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ABSTRACT: We investigate the spatiotemporal structure of rainfall at spatial scales from 7m to over 200 km in the

Netherlands. We used data from two networks of laser disdrometers with complementary interstation distances in two

Dutch cities (comprising five and six disdrometers, respectively) and a Dutch nationwide network of 31 automatic rain

gauges. The smallest aggregation interval for which raindrop size distributions were collected by the disdrometers was 30 s,

while the automatic rain gauges provided 10-min rainfall sums. This study aims to supplement other micro-g investigations

(usually performed in the context of spatial rainfall variability within a weather radar pixel) with new data, while charac-

terizing the correlation structure across an extended range of scales. To quantify the spatiotemporal variability, we employ a

two-parameter exponential model fitted to the spatial correlograms and characterize the parameters of the model as a

function of the temporal aggregation interval. This widely used method allows for a meaningful comparison with seven

other studies across contrasting climatic settings all around the world. We also separately analyzed the intermittency of the

rainfall observations. We show that a single parameterization, consisting of a two-parameter exponential spatial model as a

function of interstation distance combined with a power-law model for decorrelation distance as a function of aggregation

interval, can coherently describe rainfall variability (both spatial correlation and intermittency) across a wide range of

scales. Limiting the range of scales to those typically found in micro-g variability studies (including four of the seven studies

to which we compare our results) skews the parameterization and reduces its applicability to larger scales.

KEYWORDS: Rainfall; Gauges; Microscale processes/variability

1. Introduction

Quantification of small-scale rainfall variability is important

for the design and operation of small-scale sensor networks for

flood prediction, particularly in urban areas (ten Veldhuis et al.

2018). It is also important for the assessment of the spatial

representativeness of path- or area-averaged remote rainfall

measurement methods such as microwave links (Berne and

Uijlenhoet 2007; van Leth et al. 2020), weather radar (Jaffrain

et al. 2011; Peleg et al. 2013), and satellite remote sensing

(Habib and Krajewski 2002; Villarini et al. 2008). Furthermore

the spatial and temporal patterns of variability provide insight

into the physical structure of rain and can be used for the

construction of rain simulations (Schleiss et al. 2009).

Several measurement campaigns have been carried out in

the past decades in order to assess the spatiotemporal vari-

ability of rain in a statistical sense at scales comparable to a

typical weather radar pixel, corresponding to the micro-a to

micro-g scales in the framework of Orlanski (1975). Networks

of laser disdrometers have been used before to measure the

temporal variability of drop size distributions by Tapiador

et al. (2010) and Jaffrain and Berne (2012). Jameson et al.

(2015) used a similar disdrometer network with logarithmic

spacing in order to investigate clustering in rainfall fields.

Habib and Krajewski (2002), Ciach and Krajewski (2006),

Villarini et al. (2008), Peleg et al. (2013), Mascaro (2017), and

O and Foelsche (2019) presented similar analyses using rain

gauges at small spatiotemporal scales combined with a modi-

fied exponential spatial correlation model. Meanwhile, van de

Beek et al. (2012) used a Dutch nationwide automatic rain

gauge network to analyze rainfall variability at the mesoscale

at hourly to daily time steps and intergauge distances of 30–

300 km. Schuurmans et al. (2007) employed the same dataset in

conjunction with a microscale tipping-bucket gauge network

and radar for high-resolution rainfall field prediction.

Although quite some empirical data are therefore available

to investigate spatial rainfall variability at scales smaller than

1 km with subhourly aggregation intervals, much uncertainty

remains regarding the applicability of these measurements for

the assessment of the spatial representativeness of rainfall esti-

mates from ground-based or spaceborne remote sensors (Habib

and Krajewski 2002; Peleg et al. 2013; Sunilkumar et al. 2016;
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Villarini et al. 2008). Different measurement campaigns find

contrasting parameterizations and the number of independent

measurement campaigns carried out is insufficient to determine

whether these differences in parameterization are related to cli-

matology, instrumentation, the different ranges of interstation

distances or other causes. Therefore, more independent spatial

variability experiments are needed as well as an effort to reconcile

results from experiments with different interstation distance

ranges. This paper aims to contribute toward filling that gap using

disdrometer data with interstation distances ranging from 7 to

2200m originally collected to validate rainfall measurements

using microwave links (van Leth et al. 2018). We supplement

these data with a medium-range dataset (with interstation

distances ranging from ;3 to ;30 km) collected in the city of

Rotterdam as part of an operational hydrometeorological

network. Finally, we also use new data from the Dutch na-

tionwide gauge network (with interstation distances of up to

315 km), which is now available at 10-min aggregation inter-

vals. We aim to test the consistency of the findings at different

spatiotemporal scales and as part of different measurement

campaigns, in particular regarding the spatial correlation

structure and intermittency of rainfall.

This paper is organized as follows. The employed rainfall

datasets and associated quality control procedures are pre-

sented in section 2. In section 3 we present and motivate the

employed measures for rainfall spatial correlation and inter-

mittency. Results are presented and analyzed as functions of

temporal aggregation interval and season in section 4. In

section 5 the presented methodology and associated results are

put in a broader perspective by comparing them to methods

and results from similar studies around the globe. Finally, the

conclusions of our study on small-scale space–time rainfall

structure are provided in section 6.

2. Data

a. Datasets

We have used disdrometer data from a field campaign (van

Leth et al. 2018) conducted in the Dutch town of Wageningen.

This field campaign was set up to provide a test bed for

microwave link rainfall retrieval algorithms. The five OTT

Parsivel1 disdrometers were situated roughly on a line of

2.2-km length (Fig. 1a). Two of the disdrometers were situated

on top of the same building at only 7m apart, the other three

were placed on other buildings in the Wageningen urban area.

The disdrometers provided integrated drop size distributions per

30 s and data from all disdrometers were available from March

2015 until December 2015. From these drop size distributions,

rainfall intensities were calculated (see van Leth et al. 2018 for

details). These particular disdrometers were used before in

Lausanne, Switzerland (Jaffrain et al. 2011), where they had been

part of the disdrometer network used by Jaffrain andBerne (2012).

Another dataset is used in order to extend the analysis to

larger spatial and temporal scales. This dataset was collected in

and around the Dutch city of Rotterdam, around 80 kmwest of

Wageningen, in the period from January 2010 to October 2011.

It was collected by the municipality of Rotterdam using six

Thies laser disdrometers. These disdrometers are function-

ally quite similar to the OTT Parsivel1 disdrometers used in

Wageningen, although systematic differences in derived rainfall

intensities between both types of disdrometers have been re-

ported, both for the Parsivel1 (Guyot et al. 2019) and for the

Parsivel2 (Angulo-Martínez et al. 2018). However, because we

focus on the spatial correlations and intermittencies rather thanon

the intensities themselves, we do not expect these differences to

have significantly affected the presented analysis. In addition, all

employed data were carefully quality-controlled before further

FIG. 1. (a) Relative locations of the five disdrometers in Wageningen (red dots; note that two disdrometers are

installed at the northern location). (b) Relative locations of the six disdrometers in Rotterdam (green dots).

(c) Relative locations of the 31 automatic rain gauges (orange dots) and 11 disdrometers (red and green dots) in the

Netherlands.
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analyses were conducted (section 2b). The locations of these

measurement stations are shown in Fig. 1b. These disdrometers

provided rainfall intensity estimates over 1-min aggregation in-

tervals. We did not have access to the actual drop size distribu-

tions. This dataset is used to provide spatial correlation estimates

across interstation distances ranging from ;3 to ;30km.

To extend the range of spatial scales even further we also

make use of data from aDutch nationwide automatic rain gauge

network operated by the Royal Netherlands Meteorological

Institute (KNMI). This dataset provides rainfall depths aggre-

gated to 10min at 31 locations throughout the Netherlands

(Fig. 1c), for the period from January 2010 to October 2011

(i.e., the same period as the Rotterdam disdrometer dataset).

In contrast to the tipping-bucket gauges used in other studies,

these gauges measure the rainfall depth using the displacement

of a float placed in a reservoir and can therefore record continu-

ously. The range of interstation distances d overlaps somewhat

with the Rotterdam dataset (20km, d, 315km). The network

of automatic rain gauges is the same as the one used by van de

Beek et al. (2012). However, they used a different measurement

period (1979–2009) and only had access to hourly rainfall sums.

Although the employed datasets are relatively limited in du-

ration, they are not too short for the purpose of this investiga-

tion. The (maritime) rainfall climatology of the Netherlands is

such that the yearly rainfall total is never dominated by one or a

few major storm events.

b. Quality control

TheWageningen disdrometer dataset included an indication

of precipitation type.Weused the product of this built-in Parsivel1

algorithm to exclude anything other than liquid precipitation.

Note that only 7% of the total precipitation in the Netherlands

falls as solid ormixed precipitation (deHaij 2007).We also set any

interval where the Parsivel1 algorithm indicates dry weather to

0mm, as this is not always the case for the Parsivel1.

The Rotterdam dataset did require some quality control

before it could be compared reliably to the Wageningen

dataset. Because little metadata was available from the dis-

drometers, we used ;1 3 1 km2 gauge-adjusted radar pixels

containing the disdrometer locations as a reference to elimi-

nate suspicious measurements, including any issue with solid or

mixed precipitation. This weather radar dataset was obtained

using the two C-band radars operated by KNMI and adjusted

using both the automatic rain gauge network and a network of

325 manual gauges (Overeem et al. 2009a,b, 2011). The tem-

poral resolution is 5min.

Of course, weather radar and ground-based measurements

cannot be compared directly even when the magnitude is ad-

justed. This is because 1) the situation at 1.5 km above the

ground (the effective height of the constant-altitude plan po-

sition indicator) can be different than at ground level, 2) the

radar pixel represents a volumetric average as opposed to a

point measurement, and 3) the pixels do not align perfectly

with the positions of the disdrometers. Hence, directly com-

paring the two measurements would yield many false positives

for exclusion. We recognize several aspects of the radar data

that could lead to intervals being erroneously categorized as

faulty disdrometermeasurements: intermittency of precipitation

within an event, a difference in event timing between radar and

disdrometer, and small-scale spatial variability in magnitude

which is not captured by radar.

Since spatiotemporal variability at the small scale is exactly

what we are investigating here, it is of the utmost importance

that we do not unduly influence our results by erroneously

excluding events that simply exhibit a high variability. To do so

we have devised the following filtering algorithm. We first

apply a 3-h moving average filter to both the disdrometer time

series (after aggregating to 5min) and the radar time series.

This smooths out small-scale intermittency. Next, we compare

the smoothed radar time series and the smoothed disdrometer

time series and evaluate the following equation:

(R
disdro,3h

=R
radar,3h

. a) ^ (R
disdro,3h

2R
radar,3h

.b), (1)

where the first term represents the multiplicative error, the

second term represents the additive error, and ^ indicates the

Boolean AND operator. If the above equation evaluates as

true for a given 5-min interval then the interval is excluded.

After manually verifying the effect of this filter for different

values of a and b, we finally selected a 5 2 and b 5 1mmh21.

Although a filter like this admittedly has a certain degree of

arbitrariness (Park et al. 2019), the selected values of the filter

parameters ensure that intervals are only excluded when the 3-h

disdrometer moving averages substantially overestimate the

gauge-adjusted radar reference. In addition, applying the filter

to 3-h moving averages avoids erroneously excluding intervals

[using Eq. (1)] displaying actual small-scale spatial rainfall

variability. In this manner, instrumental outliers are removed

while actual small-scale rainfall fluctuations are preserved.

3. Methodology

Following Ciach and Krajewski (2006), Villarini et al.

(2008), Tokay and Öztürk (2012), Peleg et al. (2013), and

Mascaro (2017), we use Pearson’s product-moment correlation

coefficient rij as an estimator for the interstation correlation:

r
ij
5

R
i,t
R

j,t
2R

i,t
R

j,tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R2

i,t 2R
i,t

2
) (R2

j,t 2R
j,t

2
)

q , (2)

where Ri,t and Rj,t are the rainfall intensity time series of the

two stations (with indices i and j) to be compared and the

means (indicated by the overbars) are taken over the entire

time series (zeroes included). This is then applied for every

combination of two stations in a given dataset.

For random variables with strongly skewed probability dis-

tributions, such as rainfall intensity (in particular at short

temporal aggregation intervals), Pearson’s estimator is known

to produce biased and uncertain correlation estimates (see

Habib et al. 2001, and references therein). Using a simulation

experiment based on a bivariate intermittent lognormal dis-

tribution Habib et al. (2001) showed that, in case of strong

positive skewness, Pearson’s estimator may lead to overesti-

mates of the true correlation (they reported positive biases of

up to 0.15 for the smallest sample sizes), whereas a logarithmic

transformation of the data would produce essentially unbiased
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estimates. However, following the reasoning of Ciach and

Krajewski (2006) for rainfall in central Oklahoma and Villarini

et al. (2008) for southwest England, we expect the probability

density function of rainfall intensity in the Netherlands to

have a much lighter tail than the mixed lognormal distribution

and therefore decided not to apply the procedure proposed by

Habib et al. (2001). This has the added advantage of rendering

the results of our analysis directly comparable to the men-

tioned previous work on small-scale rainfall variability.

We use a bootstrap procedure to estimate the sampling

uncertainty in the spatial correlation coefficient for all inter-

station distances and every temporal aggregation interval

considered. Here, we randomly take N intervals (with re-

placement) from the N-length time series and recalculate the

correlation coefficient, where N indicates the total number of

samples that is available for a given dataset. This implies that

for coarser temporal aggregation intervals, N decreases, hence

the sampling uncertainty in the spatial correlation coefficient

increases, which is exactly what the bootstrap procedure aims

to quantify. We perform this procedure 100 times for every

combination of stations and calculate the standard deviation

from the resulting distributions. This we take as a measure of

confidence in the correlation coefficients, where a small stan-

dard deviation indicates a high confidence and vice versa.

We parameterize the rainfall decorrelation as a function of

interstation distance with the following two-parameter expo-

nential spatial correlation model:

r(d)5 exp

�
2

�
d

d
0

�s0
�
, (3)

where d is the interstation distance, d0 is the decorrelation

distance (the distance where the correlation reduces to 1/e) and

s0 is the shape parameter (with s0 5 1 corresponding to the

classical single-parameter exponential model and s0 5 2 to a

Gaussian shape). This is similar to the three-parameter expo-

nential model suggested by Krajewski et al. (2003) and later

applied by Ciach and Krajewski (2006), Villarini et al. (2008),

Jaffrain and Berne (2012), Tokay and Öztürk (2012), Peleg

et al. (2013), Sunilkumar et al. (2016), and O and Foelsche

(2019), except that we omit the nugget parameter. This as-

sumption is consistent with previous research on spatial rainfall

variability in the Netherlands (van de Beek et al. 2011, 2012)

and elsewhere (Mandapaka and Qin 2013; Mascaro 2017). A

further comparison with nugget parameters found for other

locations around theworld is provided in section 5.We take the

decorrelation distance to be a reliable measure of the spatial

rainfall variability for a given temporal accumulation interval.

In doing so we therefore assume that the rainfall variability is

isotropic (i.e., not dependent on direction), an assumption that

was tested experimentally by Jaffrain and Berne (2012),

Mandapaka and Qin (2013), Mascaro (2017), and O and

Foelsche (2019) and implicit in all other studies using Eq. (3) as

spatial rainfall correlation model and other studies dealing

with spatial rainfall variability in the Netherlands (Schuurmans

et al. 2007; van de Beek et al. 2011, 2012). As a consequence,

the orientation of the Wageningen disdrometer array (Fig. 1) is

not expected to significantly affect our results. Finally, we do not

expect any long-range dependencies to be present in our relatively

small-scale dataset, renderingEq. (3) a suitable correlationmodel.

To fit the optimal parameters d0 and s0 we use a standard

Levenberg–Marquardt nonlinear least squares implementation,

where we have used the uncertainties calculated with the boot-

strap procedure as weights in the cost function. The confidence

bands for the nonlinear regression curves are determined using a

Monte Carlo technique. Here, the numerically estimated pa-

rameter covariances are used to generate 100 parameter in-

stances of amultivariateGaussian distribution.UsingEq. (3), we

obtain 100 instances of the correlation coefficient at each distance.

Next, we determine the 5th and 95th percentile of the correlation

coefficient for each distance. We perform the abovementioned

procedure for several temporal aggregation periods ranging from

30 s (depending on the available data) up to 48h.

We also investigate the degree of spatial intermittency of

rainfall. That is, regardless of the amount of rainfall, we aim to

quantify the spatial variability in dry and rainy subintervals

within a rainy period. As a measure of spatial intermittency we

calculate the following quantity:

I
ij
5

N
all_wet

N
any_wet

5
N

(Ri,t . 0^Rj,t . 0)

N
(Ri,t . 0_Rj,t . 0)

. (4)

Here, Nall_wet is the number of intervals where both stations

register rain throughout the aggregation interval, while Nany_wet

is the number of intervals where at least one of the stations

registers rain at least once during the aggregation interval. By

registering rain, we mean here that the rainfall intensity at the

original (smallest) aggregation level is nonzero. We will refer

to I as the ‘‘intermittency ratio.’’ This is equivalent to the

conditional probability of detection, defined byKrajewski et al.

(2003) as the probability of rainfall at one point, given that it

rains at another point during the same interval. Hence, the

intermittency ratio I defined in this manner is inversely related

to the intermittency of rainfall. Given the spatial coherence of

rain, I is expected to be a decreasing function, from 1 at small

interstation distances to 0 at large interstation distances, in much

the same way as the rainfall interstation correlation r [Eq. (2)].

This will allow us to investigate if the two-parameter exponential

model adopted for spatial correlation [Eq. (3)] is also an appro-

priatemodel for spatial intermittency of rainfall. Anothermeasure

of rainfall intermittency was employed by Habib and Krajewski

(2002) and Villarini et al. (2008), who considered the probability

of a rain gauge registering zero rainfall within an area where

nonzero rainfall wasmeasured. Schleiss et al. (2011) considered the

probability that a randomly chosen area of a given size remains

completely dry for at least somany hours. However, in the context

of the current study, we prefer the intermittencymeasure provided

byEq. (4), as it is defined for each disdrometer/gauge combination,

much like the interstation correlation [Eq. (2)].

4. Results

a. Spatial correlation

The correlations between the rainfall intensities from two

stations are plotted against the distances between them. This is
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done for both theWageningen and the Rotterdam disdrometer

datasets as well as the nationwide gauge dataset. The decorrela-

tion distances are determined using Eq. (3) for different re-

sampled temporal aggregation intervals. The results are shown in

Fig. 2. The optimal values found for the inferred parameters are

given in the figure togetherwith the standard deviations estimated

with the regression procedure described in section 3.

It can be seen that rainfall estimates from the two closest

stations (7m apart) are already highly correlated at a 30-s ag-

gregation interval (r 5 0.9666 0.002). At a 1-min aggregation

interval and a distance of roughly 500m (483m and 490m) the

correlation coefficients are 0.860 6 0.008 and 0.875 6 0.008,

respectively. This is clearly higher than what Villarini et al.

(2008) found for their smallest interstation distance bin of

roughly 500m at a 1-min aggregation interval. They found

correlation coefficients ranging from 0.21 to 0.38 for the

Brue catchment (United Kingdom) using tipping-bucket

rain gauges. Tapiador et al. (2010) only analyzed a few

single days, but for this aggregation period and interstation

distance found similarly high correlation coefficients (al-

though for radar reflectivity instead of rainfall intensity),

ranging between 0.90 and 0.97 depending on the date. They

used instruments of the same type as used in this experi-

ment. Including an additional nugget parameter in the cor-

relation model does not improve the goodness-of-fit for

either of the two datasets. The coefficient of determination

(R2), indicating the fraction of the observed variance ex-

plained by the regression model, is found to be 0.99 at the

30-s aggregation level for the Wageningen dataset and 0.95

for the 1-min Rotterdam dataset, with no significant differ-

ence using either model (with or without nugget).

The fitted curves based on the Wageningen dataset and the

Rotterdam dataset are quite dissimilar and gradually become

more so as the aggregation period increases. However, it is also

clear that a direct comparison between the two is impossible

given their respective interstation distance ranges do not

overlap. Especially with regard to the Wageningen dataset it

should be noted that the optimally fitted decorrelation dis-

tances (d0 increases from 3.50 km at an aggregation interval of

30 s to 8.93 km at 1 h; Figs. 2a–f) are in all cases outside of the

range of actually measured distances (d ranges from 7m to

2.2 km; Fig. 1a). Hence, d is always smaller than d0, indicating

that the range of interstation distances in the Wageningen

dataset is insufficient to determine the actual correlation pat-

terns for this range of temporal aggregation periods. Actually,

if s0 5 1, which is very nearly the case for an aggregation in-

terval of 1min (Fig. 2b), the two-parameter exponential spatial

correlation model [Eq. (3)] reduces to the classical single-

parameter exponential model r(d)5 e2(d/d0) (Ha et al. 2007),

which for small values of d approaches the straight line

r(d)5 12 (d/d0) with (negative) slope 21/d0. This indicates

that, for the Wageningen dataset at aggregation intervals

around 1min, d0 actually represents the inverse of the slope

of a linear correlation model rather than the decorrelation

distance. We do see that the prediction bands overlap where

the respective ranges of the Wageningen and Rotterdam da-

tasets almost meet. For aggregation periods longer than 1 h the

confidence band for the Wageningen dataset becomes so wide

as to render the fit essentially meaningless. Therefore, no fitted

models for the Wageningen dataset are shown in Figs. 2g–2i.

Figures 2d–2i also show the correlograms for the nationwide

dataset. Shape factors are lower than for the Rotterdam

dataset at all aggregation levels. Decorrelation distances are

lower than for the Rotterdam dataset at aggregation intervals

of 30min and below and decorrelation distances are higher at

higher aggregation levels.

Because the distance ranges covered by theWageningen and

Rotterdam datasets are complementary, we increase the rep-

resentativeness of the fit by combining the two in a single re-

gression. In doing so, we implicitly assume both datasets to be

sampled from the same population, i.e., that there is no cli-

matological difference between the sampled areas and times

and that there are no instrumental differences that could in any

way influence the correlations between stations. Although the

two datasets are collected in two different time frames, at

different locations and with different instruments, the as-

sumption is reasonably justified: the timespans of the datasets

are relatively long compared to the aggregation intervals

(9 months and 1.5 years, respectively), they take place within 4

years of each other and both are collected over similar (flat,

urban) terrain within 100 km of each other within a larger area

which has no significant height differences or mountain ranges.

Furthermore, both types of instruments operate along the

same general principles: both are optical laser disdrometers

(Angulo-Martínez et al. 2018; Guyot et al. 2019).

With that justification, we determine the correlation

model parameters using correlations found in both datasets

together and compare them to the parameters of the regression

curve based on only the Rotterdam dataset. Both the shape

parameter s0 and decorrelation distance d0 become higher for

the 1-min aggregation period. For aggregation periods of 5min

and above the difference in d0 is not significant at a 95% sig-

nificance level. For 20-min aggregation intervals and longer (not

shown here, tested up to 1 h) the confidence bands overlap over

the entire range. Therefore, we can conclude that the rainfall

correlation pattern observed from just theRotterdamnetwork is

fundamentally in agreement with the pattern observed from

both networks. To assess the representativeness of the functions

fitted to the combined dataset for both long and short distances,

we calculate the coefficient of determination of the function

fitted to both datasets applied to the Wageningen dataset or the

Rotterdam dataset alone. For 10-min aggregation intervals this

yields R2 5 0.92 for Rotterdam and R2 5 0.72 for Wageningen

(not shown in Fig. 2). We conclude that the function fitted to

both datasets accurately describes the correlation pattern at

both smaller (d , 2.2 km) and intermediate (3 , d , 30 km)

interstation distances.

Similarly, we also fitted the correlation model using all three

datasets together. The same justification applies, except that

the nationwide dataset is collected with automatic gauges in-

stead of laser disdrometers. The results are illustrated in

Figs. 2d–2i. The decorrelation distances for aggregation inter-

vals of 10 and 30min are closer to those determined using only

the Rotterdam dataset, while for aggregation intervals of 1 h

and longer they are not significantly different from those de-

termined using only the nationwide dataset. This was to be

AUGUST 2021 VAN LETH ET AL . 2231

Brought to you by TU DELFT | Unauthenticated | Downloaded 02/10/22 10:24 AM UTC



FIG. 2. Spatial correlograms for different temporal aggregation intervals. Blue dots indicate disdrometer pairs from the Wageningen

dataset, while orange dots indicate disdrometer pairs from the Rotterdam dataset and green dots indicate gauge pairs from the nationwide

dataset. The correspondingly colored lines indicate fitted two-parameter exponential models [Eq. (3)] using only one of the datasets. Fitted

models using all datasets are shown in black [in (b) and (c) the nationwide dataset is not included]. Confidence intervals are indicated by lighter

colored bands, and extrapolations of fitted models beyond the range of measurements on which they are based are indicated with dashed lines.

Aggregation intervals are from left to right and from top to bottom: 30 s, 1min, 5min, 10min, 30min, 60min, 6 h, 12 h, and 24 h. Legends show

estimated values of model parameters and their confidence intervals, as well as corresponding coefficients of determination.
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expected, as for the longer aggregation intervals (i.e., the larger

spatial scales) the nationwide dataset dominates the correla-

tion structure, whereas for the intermediate aggregation in-

tervals (i.e., the intermediate spatial scales) the Rotterdam

dataset plays a dominant role. As before, we assess the rep-

resentativeness of the parameterization at different distance

ranges by calculating coefficients of determination of the fitted

function applied to each individual dataset at the 10-min ag-

gregation level. This gives a reasonable goodness-of-fit for

large (R2 5 0.77 nationwide) and intermediate distances (R2 5
0.94 for Rotterdam), but no fit at all for small distances

(R2 520.94 for Wageningen). We conclude that there is not a

single parameterization of the two-parameter exponential

model that applies to the entire distance range.

Figure 3 shows the fitted model parameters for a larger

number of aggregation levels. The relationship between the

decorrelation distance and the aggregation interval takes the

form of a power law,

d
0
5 aDtb , (5)

where Dt is the aggregation period and a and b are fitted pa-

rameters (Berne et al. 2004). The parameters are given in

Fig. 3a. The decorrelation distance–aggregation interval rela-

tionships obtained using most combinations of datasets are

consistent, with confidence bands overlapping over most of the

range. The relationship obtained using only the Rotterdam

dataset results in the lowest goodness-of-fit (R2 5 0.22), while

the relationship obtained using all three datasets together re-

sults in the highest coefficient of determination (R2 5 0.93).

The inferred exponents (b) for these datasets are all close to

the value of 0.5 reported by Berne et al. (2004) for small-scale

rainfall variability in the city of Marseille, southern France.

The exception is the relationship obtained using only the

Wageningen dataset. The decorrelation distances at the 30-s

level are consistent with the extrapolation obtained from the

other fits, but at higher aggregation levels the decorrelation

distances are all significantly lower than would have been ob-

tained using any other combination of datasets, up to an order

of magnitude difference. The cause of this is that the range of

interstation distances in theWageningen dataset is too small to

determine the actual correlation patterns for this range of

temporal aggregation periods, as noted before.

A similar power law is also used to fit the shape factor as a

function of the aggregation interval and is given in Fig. 3b. The

shape factor–aggregation interval relationship is not as con-

sistent between the different combinations of datasets. The

difference between the fit obtained using all datasets and that

obtained using only the nationwide dataset is small but still

significant. In all cases and at all aggregation levels the shape

FIG. 3. (a) Decorrelation distance (and associated uncertainty) vs aggregation interval using the Wageningen

dataset in blue, the Rotterdam dataset in orange and the nationwide dataset in green. Also included is the de-

correlation distance fitted using both the Rotterdam and the Wageningen datasets in red and the decorrelation

distance fitted using all datasets together in black. (b) As in (a), but showing the shape factor as a function of

aggregation interval. Extrapolations of fitted models beyond the range of measurements on which they are based

are indicated with dashed lines. Legends show estimated values of model parameters and their confidence intervals,

as well as corresponding coefficients of determination.
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factor remains below a value of 1. Recall that for s05 1 the two-

parameter exponential spatial correlation model [Eq. (3)] re-

duces to a simple exponential model. The exceptions are the

shape factors obtained using only the Wageningen dataset,

which are all close to or above 1. In summary: using only the

subpixel dataset results in anomalous correlation model pa-

rameters, which are inconsistent with the findings from a larger

range of scales (both including and excluding the subpixel

range itself). This could be either due to the limited number of

datapoints or the limited range of scales.

We also investigated the effect of using a moving average

instead of a sequential averaging scheme for aggregating to

longer time intervals. This did not make a significant difference

in the results. In the analyses of the rest of this paper we will

only consider the results obtained using all datasets to fit

the model.

b. Seasonality of spatial correlation

To investigate seasonal effects in a crude fashion we have

performed the abovementioned analyses on two subsets of our

data, one subset spanning only the months of December,

January and February (winter) and another subset spanning

only the months of June, July and August (summer). Because

theWageningen dataset spans only ninemonths, we performed

the analyses only on the Rotterdam dataset and the nationwide

dataset. The results for the summer months are very similar to

those found for the entire year, while the results for the winter

months are very different. Our results show that typical

decorrelation distances are far lower in summer than in winter,

as can be seen in Fig. 4a, confirming earlier findings for Dutch

rainfall at coarser spatiotemporal scales (van de Beek et al.

2012). This is especially true of the shorter aggregation inter-

vals, while the differences become gradually less toward the

longer aggregation intervals. At an aggregation interval of 48 h

there is no significant difference anymore and at even longer

aggregation intervals (not shown here) inferred summer de-

correlation distances become larger than winter decorrelation

distances. However, it should be noted that at these aggrega-

tion levels the estimated d0 becomes longer than the longest

interstation distance dmax (315 km). Therefore, inferred values

are highly uncertain. The inferred exponents of the power-law

decorrelation distance–aggregation interval relationships are

of the order of 0.5 for the summer months and 0.3 for the

winter months (Fig. 4a). Note that van de Beek et al. (2012)

found exponents of 0.29 for both summer and winter in the

Netherlands at coarser spatiotemporal scales.

There is a striking difference in the values of s0 as well as in

their relation with aggregation interval for the winter months

as compared to those found for the summer months (Fig. 4b).

In the summer (and over the entire year) the shape factors all

stay below approximately 0.8 and they generally do not in-

crease anymore from aggregation intervals of 2 h onward. As

FIG. 4. (a) Decorrelation distance of the disdrometer/gauge pairs (and associated uncertainty) vs aggregation interval per season.

Summer months are indicated in orange, while winter months are indicated in blue. All-year values are indicated in green. (b) Shape

factors of the correlation function as a function of aggregation interval per season. Colors are the same as in (a). In (a) and

(b) extrapolations of fitted models beyond the range of measurements on which they are based are indicated with dashed lines.

(c) Correlation coefficient as a function of interstation distance. Solid lines are based on rainfall aggregated to 48 h, while dashed lines are

based on 6-h aggregated rainfall. Colors as in (a). Legends show estimated values of model parameters and their confidence intervals, as

well as corresponding coefficients of determination.
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such, the relationship in summer deviates from the assumed

power-law relationship, which is also evident from the

goodness-of-fit (R2 5 0.44). For the winter months, the

shape factor is not only larger than for the summer months,

it also increases faster and does not seem to approach an

asymptote. Instead, it more closely follows the power-law

relationship (R25 0.92), and it becomes larger than unity for

aggregation intervals of 2 h and longer. In this context, the

observation that the decorrelation distances between sum-

mer and winter appear to approach each other as the ag-

gregation interval increases (Fig. 4a) can be a bit misleading;

for aggregation intervals up to 48 h, the correlation during

winter is significantly higher than during summer for the

entire distance range. This is illustrated in Fig. 4c for ag-

gregation intervals of 6 and 48 h.

c. Intermittency

The datasets contain many periods where rain was regis-

tered at one or more stations but some other stations were dry

at the same time. In addition, there were periods where rain

was registered at only certain subintervals within a longer

temporal aggregation interval. To assess the relative effect of

such intermittency in rainfall versus the purely quantitative

variability in rainfall intensity we have performed the same

analysis as described above, but with an extra filtering step. The

goal is to exclude any period containing such (spatially and/or

temporally intermittent) edge cases. To do so we filter out any

time interval per pair of stations where at least one of the two

stations for which the correlation coefficient is calculated has

reported a rainfall intensity smaller than 0.1mmh21 during

any subinterval. Filtering in this manner leaves 5.0% of the 1-

min pair intervals in the Wageningen dataset. Pair intervals

where both disdrometers register rainfall intensities smaller

than 0.1mmh21 during all subintervals comprise 92.5% of the

dataset. This leaves 2.5% of the pair intervals where at least

one of the disdrometers registers rain during at least one sub-

interval but at least one disdrometer does not do so during at

least one subinterval. For the Rotterdam dataset these per-

centages are 5.0%, 89.5%, and 5.5%, respectively.

The decorrelation distances and shape factors calculated

from the filtered data are shown in Fig. 5 for several aggrega-

tion intervals together with the same parameters calculated

from the unfiltered dataset. Parameters derived from the fil-

tered dataset are not included for aggregation intervals of 6 h

and longer; the number of individual intervals that are com-

pletely wet are too few to derive meaningful statistics from.

When filtering the datasets in this manner it can be observed

that the decorrelation distances are significantly longer as

compared to the unfiltered dataset at aggregation intervals of

30min and longer. However, the decorrelation distance–

aggregation interval power laws have overlapping signifi-

cance bands over almost the entire range, only diverging for

FIG. 5. (a) Dependence of decorrelation distance (and associated uncertainty) on aggregation interval using only

wet intervals. Blue lines and dots indicate estimates using only purely wet intervals (per pair of stations) for all

datasets, while orange lines and dots include partially wet intervals as well. (b) As in (a), but for shape factor as

function of aggregation interval. Extrapolations of fitted models beyond the range of measurements on which they

are based are indicatedwith dashed lines. Legends show estimated values of model parameters and their confidence

intervals, as well as corresponding coefficients of determination.
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intervals of 2 h and longer. In contrast, the differences in terms

of the shape factors are more fundamental. The shape factor–

aggregation interval relationship in the filtered case is not at all

similar to the nonfiltered case and cannot be described with a

power-law function.

To gain more insight into the spatial and temporal depen-

dency of the intermittency we use the intermittency ratio I

introduced in Eq. (4). The results are plotted against the dis-

tance between the stations in Fig. 6a. FollowingKrajewski et al.

(2003), a two-parameter exponential model similar to that used

to fit the correlation function [Eq. (3)] is also used to fit the

distance dependency of the intermittency ratio. The same

analysis is performed for different aggregation intervals. The

resulting e-folding distances and shape factors are shown in

Figs. 6b–6c. A power-law relationship between the e-folding

distance and the aggregation interval is used. No power-law

relationship was fitted between the shape factor and the ag-

gregation interval, since it does not provide a good fit.

We see, e.g., at the 10-min scale, that the conditional prob-

ability that two stations at a relative distance d both detect

rainfall, given that one of themhas detected rainfall, is 1 for d5
0 km, decreasing to 0.1 for d 5 300 km. Krajewski et al. (2003)

found intermittency ratios significantly smaller than 1 for dif-

ferent locations around the world at 5-min, 15-min, and 1-h

aggregation intervals. This may have been related to local

random errors (associated with the finite bucket volumes) af-

fecting the rainfall estimates from the employed tipping-

bucket rain gauges (Ciach 2003), as opposed to the optical

disdrometers and float-based gauges we used (section 2a). The

exponential decrease model fits the observed pattern very well

(R2 5 0.99). The e-folding distance (analogous to the decor-

relation distance) is of the same order of magnitude as the

decorrelation distances observed for the same aggregation in-

terval and data selection, but still significantly longer. At longer

aggregation intervals, the intermittency ratios [defined ac-

cording to Eq. (4)] become gradually higher, implying that the

magnitude of the intermittency decreases. For instance, at a 24-

h aggregation interval the intermittency ratio at d 5 300 km

becomes 0.35. The e-folding distance at longer aggregation

intervals becomes lower than the decorrelation distance at the

same intervals, but remains still of the same order of magni-

tude. For all aggregation intervals, the shape factor is lower

than 0.5. The power-law function fits the e-folding distance–

aggregation interval relationship quite well (R2 5 0.86). Note

that the first few aggregation intervals shown in Figs. 6b and 6c

provide parameters derived only from the Rotterdam and

Wageningen datasets and are therefore not included in the

power-law fit. The shape factor–aggregation interval relationship

FIG. 6. (a) Intermittency ratios of disdrometer/gauge combinations as a function of interstation distance for several temporal aggre-

gation intervals. Circles represent Wageningen disdrometer pairs, while squares represent Rotterdam disdrometer pairs, and triangles

represent nationwide gauge pairs. A two-parameter exponential function [Eq. (3)] is fitted through all datasets. (b) The e-folding distance

(and associated uncertainty) of intermittency ratios of disdrometer pairs as a function of aggregation interval. Parameters determined

using all data are plotted in green. Parameters determined for only summer months are indicated in orange, while blue shows parameters

determined for only winter months. (c) Shape factor (and associated uncertainty) of the intermittency ratio–interstation distance rela-

tionship as a function of aggregation interval. Colors are the same as in (b). Extrapolations of fitted models beyond the range of mea-

surements on which they are based are indicated with dashed lines. Legends show estimated values of model parameters and their

confidence intervals, as well as corresponding coefficients of determination.
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does not conform to a power law, although a consistent pattern

does appear.

Finally, the seasonal effect is less pronounced in terms of the

intermittency ratios (shown in Figs. 6b–c) than in terms of the

rainfall intensities. However, there is still a significant increase

in e-folding distance in winter compared to summer. Longer

distances in winter are expected given the prevalence of

stratiform over convective rainfall. Curiously, the distances

actually appear to be shorter in winter than in summer when

aggregated to intervals of 24 or 48 h. The fitted trends are not

significantly different, though.

5. Discussion

In comparing our findings to the existing literature, focusing

on studies employing exponential spatial correlation models of

the form of Eq. (3) for short temporal aggregation intervals (a

few minutes to a few hours), a few salient points can be iden-

tified: contrary to some other studies we have not included a

nugget parameter in our parametric model (similar to Mascaro

2017). Given our relatively small number of point pairs we

wanted to limit the number of degrees of freedom in our

model. Moreover, we find that the inclusion of a nugget pa-

rameter does not improve the goodness-of-fit and we find that

the nugget is not significantly different from 1 (section 4a).

Ciach and Krajewski (2006) estimated the nugget parameter

from collocated rain gauges and estimated a nugget for their

experiment of 0.996 at a 1-min aggregation interval (and even

higher at longer intervals), which supports our assertion that

the nugget can be neglected. Tokay and Öztürk (2012) also

used collocated rain gauges to estimate the nugget parameter.

They found a value of 0.97 for their lowest aggregation interval

of 5min. Jaffrain andBerne (2012) estimated the nugget from a

collection of point pairs with distances that were all greater

than 100m, which makes their estimation more prone to error.

Nevertheless, they do not report nugget parameters lower

than 0.92. Peleg et al. (2013) used the same method and

obtained similar results. O and Foelsche (2019) estimated

the nugget for aggregation intervals between 5 min and 24 h

from a network with a minimum interstation distance of

700 m and reported values exceeding 0.9 for intervals of

15 min and longer. Villarini et al. (2008), however, reported

far lower nugget parameters, e.g., 0.51 for 1-min aggrega-

tion intervals, which is in disagreement with the above-

mentioned reports as well as this study. This may have been

the result of the lack of point pairs below 500-m distance in

their study. In addition, their analysis is based on tipping-

bucket rain gauge observations, which are likely prone to

strong local random errors (Ciach 2003) associated with the

finite resolution of the bucket of such rain gauges. van de

Beek et al. (2012) neglect the nugget as well, however, they

did not consider aggregation intervals shorter than 1 h or

short distances.

In all the existing literature a roughly power-law relationship

is found between decorrelation distance and aggregation in-

terval. We find decorrelation distances that are in good

agreement with Ciach and Krajewski (2006) for short aggre-

gation intervals, yet for longer intervals the decorrelation dis-

tances found in this study are considerably longer (Table 1).

The decorrelation distances found by Villarini et al. (2008) and

in particular those reported by O and Foelsche (2019) are in

good agreement with our findings throughout the range of

time scales. Conversely, the decorrelation distances found by

Jaffrain and Berne (2012) and Peleg et al. (2013) are signifi-

cantly shorter at all aggregation intervals. Jaffrain and Berne

(2012) did a separate analysis for convective and frontal rain-

fall and found that decorrelation distances for frontal rainfall

can be roughly 2–6 times longer than for convective rainfall, yet

still shorter than what we find (Table 1). Of the studies we have

compared only Tokay andÖztürk (2012) reported decorrelation

TABLE 1. Estimates for the decorrelation distance d0 (km) and shape factor s0 of the two-parameter exponential spatial correlation

model [Eq. (3)] for rainfall intensity at 1-min, 15-min, 30-min, and 3-h aggregation intervals from several studies (Ciach and Krajewski

2006; Villarini et al. 2008; Jaffrain and Berne 2012; Tokay and Öztürk 2012; Peleg et al. 2013; Mascaro 2017; O and Foelsche 2019,

abbreviated as CK2006, V2008, JB2012, TO2012, P2013,M2017, andOF2019, respectively) as well as this study. The results for JB2012 are

listed from left to right: convective, transitional, and frontal rain. The results for M2017 are for summer and winter, respectively. The

corresponding numbers for 15minwere obtained by linearly interpolating between the reported values for 10 and 30min. The results from

this study are as follows:Wageningen and Rotterdam datasets (Wag1Rot); Wageningen, Rotterdam, and nationwide datasets combined

(All); and only theWageningen dataset (Wag). For comparison, theminimum dmin (m) andmaximum dmax (km) interstation distances for

each study are given.

Study CK2006 V2008 JB2012 TO2012 P2013 M2017 OF2019 Wag 1 Rot All Wag

Country/state Oklahoma England Switzerland Virginia Israel Arizona Austria Netherlands

dmin 2 500 85 1 400 500 700 7 7 7

dmax 4 15 0.8 2.672 5 227 23.4 30 315 2.2

d0, 1 min 7.5 6.3 1.9/4.9/4.1 — 3 — — 6.9 — 3.8

d0, 15min 10.5 20.0 2.9/5.8/16.7 43.1 7 6.8/8.1 ;20 21.5 21.0 5.3

d0, 30min 12.0 26.0 — 70 9 10.7/23.2 ;30 33.0 32.5 8.6

d0, 3 h 19.0 72.0 — 200 21 26.8/135.2 ;90 102 95.8 15

s0, 1min 1.10 0.41 1.32/1.11/1.01 — 1.1 — — 0.58 — 1.00

s0, 15min 1.45 0.78 1.78/1.61/0.94 0.55 1.2 0.50/0.28 0.89 0.72 0.70 1.66

s0, 30min 1.50 0.88 — 0.62 1.2 0.57/0.37 0.91 0.75 0.57 1.46

s0, 3 h 1.57 0.86 — 0.81 1.1 0.59/0.50 0.85 0.79 0.73 1.36
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distances that were significantly longer than in our study (almost

by a factor of two across aggregation intervals).

We find shape factors s0 that are below 1 at all aggregation

intervals and increasing with correlation distance, which is in

agreement with Villarini et al. (2008), Tokay and Öztürk
(2012), and Mascaro (2017), but counter to the findings of

Ciach and Krajewski (2006) and Jaffrain and Berne (2012),

who report shape factors above 1 in all cases and most cases,

respectively (Table 1). All studies in this comparison reported

an increase of the shape factor with aggregation interval, ex-

cept for Peleg et al. (2013) and O and Foelsche (2019), who

found shape factors of about 1.2 and 0.9, respectively, but

no trend.

It should be noted that of these studies only Villarini et al.

(2008), Mascaro (2017), and O and Foelsche (2019) measured

across distances greater than 5 km (Table 1). As we have shown

in Fig. 2, not taking into account longer interstation distances,

at least of the same order as the decorrelation distance itself,

can severely distort the parameter estimates of d0 and s0. If we

take only into account the data from Wageningen, then our d0
estimates are more in line with those found by Peleg et al.

(2013), while our s0 estimates are all around or higher than 1,

increasing at first and from aggregation intervals of 15min

onward varying roughly around 1.5 (Figs. 2a–f).

The longer decorrelation distances we find in winter can be

explained by the prevalence of frontal over convective systems

in the Netherlands during winter; the opposite is generally true

in summer (Lochbihler et al. 2017). Van de Beek et al. (2011,

2012) also investigated seasonal differences in spatial rainfall

variability in the Netherlands. They analyzed the variability in

terms of semivariance, so we cannot directly compare the

magnitude of the model parameters. However, they found a

range parameter that is much smaller during summer than

during winter, which is consistent with our findings.

Except for Mascaro (2017) and O and Foelsche (2019),

seasonal differences in spatial rainfall variability have not been

investigated extensively at small scales. Both Mascaro (2017)

and O and Foelsche (2019) report longer decorrelation dis-

tances in winter than in summer, in accordance with our results

(Fig. 4a). However, Mascaro (2017) also report smaller values

of the shape factor of the correlation function in winter than in

summer (Table 1), opposite to our findings (Fig. 4b). This is

likely due to climatological differences between Arizona and

the Netherlands.

Tokay and Öztürk (2012) briefly discuss seasonal differ-

ences, but do not provide actual parameter values, making it

hard to compare our results to theirs. They investigated two

years and found that correlations in winter were higher than in

summer during the first year, while correlations in winter were

slightly lower than in summer in the second year. They also

found large differences between the same seasons in different

years. This is quite different than our results, part of which

may be due to climatological differences between Virginia,

United States, and the Netherlands. Both the Netherlands

and Virginia are Northern Hemisphere coastal regions.

However, while the climate in Virginia can be classified as

humid subtropical, the Netherlands have a temperate mari-

time climate. Furthermore, the remnants of tropical cyclones

can contribute to out-of-season rainfall patterns in Virginia

(Tokay and Öztürk 2012), whereas when such remnants ar-

rive in the Netherlands they are already much weaker.

6. Conclusions

We have used data from three different gauge/disdrometer

networks at three different spatial scales in the same general

area to assess the spatial variability of rainfall. We use spatial

correlation and intermittency ratio as metrics and fit to these a

two-parameter exponential model as a function of interstation

distance. By combining datasets we obtain a more accurate

regression that captures the rainfall correlation pattern over a

broad range of scales. Although this may be a well-known re-

sult from the (geo)statistical literature, it remains important to

emphasize this, since many studies (including four of the seven

studies to which we compare our results) limit their analysis of

rainfall spatial correlation to the extent of one typical weather

radar or satellite pixel.

We find that spatial variability patterns at the small scale are

in general agreement with the pattern at larger scales. We

confirm that decorrelation distance d0 (km) is related to the

temporal aggregation interval Dt (s) by a power law relation-

ship, d05 0.63Dt0.53. In winter, the decorrelation distance tends
to be significantly larger and follows a different power-law

relationship, d0 5 9.7Dt0.29. In general, our estimates of the

parameters of an exponential decorrelation function of rainfall

are in reasonable agreement with estimates by Villarini et al.

(2008), Mascaro (2017), and O and Foelsche (2019) but not

with other studies that only took into account interstation

distances smaller than 5 km. We found that the correlation

between stations at the sub-10-m scale is ;1. This is in agree-

ment with other studies which measured correlations between

collocated stations. We have analyzed the spatial patterns of

intermittency in rain separately from the spatial pattern in

rainfall intensity. In the Netherlands, the spatial correlation

pattern of rainfall intensity within contiguous patches of rain is

not significantly different than the correlation pattern includ-

ing dry zones within a larger rain field.

Our results show that, in order to accurately determine

spatial decorrelation distance of rainfall, a gauge/disdrometer

network with mutual distances of only a few kilometers is not

enough. This is demonstrated by the fit obtained using only the

Wageningen dataset and is supported by our assessment of

other studies. The inclusion of station pairs with mutual dis-

tances in the order of tens of kilometers is sufficient for sub-

hourly time scales. Nevertheless, we also find that, when taking

into account the full scale range from micro-g to meso-b, the

shape of the fitted correlogram does not adequately capture

the correlation pattern at the micro-g scale, hinting that the

two-parameter exponential model might not be general

enough to capture the true shape. Finding a better model

could be an avenue for further research.

Finally, beyond the applications mentioned in section 1, the

spatial pattern in intermittency ratio could be further em-

ployed to provide guidelines for the maximum spatial range

between which measurement stations may be compared for

quality control purposes. For example, in the case of personal
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weather stations (PWS), the range so determined may be used

to find with which surrounding stations the PWS must be

compared (de Vos et al. 2017, 2019).
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