÞ can be placed outside the integral as

Liðx;KÞ ¼ uðxÞ �
ðK

r¼�K
uðx þ reiÞ dr;

Liðx;KÞ ¼ 2K uðxÞ � euiÞ;ð
(40)

where

eui ¼
1
2K

ðK

r¼�K
uðx þ reiÞ dr: (41)
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The L correlation is essentially the inner product of the velocity
field u with the eu field (which is a function of K). Hence, if the eu field
varies significantly with K, so will L. In Fig. 15, snapshots of theeuz ¼ jeuzj field are shown for a wide range of K=k values, at a planar
cross section of the volume. At very small values, K=k < 1, the L field
looks very similar to the Ek field, which is expected since the limit
K! 0 reduces u � eu to u � u. The euz field does not appear to change
significantly for 1 � K=k < 7, which is also true for K=k � 7,
although those values ofK begin to approach the size of the simulation
domain and should be disregarded.

It is interesting that the euz field appears to vary slowly for
K=k > 1. The variation of eu i withK can be quantified by calculating���� deui

dK

���� ¼ jeuKþDK
i � euK

i j
DK

; (42)

where j � j is the amplitude of the difference between the two fields.
This is shown in Fig. 16 for eux; euy , and euz , where h�i denotes spatial
averaging over the entire volumetric domain, and over two indepen-
dent realizations of eu i at t � 500sk and 1000sk. The change in
hjdeui=dKji is large for K=k < 1. This reflects the fact that most of the
velocity structures in the flow are smaller than the Taylor microscale
k, and they get averaged over in the eu fields for increasing K. Next,
hjdeui=dKji seems to decay exponentially for K=k > 1, with a slope of
approximately�1=5. This change in behavior occurs via a sharp tran-
sition around K=k � 1. Previous works have also reported sharp tran-
sitions around the Taylor lengthscale for different measurements like

velocity profiles in shear layers in isotropic and wall-bounded
turbulence.37,53

The behavior of hjdeui=dKji shown in Fig. 16 indicates that for
large K=k, i.e., in the limit of K!1: (i) deu i=dK! 0, (ii) eu i ! 0,
(iii) dL=dK! 0, and (iv) L goes to a constant. This is consistent with
Eq. (21) and the requirement that there should not exist “an organized
motion over an infinite distance.” Also, Fig. 16 shows that eu i varies
slowly for K=k > 1 and suggests that Kjeu ij attains a maximum,
roughly, in the range 1 � K=k � 4; hence, the results for L and Ls are
not expected to vary significantly in this range of K. This, together
with the sharp transition around K=k � 1, suggests that the Taylor
microscale k is a good measure to account for dominant structure
sizes, as also found in earlier work,37 and, hence, can be taken as a rea-
sonable yardstick for the integration length of the correlations. For the
remainder of this study, we use correlation fields calculated for K ¼ k.
This value is also large enough to account for vorticity field structures
and vorticity–velocity (i.e., Biot–Savart related) field structures.

In general, the variation with K can be considered for G by
constructing exi fields, H by replacing uðxÞ with xðxÞ � ri in Eq.
(39) and Hp by constructing area-averaged eui fields. Such a study,
performed on a larger dataset, can be interesting, but we do not
pursue it here. For the remainder of this study, we calculate corre-
lation fields with K ¼ k, which seems to be a suitable choice for L,
and hence also for Ls, due to their strong similarly. Furthermore,
strong vorticity structures are also typically smaller than k, making
K ¼ k a suitable choice also for the vorticity-based correlation
measures, as we do not investigate structures associated with mild-
vorticity in this study. Furthermore, here onward we only consider:
(i) L, due to the lack of larger velocity-anti-symmetries as shown
by the coincide between L and Ls and (ii) Hp, due to the fact that
strong vorticity is invariably surrounded by velocity-swirls and the
lack of significant vorticity-anti-symmetries, as shown by the coin-
cidence between Hp, H, G, and Gs. Again, in other kinds of flow,
this need not be the case.FIG. 15. Cross-sectional slices of the euz field for varying K=k.

FIG. 16. Rate of change in the eu i fields with an increase in K. Here, h�i denotes
spatial averaging.
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D. Spectral characteristics of the correlation fields

The spectra of the three-dimensional correlation fields are shown
in Fig. 17, in comparison with the kinetic energy (Ek) and enstrophy
(x2) spectra. The correlation spectra are calculated in the same way as
the Ek spectra, where the three-dimensional Fourier transforms /̂ðkÞ
of the correlation fields / are squared and spherically averaged over
wavenumber shells k ¼

ffiffiffiffiffiffiffiffiffi
k � k
p

. The spectra have also been time-
averaged over 20 realizations, each separated by 50sk. Figures 17(a)
and 17(b) show the L and Ls spectrum, respectively, that are found to
have very similar shapes. This reflects that the spatial distribution of
the Ls field is very similar to that of the L field, reaffirming that there
are no large symmetries or anti-symmetries in the velocity field. The
spectra, in comparison with the Ek spectrum, have a shift in the peak
to higher wavenumbers. This is because L and Ls involve a product of
the velocity field. Moreover, the correlation fields comprise relatively
smaller correlation kernels associated with larger flow structures.

The spectra of G and Gs in Figs. 17(c) and 17(d), respectively, are
found to closely resemble the enstrophy spectrum, with a slight shift in
the spectral peak to higher wavenumbers for both cases, which is again
due to the correlation kernels being relatively smaller than the vorticity
field structures, and the product involved the correlation definitions.

This shift is more pronounced in the Gs spectrum, which is consistent
with the fact that the Gs field has sharper features, as can be seen in
both Fig. 13(d) (volume rendered Gs field snapshot) and Fig. 5(e)
(one-dimensional Oseen vortex-pair example).

The H and Hp spectra in Figs. 17(e) and 17(f), respectively, are
found to have a striking similarity to the enstrophy spectrum. This
reflects that the spatial variation of enstrophy consistently yields a sim-
ilar spatial variation in theH andHp fields. This also indicates that the
“energy containing” wavelengths of the velocity field do not have any
significant self-induced swirl, showing that the swirling flow structures
are coupled with the vorticity structures, and decoupled from the
strong velocity structures.

We find that the nature of (homogeneous isotropic) turbulence
fields is such that there is, largely, a correspondence between L and Ls.
It is important to note that this need not be the case in general, as was
clear from the canonical flows example. This reflects an underlying
simplicity in the turbulence fields, which seem to lack regions with
high Ek that have larger symmetries (high energy vortices), which
would form regions where L and Ls differ. Similarly,G, Gs,H, andHp

also coincide, while this may not be true in general either. For instance,
in a situation where there is a uniform flow superposed on the turbu-
lence velocity field, a local swirling region will be overwhelmed and
appear as a velocity-jet, yielding high values of L and Ls, while also
yielding high values of G andGs since the vorticity field will not reflect
the uniform flow. H and Hp, however, will remain low, since the local
velocity is largely externally induced in this case. The various correla-
tions, hence, form a general set of tools for a variety of flow situations,
and correspondence between them is also indicative of the nature of
the fields.

With the above considerations in mind, for the remainder of this
study, we shall use only L and Hp correlations to refer to turbulence
structures, for practical reasons.

E. Spatial distribution of correlation fields

Since the kernels of L andHp identify distinct streamline patterns,
the relative spatial distribution of these kernels sheds light on the dis-
tribution of coherent structures in physical space. Here, we discuss the
spatial distribution statistics of L and Hp, in relation to Ek and x.
Figure 18(a) shows contours 2hEki (in blue) together with contours of
3x0. High Ek and high x regions are found to be spatially exclusive to
a large extent [with rðEk;x2Þ ¼ 0:03]. The exclusivity between the
two quantities might be a consequence of the dynamical separation
between them, as high Ek and high x are influenced by different
aspects of the Navier–Stokes dynamics.1 The two fields also begin to
overlap when the thresholds are lowered and become more exclusive
and distanced at higher thresholds. Figure 18(b) shows the distribution
of 2L0 (in blue) and 5Hp0 (in red). The correlation kernels also remain
spatially exclusive [with rðL;HpÞ ¼ �0:01], increasingly at higher
threshold levels. The sizes of these kernels, in principle, can be related
to the sizes of the underlying flow structures. The distribution of struc-
ture sizes, in principle, could be related to the distribution of kernel
sizes.

Relative spatial distribution can be quantified with the joint-
PDFs of pairs of variables. Figure 19 shows these distributions, using
samples from over 20 field realizations. Figure 19(a) shows the joint-
PDF of L and Ek. Since the two fields coincide strongly, they are highly
correlated. Generally, large values of Ek also yield large values of L.

FIG. 17. Time-averaged premultiplied spectra of correlation fields (a) L, (b) Ls, (c)
G, (d) Gs, (e) H, and (f) Hp shown together with the kinetic energy (Ek, dotted black
line, “� � �”) and enstrophy (x2, solid black line “—”) premultiplied spectra.
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This shows that all regions of high Ek comprise well-aligned stream-
lines, and there are no regions of high Ek with disordered velocity
vectors.

Figure 19(b) shows that the Hp and x fields are again strongly
correlated, while the probability of occurrence of large-valued Hp is

higher than large-valued x. Higher values of x are invariably associ-
ated with high Hp values, which shows that the flow around high x
regions always has a swirling motion.

The distribution of Ek and x is shown in Fig. 19(c). The two
quantities reflect intermediate sized, kinetic energy containing

FIG. 18. Spatial distribution of fields.
Panel (a) shows contours of Ek and x,
and panel (b) shows contours of L and Hp,
at the same time instant. (a) Contours of
Ek ¼ 2hEki (blue) along with x ¼ 3x0

(red) shows that these fields are spatially
exclusive. (b) Contours of L ¼ 2L0 (blue)
along with Hp ¼ 5Hp0 (red) shows that
these correlation fields are spatially
exclusive.

FIG. 19. Joint-PDFs of (a)L and Ek, (b) H
p

and x, (c) x and Ek, and (d) Hp and L.
The colors show logarithmically spaced
values.
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structures, and small-scale, high vorticity structures, respectively. The
joint-PDF shows that high values of the two quantities are anti-
correlated in space, i.e., the fields are mutually exclusive. For instance,
the probability of finding a high Ek region, which also has a high x
value, is negligible. In principle, this situation is not forbidden and
could arise for instance in a region of high swirl, where high uniform
velocity is externally imposed, however, in isotropic turbulence, such
coincidence does not arise. A similar anti-correlated distribution is
found for Hp and L, in Fig. 19(d). High values of Hp coincide with
regions of low L. This, together with the strong correlation between L
and Ek in Fig. 19(a), shows that swirling-flow regions do not corre-
spond with high kinetic energy structures and vice versa. This is con-
sistent with the similarity between L and Ls, since swirling-flow
structures with high kinetic energy would be associated with large val-
ues of Ls.

To quantify the volume fraction and degree of spatial overlap
between different fields, we construct the joint-CDFs, which are func-
tions of the integration limits a1, a2, b1, and b2, on the joint-PDF of
the fields f1 and f2. This is defined as a generalization of the one-
dimensional CDF (see, for instance, Pope54) as

CDF f1; f2; a1; a2;b1;b2ð Þ ¼
ðb2

b1

ða2

a1

PDFðf1; f2Þdf1

" #
df2 : (43)

The CDF can directly be interpreted, in a statistical sense, as the volume
fraction of the region defined by the integration limits as follows:

CDF f1; f2; a1; a2; b1; b2ð Þ ¼
V a1 � f1 � a2ð Þ \ b1 � f2 � b2ð Þ
� 

Vt
;

(44)

where V is the intersection volume between regions where the condi-
tions a1 � f1 � a2 and b1 � f2 � b2 are both met, while Vt is the
total volume. The volume fraction of a single field, within prescribed
threshold limits, can also be statistically quantified with the CDF as
follows:

CDF f1; f2; a1; a2; 0;1ð Þ ¼ V a1 � f1 � a2ð Þ
Vt

: (45)

This is because the region 0 � f2 � 1 corresponds to the total vol-
ume Vt, hence V ða1 � f1 � a2Þ \ Vt

� 
� Vða1 � f1 � a2Þ. The

CDF can be used to evaluate the degree of spatial inclusivity between

fields, Rðef1;ef2Þ, which can be defined as

Rðef 1;ef 2Þ ¼ CDF f1; f2; a1; a2;b1;b2ð Þ
CDF f1; f2; a1; a2; 0;1ð Þ ; (46)

where ef 1 and ef 2 are conditionally sampled f1 and f2 fields, i.e., the

region ef 1 � a1 � f1 � a2 and the region ef 2 � b1 � f2 � b2. The
numerator on the right hand side gives the volume fraction of

the intersection region ef 1 \ef 2, while the denominator gives the

volume fraction of ef 1. Hence, the fraction denotes the degree of inclu-

sivity of the region ef 1 in the region ef 2. Conversely, Rðef 2;ef 1Þ gives the
inclusivity ofef 2 inef 1.

Figure 20(a) shows the inclusivity of the fields L and Ek, i.e.,
RðeL; eEkÞ and Rð eEk ;eLÞ. The regions eL � Lt � L � 1 and

eEk � Et
k � Ek � 1, where the thresholds Lt and Et

k are values of L0

and hEki. The L field is found to remain completely enclosed within
the corresponding Ek regions, since RðeL; eEkÞ ¼ 1. This can be under-
stood from the fact that highly organized velocity with a high ampli-
tude yields high L values, albeit, the kernels of the L correlation that
are associated with a large region of velocity organization are them-
selves (relatively) smaller. This becomes more pronounced at higher
levels of the L and Ek fields, as higher L values reflect both high Ek and
larger organization. Note that higher levels of L give a good indication
of the flow organization and velocity magnitude, L and Ek are not
directly comparable, since L is a non-local measure of structure while
Ek is a point criterion. Rð eEk ;eLÞ is found, conversely, to become succes-
sively smaller at higher threshold values, further reflecting that high
Ek regions occupy larger spatial regions than high L. This is also
reflected in the volume fractions Vf of L and Ek, calculated as
CDFðL; Ek; Lt ;1; 0;1Þ and CDFðL;Ek; 0;1; Et

k;1Þ, respectively,
as shown in Fig. 20(c). At increasing threshold levels, the L > Lt field
occupies smaller volume fractions in comparison with Ek > Et

k.
Finally, the kinetic energy content of the thresholded L and Ek regions
is shown in Fig. 20(e). Regions corresponding to Ek � hEki; Ek
� 2hEki; Ek � 3hEki occupy 40%, 10%, and 2.5% of the total volume
[panel (c)], respectively, and contain 70%, 30%, and 9% of the total
kinetic energy. Similarly, regions corresponding to L � L0; L � 2L0

and L � 3L0 occupy 30%, 5%, and 0.7% of the total volume, while
containing 55%, 15%, and 3% of the total kinetic energy.

Figure 20(b) shows the inclusivity of the fields Hp and x, i.e.,
RðfHp ; exÞ and Rðex;fHpÞ, where the regions are defined as fHp � Hpt

� Hp � 1 and ex � xt � x � 1. The fraction of the Hp field con-
tained inside x regions increases at higher threshold values. This
shows, first, that the Hp field occupies successively smaller spatial
regions at higher thresholds. Second, high Hp values are invariably
found inside high x regions, reaffirming that strong vorticity is associ-
ated with surrounding regions of swirling motion. This can also be
seen from Fig. 19(b), where the lower bound on the value of Hp

increases with x. At low threshold values, RðfHp ; exÞ is low, which
shows that the Hp field at low values occupies more space in compari-
son with low x. This is reflected in Rðex;fHpÞ, which has high values
at low x. It is further confirmed in Fig. 20(d), which shows that Hp

� Hp0 occupies 26% of the volume, while x � x0 occupies 17% of the
volume. Furthermore, the volume fraction occupied by the Hp field
decays much faster than x, when thresholded at successively higher
values. Finally, panel (f) shows that regions of Hp � Hp0; Hp � 3Hp0

andHp � 5Hp0 contain 85%, 22%, and 3% of the total enstrophy.
Finally, Fig. 21(a) shows Rðex;fHpÞ, the inclusivity of regions of

high vorticity (ex � xt � x � 1) with regions of low Hp (fHp � 0
� Hp � Hp0). For all instances of xt � x0, the intersection volume ofex with fHp goes to zero. This confirms that there are no high x regions
in the flow field that are not associated with swirling motion in their
vicinity. Figure 21(b) shows the inclusivity of the L and Hp fields, i.e.,
RðfHp ;eLÞ and RðeL;fHpÞ, for increasing threshold values. RðfHp ;eLÞ
shows that the correlation kernels become increasingly spatially exclusive
at higher threshold values, which can also be seen from the joint-PDFs
in Fig. 19(d), where the L and Hp fields are anti-correlated. This reflects
the spatial exclusivity of highly organized kinetic energy jets and vortic-
ity induced swirls. Interestingly, RðeL;fHpÞ coincides with RðfHp ;eLÞ for
the first few threshold levels, showing that the volume fractions of L and
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Hp kernels are comparable at these levels. Beyond that, the L field
becomes (relatively) more inclusive in the Hp field (around L > 3L0

and Hp > 3Hp0), where the volume fraction of the kernels of L is
smaller than the volume fraction of the kernels of Hp. This is
because the Hp field can attain very high values in comparison with
the L field (see Fig. 14), and the volume fraction decay of L is steeper
than that of Hp.

VII. FLOW STRUCTURES IN HOMOGENEOUS
ISOTROPIC TURBULENCE

A. Introduction

So far, we found that turbulence fields comprise (at least) two dis-
tinct coherent structures, both corresponding to high field magnitude
regions, and both having a locally jet-like structure. High Ek regions

FIG. 20. Statistics of inclusivity between
(a) eL and eEk , and (b) fHp and ex regions,
where each region, say ew, is defined as
the thresholded w field in the rangeew � w1 � w � w2. Panels (c) and (d)
show the volume fractions of different
thresholded regions of the fields, and pan-
els (e) and (f) show the kinetic energy and
enstrophy contents of the regions, respec-
tively. (a) Inclusivity of eL and eEk . (b)
Inclusivity of ex and fHp . (c) Volume frac-
tion V f of eL and eEk . (d) Volume fraction V
f of ex and fHp . (e) Kinetic energy fraction
contained in eL and eEk regions. (f)
Enstrophy fraction contained in ex andfHp

regions.
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yield high L values, and form compact, well-aligned streamlines. High
x2 regions have highly aligned vorticity streamlines and are associated
with velocity-swirls in their neighborhoods (which has been qualita-
tively shown before19–22).

We now showcase individual flow structures in high L and Hp

regions, demonstrating how regions of instantaneous coherence mani-
fest in turbulence. Next, we shall investigate the Biot–Savart composi-
tion of these structures. This allows us to address two crucial questions
regarding their composition (i) to what degree are these structures
“self-inducing” in a Biot–Savart sense, as opposed to being externally
induced and (ii) what is the relative contribution of different levels of
vorticity in inducing these structures, and the total velocity field in
general. Note that by “self-induction,” we imply a flow field within a
regionRX being generated by the vorticity inRX, while an externally
induced (kinematically non-local) structure in RX is generated by the
Biot–Savart contribution of the vorticity outside of RX (as illustrated
in Fig. 3). This allows us to “disentangle” the velocity field into its vari-
ous Biot–Savart components. We further show qualitatively and quan-
titatively, what is the relative contribution of different levels of
vorticity in inducing these structures, and the total velocity field in
general. A brief note on some practical concerns regarding the calcula-
tion of the Biot–Savart velocity field is presented in the Appendix.

We first show individual flow structures qualitatively, following
which, we consider the Biot–Savart contributions from a statistical
perspective. Finally, we summarize the picture of turbulence organiza-
tion that emerges from this study.

B. Individual flow structures

We first look at regions of high L by identifying isolated contours
of the L field. High L regions, since they coincide with high Ek, are the
“energy containing” structures. We find that the level of 2:5L0 marks
regions of high correlation, which occupy �2% of the volume while
containing �10% of the total kinetic energy. At this level, the L field
forms separate, individual regions, which can be considered distinctly.
At lower correlation levels (L < 1:5L0), the L regions become more
connected, while at higher levels (L > 3:5L0), the L regions become
very small (occupying less than 0.2% of the volume). We, hence, select
2:5L0 regions for the present analysis, while the results remain essen-
tially similar for slightly different values of L.

Figure 22(a) shows three isolated kernels of 2:5L0, along with the
local flow streamlines (initialized within a small region around the core of
the correlation kernels), while panel (b) shows the compact, jet-like coher-
ent flow streamlines separately. This visually confirms high Ek structures
to be velocity-jets, with a core region of highly aligned streamlines, which
often have low curvature along their length. The streamlines diverge into
more chaotic patterns away from the correlation kernels, which shows
that the coherence of these structures is localized. We note that these
structures are not directly features of the “energy injection” mechanism,
since by construction, the forcing F is white-noise in time, such that the
quantity hF � ui ¼ 0.42,46 Hence, the forcing does not correlate with flow
structures, which typically have a finite lifetime. Comparing these results
for decaying turbulence can help to further establish this.

We reconstruct the self-induced Biot–Savart velocity field of
these structures, using all L � 2:5L0 regions. While in principle only
the vorticity contained in the isolated regions should be used, it adds
additional complexity to the calculation. Since the L regions remain
isolated in space and, moreover, have low x (refer to Table III), their
already low Biot–Savart contribution is negligible outside the correla-
tion regions. Hence, in practice, the self-induced velocity field around
any high L region is essentially the same even upon reconstructing the
velocity using all L � 2:5L0 regions.

Figure 22(c) shows streamlines of the self-induced velocity of the
kernels in panel (a), which have a very low magnitude and a very dif-
ferent structure than the total velocity in these regions. These two
aspects lead to an interesting finding that the high Ek velocity-jets are
not self-inducing and are kinematically non-local, being entirely exter-
nally induced, as shown in Fig. 22(d). She et al.49 suggested that in iso-
tropic turbulence, strong gradient regions are associated with strong
coherence, while weak gradient regions were deemed essentially ran-
dom. We show that not only do the coherent and dynamically impor-
tant “energy containing structures” correspond to weak-gradient
regions, but, as subsequent analysis reveals, they have a subtle relation
to intermediate background vorticity. These results are similar for cor-
relation kernels determined in the range 2:0 � L � 3:0. At much
higher L regions will have an even smaller self-induced contribution
due to their lower levels of vorticity, since the two are anti-correlated
(see Fig. 19), while at much lower levels of L, the self-induced contri-
bution can be expected to increase.

FIG. 21. Inclusivity of (a) high x regions
in low Hp regions and (b) high Hp regions
and high L regions.
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Next, we show the flow structure around kernels of Hp. The 5Hp0

level is found to represent a high level of the correlation field, while
occupying a meaningful volume (�0:018%) and accounting for 4% of
the total enstrophy, while forming distinct kernels. Higher values, like
Hp > 7Hp0, do not occupy significant fractions of the volume
(<0:001%), while at lower levels, the Hp field becomes more diffused
than the vorticity field [see Fig. 20(b)] and does not adequately repre-
sent regions of strong swirling motion. The present results are similar
in the range 4 < Hp=Hp0 < 6.

FIG. 22. Velocity-jets corresponding to three regions of 2:5L0 are shown: (a) L ¼ 2:5L0 contours and total-velocity streamlines, (b) total-velocity streamlines alone, (c) self-
induced velocity streamlines and (d) externally induced velocity streamlines. Colorbar shows the velocity magnitude.

TABLE III. Contributions of the self-induced and externally induced flow to the total
velocity within correlation kernels used to identify high kinetic energy jets and high
enstrophy swirling regions, i.e., 2:5L0 and 5Hp 0 , respectively.

Region Vf Mean x Mean Ek BS-self BS-external

L � 2:5L0 0.02 0:78x0 3:67hEki 11.32% 88.65%
Hp � 5Hp0 0.00018 3:46x0 1:12hEki 34.15% 65.84%
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Figure 23(a) shows three instances of 5Hp0 kernels with the local
flow streamlines, while Fig. 23(b) shows the streamlines separately.
Toward the core of these structures, the velocity field shows a strong
swirling motion, while the flow decays into more disordered stream-
lines away from the core regions. The velocity of these structures is
mostly in the intermediate and low Ek range (with very small occur-
rences of high Ek).

Figure 23(c) shows the self-induced velocity field, which forms
purely swirling motion in the core regions, along with an instance of
two vortices interacting in a figure-eight velocity pattern (right-most).
This swirling velocity decays to a low amplitude away from the core
region, which shows that the strong vorticity at the core influences the

total velocity field only within a small region of influence (due to the
rapid decay of the Biot–Savart contribution). The externally induced
velocity streamlines in panel (d) resemble the total velocity streamlines
outside the core of theHp regions and is found to have an intermediate
amplitude. This shows that some region around the 5Hp0 kernels also
contains vorticity of a large enough amplitude to generate swirling
motion in the neighborhood. High Hp structures are, hence, a super-
position of self-inducing swirling flow, along with a background
induced flow field, which has a swirling component and a more disor-
ganized structure away from the core regions. Performing this calcula-
tion for different thresholds of Hp will change the relative contribution
of the self-induced and externally induced velocities to the total

FIG. 23. Velocity-swirls around three high Hp regions are shown: (a) 5Hp 0 contours and total-velocity streamlines, (b) total-velocity streamlines alone, (c) self-induced velocity
streamlines, and (d) externally induced velocity streamlines. Colorbar shows the velocity magnitude.
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velocity. At lower Hp values, the correlation kernel is larger, and it will
contain more vorticity (in the high and intermediate ranges) and,
hence, will have a larger self-induced Biot–Savart contribution.

To quantify the self-induced and externally induced contribu-
tions to the velocity field, we define a general measure C using the
Biot–Savart reconstructed velocity field uBS and the total velocity field
u as

C RX;RBSð Þ ¼ hu � uBSiXhu � uiX
; (47)

where RX denotes the region where C is evaluated, which can be
defined based upon a conditional sampling criterion, for instance,
RX � L > Lt , where Lt is a threshold value for L. The regions of
vorticity used to generate the Biot–Savart velocity field uBS are
denoted by RBS (also a conditional sampled volume). Finally, h�iX
denotes averaging over the region RX. We also use this measure to
test the accuracy of the Biot–Savart reconstruction, by calculating
C(V, V), i.e., the correlation over the total volume V, of the total
velocity field u, with the Biot–Savart reconstructed velocity field
uBS generated using the total vorticity field. It is found that
CðV ;VÞ � 0:99, which means that our Biot–Savart reconstruction
faithfully reproduces 99% of the velocity field, while there is a
numerical error of �1%.

In Table III, we quantify the self-induced and externally induced
Biot–Savart contributions to the velocity field within all 2:5L0 and
5Hp0 kernels, using Eq. (47). The self-induced component of the
velocity-jets, i.e., CðL � 2:5L0; L � 2:5L0Þ, is found to be �11%, while
the externally induced velocity dominates these structures with �88%
contribution, which is quantitative evidence of their degree of kine-
matic non-locality. We here observe what might be a more general
result that, from a Helmholtz-decomposition perspective, in any vec-
tor field (which has a zero infinity-field contribution, i.e., zero-mean),
if a region has jet-like structure, it must be externally induced. This is
because the gradients of the field within the jet-like region will be small
or negligible. For instance, by corollary to the velocity-jets, the
vorticity-jets identified by G and Gs must also be externally induced
by the divorticity,r� x, sincer � x ¼ 0 [while in general the diver-
gence might contribute as well, see Eq. (18)], if a similar Biot–Savart
reconstruction is performed using the divorticity field, which we do
not explore.

For the 5Hp0 structures, the self-induced contribution, i.e.,
CðHp � 5Hp0;Hp � 5Hp0Þ is �34%, while the externally induced
contribution is �66%. Note that we performed these calculations for
regions contained inside the correlation kernels, however, the kernels
themselves are markers of larger regions of coherence around them.
Particularly, the 5Hp0 regions occupy a small fraction of the volume
(�0:018%), while they are associated with swirling motion outside the
kernel regions. This is why the velocity inside 5Hp0 regions has a rela-
tively low self-induced contribution, as it is significantly influenced by
the strong vorticity, which can be found in the immediate neighbor-
hood of the 5Hp0 kernels [see Fig. 20(b), where the right y� axis shows
that a large fraction of the high vorticity is contained outside 5Hp0

regions].
Finally, jet-like and swirling-flow structures were found to corre-

spond to high L and high Hp regions, respectively, also in a reference
Johns Hopkins Turbulence Dataset.50

C. Contributions from different levels of vorticity
in generating flow structures

So far, we have shown that high kinetic energy jets are mostly
externally induced coherent flow regions, while high enstrophy
swirling regions are a superposition of self-induced flow and back-
ground induced flow. We now show, and quantify, the relative
Biot–Savart contribution of different levels of the vorticity field in
generating these structures, and the total velocity field in general.
From the outset, one can expect that the weak vorticity range
(xb 
 x0) will have a small or negligible Biot–Savart contribution
in generating the velocity field, due to the low vorticity amplitude.
Significant contributions can come from (i) the strong vorticity,
i.e., xb � x0, which can intermittently assume very large ampli-
tudes, albeit with a low volume fraction [see Fig. 12(c)] and (ii) the
intermediate background vorticity, i.e., x 	 x0, which has a lower
magnitude, but permeates most of the volume and can hence have,
when combined, a significant Biot–Savart contribution.

We divide the vorticity into logarithmically spaced bins
xl � xb=x0 < xh, with the lower and higher vorticity limits xl and
xh. To determine the precise range of the bins, we start with the origi-
nal classification of x � 4x0 as “strong” vorticity by She et al.21 This
is roughly where deviation from Gaussianity begins in the vorticity
PDF, see Fig. 12(b). Hence, we form a vorticity bin for the range
x � 4x0. Since almost the entire volume, i.e., �99%, has vorticity
lower than 4x0, we need a number of separate vorticity bins for the
range x < 4x0. We do this by successively dividing the upper limit of
vorticity for each bin by a factor of 2, in total creating 7 bins, which
have been detailed in Table IV. We also give a classification for these
bins based upon the vorticity amplitude, for purpose of further discus-
sion. The choice of these 7 bins, albeit arbitrary, gives a good represen-
tation of the different vorticity levels with a sufficient separation of
scale in the vorticity magnitude, while highlighting the small region
around the peak of the vorticity PDF.

We then compute the Biot–Savart velocity field, corresponding
to each vorticity bin individually, while the sum of all these Biot–
Savart fields together gives the total velocity field. Figure 24 shows pla-
nar velocity streamlines (in the xy-plane, at an arbitrary z location,
which is representative of the planar streamline structure found
throughout the data), for Bin1–Bin7 going from panels (a)–(g), while
panel (h) shows the streamlines of the total velocity field.
Furthermore, panel (i) shows the planar field of seven vorticity bins,
colored by number, along with 2:5L0 regions shown as dashed contour
lines and 5Hp0 regions shown as solid contour lines (the latter, being

TABLE IV. Vorticity field divided into seven logarithmically spaced bins, along with
an indicative classification based upon the vorticity amplitude.

Bin xl � xb=x0 < xh Classification

Bin1 0 � xb=x0 < 0:1 Weak
Bin2 0:1 � xb=x0 < 0:25 Weak
Bin3 0:25 � xb=x0 < 0:5 Weak
Bin4 0:5 � xb=x0 < 1:0 Intermediate weak
Bin5 1:0 � xb=x0 < 2:0 Intermediate high
Bin6 2:0 � xb=x0 < 4:0 High
Bin7 4:0 � xb=x0 <1 Very high
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very small, can be seen upon zooming into the figure). We first con-
sider the total velocity streamlines in panel (h). The overall structure
appears disorderly, with mostly Ek in the intermediate range. A few
small regions contain high Ek jets, where the streamlines become well
aligned. Other regions of aligned streamlines, albeit with intermediate
Ek, can also be seen. The total streamline structure does not seem to
result from a single (or a few) “large eddies,” as for instance could be
seen in the Taylor-Green velocity structure (see Fig. 7). A few small
regions with swirling velocity, with intermediate and weak Ek, can also
be seen. The vorticity bins in panel (i) also appear mostly disorderly.
Most of the volume is occupied by Bin4 and Bin5, which have a very
convoluted, fragmented structure, and there is no clear large-scale

organization of the vorticity, which is perhaps the reason why a large-
scale organization does not emerge in the velocity field (as happens in
the case of the Taylor–Green velocity field, where a few large-scale
velocity structures are associated with an underlying pattern in the
vorticity field). Furthermore, the contours of 2:5L0 show that these
regions mostly coincide with intermediate and weak vorticity, showing
that the jet-like flow emerges in regions of weak vorticity, surrounded
by regions of intermediate (and occasionally, strong) vorticity.
Contours of 5Hp0 are found coinciding with strong vorticity bins, i.e.,
Bin6 and Bin7. It can be seen that the 5Hp0 contours are surrounded
by relatively larger regions of high vorticity, corresponding to Bin6—
which further explains why the self-induced flow due to 5Hp0 regions

FIG. 24. Planar velocity streamlines (in the entire xy� plane, at an arbitrary z location) have been shown for Bin1 through Bin7 going from panels (a) through (g), while panel
(h) shows the streamlines of the total velocity field. Panel (i) shows the vorticity field colored by the bin number, along with contours of 2:5L0 (dashed white lines) and 5Hp 0

(solid white lines). Colorbar shows the velocity magnitude.
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(see Fig. 23) is weak and does significantly contribute to the swirling-
flow, which receives a large contribution from the surrounding strong
vorticity.

Panel (a) shows that Bin1 generates disordered velocity stream-
lines, with a negligible amplitude, as can be expected from the low vor-
ticity magnitude in this bin. Panels (b) and (c), corresponding to Bin2
and Bin3, show that the streamlines due to these bins begin to have a
weak organization, similar in pattern to the streamlines due to Bin4
and Bin5, which resemble some of the larger features of the total veloc-
ity field shown in panel (h). The magnitude of the streamlines due to
Bin2 and Bin3, however, is still weak. Since Bin3 surrounds Bin4 and
Bin5, it is not surprising that the velocity generated by them has a sim-
ilar shape in many regions. Panel (d) and (e), i.e., Bin4 and Bin5, most
resemble the total velocity field in panel (h), in both structure and
velocity magnitude. Panel (f) shows Bin6, which has small, localized,
regions of intermediate velocity amplitude, and larger regions of
ordered streamlines with a low amplitude. Finally, panel (g) shows the
streamlines for Bin7, corresponding to the very high vorticity range
(x=x0 � 4:0). At this range, the vorticity regions become spatially iso-
lated and occupy very small volumes. The associated velocity field
shows large-scale structures, which look like a more disordered

Taylor–Green flow pattern. However, due to the very low velocity
magnitude, these structures do not emerge in the total velocity field in
panel (h), as they are overwhelmed by the contributions from the
other bins. Bin7, hence, influences the velocity field only in the imme-
diate neighborhood of the regions of high vorticity. The precise contri-
bution of each bin to generating the velocity field is quantified in
Sec. VIID.

We next look at instances of individual flow structures, along
with the Biot–Savart contribution of each vorticity bin in generating
this structure. Figure 25 focuses on the first 2:5L0 structure shown in
Fig. 22(a). Panels (a)–(g) show the Biot–Savart contribution of Bin1 to
Bin7 in generating the total velocity structure, which is shown in panel
(h). We find that the most significant contribution comes from Bin4
and Bin5, i.e., panels (d) and (e), both of which represent bins with
x 	 x0. The streamlines resemble the structure of the high Ek jet in
panel (h) and also have an intermediate level of velocity amplitude.
Bin6 also has a small contribution to the total velocity structure. Bin1
and Bin2 have a negligible contribution, while Bin3 has a mild contri-
bution. Finally, it is interesting to find that Bin7, which corresponds to
the higher levels of vorticity, also has a negligible contribution to the
generation of the kinetic energy jet. This result also reflects the spatial

FIG. 25. A single 2:5L0 high kinetic energy region is highlighted, where panels (a)–(g) show the contribution from Bin1 to Bin7 to the generation of the total velocity field shown
in panel (h).
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exclusivity between high kinetic energy and high enstrophy. From
Figs. 19(a) and 19(c), we know that the joint distribution of L and x is
anti-correlated. The very localized, high vorticity regions, do not
extend their influence on the velocity field beyond their immediate
neighborhoods. These results show that high kinetic energy jets are
induced by non-local intermediate vorticity contributions, in the range
of x 	 x0.

Figure 26 shows the first 5Hp0 swirling flow structure from
Fig. 23(a). The Biot–Savart contribution from Bin1 to Bin7 is shown
in panels (a) to (g). Bin5 and Bin6 in panels (e) and (f) are found to
contribute most significantly to the swirling flow region. Bin1 to Bin3
in panels (a) to (c) have a negligible contribution, while Bin4 in panel
(d) has a relatively mild velocity and can, hence, be expected to have
only a small contribution to the generation of the total velocity. Bin7
in panel (g), corresponding to the highest range of vorticity, is also
found to generate a very weak velocity field and contribute negligibly
to the swirling flow region in this example. Note that this range of vor-
ticity, x > 4x0, occurs intermittently. From the first structure shown
in Fig. 23(c), we know that this particular 5Hp0 region self-induces a

swirling velocity field, albeit with low magnitude. Since the Bin7 con-
tribution is found to be negligible, we can conclude that this structure
contains vorticity in the range of Bin6 and lower. In general, high Hp

structures will tend to have high vorticity (as evident from the joint-
PDF in Fig. 19), while the higher amplitude regions will become expo-
nentially smaller in size. Some of the high Hp regions will indeed have
contributions from Bin7, which becomes clear in Sec. VIID where we
quantify the vorticity bin contributions statistically.

D. Statistics of the Biot–Savart contributions

So far, the results show that both kinetic energy jets (identified by
L > 2:5L0) and swirling flow regions (identified byHp > 5Hp0) have a
significant Biot–Savart contribution from the intermediate range vor-
ticity. This finding is interesting, since it implies that the bulk of the
volume, which contains vorticity of a relatively mild magnitude
(x 	 x0), is significant in determining the structure of the velocity
field, possibly everywhere. We quantify this by calculating the correla-
tions CðL > 2:5L0;xbÞ and CðHp > 5Hp0;xbÞ, along with CðV ;xbÞ,

FIG. 26. A single 5Hp 0 swirling flow region is highlighted, where panels (a)–(g) show the contribution from Bin1 to Bin7 to the generation of the total velocity field shown in
panel (h).
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which have been shown in Fig. 27. Note that the x-axis in these figures
shows the limits of consecutive vorticity bins, and the points represent-
ing each bin, which have been placed in between their corresponding
limits, have been connected with lines to guide the eye. Furthermore,
the second y-axis (on the right) shows the volume fraction (in red) of
each vorticity bin Vf ðxbÞ, to give a complete picture, which includes
the Biot–Savart contribution of each vorticity bin along with the vol-
ume it occupies.

The black curve (circles) in Fig. 27(a) shows CðL > 2:5L0;xbÞ.
The highest contribution to the induction of high L kinetic energy jets,
of �45%, comes from Bin5, i.e., 1 � xb=x0 < 2, which occupies
�25% of the volume. Bin4, i.e., 0:5 � xb=x0 < 1 contributes �26%
while occupying �40% of the volume. The only other significant con-
tribution is from Bin6, i.e., 2 � xb=x0 < 4, of �20%, which occupies
a much smaller volume (<4%). Strong vorticity, i.e., xb=x0 � 4, has a
negligible Biot–Savart contribution to the generation of the kinetic
energy jets. This again reflects the spatial exclusivity of high kinetic
energy and high vorticity regions, where the latter occupies isolated,
small regions of the volume. It is interesting to find that strong vortic-
ity, which forms the long tails of the vorticity PDF, is insignificant in
the Biot–Savart sense. Furthermore, as expected, weak vorticity, i.e.,
xb=x0 < 0:5, also has a negligible contribution.

The blue curve (squares) in Fig. 27(a) shows CðHp > 5Hp0;xbÞ,
where the distribution of vorticity bin contributions is found shifted
toward the higher vorticity ranges, as can be expected. The intersection
between the distribution of bin-wise volume fraction and bin-wise
Biot–Savart contribution, in comparison with L > 2:5L0, is also shifted
toward higher vorticity levels. In this case, Bin6, i.e., 2 � xb=x0 < 4,
has the highest contribution (�34%) to generating flow inside 5Hp0

regions, while occupying only 4% of the volume. This is closely fol-
lowed by the contribution from Bin5 of �30%. Strong vorticity in the
range of xb=x0 � 4 is also found to contribute �13%, i.e., a small
amount as was anticipated in the discussion regarding Fig. 26. One dif-
ference between the distribution of vorticity bin contributions for
2:5L0 and 5Hp0 is that the former [black curve in Fig. 27(a)] appears
relatively narrower and higher peaked than the latter [blue curve in
Fig. 27(a)], which has a broader distribution. This reflects the fact that
the velocity field in high Hp swirling flow regions has a background
induced contribution, and a degree of self-induction due to the high
vorticity levels.

Trends in the distribution of vorticity bin contributions when
considering the entire velocity field [CðV ;xbÞ], shown in Fig. 27(b),

are found to be the same as those for CðL > 2:5L0;xbÞ. It can be sum-
marized that vorticity in the range of 0:5 � xb=x0 < 1:0 (Bin4)
occupies the maximum volume, but due to a lower amplitude has a
slightly smaller Biot–Savart contribution than vorticity in the range
1 � xb=x0 < 2 (Bin5), which has vorticity of a higher amplitude, but
occupies a lower fraction of the volume. Together, the vorticity in these
two bins, which is essentially at the level of x0 (and may be termed
intermediate), both permeates most of space and generates most of the
velocity field. The strong vorticity range, i.e., x=x0 � 4, remains insig-
nificant for generating the velocity field, except in the immediate vicin-
ity of high vorticity regions.

E. Summary

In summary, high L structures, which have high Ek, are compact,
coherent velocity-jets, while containing very low levels of vorticity.
The coherence of these structures is externally induced, with most
dominant contributions of the intermediate background vorticity. The
high Hp regions that coincide with high x2 are interspersed in a more
or less random manner through the flow field, and they do not add up
together, in a Biot–Savart sense, to give rise to high Ek structures.
These regions form vorticity-jets that are surrounded by velocity-
swirls, which are a superposition of self-induced swirling flow and an
intermediate background vorticity induced flow. This gives a clear pic-
ture of these flow structures that together comprise turbulence fields
(at high amplitudes), along with their Biot–Savart compositions.

VIII. CONCLUSIONS AND OUTLOOK

We developed a generalized correlation framework for identify-
ing instantaneous, spatial, coherent structures in vector fields.
Interpreting coherence to mean correlation, we began by generalizing
the usual two-point correlation tensor, i.e., a statistical concept, to an
instantaneous and deterministic correlation measure. This measure is
reduceable to a correlation manifold around each spatial point, while,
for simplicity, we sample this manifold along an arbitrary orthogonal
base, yielding three-tuple correlation fields. Based on this general
method, we propose several simple correlation measures using the
velocity and vorticity, aimed at identifying basic field patterns. These
are summarized below, together with some general possibilities:

1. L identifies regions of well aligned (parallel) velocity streamlines,
where the velocity magnitude is also high. Ls identifies non-local
symmetries/anti-symmetries of velocity streamlines, also

FIG. 27. Distribution of vorticity bin contri-
butions to (a) the flow within L and Hp

regions, i.e., CðL > 2:5L0;xbÞ and
CðHp > 5Hp 0;xbÞ, respectively, and (b)
the generation of the total flow field, in the
entire volume V, i.e., CðV ;xbÞ. The left
y-axis shows the correlation C, while the
right y-axis shows the volume fraction of
the vorticity bin Vf ðxbÞ.
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weighing in the velocity magnitude. Both L and Ls yield high val-
ues in uniform (or jet-like) velocity regions, while at the core of
swirling velocity regions with a high magnitude, only Ls is high.

2. G and Gs are defined for the vorticity field, analogously to L and
Ls, respectively. Both correlations yield high values that are vor-
tex core regions where the vorticity if well-aligned and high,
while Gs can also identify larger symmetries/anti-symmetries in
the vorticity field.

3. H and Hp are defined, inspired by the Biot–Savart law, as line and
planar measures, respectively, of the correlation between the vorticity
at a point with the surrounding velocity. These correlations yield
high values when a region of swirling velocity is induced by the local
vorticity. In general, this is not necessarily true, and one could have
regions of high vorticity without swirling velocity, when the velocity
is induced non-locally in a Biot–Savart sense.

4. Correlations L̂ and Ĝ, operating on the velocity and vorticity
fields point-wise normalized to unit vectors, are able to separate
organization effects from field magnitude effects and have poten-
tial for studying an intermediate range of structures.

5. Similarly, other correlation measures can be easily constructed in
order to identify different types of structures. For example, corre-
lations involving symmetries and anti-symmetries between
velocity and vorticity fields can be proposed to identify vorticity-
stretching structures.

6. A variety of other correlations, for instance, using the force-
density fields of pressure gradient and viscous stress, could be
readily defined along similar lines to study turbulence dynamics.
Relations between different fields could also be exploited.

7. The integration length of the correlations, K, provides a way to
gauge structure sizes, and changing the limits of integration
allows identifying purely non-local structures.

8. The correlations can be readily adapted to different dimensional
data-sets, or be recast as space-time-correlations to study the
evolution of spatial coherent structures.

9. Lastly, we underline that these correlations may be applied when
the amplitude of the signal is larger than that of noise. In the
reverse case, filtering procedures might be needed to tame the
level of noise, for instance using Moving Window averaging or
Top–Hat Fourier filtering, etc., following which the correlations
may be calculated. In principle, any such pre-processing of the
data is possible using global or local operations, and structures
can be found in the processed fields. This may be important for
experimental data, especially when investigating structures with
mild amplitudes.

After testing the correlations on canonical flows, we applied
them to a DNS dataset of incompressible, homogeneous isotropic tur-
bulence, which led us to identify dominant coherent structures in tur-
bulence. The Biot–Savart reconstruction of the velocity field, using
different levels and regions of the vorticity field, revealed interesting
features of the velocity field and its structures. These findings and their
implications are summarized below:

1. Turbulence has, at least, two basic coherent flow patterns. These
correspond, in the velocity and vorticity fields, to regions of jet-
like alignment and a high field amplitude.

2. High Ek regions consistently yield high values of both L and Ls,
showing that they form velocity-jets and are not swirling regions

(in which case only Ls would be high). These jets, being energetic
and unrelated to regions of strong vorticity (as revealed by the
Biot–Savart analysis), are distinct from the vortex-induced weak
Ek streams proposed in the literature.4 We only analyzed isotro-
pic turbulence with structureless-in-time energy injection. In
other kinds of flows, for instance, channel flow, where the energy
injection has a spatio-temporal structure, the L and Ls fields may
reveal other structures. Lastly, increasing levels of Ek lead to an
increase in the local flow organization.

3. High x2 regions are found to yield high values of G, Gs, H, and
Hp correlations. The coincidence of G and Gs shows that these
regions form vorticity-jets (which can be considered a particular
kind of vortex tube) and that there are no significant anti-
symmetry regions in the vorticity field. Predominantly high val-
ues of Hp in these regions further confirm that the neighborhood
of high x2 structures invariably form velocity-swirls, as has been
qualitatively described before,19–22,49 further corroborated by the
joint distribution of Hp and x.

4. Spatial distribution statistics show that the velocity-jets and
vorticity-jets (which are associated with velocity-swirls) are spa-
tially exclusive. This is consistent with the dynamical separation
between high Ek and the high x2 structures, which represent dif-
ferent parts of the Navier–Stokes dynamics.

5. Biot–Savart reconstruction of the velocity field shows that the
velocity-jets are kinematically non-local entities, i.e., they are
externally induced by non-local vorticity contributions (�88%),
while the self-induced contribution is low at �11% (since these
structures have weak gradients). This result will translate to the
Helmholtz-decomposition of other vector fields as well, since
any jet-like vector field region will have weak gradients and can-
not, therefore, self-induce. For instance, the vorticity-jets associ-
ated with high G and Gs are expected to be externally induced by
the divorticity (r� x), since the divergence of the vorticity is
zero. This highlights the importance of our framework of using
geometrical, non-local correlation criteria to identify structures,
since, from any gradient-based perspective, the dynamically
important high Ek structures will be shadowed in favor of gradi-
ent dominated structures.

6. The velocity-jets, furthermore, are dominantly induced by
x 	 x0, which permeates the volume and has an intermediate
(mild) magnitude, while strong vorticity has a negligible contri-
bution. This suggests that, unlike what is usually held, mild-
gradient regions are not wholly irregular; otherwise, they would
not additively lead to coherent regions. This may be important
from the perspective of Large Eddy Simulations (LES) of turbu-
lence structures as well. If the flow organization at intermediate
to large scales has an important contribution from the
Biot–Savart interaction of small scales, the finite spectral cutoff
in LES will not adequately capture the influence of these small
scales.

7. High x2 velocity-swirls have a background vorticity contribution
of �65% to their induction, and a self-induced flow of �35%. A
significant Biot–Savart contribution (�34%) comes from the
2 � x=x0 < 4 range. Intermediate, background vorticity, i.e.,
0:5 � x=x0 < 2, contributes �50%. This shows that swirling
velocity regions are structures in superposition of background
and self-induced flows.
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8. Flow streamlines of the entire velocity field appear, overall, disor-
ganized, while being interspersed with localized regions of
velocity-jets (high Ek, low x2) and velocity-swirls (moderate Ek,
high x2). At intermediate field values, distinctions begin to blur
and structures can overlap.

9. The bin-wise vorticity field also shows a disorganized structure.
Most of the volume is occupied by a convoluted and fragmented
intermediate vorticity field, i.e., 0:5 < x=x0 < 2, which is also
found to most significantly induce the velocity field everywhere
(�80%). Vorticity in this range corresponds to the narrow
(almost) Gaussian peak of the vorticity distribution. Strong vor-
ticity (x � 4x0) is intermittent and appears in isolation and gen-
erates (in a Biot–Savart sense) a large-scale flow pattern,
resembling a disordered Taylor–Green flow, which, due to its
weak amplitude, does not contribute to the total velocity field.
The influence of strong x regions to the velocity is limited to
their immediate neighborhood. Usually, most research has
focused on extreme vorticity, for instance, due to its influence on
mixing and particle dispersion. It turns out that the bulk of the
velocity field and, in particular, the Ek containing regions are
impervious to extreme vorticity. Weak vorticity, i.e., x < 0:5x0,
as can be expected, does not contribute much to the generation
of the velocity field.

A structural view of turbulence fields, as suggested by these
results, is illustrated in Fig. 28. Particularly, the coherence of the kinetic
energy containing jets being induced by non-local vorticity shows that
these structures are not self-determining. The traditional cascade per-
spective of turbulence dynamics explains the phenomena as being
dominated by high kinetic energy, large-scale structures, which in-
turn determine the structure and generation of successively smaller
scales via an “eddy breakup” mechanism, dating back to the idea of
Richardson.26 The presence of externally induced, localized kinetic
energy jets suggest a nonhierarchical flow organization. Most of the
velocity field, which is traditionally believed to comprise a range of
“coherent scales” (corresponding to the inertial range), is also gener-
ated, in a Biot–Savart sense, by the permeating, intermediate range

background vorticity. Finally, small scale swirling flow regions are
found to be a superposition of background induced flow and self-
induced flow to varying degrees.

Within limitations, an alternative view on (homogeneous isotro-
pic) turbulence can be considered, where its overall organization, along
with its statistical features, can be thought to emerge from the com-
bined contribution of the global vorticity field, dominated by the per-
meating intermediate background vorticity in the range x 	 x0. This
is contrary to the usual view that large-scale kinetic energy structures
drive the dynamics. Further investigation of the lifecycle of the velocity
and vorticity structures, along with identification of the typical force-
field structures that govern the dynamics (i.e., structures associated
with the pressure gradient and viscous stress fields), will help to illu-
mine or dispel notions regarding the existence of hierarchical coherent
structures (corresponding to the inertial range) that has been
expounded in different representational spaces, while having been elu-
sive in the physical (real) space where the phenomenon of turbulence
occurs. Normalized measures like L̂ might prove useful in this search
for intermediate range structures.

It would also be interesting to investigate Reynolds number
effects on the form and composition of the coherent flow regions. We
expect that, in homogeneous isotropic turbulence, high Ek regions will
manifest as jets (while high x swirling flow regions have been shown
widely), as hinted by a brief study involving reference data from the
Johns Hopkins Turbulence Dataset, which has a higher Rek.

55 The
fraction of Biot–Savart contribution from different vorticity levels to
the generation of flow structures might have some degree of Rek
dependence, which remains to be seen. Finally, a more detailed
Biot–Savart analysis can also be performed, which considers both the
magnitude of the vorticity in a region R1 and its distance from
another region R2, when estimating the Biot–Savart contribution of
R1 onR2. This will paint a fuller picture of the Biot–Savart composi-
tion of the velocity field and the spatial organization of coherent struc-
tures. In principle, a Helmholtz-decomposition hierarchy of structure
generation can also be investigated, where, for instance, a strong
velocity-swirl is largely self-induced by the core vorticity-jet, while the

FIG. 28. Schematic of the organization of
turbulence structures along with the
Biot–Savart contributions. Vorticity ranges
are color coded as strong vorticity
(orange), intermediate background vortic-
ity (blue), and weak vorticity (off-white).
The kinetic energy containing velocity-jets
have a low vorticity content and are
induced, almost entirely, by non-local,
intermediate background vorticity contribu-
tions (shown in blue), while the strong vor-
ticity contribution is negligible. Strong
vorticity regions form vorticity-jets and are
surrounded by velocity-swirls. These
structures are a superposition of an inter-
mediate background vorticity generated
flow and a self-induced accentuation of
the swirling flow.
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vorticity-jet itself will be externally induced by the divorticity, and so
on, showing how structures of one field manifest in another field.

The tools presented in this paper (or modified versions of them)
can be readily applied to identifying structures in any scalar or vector
fields like pressure, strain, or eigenvector distributions. Furthermore,
they can be useful in a wide range of fields apart from turbulence, like
for identifying polar/nematic order and defects in both active and pas-
sive matter, emergent anomalous Eulerian features in active flows,56

electromagnetic fields, or general large numerical datasets. Most
importantly, we believe this correlation-decomposition framework
opens a new door into studying the dynamics of turbulence from the
perspective of its physical space structures and may pave the way
toward a real structure-driven description of turbulence organization.
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APPENDIX: CALCULATING THE BIOT–SAVART
INTEGRAL

Here, we describe a few practical aspects regarding the compu-
tation of the Biot–Savart integral over periodic domains. As
described in Sec. IV, for the case of incompressible flow in a peri-
odic domain, the Helmholtz decomposition reduces to u ¼ C [Eq.
(13)], with C given by the Biot–Savart formula as

CðxÞ ¼ 1
4p

ð
V

x� r

jrj3
dV 0: (A1)

For a triperiodic domain, it is important to note that all points
in the volume V are equivalent, as there is no distinct location like a
“real boundary” or a “center” in the flow. This becomes important
when calculating the Biot–Savart integral for points near to the
“simulation boundary.”

We perform the Biot–Savart integral in a radially symmetric
manner, for which we first tesselate the simulation domain V
(which has an edge length of N) along each direction. We then con-
sider the volume eV ¼ ð4=3Þpr3, around the fictitious center of the
original cube, for the integral, i.e., the contribution of C to u. We
test different values of the radius r, to check how closely does C
recover the original velocity field u (while, in principle, a large
enough r will reproduce the velocity field within V to 100% accu-
racy, discounting numerical errors). We find that an integral over
r ¼ N

ffiffiffi
3
p

=2 generates a Biot–Savart velocity field of �95% accuracy

in comparison with the original velocity field, while an integral over
r¼N generates a Biot–Savart velocity of �99% accuracy. Hence,
for this paper, we use a Biot–Savart reconstruction over r¼N (witheV ¼ ð4=3ÞpN3).

An alternative calculation was also tested, where each point in
the domain is treated as a fictitious center, and a radially symmetric
region of radius r is created around it by tessellating the periodic
cube. This region is then used to calculate the Biot–Savart velocity
for the central point. This method, with r¼N, was also found to
yield an accuracy of approximately 99% in reconstructing the veloc-
ity field, while being computationally more expensive.
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